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ABSTRACT

Watershed resilience is the ability of a watershed to

maintain its characteristic system state while con-

currently resisting, adapting to, and reorganizing

after hydrological (for example, drought, flooding)
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or biogeochemical (for example, excessive nutri-

ent) disturbances. Vulnerable waters include non-

floodplain wetlands and headwater streams,

abundant watershed components representing the

most distal extent of the freshwater aquatic net-

work. Vulnerable waters are hydrologically dy-

namic and biogeochemically reactive aquatic

systems, storing, processing, and releasing water

and entrained (that is, dissolved and particulate)

materials along expanding and contracting aquatic

networks. The hydrological and biogeochemical

functions emerging from these processes affect the

magnitude, frequency, timing, duration, storage,

and rate of change of material and energy fluxes

among watershed components and to downstream

waters, thereby maintaining watershed states and

imparting watershed resilience. We present here a

conceptual framework for understanding how

vulnerable waters confer watershed resilience. We

demonstrate how individual and cumulative vul-

nerable-water modifications (for example, reduced

extent, altered connectivity) affect watershed-scale

hydrological and biogeochemical disturbance re-

sponse and recovery, which decreases watershed

resilience and can trigger transitions across

thresholds to alternative watershed states (for

example, states conducive to increased flood fre-

quency or nutrient concentrations). We subse-

quently describe how resilient watersheds require

spatial heterogeneity and temporal variability in

hydrological and biogeochemical interactions be-

tween terrestrial systems and down-gradient wa-

ters, which necessitates attention to the

conservation and restoration of vulnerable waters

and their downstream connectivity gradients. To

conclude, we provide actionable principles for re-

silient watersheds and articulate research needs to

further watershed resilience science and vulnera-

ble-water management.

Key words: ephemeral stream; geographically

isolated wetlands; headwater stream; intermittent

river and ephemeral stream; intermittent stream;

non-floodplain wetland; perennial stream; state

transitions; steady state; thresholds; water quality;

watershed management.

HIGHLIGHTS

� Headwaters and non-floodplain wetlands are

vulnerable waters

� Vulnerable waters affect hydrologic/biogeo-

chemical processes

� Vulnerable waters adaptively maintain water-

shed resilience

� Modifications to vulnerable waters induce re-

gime shifts

INTRODUCTION

Vulnerable waters, that is, headwater streams

(ephemerally, intermittently, and perennially

flowing, low-order, lotic waters) and non-flood-

plain wetlands (also called geographically isolated

wetlands, Leibowitz 2003), perform critical water-

shed functions that affect the magnitude, fre-

quency, timing, duration, and rate of change of

material and energy fluxes among watershed

components and to downstream waters (Ward

1989; Cadenasso and others 2003; Loreau and

others 2003; Rains and others 2016; Brooks and

others 2018; Gómez-Gener and others 2021). These

functions include extensive biogeochemical pro-

cessing (Arce and others 2019; Golden and others

2019) and substantive hydrological flood attenua-

tion and baseflow maintenance (Hubbard and

Linder 1986; Evenson and others 2016; Fossey and

Rousseau 2016; Golden and others 2021).

The term vulnerable waters emerged due to their

susceptibility to degradation or destruction because

of the insufficiency of their mapped extent and

limited regulatory protection (see Creed and others

2017). Yet vulnerable waters are often abundant

watershed components within natural landscapes

(Freeman and others 2007; Lane and D’Amico

2016; Allen and others 2018; Hafen and others

2020; Fesenmyer and others 2021; Messager and

others 2021), with estimates suggesting they com-

prise up to 89% of longitudinal stream extent

worldwide (Allen and others 2018) and greater

than 16% of inland wetlands in the conterminuous

USA (Lane and D’Amico 2016); no global estimates

exist for non-floodplain wetlands.

Though their individual and cumulative contri-

butions are increasingly noted in the scientific lit-

erature (for example, McGuire and others 2014;

Marton and others 2015; Cohen and others 2016;

Rains and others 2016; Creed and others 2017;

Cheng and others 2020; Kim and Park 2020), the

potentially controlling effects of vulnerable waters

on watershed-scale ecological resilience (hereafter

watershed resilience) has not yet been fully con-

sidered by the scientific community. Watershed

resilience is the ability of a watershed to maintain

conditions, functions, structures, interactions, and

feedbacks (that is, maintain its characteristic system
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state) while concurrently resisting, recovering

from, adapting to, and reorganizing after distur-

bances (Holling 1973; Walker and others 2004; Ives

and Carpenter 2007). Disturbances affecting

watershed resilience come in both acute, short-

term, reorganizational shocks (for example, fires,

floods) and chronic, long-term stresses (for exam-

ple, increasing urbanization, changing precipitation

regimes) (Moloney and Levin 1996; Stanford and

others 2005; Kleindl and others 2015).

Watershed resilience is informed by the state and

interactions of a watershed’s terrestrial and aquatic

components in both the built and natural envi-

ronments, including wetlands, streams, rivers,

lakes, forests, grasslands, urban areas, and agricul-

tural lands (Hynes 1975; Forman 1995). Resilient

watersheds withstand and adapt to disturbances

prior to functional or structural thresholds being

crossed (Scheffer and others 2001). However, once

thresholds are crossed, watersheds undergo a re-

gime shift resulting in measurable and marked

change in state-defining storages, process rates, and

interactions (Folke and others 2004; Carpenter and

others 2011). Watershed resilience brings an

important geospatially bounded and increasingly

resource management focused perspective to the

broader ecological resilience concept (Murphy and

Sprague 2019).

A watershed’s state and resilience can be deter-

mined by hydrological and biogeochemical storages

and fluxes to the aquatic system that emanate from

vulnerable waters through their interactions with

their terrestrial drainage areas and contributing

near-surface and groundwater flow networks

(Larned and others 2010; Sayer 2014; Covino 2017;

Hare and others 2021). Through their cumulative

effects on down-gradient material and energy

fluxes (Biggs and others 2017), vulnerable waters

control (for example, dampen) hydrological and

biogeochemical variability at watershed outlets

(Saco and Kumar 2002; Lindsay and others 2004;

Cohen and others 2016; Rupp and others 2021).

However, humans are decreasing watershed re-

silience and contributing to watershed state chan-

ges through disturbances that modify vulnerable-

water extent and hydrological and biogeochemical

functioning (for example, Dahl 1990; Elmore and

Kaushal 2008; Wright and Wimberly 2013; Van

Meter and Basu 2015; Johnston and McIntyre

2019). For instance, alterations to vulnerable wa-

ters have been implicated as possible causal agents

in down-gradient nutrient-mediated lake trophic-

state regime shifts (for example, Engstrom and

others 2006; Zhang and others 2009). Golden and

others (2021) reported that watershed-scale

hydrological modification of vulnerable-water

storage functions affected down-gradient stream

discharge, increasing the magnitude, frequency,

duration, and related impacts of flooding. Coupling

hydrological and biogeochemical disturbances,

watershed-scale drainage modifications (for exam-

ple, tiling) affected storage and fluxes from vul-

nerable waters, altered stream hydrographs and

increased materials (for example, nutrients) en-

trained in modified drainages across the upper

Midwestern United States, leading to watershed-

scale ecohydrological state shifts (Foufoula-Geor-

giou and others 2015; McKenna and others 2017).

Modifications of vulnerable waters alter the

time-integrated and spatially disparate relation-

ships between precipitation and conversion to

flowing water in streams (for example, McKenna

and others 2017). The mechanisms of these alter-

ations that modify resilience and catalyze state

changes are straightforward: hydrologically con-

centrating (through headwater stream channeliza-

tion), dissipating (through non-floodplain wetland

drainage), and bypassing (for example, through

agricultural tiles, Gramlich and others 2018; or

urban piping, Elmore and Kaushal 2008) vulnera-

ble waters decrease their storage capacity and

changes their contributions to the variability of

down-gradient streamflow. Concurrently, alter-

ations to vulnerable waters that expedite hydro-

logical travel times decrease biogeochemically

important residence times while increasing nutri-

ent loading to down-gradient aquatic systems

(Golden and others 2019), negating vulnerable-

water functioning as biogeochemical hot spots for

nutrient assimilation (for example, Marton and

others 2015; Cheng and Basu 2017; Cheng and

others 2020; Evenson and others 2021).

Sufficiently widespread and impactful distur-

bances to vulnerable waters may lead to a regime

shift, transforming the watershed across thresholds

of measured function or structure into an alterna-

tive state (Zelnik and Meron 2018). Once a tran-

sition to a new state occurs, a new suite of

watershed descriptors will emerge with

stable structures and defined functions, processes,

and interactions (Botkin and Sobel 1975; Angeler

and Allen 2016; McKenna and others 2017;

Mushet and others 2020). The new post-distur-

bance state, like the old, has definable watershed

resilience and will similarly withstand disturbances.

However, the post-transition state may be societally

undesirable (Scheffer and others 2001; Allen and

others 2016). Further, changing watershed states

through restoration requires energetically

demanding, resource consuming, or otherwise

Vulnerable Waters are Essential to Watershed Resilience 3



policy-constricting modifications to overcome the

resilience of the new state (Biggs and others 2009).

Hence, maintenance of crucial system structures,

functions, and the resulting time-varying interac-

tions between terrestrial land covers and vulnera-

ble waters is important for watershed resilience

(Ward 1989; Saco and Kumar 2002; Uden and

others 2014; Cohen and others 2016).

Here, we present a novel framework linking the

functions of vulnerable water to the maintenance

of watershed state and the resilience of watersheds,

building on recent reviews (for example, Larned

and others 2010; Cohen and others 2016; Rains

and others 2016; Wohl 2017; Fritz and others 2018;

Crabot and others 2021). Our intended audience

includes researchers functionally linking headwa-

ter streams and non-floodplain wetlands with

watershed-scale hydrological and biogeochemical

phenomena (for example, Cheng and others 2020;

Evenson and others 2021), as well as natural re-

source managers who are increasingly adopting

watershed-scale perspectives and practices to ad-

dress vexing societal water quality and quantity

problems (Creed and others 2017; Accatino and

others 2018). We first describe the concept of

watershed resilience. Second, we review the sci-

entific literature describing vulnerable-water ef-

fects on watershed state-defining hydrological and

biogeochemical storages and fluxes affecting resi-

lience. Third, we characterize how modifying vul-

nerable-water extent and functions decreases

watershed resilience, which can precipitate a state

change. We follow in the fourth section by articu-

lating vulnerable-water emergent theories and

management principles for judiciously guarding

and improving watershed state and increasing

watershed resilience. We conclude by identifying

research and management needs for improved

watershed resilience science.

WATERSHED RESILIENCE

Watershed resilience is a concept founded on eco-

logical resilience and the existence of multiple

alternative watershed states (Holling 1973; Rinaldi

and Scheffer 2000). Each alternative watershed

state is defined by structural and functional char-

acteristics and their resultant hydrological and

biogeochemical processes (for example, storages

and fluxes) as measured at the watershed outlet.

Like a watershed’s current state, each alternative

state has resilience to change (Beisner and others

2003). Watershed resilience is described by several

theoretical descriptors (Walker and others 2004;

Figure 1). Latitude describes the width of the state-

space, or the amount a watershed can be altered

before transiting across a threshold to a new

watershed state. Resistance is the depth of the basin

of attraction, or relative effort needed to change the

watershed to a new state. Precariousness character-

izes the proximity of the watershed state to a

threshold after which a transition to a different

basin of attraction will occur (Walker and others

2004; Zipper and others 2020). Resilient water-

sheds are conceptually located in basins of attrac-

tion with wide latitude and deep resistance, both of

which confer the ability to withstand greater dis-

turbances prior to undergoing a regime shift or

crossing a threshold to a different watershed state

(see Figure 1; Menck and others 2013; Radchuk

and others 2019). Similarly, resilient watersheds

are those distant from precarious thresholds,

thereby less likely to cross a change threshold (that

is, undergo a transformative regime shift to a new

stable state with defined structures and functions

affecting hydrological and biogeochemical storages

Figure 1. Watershed states viewed as a conceptual

landscape of current and possible depression-like states

or ‘‘basins of attraction’’ demarcated by dashed boundary

lines. The resilience of each watershed state is defined by

the resistance to change (R, or the depth of the basin),

latitude to disturbance (L, or the width of the basin), and

precariousness (Pr, or the proximity of the current state

to the state change threshold). A given watershed’s

current state is indicated by the black dot, which we posit

represents the measurable hydrological (for example,

flood attenuation and baseflow maintenance) and

biogeochemical (for example, biogeochemical

processing and flux-magnitude dampening) functions

performed and affected by an existing suite of vulnerable

waters and their down-gradient connectivity, quantified

at the watershed outlet. Transitions to alternative

watershed states, represented by proximal basins of

attraction, are hypothesized to occur with destruction

of extant vulnerable waters and/or diminution of their

functions. Modified from Walker and others (2004) and

used under Creative Commons Attribution/Non-

Commercial 4.0 International License.
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and fluxes in response to a given disturbance; Sa-

saki and others 2015).

Vulnerable waters convey watershed resilience

by dampening disturbance effects on hydrological

and biogeochemical storages and fluxes while

concurrently enforcing feedbacks that strengthen

the provisioning of characteristic watershed func-

tions (that is, vulnerable waters provide ‘‘balanc-

ing’’ or ‘‘self-regulating’’ feedbacks). In resilience

parlance, hydrologically and biogeochemically

mediated functions performed by vulnerable wa-

ters provide negative feedbacks that convey water-

shed resilience for a given watershed state (that is,

adaptability and resistance to change). Conversely,

when vulnerable waters are impacted, these

hydrologically and biogeochemically mediated

functions are altered, leading to the loss of these

negative feedbacks or even the creation of positive

feedbacks (that is, ‘‘reinforcing’’ the coming

watershed change) that accelerate transitions

across thresholds to alternative watershed states.

As regime shifts loom, unstable watershed states

may emerge (Rinaldi and Scheffer 2000). Like a

swaying tightrope walker, watersheds may enter a

liminal and unstable state with different and vac-

illating (or ‘‘flickering’’) states emergent at any

point in time (Figure 2). However, once a charac-

teristic state-defining threshold is crossed, the

watershed enters a new basin of attraction as it

undergoes a transformational change in structures,

functions, and feedbacks (for example, decreased

hydrological yields affecting stream flow, temper-

ature regimes, and habitat; Hicks and others 1991).

Subsequent to a threshold being crossed, a water-

shed then emerges in a stable watershed state, with

new structural, functional, and interactive charac-

teristics—including different system resilience and

disturbance thresholds (Scheffer and others

2012)—that define the watershed’s hydrological

and biogeochemical state.

VULNERABLE WATERS CONTRIBUTE

TO WATERSHED RESILIENCE

Increased scientific interest in vulnerable-water

functions has emerged concurrent with both new

policy and management challenges (for example,

Lassaletta and others 2010; Alexander 2015; Colvin

Figure 2. Properly functioning and network-connected

vulnerable waters determine watershed state.

Incremental and/or cumulative disturbances to

vulnerable waters < S1
* (Fold1 in the bottom graph)

affect watershed state yet not to the degree to precipitate

a state-changing transition (that is, hydrological and

biogeochemical functioning and network disturbance

dampening provided by vulnerable waters maintains

watershed state). Following Rinaldi and Scheffer (2000),

at disturbance values < S1
*, the watershed state (for

example, as measured by nutrient loads) remains in the

unimpaired basin of attraction as indicated by black dot

within the dashed basin boundary in the middle diagram

(and within Box A in the bottom diagram). Hence,

vulnerable-water disturbances < S1
* are insufficient to

disrupt the inherent state stability and steady-state

dynamics of watershed’s basin of attraction (top

diagram). However, vulnerable-water disturbance levels

in the bottom diagram ‡ S1
* and £ S2

* result in highly

unstable states (top diagram) wherein the watershed may

vacillate or flicker over time between either state (middle

box of middle diagram). These unstable equilibria may

presage state transitions (Scheffer and others 2012).

Continued disturbances to vulnerable waters transit the

watershed across a threshold (Fold2, disturbance

values > S2
*) to a new and stable steady state. For

example, consider a watershed experiencing disturbance

in the form of nutrient loading. On the y-axis of the

bottom diagram, the watershed system as hypothetically

qualified by given nutrient loads at a pour point is stable,

and in an unimpaired state with vulnerable-water

disturbance < S1
*, bi-stable or flickering between ‡ S1

*

and £ S2
*, and stable in an impaired state when

disturbance values > S2.

c
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and others 2019; Mihelcic and Rains 2020) and the

burgeoning availability of high spatial and temporal

resolution data (for example, Vanderhoof and Lane

2019; Wu and others 2019a). Several recent re-

views detail the state of the science on the indi-

vidual and cumulative functional effects of

headwater streams and non-floodplain wetlands on

downstream system states (for example, Larned

and others 2010; Marton and others 2015; USEPA

2015; Cohen and others 2016; Rains and others

2016; Biggs and others 2017; Golden and others

2017, 2019; Wohl 2017; Fritz and others 2018;

Lane and others 2018; Schofield and others 2018;

Gómez-Gener and others 2021). Those in-depth

reviews generally focus on the hydrological, bio-

geochemical, and/or biological functions of these

networked watershed components (for example,

reviews on biogeochemical flux rates and storages

within non-floodplain wetlands, Marton and oth-

ers 2015). The novel contribution of this review is

on mechanistically linking the hydrologically dy-

namic and biogeochemically reactive aspects of

vulnerable waters—collecting, storing, transform-

ing, and releasing water and entrained (that is,

dissolved/particulate) materials—with the concepts

of maintaining watershed states and imparting

watershed resilience.

To develop these linkages, we first briefly review

the scientific literature describing the mechanisms

by which vulnerable waters affect watershed resi-

lience. Below, we describe the functional contri-

butions of vulnerable waters affecting watershed

states and imparting watershed resilience focusing

on (1) vulnerable-water extent and abundance, (2)

hydrological functioning, and (3) biogeochemical

functioning. For clarity, each review subsection is

separated into reviewing and synthesizing the sci-

entific literature on headwater streams, followed by

non-floodplain wetlands.

Known Extent and Proportional
Abundance

Vulnerable waters consist of the most distal extent

of the lotic systems (Wohl 2017) and non-flood-

plain wetlands (Lane and others 2018), including

depressional wetlands and similar lentic systems

embedded within uplands (Mushet and others

2015). These aquatic systems are often unmapped

and have limited protection (Creed and others

2017; Mihelcic and Rains 2020). However, they are

abundant and networked watershed components

(Figure 3).

Horton (1945) established that headwater

streams, low-order systems inclusive of streams

from coastal plains to mountainous physiographic

regions, are the most abundant components of the

fluvial network. Recent estimates suggest that

nearly 89% of global longitudinal stream extent is

comprised of these vulnerable waters (Allen and

others 2018). In the USA, headwater streams rep-

resent approximately 50–80% of the total currently

mapped conterminous US stream length (Nadeau

and Rains 2007; Colvin and others 2019; Fig-

ure 3A), certainly an underestimate of headwater

stream abundance (Hafen and others 2020;

Fesenmyer and others 2021). Fesenmyer and oth-

ers (2021) recently coupled nationally available

high-resolution geospatial data with a contributing

area threshold model, concluding that 48% of the

conterminous stream length is likely ephemeral

(43–56%, depending on flow area characteristics).

Allen and others (2018) estimated that headwater

streams are narrow (mean cross-sectional width of

32 cm ± 7 cm), which confounds the ability to

accurately map their geospatial location and extent

(Lang and others 2012; Vanderhoof and Lane 2019;

Figure 4). Furthermore, flow can be highly variable

in headwater streams, which affects estimates of

vulnerable-water extent (Fritz and others 2013;

Jaeger and others 2019; Zimmer and others 2020;

Hammond and others 2021; Messager and others

2021).

In contrast to headwater streams, no global data

are yet available on the potential extent of non-

floodplain wetlands, representing a significant data

gap in the effective management of these vulner-

able waters (see, though, Borja and others 2020).

Analyses in spatially data-rich areas such as the

conterminous USA suggest that non-floodplain

wetlands comprise approximately 16–23% of

existing total freshwater–wetland areal extent

(Lane and D’Amico 2016; this study, see Supple-

mental Material and Figure 3B). However, global

wetland losses to date have been substantive; the

USA alone has lost 50% of wetlands since Euro-

pean settlement, with some states having lost more

than 90% (Dahl 1990). Recent data suggest wet-

land destruction continues with greater than 30%

global areal losses since 1970 (Dixon and others

2016). Like streams, estimates of wetland distribu-

tion are hampered by the confounding effects of

small areal extent (that is, wetlands < 1.0 ha,

Cohen and others 2016), shallow depths, short

hydroperiods (Wu 2018), overstory vegetation

blocking extent delineation (Tiner and others

2015), and land-use change (Tiner 1997). In con-

trast to larger wetland systems, these small areal

extent wetlands are disproportionately at risk of

6 C. R. Lane and others



being altered or destroyed (Van Meter and Basu

2015; Serran and others 2017).

Hydrological Functions

Headwater streams supply the majority of flow in

most river systems (Alexander and others 2007;

Fritz and others 2018). By providing flows to

higher-order systems, headwaters directly affect

watershed hydrological state and maintain resi-

lience (for example, to drought perturbations).

Even ephemeral or intermittent headwater streams

without apparent surface flow are important for

watershed resilience as they often have complex

Figure 3. A and B Extent of mapped vulnerable waters in the conterminous USA, separately identifying the reported

abundance within eight-digit Hydrologic Unit Code (HUC) watersheds for A Vulnerable Lotic Systems: 53% of the

conterminous US stream length, or � 2,900,000 km, are headwater streams (defined as first-order streams using

1:100,000 data; Nadeau and Rains 2007, used by permission), 50% of which (� 1,460,000 km) are reported to be

intermittent or ephemerally flowing systems, and B Vulnerable Lentic Systems: non-floodplain wetlands (NFW, also

known as geographically isolated wetlands, following Lane and D’Amico 2016; see Supplemental Material), approximately

23% of the area of freshwater wetlands in the conterminous USA was classified as non-floodplain wetlands, though

wetlands smaller than 0.2 ha are typically unmapped.
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and abundant hyporheic flow that maintains the

hydrological stability of down-gradient systems

(Stanley and others 1997; Ebersole and others

2015; Covino 2017; Magliozzi and others 2018).

Flow from headwater streams maintaining

down-gradient systems and imparting resilience is

neither spatially nor temporally invariant but dy-

namic across watersheds as headwaters expand,

contract, fragment, and reconnect across pre-

dictable spatial and temporal scales (Hewlett and

Nutter 1970; Godsey and Kirchner 2014; Price and

others 2021; Shanafield and others 2021). The

heterogeneity of dynamic flow paths throughout a

watershed’s headwater network creates storage and

(subsequent) flow asynchronies (Saco and Kumar

2002; Moore and others 2015), which widen

watershed latitude and deepen watershed resis-

tance to hydrological disturbances by delaying and

attenuating down-gradient storm flows and main-

taining base flows (see Figure 1; Li 2019; Rupp and

others 2021). Similarly, the spatial heterogeneity

and temporal variability in the source area expan-

sion and contraction of vulnerable waters (that is,

watershed components generating overland flow,

Figure 5) produce variability in the timing of

headwater flow contributions at the reach scale

(Jencso and others 2009; McGuire and McDonnell

2010; Klaus and others 2015; Bergstrom and others

2016). Flow contributed by headwater streams to

down-gradient receiving waters is thus asyn-

chronously integrated over time and space to

maintain an adaptive and resilient down-gradient

watershed state (for example, Chezik and others

2017; Rupp and others 2021).

Figure 4. A–D Determinations of stream reach extent are affected by difficulties in accurately mapping narrow stream

reaches and fluvial systems dominated by longitudinally dynamic ephemeral and intermittent flows. Fritz and others

(2013, used with permission) contrasted A field-based efforts identifying stream origins across nine forested watersheds

with B high-resolution mapped stream data from National Resources Conservation Service Soil Map (1:15,548 scale), C

High-Resolution National Hydrography Dataset (NHD) Flowlines (1:24,000 scale), and D Medium-Resolution NHD

Flowline (1:100,000 scale). Mapped stream extent decreased with increasing grain size.
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Like their headwater stream, vulnerable water

counterparts, non-floodplain wetlands are the flow

origins of many watersheds, conveying watershed

resilience by generating flow maintaining numer-

ous down-gradient systems (Meyer and others

2003; White and Crisman 2016; Brooks and others

2018; Lane and others 2018; Thorslund and others

2018). For instance, in a chloride-tracer study

across 260 North American catchments, Thorslund

and others (2018) determined that non-floodplain

wetlands on average generate runoff at 120% of

the mean catchment rate (that is, they were dis-

proportionately sources of down-gradient stream-

flow) and up to 211% of the mean catchment rate

in some circumstances. Similarly, non-floodplain

wetlands of California’s Central Valley collected

and contributed surface water down-gradient, of-

ten for months, and were part of an integrated and

hydrologically dynamic headwater drainage net-

work (Rains and others 2006).

Non-floodplain wetlands can also serve as focal

areas for groundwater recharge, with some esti-

mates of groundwater recharge through non-

floodplain wetlands at greater than 300% of basin-

wide averages (Rains 2011). Groundwater recharge

from non-floodplain wetlands can then discharge

down-gradient to maintain stream base flow

(Thorslund and others 2018; Neff and others 2020),

imparting greater watershed latitude and decreas-

ing the probable impact and severity of hydrologi-

cal disturbances modifying watershed state (for

example, drought). For instance, Ameli and Creed

(2017) modeled non-floodplain wetland interac-

tions with drainage networks in Alberta, Canada,

and found quantifiable contributions from non-

floodplain wetlands occurred up to 30-km from the

stream.

In contrast to flow generation and baseflow

maintenance, non-floodplain wetlands can also act

as flow-dampening systems, attenuating storm

flow through storage functions and thereby pro-

viding watershed-scale resilience to hydrological

disturbances (for example, deluge; Rains and others

2016). The watershed-scale resilience to hydrolog-

ical disturbances provided by disconnected non-

floodplain wetlands is demonstrated throughout

the literature (see, for example, Lane and others

2018). For instance, Shaw and others (2012) noted

61% of a studied watershed’s wetlands were dis-

connected from overland flow paths, thereby per-

forming watershed-scale storage functions

dampening stream flow (see also Leibowitz and

others 2016). Modeled hydrological retention

decreasing stream peak flows by non-floodplain

wetlands was similarly found by Fossey and Rous-

seau (2016) and Evenson and others (2018). Ameli

and Creed (2019a) reported wetlands closer to

streams performed greater peak flow attenuation

than distal non-floodplain wetlands, while both

types regulated base flow (that is, dampened

baseflow variance; see also Shook and others

2021). Non-floodplain wetlands were likened to a

hydraulic capacitor by McLaughlin and others

(2014), providing watershed resilience to distur-

bance by modulating surficial aquifer variation and

buffering stream base flow; non-floodplain wet-

lands functioned as groundwater sinks during wet

periods and water sources during drier periods. The

considered use of the term hydraulic by McLaughlin

and others (2014, p. 7165) was to ‘‘…emphasize

that the role these [non-floodplain wetlands] play

in buffering surficial dynamics and downstream

base flow is realized even where water in these

systems may never physically reach downstream

systems.’’

Biogeochemical Functions

Vulnerable waters are dynamic biogeochemical

reactors within hydrological networks, transform-

ing and sequestering materials and thereby affect-

ing down-gradient physical and chemical

Figure 5. Flowing water within headwater streams

reflects hillslope and drainage area connections that

transmit dissolved constituents and particulate matter

down-gradient through space and time, as demonstrated

by the headwater connectivity map of Nippgen and

others (2015; used by permission).
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characteristics and watershed state (Sanford and

others 2007; Battin and others 2008; Larned and

others 2010; Creed and others 2015; Hotchkiss and

others 2015; Marton and others 2015; Cohen and

others 2016; Cheng and Basu 2017; Fritz and oth-

ers 2018; Arce and others 2019; Golden and others

2019; Gómez-Gener and others 2021). The spatial

and temporal hydrological variability of vulnerable

waters (for example, wetting up, drying down,

pooling, connecting to other network components

through surface and/or groundwaters, etc.) noted

above controls redoximorphic-mediated reactions

and microbial metabolism, affecting the delivery,

timing, and concentrations of entrained materials

moving into down-gradient waterways (for exam-

ple, Enanga and others 2017; Senar and others

2018; Lynch and others 2019). The convolution of

time-variant entrained material flows, high micro-

bial activity, and physical assimilation, sequestra-

tion, and transformation rates within vulnerable

waters mitigates watershed-scale biogeochemical

disturbances (see Figure 2).

Headwater streams function as sinks, transform-

ers, and pulsed sources of carbon, nitrogen, dis-

solved organic matter, sediment, other materials,

and energy important to maintaining watershed

states (Naiman and Sedell 1979; Minshall and

others 1983; Holmes and others 1996; Benda and

others 2004; Fisher and others 2004; Creed and

Beall 2009; Larned and others 2010; Phillips and

others 2011; Wohl and others 2012; Creed and

others 2015; Enanga and others 2017; Senar and

others 2018; Lynch and others 2019). For instance,

research has shown that headwater systems can

readily remove nitrogen (for example, Cooper

1990; Ranalli and Macalady 2010; Schmadel and

others 2019). To wit, Scanlon and others (2010)

reported that the abundance of biogeochemically

reactive headwater streams in their study meant

that they dominated watershed-scale nitrogen re-

moval. Headwater streams in a Colorado study

were estimated to constitute less than 25% of river

length yet stored nearly 75% of the carbon via the

sink functions of floodplain sedimentation and

coarse wood deposition (Wohl and others 2012).

Zierholz and others (2001) noted that headwater

riparian wetlands stored greater than 20 years of

nutrient and carbon-rich, annual, sediment yield,

suggesting they store or process more material than

they export (for example, Hotchkiss and others

2015).

Biogeochemical activity in headwater streams is

variable in space (for example, along longitudinal

gradients of ephemerally, intermittently, and

perennially flowing systems) as well as through

time (as given reaches may wet-up, create pools,

and subsequently dry). Thus, biogeochemical

transformation, sink, and storage potentials vary

with flow along headwater stream networks as

redoximorphic changes occur concomitantly with

hydrological transitions between flowing, non-

flowing (that is, pool formation stage), and dry

reach conditions (Larned and others 2010; Lynch

and others 2019; Gómez-Gener and others 2021).

Precipitation-based rewetting events are periods of

active biochemical processing in intermittent and

ephemeral headwater streams, facilitated by pulses

of novel terrestrial (allochthonous) material (Arce

and others 2019). Subsequently, decreased flows

can create standing pools with redox conditions

conducive to further microbial activity (Hotchkiss

and others 2015; Magliozzi and others 2018).

The dynamic biogeochemical reactivity and

watershed-scale effects of ephemeral, intermittent,

and perennial headwater streams are aptly de-

scribed by the meta-ecosystems concept. Meta-

ecosystems, introduced by Battin and others

(2008), are spatially connected ecosystems where

materials are sequestered and transformed through

multiple abiotic and biotic processes along longi-

tudinal gradients (Hedin and others 1998; Bern-

hardt and others 2005; Meixner and Fenn 2004;

Kellman 2004; Fritz and others 2018). Within the

meta-ecosystem concept, Battin and others (2008),

as well as Hotchkiss and others (2015), described

organismal metabolic rates (for example, microbial

uptake velocities) as highest in headwaters (see also

Peterson and others 2001; Alexander and others

2007). Furthermore, down-gradient portions of the

flowing water network in the meta-ecosystem

construct are redundantly structured to capture

unconsumed material and utilize energy from

upgradient sources (as well as novel material

introduced to the network). Therefore, functional

redundancies along longitudinal gradients that ex-

ist in the abundant headwater streams provide

multiple opportunities for material transformation

by different ecosystem components (that is,

ephemeral, intermittent, and perennial stream

reaches; see Battin and others 2008). The wide

spatial distribution of headwater types within

watersheds and the varied climatic, vegetative, and

geophysical controls affecting the timing of flow

(and flow permanence) provides watershed re-

siliency to biogeochemically processed pollutant

disturbances (for example, Lynch and others 2019).

Like headwaters, non-floodplain wetlands are

bioreactors (sensu Marton and others 2015) exist-

ing along a down-gradient connectivity continuum

from highly connected to highly disconnected sys-
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tems (Cohen and others 2016; Mengistu and others

2020). The important biogeochemical functions

performed by these vulnerable waters affecting

watershed state and resilience characteristics are

increasingly well supported in the literature (Ber-

nal and Mitsch 2013; Biggs and others 2017; Cheng

and Basu 2017; Creed and others 2017; Lane and

others 2018; Leibowitz and others 2018; Golden

and others 2019). Similar to headwater streams,

non-floodplain wetland biogeochemical functions

emerge from the convolution of aerobic and

anaerobic microbial processes, physical processes

(for example, settling, photo-degradation), and

residence time. In fact, drying events along head-

water stream networks create conditions for now-

isolated, low-order stream reaches to function

similarly to ponded or perched wetland systems

(for example, Rains and others 2006; Arce and

others 2019).

Marton and others (2015) reviewed the scientific

literature, estimating that non-floodplain wetlands

sequestered or processed 21–317 g carbon m-2 y-1,

0.01–5.0 g phosphorus m-2 y-1, and 0.8–2.0 g

nitrogen m-2 y-1 and found that residence time for

microbial reactivity was an important rate-defining

factor. Evenson and others (2018) modeled wet-

land water residence times at the watershed scale,

noting a 75% decrease in residence time when

smaller non-floodplain wetlands were removed

from the landscape, resulting in lost opportunities

for biogeochemical processing. In a synthesis of

over 600 articles, Cheng and Basu (2017) deter-

mined that the first-order reaction rate constants

for nitrogen and phosphorus were inversely pro-

portional to wetland water residence times, a result

that implies that > 50% of the nitrogen removal

across all water bodies occurs in small wetlands

(< 325 m2). Cohen and others (2016, p. 1980)

found that most non-floodplain wetlands were

‘‘unambiguously small,’’ suggesting an outsized

role in nutrient dynamics affecting watershed state

(see also Golden and others 2019).

The ameliorating effects of non-floodplain wet-

lands on watershed-scale biogeochemical distur-

bances, such as excessive nitrogen, emerge from

the cumulative contributions of the non-floodplain

wetlands across the landscape (Evenson and others

2018; Golden and others 2019). Much like the

aforementioned meta-ecosystem concept applied to

headwater stream networks, (Battin and others

2008), non-floodplain wetlands can similarly be

considered to exist as a series of highly connected

to (at times) highly ‘‘disconnected’’ bio-reactive

ecosystem components interacting within water-

sheds (Leibowitz 2003; Marton and others 2015;

Rains and others 2016). Individually, non-flood-

plain wetlands consolidate flows, intersect flow

paths, and provide residence time and biophysical

conditions for microbial activities, then release

waters through surface, near-surface, atmospheric,

or deep groundwater recharge (Rains 2011; Rains

and others 2016; Neff and Rosenberry 2018; Neff

and others 2020). Cumulatively, non-floodplain

wetlands contribute to watershed-scale resilience

due to their widespread spatial heterogene-

ity—even within individual watersheds—imparting

variability in factors affecting biogeochemical

reactivity or residence time (such as size, depth,

and volume), and down-gradient flow paths (for

example, Figure 6). Watershed resilience to bio-

geochemical disturbances thus emerges from the

functional redundancies of many non-floodplain

wetlands within a watershed assimilating (storing,

transforming) biogeochemical material at different

rates, then transiting the (remaining) entrained or

dissolved materials and energy down-gradient for

subsequent processing along reactive flow paths

(Mengistu and others 2020) or to other aquatic

components.

DISTURBANCES TO VULNERABLE WATERS

DECREASE WATERSHED RESILIENCE

Due to their state-defining functions affecting the

storage, flux, transformation, and conveyance of

water and entrained solutes and particulates, it is

evident that vulnerable waters provide watershed-

scale hydrological and biogeochemical resilience.

The magnitude of the influence of vulnerable wa-

ters on watershed state is correlated with their

cumulative abundance, functional redundancy,

and exposure to state-defining hydrological and

biogeochemical inputs (for example, Creed and

others 2003; Creed and Beall 2009; McLaughlin

and others 2014; Mengistu and others 2014). Thus,

vulnerable waters within some watersheds, such as

those with a low headwater drainage density or

limited areal extent of non-floodplain wetlands,

may have a relatively minor influence on the

magnitude, duration, frequency, or intensity of

state-defining hydrological or biogeochemical ef-

fects (for example, Sanford and others 2007; Ali

and English 2019). Similarly, the influence of vul-

nerable waters in maintaining resilience to distur-

bances may wane with increasing watershed area

and the concomitant volumetric mixing and dilu-

tion effects (for example, Benda and others 2004;

Kellman 2004; Covino 2017; Rajib and others

2020a), or be moderated based on terrestrial drai-

Vulnerable Waters are Essential to Watershed Resilience 11



nage properties (for example, Klaus and others

2015; Neff and others 2020).

However, the disturbance-driven marginal loss of

extant vulnerable waters and their functioning that

may occur with filling, ditching, armoring, chan-

nelizing, water abstraction, and climate change

effects cumulatively alters the response, recovery,

and reorganization of watershed-scale hydrological

and biogeochemical states. In other words, the re-

silience of a watershed’s state (that is, latitude and

resistance) is weakened by the cumulative loss of

vulnerable waters, which marginalizes and dis-

counts the suite of functions, feedbacks, and vari-

ance-dampening effects provided by vulnerable

waters. Thus, incremental loss or hydrological

modification of vulnerable waters can have

increasingly pronounced cumulative effects,

decreasing system resilience to disturbances and

leading to a state-changing regime shift (for

example, McKenna and others 2017). For example,

decoupling non-floodplain wetland-mediated

nutrient assimilation and removal via ditching and

drainage and both deepening and straightening

headwaters decreases travel times and increases

nutrient and sediment loading to down-gradient

aquatic systems (Golden and others 2019). Fou-

foula-Georgiou and others (2015) noted increased

drainage intensity and tiling accompanying land-

use change altered mean annual stream flows

threefold in a Minnesota (USA) subbasin, increas-

ing sediment loads to the aquatic network and

precipitating a possible regime shift to a high-flow,

sediment-laden system. Evenson and others (2018)

demonstrated that destruction of vulnerable waters

(non-floodplain wetlands) would increase the fre-

quency and magnitude of flood events in an 1800-

km2 Midwestern United States watershed; flooding

events are purveyors of regime shifts in aquatic

systems (Robinson and Uehlinger 2008; Dodds and

others 2010). Conversely, Jones and others (2018)

reported that watershed-scale hydrological storage

capacity across multiple watersheds within a

14,000-km2 Mid-Atlantic Coastal Plain (USA) re-

gion could be increased by 80% through simply

plugging ditched and drained vulnerable waters

(that is, depressional non-floodplain wetlands),

increasing watershed resilience to drought and

flooding events by providing stream baseflow

maintenance, stormflow and the potential flood

event desynchronization, and mediating both

nutrient and sediment flux to down-gradient sys-

tems (for example, Chesapeake Bay, USA).

It is evident that accounting for disturbances to

vulnerable-water hydrology is crucial to under-

standing both the hydrological and biogeochemical

effects of vulnerable waters on watershed resilience

(Alexander and others 2009; Palmer and others

2010). In other words, replumbing watershed

hydrology, which alters hydrological storages and

fluxes from the distal and typically abundant vul-

nerable waters, can dramatically affect watershed-

scale hydrology and concomitantly watershed-scale

biogeochemistry (Marton and others 2014, 2015;

Cohen and others 2016; Rains and others 2016;

Fritz and others 2018). For instance, climate

change has increased precipitation affecting the

Prairie Pothole Region (PPR, an 800,000 km2 area

of the Midwestern United States and southern

Canada) resulting in the hydrological expansion

Figure 6. A and B Widespread spatial heterogeneity and

climatic, volumetric, and geophysical characteristics

control non-floodplain wetland biogeochemical (and

hydrological) functions affecting watershed resilience.

Wu and Lane (2017) A identified potential wetland

depressions and connectivity flow paths to a National

Hydrography Dataset (NHD) river in a North American

watershed (Pipestem River, North Dakota, USA) using

lidar; the variability in wetland size, estimated volume,

perimeter to area (Cohen and others 2016) and

bathymetric properties (Cheng and Basu 2017) were

found by Evenson and others (2018) to affect

biogeochemical and hydrological functions. In addition,

Wu and Lane (2017) B contrasted lidar-based non-

floodplain wetland depressions with the best available

National Wetland Inventory (NWI) data, demonstrating

both regional wetland expansion since the baseline aerial

imagery were acquired, as well as limitations to remotely

identifying non-floodplain wetland systems.
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and merging of depressional non-floodplain wet-

lands (McCauley and others 2015; McKenna and

others 2017) and the dramatic expansion of ter-

minal lake systems. Devils Lake, a large terminal

lake in the PPR, expanded from 180 to 695 km2

between 1992 and 2013, increasing more than 9 m

in lake depth (Todhunter 2018). New regional

precipitation patterns have necessitated increased

terrestrial tiling to facilitate landscape drainage.

Changes in both precipitation patterning and in-

creased landscape drainage through tiling have in

turn resulted in increased concentrations of total

dissolved solutes (TDS, salts) within vulnerable

waters (LaBaugh and others 2016), increased dis-

charge within headwater streams and rivers, and

increased water permanence on the landscape

(Vanderhoof and others 2018), also affecting vul-

nerable water microbial activity (for example,

through potential redox changes, Zeng and others

2011). Mushet and others (2020) and McKenna

and others (2017) concluded climate change al-

tered precipitation coupled with hydrological

modifications (for example, tile drainage, consoli-

dation drainage of smaller vulnerable waters

[wetlands]) within watersheds of the PPR are pre-

saging a region-wide ecohydrological regime shift

to watersheds with deeper ponded waters and al-

tered TDS concentrations in wetlands, larger and

more permanent and deeper lakes, and greater

stream and river discharge.

A further, similarly dramatic indicator of the

coupled effects of vulnerable-water hydrological

and biogeochemical alterations on watershed resi-

lience and system steady state is found in areas of

mountaintop mining, wherein waste rock from

surface mines is disposed of in headwater stream

valleys (Palmer and others 2010), which funda-

mentally alters down-gradient system hydrology

(for example, flow permanence; Ferrari and others

2009; Bernhardt and Palmer 2011). Hydrological

changes from compaction and valley fill concomi-

tantly alter headwater stream functional biogeo-

chemistry (for example, changing redoximorphic

gradients due to changing flow permanence,

Lindberg and others 2011; Ross and others 2016;

Gómez-Gener and others 2021). In addition, these

dramatic changes also physically alter the terrestrial

contributing area, which frequently, if not typi-

cally, transition the system to an alternative

hydrological and biogeochemical (and biological;

Petty and others 2010) steady state.

As noted, watershed changes to alternative states

(that is, regime shifts, sensu Lant and others 2008)

occur when watershed resilience in a given state is

overwhelmed (Walker and others 2004; Hayashi

and others 2016), disturbance thresholds are cros-

sed, and existing states undergo a transformational

change (Scheffer and others 2012; Ratajczak and

others 2018; see Figure 2). Once transitioned, the

resilience of the new state may be substantial,

making it difficult to revert to the previous or an-

other new state (Botkin and Sobel 1975; Beisner

and others 2003; Angeler and Allen 2016; Falken-

mark and others 2019). For instance, once a lake

system has transitioned from oligotrophic to eu-

trophic it may be energetically, technologically,

economically, or politically infeasible to remove the

continually resuspended sediments maintaining

the lake in a eutrophic state. As an example, dec-

ades of agricultural development within the

watershed that drains into Lake Okeechobee,

Florida, resulted in ditched and drained non-

floodplain wetlands and both straightened and

shortened headwater streams to facilitate and

expedite watershed drainage. Consequently, rather

than being sequestered or transformed in the

watershed’s vulnerable-water network, pollutants

became entrained down-gradient and ultimately

entered Lake Okeechobee, which transitioned from

a stable oligotrophic to a stable eutrophic system

state. While the system has already transitioned to

this new state, management efforts are now

focusing on limiting the resilience of the current

system state (for example, that of a eutrophic sys-

tem, Figure 7) by restoring upgradient non-flood-

plain wetlands to decrease watershed-scale

nutrient loading and facilitate sedimentation,

sequestration, and nutrient assimilation (Zhang

and others 2009). Hence, eutrophication manage-

ment within a watershed drainage network can

focus on vulnerable waters as solutions (for

example, Zhang and others 2009; Yang and others

2010; Ali and English 2019), while also considering

nutrient legacy effects in lake sediments (Ostrofsky

and Marbach 2019). These findings invite future

research that tests similar hypotheses regarding

large river, floodplain, and estuary state changes

resulting from upgradient modifications of vulner-

able waters.

MAINTAINING RESILIENCE IN WATERSHEDS:
PRINCIPLES FOR MANAGEMENT

It is evident that vulnerable waters within water-

sheds comprise a significant majority of hydrolog-

ical networks (Horton 1945; Nadeau and Rains

2007; Allen and others 2018; see Figure 3) and a

substantive proportion of wetland extents (for

example, Lane and D’Amico 2016). Furthermore, it
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is clear that the presence of functioning vulnerable

waters affects watershed state and improves

watershed resilience to disturbance by providing

substantial hydrological (for example, Rains and

others 2016; Fritz and others 2018) and biogeo-

chemical (for example, Creed and others 2015;

Marton and others 2015) functions. These func-

tions provide state-maintaining ‘‘negative’’ feed-

backs (that is, deepening resistance to change),

reduce pollutant concentrations, and dampen the

magnitudes of fluxes to down-gradient systems by

serving as flow consolidators and capacitors,

bioreactors and asynchronous flow integrators

(Saco and Kumar 2002; McLaughlin and others

2014; Marton and others 2015; Ali and English

2019).

The hydrological and biogeochemical functions

performed by vulnerable waters promote water-

shed-scale resilience that emerges from the inter-

actions between interconnected vulnerable waters

and the terrestrial landscapes they drain (for

example, Battin and others 2008). Critically, it is

the presence of direct and indirect connections and

disconnections between networked components of

the watershed that provide evidence for the role of

vulnerable waters in watershed-scale hydrological

and biogeochemical functioning, states, and resi-

lience [Figure 8, for example, subsurface flows

sensu (Covino 2017), hydraulic effects sensu

(McLaughlin and others 2014), hydrological effects

sensu (Mengistu and others 2020)]. These func-

tions occur across a gradient from highly connected

to disconnected vulnerable waters. Disconnections

(that is, isolated conditions) such as stream net-

work fragmentation and wetland perching often

provide the necessary redoximorphic conditions for

optimal vulnerable-water biogeochemical func-

tioning, while concurrently optimizing hydrologi-

cal storage/attenuation functions, thereby adding

to watershed-scale resilience (for example, USEPA

2015; Cohen and others 2016; Skoulikidis and

others 2017; Fritz and others 2018; Lane and others

2018; Schofield and others 2018; Gómez-Gener

and others 2021).

As we have illustrated, watershed resilience

emerges when time-varying hydrological and bio-

geochemical fluxes from the terrestrial landscape

are conveyed to and through vulnerable waters

wherein biogeochemical disturbances (for example,

excessive nutrients) are typically processed, and

hydrological disturbances (for example, excessive

flows) are often attenuated. Using this context, we

have identified four principles for consideration by

natural resource managers that endeavor to effec-

tively manage watersheds for a beneficial ecological

state. The principles will support the sustainability

of ecological, hydrological, and biogeochemical

services emanating from vulnerable waters that are

important to human health and well-being, eco-

nomic development, resource production, and

watershed resilience into the future (Falkenmark

and others 2019). These principles are based on the

emerging understanding of the importance of vul-

nerable waters to watershed management end-

points (for example, flood attenuation and nutrient

reduction), as well as the novel coupling of resi-

lience theory and vulnerable-water science for

watershed management articulated here.

Figure 7. Lake Okeechobee (Florida, USA), the terminus

of several significantly altered watersheds, has

transitioned from a stable oligotrophic to

stable eutrophic lake system with recurrent algal

blooms (see state transitions in Figure 2). Current

management efforts are focusing on mitigating

disturbances to upgradient non-floodplain wetlands and

their attendant hydrology, increasing watershed-scale

surface water storage to capture overland flow and

facilitate sedimentation, pollutant sequestration, and

nutrient assimilation, attempting to limit the resilience

of the existing eutrophic state (Zhang and others 2009).

Image source: USGS 2016, image in the public domain (h

ttps://www.usgs.gov/media/images/algal-bloom-lake-ok

eechobee-florida-2016, acquired December 2020).
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Principle 1: Comprehensively Map
the Dynamic Extent, Spatial
Arrangement, Networked Connectivity,
and Function of Vulnerable Waters

The cumulative interactions between extant vul-

nerable waters and their variable source and ter-

restrial drainage areas provide enhanced

opportunities for hydrological and biogeochemical

functioning, which can maintain and strengthen a

watershed’s resilience to hydrological and biogeo-

chemical disturbances. Modification and destruc-

tion of vulnerable waters changes watershed

structure and alters watershed adaptability to

anthropogenic disturbances, auguring hydrological

and biogeochemical change to down-gradient sys-

tem states. The first principle acknowledges that

watershed-scale functions provided by vulnerable waters

emerge from the quantity, spatial arrangement, temporal

variability, functional diversity, and dynamic networked

connectivity of vulnerable waters, and watersheds depend

on these properties to provide adaptability and resilience

to disturbances.

The functional redundancy of vulnerable waters

performing similar functions along the full extent

of the aquatic network affects hydrological and

biogeochemical flux magnitudes at the watershed

outlet (for example, Shaw and others 2012;

McLaughlin and others 2014). The incremental

watershed-scale loss of any one vulnerable water

may be inconsequential. However, the cumulative

loss of many vulnerable waters decreases the

functional redundancy inherent in watersheds,

thereby decreasing watershed resilience and likely

affecting watershed management endpoints and

goals (Nyström and Folke 2001; Cumming 2011;

Allen and others 2016). This concept of watershed-

scale functional redundancy in complex systems is

similar to Ehrlich and Ehrlich’s (1981) species

extinction metaphor of losing rivets in an airborne

plane. Loss of a few vulnerable waters only mar-

ginally affects watershed state. However, the loss or

modification of many vulnerable waters perform-

ing redundant hydrological and biogeochemical

functions asynchronously networked within a

watershed may perilously engender a regime shift.

Thus, vulnerable water losses over time incre-

mentally increase watershed precariousness, while

the cumulative effects of many marginal losses

concurrently decrease watershed latitude and

resistance to disturbances, decreasing watershed

resilience, and ultimately affecting a state change

(that is, the plane suffers a catastrophic failure and

subsequent ‘‘rapid uncontrolled disassembly,’’

Ratajczak and others 2018).

We agree with Angeler and Allen (2016, p. 628)

who noted, ‘‘[t]he roles of within- and among-

system connectivity are critical to understanding

ecological regime shifts and, therefore, resilience.’’

Hence, practical application of the first principle

requires not only knowing the location and extent

of vulnerable waters but also knowledge of vul-

nerable water connectivity with and effects on

other components of the watershed system (Battin

and others 2008). In practice, repeated measure-

ments with high temporal and spatial resolution

geospatial data provide useful information for

identifying and mapping the dynamics of tempo-

rally variable and spatially heterogeneous vulner-

able waters (Wood and others 2011; Beven and

Cloke 2012; Serran and Creed 2016; Wu 2018; Wu

and others 2019a,b). These data can be integrated

into empirical analyses or model simulations that

quantify watershed component effects on mea-

Figure 8. Modifications to vulnerable-water (VW)

connectivity and isolation gradients and characteristic

VW functioning affect watershed resilience to

disturbances that modify current watershed state.

Watershed-scale conceptualized relationships between

anthropogenic modifications to VW networked

connectivity/isolation gradients on the y-axis,

characteristic watershed functions performed by VWs

on the x-axis (for example, VW biogeochemical and

hydrological flux-dampening functions as a proportion of

watershed functions), and watershed resilience (z-axis).

Existing watershed state and resilience (that is, ability to

absorb disturbance and concurrently adapt while

retaining equal function, structure and structural

integrity, identity, and feedbacks), emerges from the

convolution of unaltered VW flow path connectivity and

isolation gradients and extant vulnerable-water

functioning (that is, high characteristic VW functioning).

Vulnerable Waters are Essential to Watershed Resilience 15



sured system-defining variables, such as in-stream

water flows (for example, Ameli and Creed

2019a,b) and water quality conditions (for exam-

ple, Bellmore and others 2018; Hansen and others

2018; Mengistu and others 2020). Furthermore,

integrated high-resolution data and modeling

applications provide a meaningful representation of

watershed-scale vulnerable-water restoration ef-

fects (Jones and others 2018). Where headwater

stream and non-floodplain wetland restoration

occurs within watersheds can greatly affect mea-

surable outcomes (for example, Cheng and others

2020; Evenson and others 2021) and similarly af-

fect watershed resilience to disturbance.

Principle 2: Determine State-Changing
Hydrological and Biogeochemical
Thresholds

The loss of spatially heterogeneous vulnerable

waters and their interactions with lands they drain

affects resilience by decreasing system latitude and

resistance and increasing system precariousness,

transiting the system toward a regime shift (see

Figure 2). A critically important management

question thus emerges: what is the transition point

or threshold beyond which the incremental loss of

vulnerable waters instigates system instability

auguring a potential state change? The second prin-

ciple articulates that the transition point or threshold

beyond which a watershed departs the basin of attraction

of one state and enters an alternative state should be

determined and targeted for management (Booth and

Jackson 1997; Dodds and others 2010; van de

Leemput and others 2015; Zelnik and Meron

2018).

Thresholds can be ecologically defined (Walker

and others 2004). For instance, ecologically deter-

mined thresholds may be identified for flow re-

gimes to protect ecological integrity (for example,

maintenance of minimum river flows for the pro-

tection of aquatic organisms). Hydrological

thresholds may also be identified for spatial con-

nectivity (for example, McLaughlin and others

2019) or flood frequency (for example, mainte-

nance of non-floodplain wetland storage and

floodplain storage to reduce peak flows; Rajib and

others 2020a). Although characteristics of different

watershed states can be specifically defined, deter-

mining effective transition point(s) between states

is much more problematic—though not insur-

mountable—due to the multiplicity of interacting

drivers affecting states (see Principle 3; Sayer and

others 2006; Hecky and others 2010).

The identification of these state transition

thresholds remains key to facilitate adaptive man-

agement (see Principle 4, below) and limit unwel-

come state transitions. The increasing availability of

measured data and application of models at finer

spatial grain sizes and higher temporal frequency

provides opportunities for state and threshold

identification (for example, Schindler and others

2016; Bernhardt and others 2018; Gleeson and

others 2020). For example, recent work in flowing

waters by Diamond and others (in press) identified

both riverine state (for example, turbidity, nutrient

concentration) and linked metabolic (that is, gross

primary production, ecosystem respiration) regime

shifts across thresholds, with implications as early

warning indicators for river management. Studies

in Europe and North America have identified

phosphorus thresholds to limit lake eutrophication

(Fastner and others 2016; Schindler and others

2016; see also Falkenmark and others 2019; Zipper

and others 2020). Recent research linking the

theory to application has proliferated across

ecosystem types (Scheffer and others 2001; Folke

and others 2004; Biggs and others 2009). For in-

stance, early warning signals such as critical slow-

downs (for example, Verbesselt and others 2016)

and increases in measured variance (that is, flick-

ering, see Figure 2) and autocorrelations have

presaged regime shifts and allowed determination

(Pace and others 2017) and, importantly, reversal

(Wilkinson and others 2018) of transitions across

state thresholds. Identifying and predicting

thresholds allow for informed watershed manage-

ment to change the trajectory of a transition to that

of one for sustainable futures.

Principle 3: Identify Drivers of Change
and Prioritize Management Activities

Multiple interacting factors affect vulnerable waters

and hence watershed state and resilience, from

direct climate change-induced non-stationarity

disturbance effects of temperature and precipitation

on connectivity and functioning, to human activi-

ties that destroy vulnerable waters or increase

pollutant and contaminant loading to watershed

systems (for example, Uden and others 2015;

McKenna and others 2017; Senar and others 2018;

Vanderhoof and others 2020). However, robust

data collection and interrogation, analysis, and

synthesis can result in deducing the extent, dura-

tion, and intensity of the disturbance effects (that

is, main drivers) affecting watershed states and re-

silience (for example, Hipsey and others 2015;

Hansen and others 2018; Van Meter and others
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2018). The third principle therefore calls for identifying

and characterizing the extent, duration, magnitude, and

intensity of key disturbance drivers precipitating water-

shed change for prioritizing management. This is crucial

for managing for resilient watersheds because

knowing the disturbance forces (for example, land-

use conversion, modification of irrigation or tile

drainage, grazing intensity, fire, insect outbreaks)

that are ‘‘pushing’’ the watershed toward the

alternative state transition point or threshold noted

in Principle 2 (and see Figure 2) allows for priori-

tizing vulnerable-water-based management solu-

tions and coupled socio-environmental strategies to

mitigate risks associated with a loss of watershed

resilience (Liu and others 2007).

For example, a watershed moving toward a

threshold-transitioning alternative state is the Lake

Winnipeg watershed in Canada. Here, nutrient-

rich inputs from agricultural activities (that is, pri-

mary drivers of this change) are pushing this me-

sotrophic lake—the world’s 10th largest by surface

area—to a eutrophic system, with recurrent algal

blooms of such magnitude and frequency that it

has been called both ‘‘Canada’s sickest lake’’ and

‘‘the most threatened lake in the world’’ (quoted

within Ali and English 2019). The lake is likely on

the verge of a regime shift, crossing a threshold

from its historical mesotrophic state to a bi-stable or

an alternative eutrophic state (Bunting and others

2016; Figure 2). Though other contributors to this

change are still being researched, Ali and English

(2019) recently underscored the co-occurrence of

algal blooms (indicators of pulsed nutrient loading)

with watershed-scale nutrient-enriched runoff

through modified watershed drainage. Impor-

tantly, their analyses determined that modification

of vulnerable-water connectivity in the watershed

has been driving the production of major Lake

Winnipeg algal blooms. This is corroborated by

Yang and others (2010), who modeled an approx-

imately 23% nutrient load reduction in a 250-km2

Lake Winnipeg-contributing watershed with vul-

nerable water restoration resulting in decreased

peak discharge and sediment loads. In other words,

the pulsed nutrient loading (feedbacks positively

hastening a regime shift) that drives algal bloom

occurrence can be potentially mitigated by a man-

agement focus on the protection and restoration of

functioning headwater systems and non-floodplain

wetlands, thereby decreasing watershed-scale

nutrient loading by increasing hydrological resi-

dence time and biogeochemical processing in vul-

nerable waters.

Watershed-scale analyses can inform drivers of

state change, though in application such analyses

can be exceedingly complex (for example, Evans

and others 2005; Roulet and Moore 2006; Wood

and others 2011; Beven and Cloke 2012; Archfield

and others 2016; Blum and others 2020). However,

scientists can provide natural resource managers

with information on potential drivers affecting

watershed state to prioritize the application of

limited human and financial resources to mitigate

potentially undesirable watershed states or adapt to

looming state changes (for example, Gannon and

others 2013).

Principle 4: Adaptively Manage
Watersheds

In the three principles above, we articulated the

inherent requirements of vulnerable-water man-

agement for adaptable and resilient watersheds. The

fourth principle, adaptive management, embodies the

practical application of the preceding principles by

allowing for data-driven management course changes to

achieve goals. Adaptive watershed management encour-

ages bold experimentation to find solutions; decisions

responding to vulnerable-water characteristics and

functioning should be informed by increasingly data-rich

analyses and syntheses of temporally dense and high-

spatial-resolution watershed-scale data.

The fourth principle of adaptive watershed

management is thus reliant in practice upon in-

creases in spatial and temporal data collection,

granularity, and analyses supporting the incorpo-

ration of vulnerable waters into quantification of

hydrological and biogeochemical storages, trans-

formations, and fluxes within and emanating from

watersheds (for example, Ali and English 2019).

Sufficiently armed with those data that more fully

describe the physical reality and granularity of the

landscape and interactions therein (for example,

Rajib and others 2020b; Fesenmyer and others

2021; Golden and others 2021), effective experi-

mentation and subsequent management can make

midcourse corrections to improve watershed resi-

lience and desirable outcomes (Pace and others

1999, 2017; Furniss and others 2010; Hoque and

others 2012; Gannon and others 2013; Standish

and others 2014; Garmestani and others 2020). For

instance, Pace and others (2017) and Wilkinson

and others (2018) identified early warning indica-

tors of cyanobacterial blooms in experimentally

manipulated lake systems; adaptively decreasing

nutrient loads reversed the bloom extent.
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SCIENTIFIC NEEDS INFORMING

THE MAINTENANCE OF WATERSHED

RESILIENCE

Despite scientific evidence of the importance of

vulnerable waters to maintaining desirable water-

shed states (Creed and others 2017), most analyses

attempting to quantify watershed hydrological or

biogeochemical states do not incorporate vulnerable

waters into their study frame (see Golden and

others 2021). Indeed, though efforts are ongoing

for inclusion of citizen science (for example, Seibert

and others 2019) and a growing chorus of re-

searchers noting the importance of collecting vul-

nerable water data for large spatial extent analyses

(for example, Jaeger and others 2021), there re-

mains a paucity of data on the location of vulner-

able waters and the storage and fluxes within and

from vulnerable waters affecting down-gradient

systems. We therefore identified the following re-

search needs associated with managing for resilient

watersheds, providing increasingly available data to

make the principles more fully actionable.

1. Spatial Extent Vulnerable waters comprise a

majority of stream lengths (Allen and others

2018; Messager and others 2021) and a sub-

stantive proportional abundance of wetlands

(for example, Lane and D’Amico 2016). How-

ever, accurately mapping the current and dy-

namic spatial extent of headwater streams and

non-floodplain wetlands remains a pressing data

need. Without these data, it is not possible to

meaningfully manage vulnerable waters and

their terrestrial interactions, identify critical

vulnerable waters controlling fluxes or connec-

tions (for example, Larsen and others 2012;

Uden and others 2014; Ali and English 2019), or

effectively quantify watershed state-defining

functions. With these data in hand, it may be

possible to develop management scenarios

incorporating past, present, and projected future

vulnerable-water extents, conditions, and im-

pacts on watershed state and resilience (for

example, Rains and others 2013).

2. Spatial Configuration The local-scale effects of

individual wetlands have been widely studied,

yet the watershed-scale effects of wetland

complexes have been less frequently considered

(for example, Acreman and Holden 2013;

Golden and others 2019; Klammler and others

2020), including the coupled groundwater–sur-

face interactions of these vulnerable waters and

those contributions to watershed-scale resilience

(McLaughlin and others 2014; Neff and others

2020). Nevertheless, Cohen and others (2016)

hypothesized that landscape functioning emer-

ges from the convolution of the individual ef-

fects of all wetlands, both those directly abutting

rivers and streams (for example, floodplain

wetlands) and those in more remote locations

(for example, non-floodplain wetlands). It is

important to know the number, size, shape,

spatial arrangement, and vertical, lateral, and

longitudinal connectivity of non-floodplain

wetlands to best quantify how these wetland

properties affect watershed state and resilience,

and how these effects vary by watershed size,

soil and land-use characteristics, near-surface

geology, and climatic forces (for example,

Mengistu and others 2020). This information

can be most efficiently and accurately obtained

from interoperable river, stream, and wetland

maps built on a common geospatial framework

(for example, Johnston and others 2017).

3. Temporal Fluxes and Interactions Vulnerable wa-

ters are dynamic systems that expand and con-

tract along longitudinal, lateral, and vertical

dimensions over time (Stanley and others 1997;

Covino 2017; Vanderhoof and others 2018).

Research is needed to further characterize the

magnitude, frequency, and duration of interac-

tions between vulnerable waters and their

upgradient contributing areas (for example,

McLaughlin and others 2014; Ward and others

2018), and between vulnerable waters and their

down-gradient receiving systems (for example,

Ali and English 2019), considering both lateral

and vertical interactions and fluxes (for exam-

ple, Covino 2017).

4. Thresholds and Drivers of Change Determining

thresholds to alternative watershed states is

essential to managing watershed resilience.

Knowledge of thresholds provides answers to

the often rhetorical question of ‘‘how far is too

far?’’ when balancing socioeconomic develop-

ment targets, with ecological protection and

restoration management targets, all the while

ensuring maintenance of sustainable ecosystem

services. Furthermore, knowledge of thresholds

is a benchmark from which to engage with

populations and interest groups inured to

information about degrading watershed states;

identifying a point or threshold beyond which

change will occur may empower action. Having

determined thresholds affecting state changes,

knowledge is needed to determine the priority

drivers of change. These are the ‘‘levers and

pulleys’’ that can be engaged by societies to

adaptively manage a watershed to prevent state

18 C. R. Lane and others



change by increasing watershed resilience—or

to try and evince transitions to a new state (for

example, Meadows 2008; Zhang and others

2009). For example, is an intervention needed

to immediately avoid a state change, or are the

thresholds sufficiently distant such that resilient

watershed principles can be judiciously applied

to avoid an unwelcome transition? Character-

izing disturbance drivers (for example, Pascual

and Guichard 2005; Radchuk and others 2019)

affecting watershed adaptability and resilience

allows for interventions to avoid, attenuate, or

plan for the coming transition (Scheffer and

others 2012). Using these data, resource man-

agers can prioritize watershed management

tactics, such as managing and restoring vulner-

able waters, to perhaps dampen the likelihood of

a transition.

5. Technical Advances Increasing hydrological and

biogeochemical ‘‘big data’’ and cloud computing

availability, analyses, and syntheses presage an

improved understanding of vulnerable-water

functions, services, and management for re-

silient watersheds. However, though twenty-

first-century models and computational re-

sources are incredibly fast and complex com-

pared to older models, managing the typological

interactions and varying fluxes of tens to hun-

dreds of thousands of aquatic system compo-

nents can still typically overwhelm even these

systems. Current solutions require a coarser

resampling and forced diminution of the com-

plexities of the spatial fabric to parameterize

functioning models (for example, Evenson and

others 2018; Driscoll and others 2020). Hence,

increased watershed physical representation and

vulnerable-water interactions (for example,

incorporating vulnerable-water storages, fluxes,

and dynamic connectivity) within models re-

quires technical advances in both geostatistical

and hydrological modeling applications to

incorporate these big data into models (for

example, Rajib and others 2020b).

6. Scale of Influence While the literature strongly

supports the influence of vulnerable waters in

determining watershed state and resilience, as

we noted above there are limits to discerning

‘‘the signal from the noise’’ (Levin 1992). For

instance, watersheds that are naturally or

anthropogenically deficient in functioning vul-

nerable waters will have limited vulnerable-

water effects. Where vulnerable waters are more

numerous, their cumulative effects may wane

with increasing watershed area and the con-

comitant volumetric mixing and dilution (San-

ford and others 2007). And their effects may be

obviated with increasing hydrological modifica-

tion throughout the watershed, such as occurs

with the construction of dams, tiling, and arti-

ficial drainages (Jones and others 2018; Rajib

and others 2020a). Research is thus needed to

discern the context and measurable spatial and

temporal scale and granularity at which the

influence of vulnerable waters is relevant to

specific management needs.

CONCLUSION

Watersheds are geomorphic structures that receive

climatic inputs, delivering a portion thereof to a

downstream pour point through both surface water

and groundwater flow paths. In the process,

materials and energy are transformed and ulti-

mately delivered to down-gradient waters, where

ecosystems are supported. Watersheds provide for

our most fundamental human needs, including

drinking water, clean air, and food resources.

Society relies heavily on watersheds’ networked

aquatic resources for flood control, navigation,

recreation, and aquatic habitat, in addition to the

role they play in storing, transforming, or diluting

dangerous materials and pollutants.

Yet anthropogenic activities are destroying and

degrading native habitats and creating homoge-

neous landscapes comprised of non-native, mono-

cultural vegetation (for example, Foley and others

2005; Levia and others 2020). Part and parcel to

this, humans are changing, short-circuiting, and

removing hydrogeochemical interactions and

altering connectivity (that is, of energy, water,

materials, and organisms) within watersheds while

concurrently loading aquatic systems with pollu-

tants (Van Cappellen and Maavara 2016; Gramlich

and others 2018; Ramankutty and others 2018). An

outcome of these watershed-scale modifications

includes direct effects on water quantity (for

example, Hirsch and Archfield 2015; Mallakpour

and Villarini 2015; Peng and others 2019) as well as

decreased water quality (for example, Woodward

and others 2012).

Watershed resilience provides long-term func-

tional stability in the face of both natural and

anthropogenic disturbances. Watershed resilience

allows the system to adapt and persist in the face of

disturbance without switching to an alternative

state that might not maintain crucial ecosystem

functions and associated services valued by soci-

eties. In the past, watershed resilience appears to

have been sufficient to ensure continuity and
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adaptation of natural systems after all but the most

extreme disturbances (for example, large magni-

tude events with low recurrence intervals, such as

volcanic eruptions). In the Anthropocene (Waters

and others 2016), however, anthropogenic distur-

bances have intensified and now operate at such

high magnitude and frequency that this has not

only led to the loss of individual components, like

species, but has caused wholesale changes in the

ability of watersheds to regulate themselves, mak-

ing them more precarious and less resilient to dis-

turbance (for example, Hirota and others 2011;

Peterson and others 2021).

Development in watersheds, such as urbaniza-

tion, increased agricultural intensification, and

industrialization, has obvious benefits to society.

However, such changes almost always occur piece

meal, without integrated planning, and without

consideration of the larger, cumulative costs. These

costs include not only loss of watershed functions,

but also loss of watershed resilience—which leads

to instability of watershed functions and inability of

a watershed to recover from disturbances.

As we have described here, the individual and

cumulative loss of the often unseen and therefore

disregarded vulnerable waters reduces watershed

resilience. Vulnerable waters substantively affect

hydrological and biogeochemical concentrations,

storage, and flux variance within and emanating

from watersheds. Their loss or degradation, and the

loss of the networked interactions between the full

extent of the stream network and the landscape

draining to it, affects both the individual vulnerable

water and cumulative functioning of the water-

shed. These losses further alter the variance-

dampening characteristics and the interactions be-

tween watershed components that maintain the

resilience of the characteristic system state.

We present four principles for maintaining

watershed resilience to hydrological and biogeo-

chemical disturbances vis-à-vis vulnerable waters:

(1) Comprehensively map the extent, spatial

arrangement, dynamic networked connectivity,

and function of vulnerable waters; (2) determine

state-changing hydrological and biogeochemical

thresholds; (3) identify drivers of change and pri-

oritize management activities; and (4) adaptively

manage watersheds. Data availability (that is,

measured spatial and temporal connectivity,

groundwater and surface water interactions, pol-

lutant sensor data, and so on) features prominently

in the identified scientific needs for further quan-

tifying and communicating the importance of vul-

nerable waters in sustaining and maintaining

adaptable and resilient watersheds. Data will dri-

ve—and adherence to the four principles noted

above will guide—the future incorporation of vul-

nerable waters into scale-appropriate watershed

management decisions and will help minimize the

loss of vulnerable waters and their cumulative

functions that impart watershed resilience.
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Zoppini A, Gionchetta G, Weigelhofer G, del Campo R,

Robinson CT, Gilmer A, Rulik M, Obrador B, Shumilova O,
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Blyth E, de Roo A, Döll P, Ek M, Famiglietti J, Gochis D, van
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