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Abstract

We explore three-body binary formation (3BBF), the formation of a bound system via gravitational scattering of
three initially unbound bodies (3UB), using direct numerical integrations. For the first time, we consider systems
with unequal masses, as well as finite-size and post-Newtonian effects. Our analytically derived encounter rates
and numerical scattering results reproduce the 3BBF rate predicted by Goodman & Hut for hard binaries in dense
star clusters. We find that 3BBF occurs overwhelmingly through nonresonant encounters and that the two most-
massive bodies are never the most likely to bind. Instead, 3BBF favors pairing the two least-massive bodies (for
wide binaries) or the most- plus least-massive bodies (for hard binaries). 3BBF overwhelmingly favors wide-binary
formation with superthermal eccentricities, perhaps helping to explain the eccentric wide binaries observed by
Gaia. Hard-binary formation is far rarer, but with a thermal eccentricity distribution. The semimajor axis
distribution scales cumulatively as a> for hard and slightly wider binaries. Although mergers are rare between black
holes when including relativistic effects, direct collisions occur frequently between main-sequence stars—more
often than hard 3BBF. Yet, these collisions do not significantly suppress hard 3BBF at the low-velocity dispersions
typical of open or globular clusters. Energy dissipation through gravitational radiation leads to a small probability
of a bound, hierarchical triple system forming directly from 3UB.

Unified Astronomy Thesaurus concepts: Three-body problem (1695); Wide binary stars (1801); Gravitational wave
sources (677); N-body simulations (1083); Astrodynamics (76); Binary stars (154); Compact binary stars (283);

Star clusters (1567); Stellar dynamics (1596); Stellar streams (2166); Tidal disruption (1696)

1. Introduction

The formation of binaries containing stellar and compact
objects is essential to the production of numerous high-energy
astrophysical phenomena, including gravitational wave (GW)
emission and/or fast radio bursts released with compact object
mergers (e.g., Rodriguez et al. 2019; Kremer et al. 2021a),
X-ray binaries (Sana et al. 2012), and supernovae (Maoz et al.
2014). Binaries are also essential to the evolution of dense
stellar environments since they act as dynamical heat sources
that expand the cluster’s core through repeated scattering
interactions—binary burning (e.g., Heggie & Hut 2003)—and
promote stellar collisions and tidal disruption events (TDEs;
Bacon et al. 1996; Fregeau et al. 2004; Ryu et al. 2023).

Many stellar binaries form “primordially” in molecular
clouds (e.g., Shu et al. 1987), but also dynamically from two
fully formed and isolated bodies, especially in dense stellar
environs. Several types of dissipative effects may bind two lone
stars together, including dynamical friction in a gaseous
medium (Rozner et al. 2023), tidal heating of one star by
another (“tidal capture”; e.g., Fabian et al. 1975; Generozov
et al. 2018), and GW emission in a close passage of two
compact objects (“gravitational wave capture”; e.g., Quinlan &
Shapiro 1989). In this work, we explore a purely Newtonian
phenomenon, three-body binary formation (3BBF), in which
three isolated (energetically unbound) bodies pass near each
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other and gravitationally scatter to form a new binary. The
leftover single acts as a source of dissipation in this scenario, a
catalyst, transferring gravitational potential energy into the
kinetic energies of the single and a new binary’s center of mass.

The body of work investigating 3BBF is presently very
limited compared to investigations of the aforementioned
binary formation mechanisms. The historical lack of interest is
likely due to overgeneralization of early analytic estimates of
3BBF’s impact on star clusters (Heggie 1975; Stodolkiewicz
1986; Goodman & Hut 1993). The usual narrative states that
the 3BBF rate is negligible over most of a cluster’s dynamical
lifetime, except in the short window of time when central
densities spike during the core-collapse process (e.g.,
Hut 1985; Freitag & Benz 2001; Joshi et al. 2001) or even
thereafter (e.g., Statler et al. 1987; Hut et al. 1992).6 Such
studies generally predate the cluster modeling community’s
widespread incorporation of primordial binaries and realistic
initial mass functions—and therefore neglect essential black
hole (BH) dynamlcs Because of the 3BBF rate’s steep mass
dependence, x n°G°m’0? (e.g., Heggie 1975; Kulkarni et al.
1993; O’Leary et al. 2006; Banerjee et al. 2010; Morscher et al.
2013, 2015), BH populations greatly enhance 3BBF. Without
such massive bodies, efficient 3BBF would require an extreme
cluster density only achieved in very deep core collapse even
beyond the central densities of today’s observationally ““core-
collapsed” Milky Way globular clusters, whose small cores

6 Here, core collapse is the process by which the most-massive objects in a

stellar cluster rapidly evacuate kinetic energy from central regions, sink deeper
into the cluster (dynamical friction), and subsequently contract the core to
increasingly higher densities, a process that is halted by 3BBF.
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remain supported by central binary burning (e.g., Kremer et al.
2021b). In fact, accounting for BH retention and using the
3BBF recipe of Morscher et al. (2015), Weatherford et al.
(2023) predict that 3BBF occurs frequently in globular clusters
—an overwhelming majority involving BHs—and cumula-
tively powers many high-speed ejections. Given its impact on
the formation of dynamically active BH binaries and high-
speed ejections, 3BBF is essential for understanding star cluster
evolution, BH mergers, and high-velocity stellar populations.

Earlier disinterest in 3BBF may also stem from its
overwhelming tendency to form soft binaries, coupled with
the assumption that such binaries are unlikely to survive long
enough to contribute significantly to cluster dynamics via
binary burning. Indeed, strong encounters quickly disrupt most
soft binaries and also tighten those formed especially hard until
they merge or are ejected from the cluster (e.g., Hut &
Inagaki 1985; McMillan 1986; Goodman & Hernquist 1991;
Bacon et al. 1996; Chernoff & Huang 1996; Fregeau et al.
2004). This reasoning was previously used to justify neglecting
3BBF, either entirely (e.g., Joshi et al. 2000; Fregeau et al.
2003), or if none of the bodies were BHs (e.g., Morscher et al.
2015), in prescription-based Monte Carlo star cluster models
such as CMC (Rodriguez et al. 2022). Unfortunately, this
neglects the formation of binaries of only moderate hardness,
with or without BHs. A striking result of Goodman & Hut
(1993) is that soft binaries from 3BBF, although typically
short-lived, form so frequently that the small fraction that do
survive and harden sufficiently may yield over 90% of hard
binaries over long timescales in massive star clusters. These
binaries would, in fact, survive long enough to contribute
substantially to binary burning but are not typically accounted
for in cluster modeling (outside of direct N-body simulations,
which have their own limitations; see below).

Despite renewed interest, modern 3BBF recipes (e.g.,
Goodman & Hut 1993; Ivanova et al. 2005, 2010; Morscher
et al. 2013, 2015) are untested by numerical scattering
experiments. The only two examples of such studies, Agekyan
& Anosova (1971) and Aarseth & Heggie (1976)—hereafter
referenced as AH76—suffered from small sample sizes and
were limited to equal point masses. And while full direct N-
body codes capture 3BBF naturally, a detailed analysis of this
physical process is challenging due to the rarity of the event in
the low-mass, small-N, or low-density clusters typically
modeled by such codes (Tanikawa et al. 2013; Marin Pina &
Gieles 2024).

To this day, the direct N-body approach borders on being too
computationally expensive to practically simulate globular
clusters that are simultaneously as massive, old, and dense as
those in the Milky Way (Wang et al. 2016; Arca Sedda et al.
2023). Conversely, much faster Monte Carlo and semianalytic
codes use highly approximate recipes (e.g., Rodriguez et al.
2022, and references therein) for 3BBF rather than direct
integration with a small-N-body code—e.g., FEWBODY
(Fregeau et al. 2004) or TSUNAMI (Trani & Spera 2023).
CMC’s prescription for 3BBF first parses the cluster’s radially
sorted list of bodies (excluding binaries) into sets of three. For
each such set, it then decides in probabilistic Monte Carlo
fashion whether or not to pair the two most-massive bodies—
ignoring the possibility of pairing the lowest-mass body—in
the set based on the local three initially unbound bodies (3UB)
encounter rate, estimated from the bodies’ masses and the local
mean stellar density and velocity dispersion (see Section 2.3.1
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of Rodriguez et al. 2022). Importantly, CMC’s 3BBF prescrip-
tion has only cursorily been tested against direct N-body
simulations (Morscher et al. 2013), in which 3BBF occurs
naturally; the accuracy of CMC’s 3BBF rate is therefore
uncertain. In particular, no rigorous justification exists for the
choice to pair the two most-massive bodies in each 3UB
encounter—a choice that may significantly affect newly formed
binaries and cluster evolution.

Here, we present a rigorous framework for 3UB interactions
and self-consistently investigate 3BBF physics through direct N-
body scattering experiments. Our methodology builds upon the
work done by AH76 with adjustments made to correct a minor
inconsistency in the Monte Carlo sampling scheme AH76
adopted from Agekyan & Anosova (1971). Our investigation is
built on the TSUNAMI integrator (Trani & Spera 2023; A. A.
Trani et al. 2024, in preparation) and the CUSPBUILDING Python
package (Atallah et al. 2023).

We describe our methodology in Section 2, explaining the
initial condition algorithm in Sections 2.1 and 2.2. Section 2.3
features a first-principles derivation of the 3UB encounter rate
complementary to our algorithm, validated to be correct to
within percent error in the particle-in-box simulation. We
reproduce the results of AH76 using their 3UB algorithm in
Section 2.4 and also justify the need for correcting the
original AH76 algorithm by analyzing a simple particle-in-box
simulation. In Section 3, we broadly explore 3BBF in the point-
mass limit. The equal-mass hard-binary formation rate
predicted by Goodman & Hut (1993) is reproduced in
Section 3.1.2, and we discuss our findings regarding super-
thermal wide-binary formation in Section 3.1.3. We investigate
the 3UB scattering of unequal point masses in Section 3.2
before applying our framework to the scattering of bodies with
finite-size, main-sequence (MS) stars and BHs in Section 4. We
lay out our conclusions and discuss next steps in Section 5.

2. Methods

We conduct our three-body scattering experiments with the
CUSPBUILDING Python package (Atallah et al. 2023), a Monte
Carlo scattering framework built upon the TSUNAMI integrator
(Trani & Spera 2023; A. A. Trani et al. 2024, in preparation).
TSUNAMI is a direct N-body integrator based on Mikkola’s
algorithmic regularization (Trani & Spera 2023; Trani et al.
2019a, 2019b), using the leapfrog algorithm in conjunction
with Bulirsch—Stoer extrapolation (Stoer & Bulirsch 1980)
and the chain-coordinate system introduced in Mikkola &
Aarseth (1993).

These techniques allow TSUNAMI to follow close encounters
with extreme accuracy without reducing the integration time
step, unlike more traditional integrators used for stellar
scattering calculations (e.g., Fregeau et al. 2004). This makes
TSUNAMI an ideal code for integrating any compact few-body
system, including extreme mass-ratio configurations, such as
stellar-mass binary BH scattering in the vicinity of an SMBH
(Trani et al. 2024). The TSUNAMI/CUSPBUILDING framework
yields extreme precision and speed, with a typical evaluation
rate of ~200 3UB scatterings per second, per CPU core. In
total, we generate over 10'° 3UB encounters, one of the largest
sets of scattering interactions yet generated for a single work.

As in Agekyan & Anosova (1971) and AH76, we initiate all
bodies relative to the origin of an inertial reference frame, O.
This origin serves as the “target” of all three bodies. Unlike
in AH76, we adopt a “spherical” initial condition sampling
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method in contrast to their “cylindrical” method; we elaborate
on this distinction and provide a robust numerical justification
for adjusting this algorithm in Sections 2.1 and 2.4.

2.1. Initial Condition Algorithm

The initial condition algorithm may be subdivided into three
parts:

1. Select the masses and velocity vectors of the three
scattering bodies.

2. Randomly assign a point in a sphere of radius R, to each
body. This point is drawn from a distribution explicitly
uniform in the volume of a sphere.

3. Pull each body backward in time along a straight line
using their individual velocity vectors. This procedure
approximates gravitationally isolating the three bodies far
from the region of interaction.

We begin by defining a set of initial properties for each body:
initial masses, m;, and velocity magnitudes, v;, with i = {0, 1, 2}.
For all scattering experiments in this work, we choose to
randomly sample the velocities of all three bodies from a single
shared Maxwellian distribution. We make this choice to reduce
the parameter space of initial conditions for our experiments, but
note that sampling velocities from three separate distributions
may be more realistic in cases where the bodies have unequal
masses (e.g., Section 3.2), and a progression toward partial
energy equipartition is assumed in the local environment.

Each body is then assigned a position vector s; relative to the
origin O and velocity vector v; (both randomly sampled and
isotropic) using the following relations:

s = sje vi = vie;”,

s, = YU, 1) R, Ry = 2x, by,

[G(mi+mj)]
bgo = max| ——— |, V,'j:V,'—Vj,

r
i

(0p)?)
cos(6;)sin(¢;) cos(a;)sin(3;)
e/ = |[sin(f)sin(e,) |, ¢;" = | sin(ay)sin(F;) |- €))
cos(¢,) cos(5;)

Here, U(0, 1) indicates a random sample from the uniform
distribution between 0 and 1, R, is the radius of a region we
call the interaction volume centered on O, and x; is a
coefficient we shall later vary to control the characteristic
strength of the three-body encounter; y; dictates the size of R,
in terms of bgg, the largest impact parameter between any of the
possible two-body combinations that would yield a 90°
deflection in an isolated two-body encounter.” In that spirit,
we will often refer to x; as a dimensionless impact parameter
as it serves a similar function to the impact parameter in
traditional binary—single scattering experiments.

To isotropically distribute s; and v; (and their corresponding
unit vectors ¢;" and ¢;"), we individually sample angles (6;, ()
from the distribution 2/(0, 27), and the angles (¢;, a;) from the
distribution cos™! [L/(—1, 1)], repeating this process for each

7 Note that ((vij)Z) = 3((71-2 + (r%) in the case of two bodies with velocities

(vi» vj) sampled from separate Maxwellians with one-dimensional velocity
dispersions (o, 0;), respectively (e.g., Binney & Tremaine 2008). Our assumption
that the motions of all bodies are described by the same Maxwellian distribution
thus corresponds to setting o; = o3, making ((vij)?) = 602.
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body. Our procedure samples points within a sphere of radius
R; from a distribution uniform in volume. In contrast, AH76
explore the parameter space using the volumes of arbitrarily
rotated, overlapping cylinders—with s> = b? + z?2, impact
parameters b; = JU(0, 1) Ry, and offsets z; = U(—1, 1)R.

The set of points sampled by either procedure are not the
initial conditions for the scattering experiment. Rather, they
describe positions at a point in time when all three bodies, if
they were to travel at constant velocity on straight-line
trajectories, would be within the interaction volume simulta-
neously. Like AH76, we refer to this point in time as the epoch
time, t.. If we were to initialize all bodies within the interaction
volume, it would be likely (depending on x) that at least two
bodies would already be energetically bound. Yet, we are
interested in the formation of new binaries from interactions
involving three initially unbound bodies. While we could
simply resample any initial conditions containing bound pairs
—and in fact we do, as described shortly—this may need to be
done many times if the initial positions are too close to each
other. This would severely truncate the initial energy distribu-
tion, artificially enhancing both the separations between bodies
and their velocities at the epoch time. So, like AH76, we
initialize bodies far from the interaction volume by pulling each
body backwards in time along the straight line parallel to its
velocity vector.

To pull back all bodies by at least a chosen distance R,, we
may define the epoch time in terms of the slowest body’s
velocity:

=2 @)
min(v;)
where we choose R, = 15R; to be consistent with AH76. Each
body’s offset distance, drawn backward along the aforemen-
tioned straight-line trajectory, is then

Ar,- = —Vile = —vitee,-v. 3)

With these offsets in hand, the initial conditions for each body

ar eg

ri = Sj + Ar,-
r v
= S[el‘ — V[teel‘ N
vi = vie}. )

An example schematic of a 3UB initial condition is displayed
in Figure 1.

Although starting the bodies outside the interaction volume
does not entirely negate the possibility that at least two of the
bodies are initially bound to each other, this is true of only 0.7%
of initial conditions sampled with our choice of R, = 15R; (and
x1 = 10;see Section 3.1.1). Like AH76, we exclude such
instances from our results to avoid contaminating our sample of
3UB interactions. Specifically, we throw out any scattering
experiment that starts with any two-body pairing or the entire
three-body system having a negative total energy in the three-
body center-of-mass frame.

We do not filter out 3BBF events in which one or more
bodies never enter the interaction volume, contributing ~20%
of 3BBF events for our choice of R, = 15R;. That 3BBF events
can occur without all bodies reaching the interaction volume is

8 I

In AH76, the unit vectors are s; = b,~e[i — z,-e,-”, with eﬁ, e/ representing
unit vectors perpendicular and parallel, respectively, to the randomly sampled
velocity vectors of each body. Using our notation, e,»” =g¢’".
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Figure 1. A schematic of our three unbound body (3UB) initial condition
algorithm, projected into two dimensions. The labels used here align with
Equations (1)—(4).

a direct consequence of gravitational scattering. If the bodies
were to travel on constant-speed, straight-line trajectories, then
the above initial conditions would guarantee that all three
bodies are in the interaction volume at time 7. In reality,
however, bodies initialized sufficiently close to each other
(even when not bound) may still interact strongly enough that
one or more bodies miss the interaction volume. One would
hope to account for this effect when selecting initial conditions,
but the exact trajectories in the three-body problem cannot be
determined analytically.

The lack of analytic gravitational focusing prescriptions in
3UB interactions contrasts with traditional binary—single scatter-
ings, which effectively become two-body hyperbolic encounters
at sufficiently large separations—allowing scattering codes to
easily incorporate two-body gravitational focusing when sam-
pling initial conditions. A similar hyperbolic limit does not exist
for 3UB interactions as each two-body separation increases
proportionately to any increase in the starting distances relative
to O. Thus, analogous gravitational focusing effects in 3UB
interactions cannot be generically decomposed into separate two-
body focusing terms without potentially biasing the experiment’s
final outcome. This renders futile efforts to generically pick
initial conditions outside R;, which simultaneously guarantee
that all three bodies must at some point cross within R;. While
unfortunate, drawing bodies backwards is necessary to mitigate
potential biases in the initial energy distribution (caused by
attempts to artificially modify initial conditions to predict 3UB
gravitational focusin%) or in throwing away initial conditions that
contain bound pairs.

° Note that we have rigorously tested methods of setting up 3UB interactions
other than the one employed in this work, such as targeting an incoming single
at the center of mass of a hyperbolic two-body encounter—the setup often used
in analytic estimates of the 3BBF rate. We find that, even for the case of equal
masses and velocities, setups of this kind bias the pairing probability toward the
incoming single. Our setup has no such bias.
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2.2. Termination of 3UB Integration

The duration of every scattering experiment (3UB interac-
tion) is entirely adaptive and individualized to the experiment’s
specific initial conditions. CUSPBUILDING integrates the system
until #=2¢, before assessing whether all outgoing hierarchies
—including instances of a single star unbound to any other star
—are energetically isolated. Two hierarchies are energetically
isolated from each other if their gravitational potential energy is
less than 1% of the kinetic energy of their relative motion (i.e.,
not including any internal binding energy of either hierarchy).
If all hierarchies are energetically isolated from each other, then
CUSPBUILDING considers the system to have reached its final
state and terminates integration.

Arithmetically stated, the specific energy of two outgoing

. . . ,‘2‘ G (m; + m;
hierarchies is ¢; = %’ — M, where m; and m; are the
. ” . . .
total masses of the two hierarchies, vi; = v; — v; is the relative
velocity between their centers of mass, and rij = || — ;|| is
the distance between their centers of mass. We simply demand
that 2¢;; / v,f > 0.99. Rewritten, each scattering calculation ends

2G (m; + m; . . .
when % < 0.01 for all two-hierarchy combinations.
i Vi

2.3. Encounter Rate

To aid the comparison of our results to earlier literature on
3BBF, we here present the first encounter rate that correctly
predicts the probability per unit time of a 3UB interaction
occurring. Note that a 3UB encounter rate is not equivalent to
the 3BBF rate—i.e., the rate of binaries successfully forming
from 3UB interactions. The latter is obtainable by multiplying
the 3UB encounter rate by a numerically determined likelihood
of 3BBF from a 3UB encounter, but earlier work (Heggie 1975;
Goodman & Hut 1993) instead estimated the 3BBF rate using a
detailed balance, bypassing a need for a 3UB encounter rate.

We consider two different geometric interpretations for the
encounter rate:

1. A stationary spherical volume embedded in a host
environment containing particle fields with local number
densities, n;, and velocity dispersions, o;, for each of up to
three distinct populations i € [1, 3].

2. A spherical volume containing one target body—not
necessarily at its center—that moves with the velocity of
the target and thus has the same velocity dispersion, o,
relative to its host environment.

To derive the encounter rate, we first define the probability
of finding a body within an enclosing volume embedded in a
particle field,

P =nV, %)

where ¥ is an enclosing volume, and n;¥% < 1. The
encounter rate is thus
dpP; d¥;

1_‘. - ! n-—l7 6
= i (6)
where d¥;/dt is the volumetric flow-rate. Fundamentally, the
one-dimensional flow-rate through a volume may be expressed
as

=TI Ay 7
dt dz; dt ™
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where A; is the projected cross-sectional area in the flow
direction of a particle field, and v; is the velocity of that fluid. If
Pi is labeled as an event, then the probability of three
independent and simultaneous events, a 3UB event, is

1
P3p = l_PinPk

__”7mkv Vi ¥, (8)

where [/ is the standard correction for joint Poisson distribu-
tions when particles are drawn from the same field (e.g., / =2 if
two particles are selected from the same field). The respective
mean encounter rate is

nininy
i
g =

WiAi ¥ Ve = viA Y Ve v Ak ¥). (9)

For all bodies to meet within the same sphere of radius R;, we

may set Vi = 47R?/3 and Ayjx = 7R’ The mean
encounter rate then becomes
3p°
g = 2l Rl ninjn(vi + v + ), (10)
where § = %, and the rate per unit volume is
= _ I 35
I3g = v : l'Rl ninng (v + vj + vg). (11

In the case of an isotropic Maxwellian velocity distribution
for each particle field, with dispersion o;, then

36

N2m 1!

This rate assumes a small enough volume that the number
density of the local field is roughly constant.

To find an encounter rate relative to an individual
target already embedded within a spherical volume of radius
R, (i.e., the per-body rate), we may set P,=1. Here,
Py = %P,Pj Following the above calculation, the three-body
encounter rate per body is then

T = 2 Romm ! + ) (13)
3BT g VeV,

Dp = Rninni(0; + 0j + o). (12)

where v/ is the velocity of body i relative to the target, body k.
For Maxwellian velocity distributions,
3 2
g = %RPWW(U,{ + ")

af = \/O', + a, R (14)

where o, is the velocity dispersion of the Maxwellian from
which the target’s velocity is drawn.

To verify both the volumetric and per-body 3UB encounter
rates, we conduct a simple particle-in-box simulation, with
periodic boundary conditions, of noninteracting bodies on
constant-velocity, straight-line trajectories (Figure 2; see
caption for further details). The 3UB encounter rates in the
simulation are consistent with Equations (10)—(14) to within
percent-level.

If all three particle fields have the same particle mass and
Maxwellian velocity dispersion, then substituting Equation (1)
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0]
10 l33

10_1-5

PMF

10-2

10734 . Poisson/Theory
b P-Box Simulation

100'; f3B

107

PMF

102

10-3

2
Nenc/(n tcross)

Figure 2. Yellow points show the discrete probability density function (PMF)
for the number of times (Ne,) three particles in a particle-in-box simulation are
simultaneously within a small spherical volume at the box’s center. The count
on the horizontal axis is expressed as a rate by dividing N.,. by a large
multiple, n, of the box’s average crossing time, f...ss, given particle speeds
sampled from a Maxwellian distribution. The upper and lower panels show the
per-body and volumetric encounter rates, with n =5 and n = 50, respectively.
Each particle travels at constant speed and elastically bounces off the walls of
the box. The count N, increases by 1 each time a particle passes into the
encounter volume while at least two other bodies are already inside the volume
(or one other body in the per-body rate). The simulation results are compared to
our derived encounter rates from Equation (12)—blue points—by sampling
from a Poisson distribution, P(N) = (I35 61)Ne 138 /N1, where 6t = n fooss.

3 4

[

0

into Equation (11) results in the scaling

s Gomn’
g x Xl . (15)
o°

This reproduces the classic ~G m’n’c° scaling from earlier
estimates of the 3UB encounter rate (e.g., Goodman &
Hut 1993; Heggie & Hut 2003; Binney & Tremaine 2008).
However, not all 3UB encounters form binaries. So the true
volumetric 3BBF rate, fF, must be numerically determined and
satisfies the relation

% = Py, (16)

where P;; is the numerically determined probability of forming
a binary (with pairing {i, j}) per 3UB encounter occurring at
rate [3p.

2.4. Replicating and Assessing Aarseth & Heggie (1976)

As a final step before exploring new results, it is useful to
reproduce the original 3BBF investigation conducted by AH76
using their unmodified algorithm (i.e., with a cylindrically
sampled impact parameter; see Section 2.1) in the Newtonian,
point-mass regime. Figure 3 compares the 3BBF probability—
the fraction of 3UB scattering experiments resulting in a binary
forming—as a function of x; between AH76 and our TSUNAMI
reimplementation of their method. As seen in the lower panel,
our reimplementation results in no more than £20% difference
in the 3BBF probability from AH76, easily explained by the
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Figure 3. Reproduction of three-body binary formation (3BBF) probabilities
reported in Aarseth & Heggie (1976). Top panel: Probability P; of forming a
binary containing bodies i and j as a function of dimensionless impact
parameter x; (see Equation (1)) through the interaction of three equal-mass
bodies initially on unbound trajectories. The initial velocities are drawn from a
Maxwellian distribution. Red crosses mark the total 3BBF probability,
independent of pairing, while shapes represent the pair-specific probabilities.
As expected, equal-mass bodies have equal probabilities of pairing. Black
crosses, with error bars, are the values reported in AH76. Bottom panel:
Fractional difference in probabilities between our results and AH76. We see
good agreement (A < 20%).

dramatic increase in sample size and computing resources. We
also recover the xfz dependence of the total 3BBF probability
and validate that the AH76 algorithm correctly results in
indistinguishable bodies (with identical mass and velocities
drawn from a single shared Maxwellian distribution) having an
equal likelihood of pairing; see the red shapes in the top panel.

The radial distribution of three bodies in a field occupying a
fixed spherical volume cumulatively scales as C (r; ) = (ri/R;),
where r; is the radial location of a body passing through a fixed
volume of radius R;. Unfortunately, this is not true of the initial
condition algorithm employed by AH76, which probes an
asymmetric encounter volume comprised of randomly oriented
overlapping cylinders. This expands the effective encounter
volume by 50%—150% when compared to our desired spherical
sampling algorithm and features irregular and nonlinear behavior
for values of r,~R;. Fewer binaries form as a result (see
Section 3.1), and those that do are softer.

3. 3BBF in the Point-mass Limit

We now explore the outcomes of 3UB scatterings for point-
particles of both equal and unequal masses. To be consistent
with our validated encounter rate, derived by invoking
spherical symmetry, we use our spherical initial condition
sampling algorithm (Section 2.1) instead of using the
cylindrical prescription of AH76.

To aid astrophysical interpretation of our results, we first
define our criteria for hard and soft binaries. Traditionally, this
refers to binaries with binding energies greater than (hard) or
less than (soft) the typical kinetic energy of gravitating bodies
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in the local environment (Heggie & Hut 2003; Binney &
Tremaine 2008). We make a slight modification by using the
fast and slow criteria justified by Hills (1990), where the
hardness of a newly formed binary is determined instead by its
orbital velocity relative to the local velocity distribution
surrounding the 3UB encounter. The fast/slow boundary is

G (m; + mj)
<Vr%,1>

where m;, m; are the masses of the two newly paired bodies,
and (v2)) is the typical mean-squared relative velocity of the

) a7)

Afs,ij =

new binary, simplified to be (%) = 302 = 602 for an
isotropic gas described by a Maxwellian with a one-dimen-
sional velocity dispersion o. Note that max (as, ;) = bgp.

The definitions of ag; and by, are dependent on the velocity
dispersion selected for a set of scattering experiments. In effect,
we may extract scale-free results in the Newtonian regime
simply by dividing 3UB length scales by by, a;, or R;, hence
why we employ y; as the primary independent variable in all of
our experiments. References to hard, semisoft, and wide binaries
correspond to binaries with a;; < ag, 5, a;; < 10 ag 5, and a; > Ry,
respectively. Accordingly, this means 3BBF probabilities for
semisoft and wide binaries include the contribution from hard
binaries, but that contribution is negligible since 3BBF rates
decrease sharply with binary hardness.

Throughout the entirety of our results, we find no evidence
of any 3UB encounter or 3BBF event exhibiting resonant
behavior in any regime. Here, resonance is the process by
which a temporary bound state forms containing all of the
scattering bodies, usually characterized by a long, chaotic
orbital dance. We know that none of our 3UB encounters
feature resonance because at no point in any of our experiments
do bound hierarchies form or dissolve after Ar=2t, has
elapsed since starting the trajectory integration. In other words,
if two bodies are bound to each other by time 2., they remain
bound for all time >2¢.. Additionally, all animations of 3BBF
encounters we have produced in every regime (e.g., hard, soft,
unequal mass, etc.) are distinctively perturbative encounters,
characterized by up to two slingshots shared by the three
interacting bodies. The lack of resonance in our 3UB
experiments is fully consistent with the understanding that
resonant interactions are strongly disfavored, if not impossible,
when the total energy in the center-of-mass frame of a three-
body system is positive (Heggie & Hut 2003; Binney &
Tremaine 2008).

3.1. Equal Point Masses

In Figure 4, we show the 3BBF probability for the case of
equal point masses as a function of the dimensionless impact
parameter ;. Colors distinguish binaries formed of different
hardnesses while the point styles compare the outcome using
the cylindrical AH76 algorithm (crosses) versus our spherical
correction to their algorithm (points). Spherical sampling
boosts the 3BBF probability at all scales by ~10%-50% in
comparison to AH76’s cylindrical sampling method. For both
sampling methods, the 3BBF probability for binaries with
a;<R; and x;>1 scales as F; xf4'5. This is slightly
shallower than the st scaling one would expect from equating
the 3BBF rate to the 3UB encounter rate (e.g., Goodman &
Hut 1993; Ivanova et al. 2005, 2010; Binney & Tremaine 2008;
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Figure 4. Equal-mass 3BBF probabilities colored by minimum hardness with
comparisons between the spherical and cylindrical (AH76) initial condition
algorithms. Top panel: 3BBF probability, P; vs. dimensionless impact
parameter, xi; all bodies are drawn from an identical Maxwellian velocity
distribution. The 95% confidence intervals are included as error bars for all
points under the assumption 3BBF is a Poissonian Erocess. However, these
error bars are difficult to see for any probability 10" due to the large sample
size (10° scatterings per value of ;). As expected, Py sz in the soft-binary
limit (large ), in accordance with the scaling identified by AH76. Both
algorithms produce a F; o Xl’“ decay for binaries with a;; < R; (the fit is the
gray dashed line), as opposed to the X]’S decay expected from standard analytic
estimates; the discrepancy is likely due to the complicated nature of
gravitational focusing in 3UB (see text). Bottom panel: Scatter plot quantifying
the difference in probability between the two algorithms. We find that the
harder the binary formed, the greater the boost spherical sampling provides to
3BBF, up to ~30% for hard binaries (purple).

Morscher et al. 2013, 2015). We discuss the implications of this
shallower y; dependency in Section 3.1.2.

Binaries from 3BBF also exhibit several nearly geometri-
cally scale-free properties when scaled to R;. In the center
panel of Figure 5, we show the cumulative distribution for
binary semimajor axes (SMA) from 3BBF, normalized by the
radius of the interaction volume, R;. In the bottom panel, we
display the eccentricity distribution of binaries with a > R and
binaries with a <R;. In both panels, the color of the
distribution denotes the value of ); used in the scattering
experiment. We find that both the SMA and eccentricity
distributions do not depend on x; in that they are nearly
independent of the size of the interaction volume (geome-
trically scale-free). Specifically, the binaries with a <R, are
well described by the thermal eccentricity distribution (dashed
black; f(e) =2e, C(e) = ¢%) while binaries overall (dominated
by those with a > R;) have superthermal eccentricity.

It may appear counterintuitive that 85% of the binaries have
an SMA larger than the radius of the interaction volume, a > R;,
and superthermal eccentricities. However, there is no upper limit
on binary SMA, and R, is typically larger than d;, (the diameter
of the smallest sphere containing all three bodies at any point
during the interaction), fixing the maximum possible angular
momentum available to 3BBF. We find that d,,;, naturally sets
both the maximum periapse, a(l — e) < dpypn, and the
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Figure 5. Top panel: Cumulative distribution function (CDF) of binary
semimajor axis a normalized by the fast-slow boundary as, during equal point-
mass 3BBF. Each curve represents an experiment with a different value of
X1 = R1/(2bgy). Middle panel: Identical to top panel, except the CDF is
normalized instead by the radius of the encounter volume, R;. Binaries formed
with a < R; account for ~15% of pairings. Independent of X, the cumulative
semimajor axis distribution scales approximately as C(a) ~ a°. Bottom panel:
The corresponding CDFs for binary eccentricity e. Irrespective of i, the e
distribution for binaries with a < R, (overlapping solid curves) is nearly
thermal, C(e) ~ %, while the e distribution including all binaries (over-
whelmingly soft binaries; dashed curves) is superthermal, Cle) ~ e” with
(> 2. Thus, the widest binaries formed via 3BBF are well described by
superthermal eccentricity distributions.

minimum apoapsis, a(l + e) > dy,. Independent of algorithm
and binary hardness, our experiments show that the former
inequality is satisfied in 100% of 3BBF, while the latter is
satisfied in >99% of 3BBF (Figure 6). So, to satisfy
a(l — e) < dpin, binaries from 3BBF with large SMA
(@ > dpin) must have high eccentricity ((e) ~ 1;a superthermal
distribution).
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Figure 6. CDFs of pericenter and apocenter distances normalized by (top) the
diameter dy,i, of the smallest sphere containing all three bodies at any time
during the 3BBF interaction and (bottom) the diameter of the interaction
volume, 2R,. These CDFs include every 3BBF in equal-point-mass 3UB
interactions with x; = 10. Colors highlight the algorithm employed, the
original cylindrical algorithm (solid red) from AH76 vs. our corrective
spherical algorithm (dotted blue). In both cases, the minimum apoapse and
maximum periapse distances are very nearly di,. This shows that dyy,;, dictates
the binary’s orbital elements and implies that the fundamental physics of 3BBF
is independent of the initial condition algorithm, so long as R, > Ry > 2byy.

While we find wide binaries (a > R;) from 3BBF are
superthermal, our results unambiguously confirm that binaries
with a < R;, encompassing all hard binaries, are born with
thermal eccentricities. This is a classic prediction for both hard
and soft binaries under the assumption they have undergone
many successive encounters within their environment
(Jeans 1919; Heggie 1975). Sample 3UB trajectories resulting
in hard 3BBF, wide 3BBF, and no 3BBF (a simple flyby of
three single bodies) are displayed in Figure 7. The figure shows
that 3BBF occurs as a single, nonresonant event, implying that
the thermal eccentricity distribution may be more fundamental
to binary formation than previously assumed, independent of a
detailed balance or the need for an individual binary to undergo
many successive encounters.

3.1.1. Choice of X;

Having examined how the 3BBF probability depends on x
in the case of equal point masses, it is natural to wonder what is
a proper choice of y;. Setting x; high enough that R; exceeds
the interparticle distance in the host environment would clearly
violate the assumed isolation of the interaction from its
surroundings. Yet simply anchoring R; to the interparticle
distance is not computationally optimal; since the 3BBF
probability drops steeply with increasing yx;, choosing too
large a x; needlessly inflates the number of scattering
experiments required to achieve a robust sample of binaries.
However, x; cannot be made arbitrarily small without biasing
the properties of the binaries that are formed.

In the limit x; — O, the initial positions and velocities of all
bodies are focused toward a point because R, = 15R; in

Atallah et al.

the AH76 method. This minimizes the angular momentum in
the global reference frame and causes the 3BBF probability to
saturate (no longer follow a simple power-law scaling with ).
By initializing the bodies deeper within their mutual potential
wells, this limit also results in a total initial energy much nearer
to zero than in a scattering experiment conducted at higher .
Since the 3UB problem requires total positive energy, shrinking
x1 too far would bias the initial conditions to be just barely
unbound. From an algorithmic perspective, the vast majority of
randomly generated initial conditions in this limit would sample
at least two bound bodies, and have to be thrown out. This
artificially truncates the energy—angular momentum parameter
space that would otherwise be obtained naturally from the
isotropically sampled Maxwellian velocity distributions.

A key limiting factor in choosing y; is the average
interparticle distance, (r), of the 3UB interaction’s host
environment. Specifically, to satisfy the assumption of an
isolated 3UB encounter, then R, must be <(r)/2."" We can
form a qualitative picture by first writing (r) in terms of
fundamental quantities of the Plummer model,

4/3
_ GMP (o N71/3
6 0.10/3

{r) , (18)

where Mp is the total mass of the Plummer cluster, o, = | 6GTM
P

is the Plummer core velocity dispersion, bp is the Plummer
scale length, o is the local velocity dispersion, and N ~ Mp/ (m)
is the number of bodies in the cluster. In normalizing (r) by
4by,, we can probe how it relates to the x; scaling employed in
this work. To satisfy Ry < (r)/2, we must set x; < X,, Where

o L)
" 4b90 8 o

2/3
2
LY PV I (19)

with r as the radial distance from the center of the Plummer
cluster. If we limit our investigations to the core of a cluster, we
find that x, ~ 0.125 N?/3 and that clusters consisting of N = { 10°%,
10%, 10%, 10° 107} bodies have a dimensionless ,~ {13, 60,
270, 1250, 5800}, respectively. These choices of N span the
typical range for open clusters to dense nuclear star clusters.

To choose an appropriate ; for the rest of our analysis—and
thereby enable a more thorough examination of other important
considerations for 3BBF—we take guidance from the above
estimates surrounding ¥, and Figures 4 and 5. In particular, the
scalings of the 3BBF probabilities on y; asymptotically settle
into simple power laws at y; 2 10, enabling straightforward
extrapolation in dynamically active environments that can
sustain larger values of x, > x; > 10. Beyond this point, the
properties of the binaries, such as SMA (normalized by R;) and
eccentricity, no longer depend on ;. We find this also holds
for unequal-mass simulations.

Therefore, we choose to use a default value of x; = 10 in all
our following analysis, unless noted otherwise. For this choice
of x1, 0.7% of all 3UB initial conditions result in at least two
of the three bodies already being energetically bound to each
other. These 3UB initial conditions are rejected since we are

10 To ensure an isolated encounter, we assign the extra factor of 2 here so that
(r) is the maximal possible diameter of the interaction volume.
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Figure 7. A two-dimensional projection of six different equal-mass 3UB realizations. Each column corresponds to scatterings that result in (i) no, (ii) hard (here,

a < Ry), or (iii) wide (@ > R;) 3BBF. The blue shaded region is the interaction volume of the initial condition algorithm (with radius R;), and the red shaded region is

defined by R,; see Section 2.1 for details. Line color represents the trajectory of an individual body while color-coded arrows show the direction bodies are moving at
or in any 3UB simulation made yet.

uniformly selected color-coded time steps in the simulation. The larger the spacing between arrows, the faster the body is moving. No resonant encounters occur here

interested in the formation of new binaries. Although this
rejection rate is larger than the typical 3BBF probability at
x1 =10, our tests indicate that including scatterings where
bodies are allowed to be bound at initialization does not
significantly alter the soft or hard 3BBF probabilities in the
equal- and unequal-mass cases. It follows that 3UB initial
conditions in which two bodies are initiated especially close to

dispersion o, the volumetric encounter rate is

5/2.3/2
Fop = 2 3RS, 1)
The cumulative distribution of hard-binary SMA has the
form P(<a) « (a/ax)® when a<R,. In Figure 4, the

cumulative probability of forming binaries with a/ag < 1 is

Y —45 a 3
P(<a, x;) ~ 1.85 x 10*6(—1) =1. (22)
10 afg

Combining this probability with our encounter rate, the hard
3BBF rate for equal masses is

one another are not a significant source of 3BBF. Our choice of

x1 = 10 therefore balances both accuracy and computational
efficiency.

3.1.2. Hard-binary Formation

. . . B 5. 513 3

. We now estimate the hard 3BBF' rate in th'e equal point-mass FF(<a, ) ~ 0.081 G'mn’( a 2,
limit using the results of our analytically derived encounter rate o !
—Equation (12)—and numerically determined formation

probabilities (Figure 4). We assert that the general solution to

(23)
a numerically determined volumetric 3BBF rate is of the form

afs
Note that the Xi/ 2 dependency in Equation (23) highlights a
unique environmental constraint on 3BBF rates not accounted

for in any previous works. While the formation rate appears to

(20) be divergent—f‘F — 00 as x; — oo —this is contingent on the
existence of an environment with an infinite average interparticle
distance, a nonphysical consideration. Thus, to properly estimate

(<a, x) = P(<a, x)Tis(x),

where I3 is the 3UB volumetric encounter rate, and the 3BBF
rate per 3UB encounter, P(<a, X)), is extracted from Figure 4.
Simplified for the case of identical masses with velocities

a local 3BBF rate, a careful determination of the largest possible
drawn from a single shared velocity distribution with

X1 < X, must be used in future (semi)analytic prescriptions.
Recently, Ginat & Perets (2024) corroborated our X145
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Figure 8. The estimated cumulative 3BBF rate for the interaction of three
equal-mass bodies sampled from identical Maxwellian velocity distributions.
Here, we show only the scattering experiments with dimensionless impact
parameter x; = 10. The blue curve is a CDF of semimajor axis (a/as) scaled
by Equation (16), and the black dashed line is a curve fit defined by
Equation (23). The physical cross section for 3BBF increases with mass and
decreases with speed since R; o< m/c”. Our rate is within 15% of the rate
predicted by Goodman & Hut (1993); see text near Equation (23).

probability scaling, finding an identical scaling by evaluating
their analytic framework with their least stringent limiting
condition on the 3UB interaction volume.

If we consider y; = 10 as a test case and redefine our hardness
criteria in terms of the hard—soft boundary as defined by Goodman
& Hut (1993), aps = % we may substitute ag; — iahg The
formation rate, cumulative in a such that it includes all SMA <a,

then becomes [''(<a) ~ 0.86 Gjmsn <) . The coefficient of

0.86 is a close match to the predlctlon of 0.75 from Goodman &
Hut (1993) using a detailed balance (and integrating their Equation
(2.6) from x/(moz): [1 — o0]), sans the SMA and x; scalings we
have identified. This semianalytic expression for the 3BBF rate is
displayed as a function of SMA in Figure 8 and overplotted atop
the numerical results for equal masses and y; = 10.

3.1.3. Wide-binary Formation

Soft binaries may also be described by the same scaling
relations shown in the previous section so long as the parameter
space of binary properties are restricted to a < R,. The opposite
limit—a > R;—hosts properties exclusively describing the widest
binaries that may form through 3BBF. These binaries follow an
entirely different binary formation probability curve (P sz),
and their SMA and eccentricity distributions are not described by
a simple power law, unlike in the hard-binary limit. Given that
binary SMA and eccentricity distributions are nearly independent
of x; for x;€[10, 100] (Figure 5), we may combine the
scattering experiments spanning this interval to examine these
binary properties at higher resolution. As a reminder, X
represents a numerical factor chosen for convenience, with a
maximal value dependent on environmental properties (e.g., the
local average interparticle separation).

10
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Figure 9. Heat map of binary eccentricity vs. SMA (normalized by R;, the
radius of the interaction volume) across all 3BBF scatterings with x; > 10.
Each (vertical) bin in SMA is normalized by the cumulative probability of
binary formation in that bin C(a/R;). Eccentricity is thermal and roughly
independent of SMA for a/R; < 1, but skews increasingly superthermal with
increasing a/R; for a/R; 2, 1 (~98% of binaries).

Figure 9 is a two-dimensional heat map of the resulting SMA—
eccentricity space from this combined data set. The underlying
density is normalized in each (vertical) SMA bin to aid
visualization of the eccentricity distribution for any given SMA.
Figure 9 shows that the eccentricity distribution is roughly
independent of SMA for a/R; <1 (with some fluctuation
attributable to low resolution at low SMA). However, for
a/R, > 1, the binaries formed from 3BBF skew increasingly
eccentric (superthermal) as SMA increases, with the absolute
softest binaries formed with a fixed interaction volume being
exclusively superthermal.

Following the same calculation as our hard-binary formation
rate from the previous section, the formation rate for
superthermal wide binaries crucially depends on the size of
the interaction volume, R;. Additionally, a power-law fit to the
red curve in Figure 4 for y; > 10 yields a functional form for
the overall 3BBF probability of P ~ 4~2Xf2- Since ~85% of
those binaries are wide (have a > R; in Figure 5), then the
probability of forming a wide binary from 3BBF in the equal-
mass limit at x; > 10 is roughly

2,2
P(a>R) ~ 36x4_144%°—16G”2. 24)
1 U4R1

Combining this probability with Equation (21), the volumetric
3BBF rate for (superthermal) wide binaries in the equal-mass
limit is

GZ

@ >R) ~ 16.8 RE. (25)

O'
Additionally, >50% of wide binaries have an SMA between
1 <a/R, <5 (see Figure 5).

The ability to realize a superthermal wide-binary distribution
is contingent on the dynamical properties of environments
hosting 3BBF. Dynamically active and well-populated envir-
onments (e.g., star cluster cores) may enable many successful
3BBF events, but reasonably long-lived binaries form hard,
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Figure 10. Probability of binary formation, Py,

vs. mass ratio of the second most-massive body, g; = m;/mq. Mass ratios, g; = m;/my, are labeled in descending order

by mass, with go =1 and ¢> < g; < 1. The 95% confidence intervals are included as error bars for all points under the assumption 3BBF is a Poissonian process.
However, these error bars are difficult to see for any probability 10~ due to the large sample size 10° scatterings per value of x;). Accounting for hardness, we find
that the pairing of the two most-massive bodies is the least likely across the majority of the parameter space; the two least-massive bodies are the most likely pairing
when allowing for binaries of arbitrarily large SMA. Each panel (column) shows P;; for a different fixed g, = m,/my. Color distinguishes binaries with the different
minimum hardnesses specified in the legend while shapes indicate the three possible pairings of bodies. For most unequal-mass ratios, new binaries typically contain
the least massive body. The total 3BBF probability (cross-hatched curves for each color) increases with g, (i.e., as the mass ratios approach unity), regardless of binary
hardness. See Table 1 for a numeric list of these probabilities and their counting uncertainties.

with SMA smaller than the average interparticle separation
(i.e., a <Ry < (r)). Newly formed binaries with SMAs larger
than the average interparticle separation (and superthermal
eccentricities) are highly unlikely to persist within dense
environments. In effect, binaries born within a central,
dynamically active region should be thermal, independent of
binary binding energy.

Yet, open clusters, star cluster halos, and stellar streams may
not be so prohibitive (Pefiarrubia 2021). The isotropically
distributed recoil velocity experienced by all new binaries in
3BBF may quickly dissociate them from loose environments
with low escape velocity, enabling the formation of binaries
wider than the (rp) of their original host. Thus, in contrast
with other dynamical methods that do not explicitly investigate
3UB interactions (Hamilton & Modak 2023; Xu et al. 2023),
the 3BBF mechanism may dynamically populate the super-
thermal wide binaries observed by Gaia in the galactic field
(Tokovinin 2020; Hwang et al. 2022).

3.2. Unequal Point Masses

We now report our findings on the first investigation of
3BBF for the case of unequal point masses. Just as in our
equal-mass investigation, each body has an initial velocity
randomly drawn from a single shared Maxwellian velocity
distribution, with position and velocity unit vectors assigned
according to our algorithm (see Section 2.1). In total, this data
set contains exactly 2.1 x 10'” simulations, or 10° scatterings
per mass-ratio combination.

Figure 10 summarizes our results. The top row is the 3BBF

probability, P, as a function of mass ratio, g;. We explore the

11

unequal-mass 3UB parameter space by transforming masses as
follows: (mg, my, my) —(qo, q1, q2) With gq;=m;/my,
9> < q1 < qo, and fixing go= 1. Colors denote the minimum
hardness (a,»j/ ags ;; < x) of the binaries considered in each SMA
bin while shapes separate binaries by the mass pairing {i, j}.
The dimensionless impact parameter is fixed to y; = 10 for all
experiments as we find that it balances resolution, efficiency,
and accuracy throughout the entire parameter space (see
Section 3.1).

A key assumption of 3BBF prescriptions in star cluster
modeling codes such as CMC (e.g., Morscher et al. 2013, 2015)
is that the two most-massive bodies (go, ¢1) in a 3UB encounter
are the most likely to pair into a binary. Our findings
unambiguously reject this assumption. Including binaries of
any size, it is instead the two least-massive bodies (g, ¢») that
are the most likely to pair. The most- plus least-massive bodies
(g0, g2) are the second most likely to pair generally, but the
most likely in the hard-binary limit. The pairing of (qq, q1) is
the least likely 3BBF end-state independent of hardness,
becoming orders-of-magnitude less likely as g, approaches the
test particle limit.

Naively, the tidal effect experienced between two bodies
1/3
my

within the gravitational field of a third scales as =)
i J

where my is the mass of the perturbing body. It follows that it is
significantly easier for a more massive particle to perturb two
low-mass bodies than for a low-mass body to perturb two high-
mass bodies. Stated differently, it may be easier to change the
energy /momentum of a less-massive body (less inertia),
making it easier to extract two-body energy if the leftover
single is more massive. That said, a more thorough explanation
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Figure 11. Binary SMA CDFs across various mass ratios with fixed velocity dispersion and x; = 10. Mass ratios, g; = m;/mq with my > m; > m,, are seen at the top
of each subplot. Color specifies the pairing {g;, g;} of each distribution. For a; < R; (here, R; = 2 a,01), the SMA distributions exhibit a simple power-law relation
similar to the equal-mass case, but feature nontrivial deviations in the wide-binary limit (a; > R;).

for the process of unequal-mass 3BBF is beyond the scope of
the current work and will be investigated in detail in the future.

The differences in the pairing probabilities become increas-
ingly subtle the closer in mass the three bodies are. For most of
the explored parameter space, the pairing of (go, g») is the most
probable hard-binary pairing, with the most-massive bodies
(90, g1) and least-massive bodies (g, g,) swapping prevalence
as g; — 1. As mass ratios approach unity, hard (g, q;) pairings
become more probable. Still, the pairing of the most-massive
bodies always comprises <50% of total pairings, independent
of hardness.

Turning to binary SMA and eccentricity distributions for fixed
mass ratios (Figures 11 and 12), many of the tendencies
occurring in equal-mass scattering are asymptotically emergent
as binaries approach the fast/slow boundary. For the most
extreme mass ratios (g, =0.1), C(a;) x af‘s‘w and the SMA

)
for the pairing of the most-massive bodies (go, ¢1) scales as a021'5.

As g, — 1, all SMA distributions tend toward C(a;;) o< a;'o, as
identified earlier in the case of equal masses.

Eccentricity distributions for binaries with a;/as ;< 10
follow an identical trend to what we identified with equal-mass
encounters: they closely follow a thermal distribution. The only
exception is the pairing of the two high-mass bodies, which
yields a mildly superthermal eccentricity distribution. Mean-
while, the eccentricity distributions for soft binaries are more
extreme than in the case of equal-mass scattering. The soft
pairing of (go, ¢;) is extremely superthermal ({(ep;) = 0.95)
while the soft pairing of (q;, g») tends closer to a thermal
distribution than in the equal-mass case.

12

4. Pairing Stars and Black Holes

We now explore for the first time 3BBF between MS stars
with masses mys/M:{0.5, 1, 2} and stellar-mass BHs with
masses mgy/M “:{20, 50, 100}. This is also the first study to
consider either relativistic or finite-size effects within the
context of 3UB encounters. Additionally, we explore 3BBF
between the encounter of (i) two BHs and an MS star and (ii)
two MS stars and a BH—mixed-species encounters that
dominate 3BBF at most times in models of typical Milky
Way globular clusters (e.g., Weatherford et al. 2023).

As in our point-mass simulations, we fix the dimensionless
impact parameter to be x; = 10 and draw the velocities of all
bodies from a Maxwellian with a one-dimensional velocity
dispersion, o. In reality, species with such different masses will
typically have different velocity distributions, but we leave a
nuanced exploration of this further complexity to future work
to focus on the raw influence of mass ratio, along with
relativistic and finite-size effects. A variation in ¢ also varies
the impact parameter, since R; o o 2, s0 it probes the strength
of these effects in close passages. To show this impact clearly
in our results, we therefore vary the velocities in the range
o€ [1,3001kms~" for MS stars and o € [3, 3000] kms ™" for
BHs. Varying mass to probe relativistic and finite-size effects is
also an option, but the typical mass distributions of evolved MS
stars and stellar-mass BHs in dense star clusters each span a
smaller range than the typical local mean-squared velocities of
the various dynamically active environments they may inhabit
(e.g., open clusters to nuclear star clusters). Also, 3BBF rates
scale more steeply with ¢ than with mass.
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Figure 12. Binary eccentricity CDFs across various mass ratios with fixed velocity dispersion and x; = 10. Mass ratios, ¢; = m;/mq with mg > m; > m, are seen at
the top of each subplot. Color specifies which two of the three bodies end up in the binary, numbered in decreasing order of their mass (0, 1, 2). The {solid, dashed}
line style corresponds to binaries with SMA {greater, less} than 10ay, ;. Wide binaries, those with a; 2 10ay; ;, exhibit identical superthermal eccentricity distributions

across mass pairings for fixed masses.

To explore the finite-size effects, we assign radii to stellar
bodies according to the classic MS radius relation (Demircan &
Kahraman 1991),

ri = (mi/Me)S/SRG)- (26)
To mitigate inaccuracies in the post-Newtonian (PN) approx-
imation near the event horizon, BHs are assigned radii of 7
times their Schwarzschild radius,

Gm i

c2

l’i=14

27)

In all cases, collisions between stars are handled with the sticky
sphere approximation, combining the masses (with no mass
loss) once the surfaces of stellar bodies touch. The collision
product is then placed instantaneously at the center of mass of
the two former bodies with their center-of-mass velocity. BH
mergers are treated with the numerical relativity prescriptions
of Lousto & Zlochower (2013) and Healy & Lousto (2018).
Collisions between BHs and MS stars are resolved by placing
the BH at the center of mass of the star—BH pair with their
mutual center-of-mass velocity and assume no accretion (the
star is destroyed). Under all circumstances, PN terms up to
PN3.5 are enabled during integration, and all BHs are assumed
initially nonspinning. Tidal physics is not included in this first
exploration of non-point-mass 3UB interactions, but we plan to
explicitly explore such effects in a later work.

13

4.1. Main-sequence Stars

In Figure 13, we present our findings for 3UB interactions
between equal-mass MS stars for three different cases:
m;/Ms = {0.5, 1, 2}. The left panel shows the 3BBF probabilities
as a function of o, colors again indicating binary hardness, with
some additional black curves for collision probabilities (see
caption). To better show the impact of finite size, we normalize
the 3BBF probabilities by the total x; = 10 3BBF probability in
our equal point-mass experiments from Section 3.1 (the red curve
in Figure 4). The right panels of Figure 13 show the corresponding
SMA and eccentricity distributions. In the lower panel, we show
both the eccentricity distributions for all binaries regardless of SMA
(lower set of overlapping curves), as well as only the subset of
binaries with a < 10ag (upper set of overlapping curves,
predominantly found near the black curve representing a thermal
distribution). Since it is dominated by wide binaries, the total binary
population features the same superthermal eccentricity distribution
found in our equal point-mass experiments. This distribution does
not depend on o, as evidenced by the extreme degree of overlap of
these curves. Meanwhile, the subset of binaries with a < 10ag
feature a nearly thermal eccentricity distribution, except at very
high ¢ 2 300km sfl, where the eccentricity instead skews
significantly subthermal; solely due to eccentric binary periapse
distances becoming comparable to MS stellar radii.

From the collision rates displayed in the left panel, it is
immediately apparent that collisions are often orders of
magnitude more common when compared to hard 3BBF
(Peont/Phara € [10°, 10°]). Yet, for all but the highest choices of
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Figure 13. 3BBF distributions from scattering finite-sized bodies with main-sequence (MS) star radii, varying the one-dimensional velocity dispersion ¢ and stellar
mass but keeping x; = 10 fixed. Left: Probability of 3BBF normalized by the total 3BBF probability (for x; = 10) in the earlier point-mass scenario (red curve in
Figure 4). Line style denotes the mass of the MS star, color again indicates binary hardness, while black indicates collision probabilities. The black labels are: coll, one
collision; cap+-coll, collision and capture of the third body; 3coll, all three bodies collide during scattering. For most (but especially higher) velocities, collision
probabilities exceed 3BBF probabilities. Even so, collisional effects negligibly reduce the 3BBF probability for o < 30 kms~'. Right: Cumulative SMA and

eccentricity distributions for each velocity dispersion. As reflected in the formation rates at left, the SMA distribution is roughly independent of o until o 2 30 kms™ ",

1

where hard 3BBF becomes increasingly unlikely. Soft binaries are universally described by the same superthermal eccentricity distribution (set of overlapping curves
in the lower half of the eccentricity panel) independent of o. Binaries with a/ag < 10 all closely follow a thermal eccentricity distribution (black curve) until the
distributions become disrupted by the prevalence of collisions when o > 30 km s~ ', quickly suppressing formation of hard, eccentric binaries.

o (lowest R;), the inclusion of finite-size collisional effects does
not appreciably alter the 3BBF probability from the simpler
point-mass scenario. Changes to hard 3BBF specifically (purple)
are statistically insignificant until o >30kms ', corresponding
tor, /R 2 10~*. Notably, this already exceeds o at the center of
typical globular clusters. Collisional suppression of 3BBF
becomes relevant as the radius of the interaction volume, R;,
approaches 10°R.. Changes to the SMA and eccentricity
distributions at low o are similarly negligible when compared
to the point-mass limit. At speeds high enough that the point-
mass and finite-size scenarios strongly deviate from each other,
the SMA and eccentricity deviations increase rapidly with o
(decreasing R;). It is only when o 2 100 km s~ ! that collisions
severely hinder formation of especially hard and/or eccentric
binaries. This may be relevant to nuclear star clusters, but not
open or globular clusters.

Fixing velocity and y;, the radius R; of the interaction
volume increases faster with mass than the radius »; of MS
stars. This can be seen from the proportion Ri/r; oc m?’> in
Equations (1) and (26). Therefore, given identical velocity
profiles, 3BBF involving more massive MS stars is less
impeded by collisions—i.e., collisions in 3UB encounters are
more frequent for lower-mass MS stars. The cross sections for
two-body collisions and capture+-collision events (two of the
bodies colliding with the collision product forming a binary
with the third star) scale as P oc 02 o b;ol. The probability of
all three bodies colliding scales as P oc o o< b

14

That collisions arising from 3UB encounters do not
significantly reduce the 3BBF rate from the point-mass case
reveals a fundamental aspect of 3BBF physics. Namely, the
overwhelming majority of initial configurations that align two-
body trajectories into extremely tight, hyperbolic periapse
passages do not produce 3BBF in the point-mass regime.
Naturally, for finite-size bodies, such close passages result in
collisions instead. This finding contradicts the intuition that if a
tertiary body approaches two already strongly interacting
bodies, a tight binary will form. We have no evidence that
this occurs in the 3BBF animations we have generated of hard
or soft binary formation. Instead, our results strongly suggest
that all three bodies “democratically” participate in a
perturbative binary formation process.

4.2. Black Holes

Figure 14 presents the outcomes of 3UB interactions
between three equal-mass BHs, accounting for relativistic
effects, in three separate cases: m;/M. = {20, 50, 100}. The
layout and line coloration/style are identical to Figure 13 for
MS stars. All 3BBF probabilities in the left panel are again
normalized by the total 3BBF probability for equal point
masses (at xy; = 10) in Section 3.1. As expected, accounting for
relativistic effects negligibly changes the 3BBF probability
from the Newtonian point-mass scenario except in the case of
hard 3BBF (purple) at high ¢ > 300 kms™" (r,/R; > 1079, It
is also clear from the collision rates (black) that BH mergers are
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Figure 14. 3BBF distributions from scattering three equal-mass BHs, accounting for relativistic effects (post-Newtonian terms up to PN3.5) and varying the one-
dimensional velocity dispersion o. Left: 3BBF probability normalized by the total 3BBF probability (at x; = 10) in the point-mass scenario (red curve in Figure 4).
Line style denotes the mass of the BH, color represents hardness, and collision probabilities are in black. The black labels are: coll, one collision; cap-+coll, collision
and capture of the third body; 3coll, all three bodies collide during scattering; hier3, formation of a hierarchical triple that lives for more than 10 orbital periods of the
outer tertiary before the inner binary merges. BH mergers are far less common than MS mergers under identical velocity profiles. Relativistic effects never impede
3BBF probabilities, instead augmenting hard 3BBF when ¢ > 100 km s~ '. Right: Cumulative SMA and eccentricity distributions for each choice of velocity
dispersion. As 0 — ¢, GW emission encourages BH binaries to form with smaller SMA. Soft binaries (set of overlapping curves in the lower half of the eccentricity
panel) are universally described by the same superthermal eccentricity distribution as in the point-mass case. Binaries with a/ag < 10 all closely follow a thermal
eccentricity distribution (black curve), independent of the relativistic effects present during 3BBF.

far less likely than collisions between typical MS stars at
identical velocities. This is a natural result of the minuscule
physical cross section for two-body GW capture compared to
the (comparatively enormous) physical radius of MS stars.
Using the GW capture radius, 7, gw, from Quinlan & Shapiro
(1989), we find that r, gw/R; (cr/v)m/7. This is precisely the
scaling with o that we find for the probabilities of collision
(coll; black circles) and capture+collision (cap-coll; black
triangles).

Additionally, the scalings with ¢ of the 3BBF and collision
probabilities are independent of mass since r; and R, both scale
ocm  with r;/R, =0.3(c/c)®>. In other words, relativistic
deviations from the point-mass scenario scale only in powers
of v/c. These relativistic deviations do not begin to peak above
numerical noise until o 2 100km s (e, o/c2, 107%),
observable in the subtle boost to the hardest portion of the
SMA distribution, becoming more dramatic as o/c — 1. We
find no deviation in eccentricity distributions in comparison to
point-mass interactions. Thus, hard 3BBF with BHs is well
described by a thermal eccentricity distribution.

We are also excited to report a small probability in which
three unbound BHs may undergo a 3UB interaction that
produces a hierarchical triple via GW emission. Although most
capture—+collision end-states (cap-+coll) involve the formation
of a short-lived triple BH system, we only classify outcomes as
a hierarchical triple (hier3; black crosses) when the hierarchy
survives for 72 10 orbital periods of the outer tertiary before
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the inner binary merges. A binary BH containing a second-
generation BH merger product is always left behind in these
equal-mass, zero-spin scenarios due to the nonexistence of GW
recoil kicks in such a case. However, we stress that this is an
extremely rare occurrence and is poorly resolved, even for
environments with a local velocity dispersion in excess of
1000 kms ™.

4.3. Main-sequence Stars and Black Holes

A key application of 3UB encounters is the scenario
involving MS stars (~1 M) and stellar-mass BHs (~10 M)
within the cores of dense star clusters. Weatherford et al.
(2023) recently demonstrated that such encounters dominate
3BBF at most times in typical Milky Way globular clusters
(those retaining significant BH populations). They also found
that such interactions may dominate the high-speed ejection
(Avy > o) from such clusters due to the recoil experienced by
the leftover single, expected to typically be a low-mass MS
star. However, the frequency of the high-speed ejection and the
identity of the ejected body (i.e., high-mass or low-mass object,
single or binary) may be conditional on previously unexplored
unequal-mass, finite-size, and relativistic effects.

In Figure 15, we reaffirm that physical collisions, despite
being more frequent than hard 3BBF, do not significantly
suppress hard 3BBF when compared to the point-mass scenario
for the unequal masses (and velocity dispersions; o€ [l,
201 kms ™} explored here. This result is consistent with our
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Figure 15. 3BBF probabilities (nonnormalized) between (left) a BH and two
MS stars and (right) two BHs and an MS star with x; = 10. All BHs (initially
nonspinning) have mass 10 M, and all MS stars have mass 1 M. These
scattering experiments are thus the finite-sized, relativistic equivalent of the
earlier simulation sets for unequal masses with ¢; = {1, 0.1, 0.1} (left) and
gi = {1, 1, 0.1} (right), respectively. Specific binary pairing combinations are
identified by shape as in Figure 10. Colors distinguish 3BBF resulting in
different binary hardness, as well as several different collision probabilities
(labeled as in Figures 13 and 14). We find that 3BBF rates are largely
unchanged compared to the Newtonian point-mass limit, but direct collisions
occur more frequently as the local velocity dispersion increases. Tidal
disruption events should be even more frequent since they have a larger cross
section compared to direct BH-star collisions.

findings in Sections 4.1 and 4.2 that high-o environments are
necessary to significantly suppress hard 3BBF among equal-
mass MS stars (o > 30kms™ ') or BHs (¢ > 100kms ).

BH-star 3BBF rates for both mass combinations are
unchanged compared to the Newtonian point-mass scenario
(see Figure 10), but the collision rate is substantial. As we
demonstrated in Section 4.1, initial configurations that produce
collisions are more frequent than hard 3BBF when scattering
finite-sized bodies. However, these initial states are nonde-
generate for typical cluster velocity dispersions; i.e., an initial
state that produces a hard binary in the point-mass regime does
not necessarily produce a collision during an identical
encounter with finite-size bodies. An unexpected consequence
follows if we consider that the tidal disruption radius,
1 = ry(mpp/my)'/3, is about 2.2 times larger than the BH-
star collision radius between a 10 M-, BH and a 1 M, MS star.
Namely, the number of BH—star TDEs may be between 2 and 5
times higher than the direct collision rate, contingent on the
subtleties of 3UB gravitational focusing. While direct BH—star
collisions do not meaningfully suppress the hard 3BBF rate, we
are uncertain whether TDEs would yield significant suppres-
sion. Regardless, these results suggest 3UB encounters may
provide a substantial boost to the predicted frequency of
transient tidal/collisional phenomena in the cores of dense star
clusters.
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Figure 16. Survival function (1 — C(v¢/0)) for the final velocity (v¢/o) of the
catalyzing single (top row) and binary (bottom row). These distributions
include only the binaries formed with a;/ag; < 3. Color and line style
illustrate the velocity dispersion and specific mass pairing, respectively. The
vertical black line at v¢/o = 2+/3 denotes the escape velocity from the core of
a Plummer cluster.

In Figure 16, we also examine the final velocity v¢ of binaries
and the leftover (catalyzing) singles produced by 3BBF from
the above setup (i.e., BHs of mass 10 M, and MS stars of mass
1 M). Note the velocities shown are in the frame of the
interaction volume, akin to the global reference frame of the
host environment, not the center-of-mass frame of the three
bodies. The primary advantage is the direct translation to the
final velocity of each body within its host environment. We
also only include in the analysis binaries formed with
a,j/ ags < 3—i.e., hard and slightly softer binaries.

Given our assumption that the bodies’ velocities are drawn
from the same distribution regardless of mass, we find it is
excessively rare that newly formed BH-MS or BH-BH
binaries have a final velocity in excess of the escape velocity
(Vese = 2J3 o) of a Plummer core with the same characteristic
velocity dispersion. Even in the favorable case where a (heavy)
BH catalyzes the formation of a (light) MS-MS binary with
ayp/ag <3, ejection of the binary only occurs <5% of the
time. Notably, Figure 15 shows that the MS-MS pairing in
such a case is also 10 times less likely than a BH-MS pairing,
for which ejection of the binary would be even rarer.
Weatherford et al. (2023) similarly predicted that the energy
release from 3BBF alone is almost never directly responsible
for the ejection of a binary. Notably, the simplified 3BBF
prescription from the CMC code used in that study automati-
cally pairs the most-massive bodies, artificially making binary
ejection more unlikely than the otherwise small fraction
found here.

From simple momentum conservation, the prospect of low-
mass catalysts experiencing high-speed kicks from 3BBF is
much more promising. When an MS star catalyzes the
formation of a BH-MS or BH-BH binary with a; < 3ag
~10% and ~90% of MS star catalysts have final velocities
Vg > Voo, Tespectively. Hard 3BBF can lead to even higher
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ejection speeds for single stars as vy ox o if we only consider
point-mass Newtonian mechanics. As discussed in Section 4,
by additionally considering finite-size effects, direct collisions
between stars with masses of ~1 M, begin to reduce 3BBF for
velocity dispersions between 30 and 50kms ™' and eliminate
hard 3BBF at o > 100kms~'. This reduction in 3BBF rates
due to collisions is less pronounced for more massive bodies
since the size of the interaction volume increases faster than the
physical radii of interacting stars.

At an order-of-magnitude level, these results are consistent
with the velocity distribution from MS star ejecta via 3BBF in
CMC (Weatherford et al. 2023). However, there are a variety of
complexities that need to be further explored to make a more
rigorous comparison. For example, the initial velocities of the
bodies in Figure 16 are sampled from the local velocity
dispersion (typical velocity), while successful 3BBF ejecta
from Weatherford et al. (2023) should naturally be skewed to
(higher) initial velocities already near to ves. Furthermore,
Figure 16 does not account for species of different mass having
different o; nor does it account for the full distribution of mass
ratios and relative velocity ratios found in typical 3UB
encounters in the core of a dense star cluster. We leave a
more rigorous analysis of such considerations to future work.

Finally, as mentioned earlier, tidal physics will likely modify
the final velocity of the catalyst. For example, Kremer et al.
(2022) demonstrated that velocity kicks applied to stellar
remnants following TDEs (due to asymmetric mass loss) may
exceed ~200kms ' when the mass of the BH is at least 10
times greater than the star’s mass. So the prospect of impulsive
acceleration to high speed during a 3UB encounter is likely
much higher than suggested by our results, which account only
for (post-)Newtonian corrections. Along with Figure 16, we
find that 3UB encounters should contribute to the ejection of
runaway stars (and possibly even hypervelocity stars) from
globular clusters, supporting Weatherford et al. (2023).
Conclusively demonstrating that 3BBF dominates the produc-
tion of such ejecta over other binary-mediated channels
requires further numerical examination of the 3BBF rate for
realistic velocity and mass distributions in globular clusters.
This is especially true when considering hypervelocity ejecta,
which fundamentally would result from encounters deep in the
tail of the 3BBF kick velocity distribution.

5. Summary and Future Work
5.1. Summary

We have explored the formation of new binaries from three
unbound bodies in greater detail than any prior efforts, including
the first study of 3BBF to feature unequal masses, finite-size
effects, and PN effects. Specifically, we study 3BBF by running
>3 x 10" three-body scattering experiments with the state-of-
the-art direct N-body integrator TSUNAMI. After reproducing the
canonical 3BBF scattering experiments of AH76, we correct an
oversight in their algorithm (adopted from Agekyan &
Anosova 1971) related to spherical symmetry. With this
correction and a new analytic encounter rate for 3BBF, we
compute a hard 3BBF rate that agrees well with Goodman &
Hut (1993) in the case of equal-mass bodies; see Equation (23).
We also confirm that 3BBF is almost exclusively an impulsive
phenomenon. Resonant encounters leading to 3BBF are
extremely disfavored due to the total positive energy of three
unbound bodies, preventing a three-body bound state from
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occurring without dissipation (e.g., gravitational radiation or
collisions). Additional key results are as follows:

1. Newly formed binaries from 3BBF are overwhelming
soft, in agreement with AH76 and Goodman & Hut
(1993). We find that the cumulative distribution of binary
SMA, a, scales as a3—n0tably shallower than the o’
scaling of 3BBF recipes in Monte Carlo star cluster
modeling (e.g., CMC; Rodriguez et al. 2022). Typical
SMA also grows with dimensionless impact parameter
X1, SO larger interaction volumes lead to both wider
binaries and higher 3BBF rates (since 3UB encounter
rates scale as Xf). This has dramatic implications for star
cluster dynamics since soft binaries are often assumed to
disrupt too quickly to affect cluster evolution. Yet
Goodman & Hut (1993) estimate >90% of long-lived
binaries form soft; they are simply the rare few of many
soft binaries from 3BBF that survived and hardened. So
neglect of soft 3BBF in cluster modeling may warrant
reexamination.

2. Wide binaries from 3BBF have superthermal eccentri-
cities. Since most binaries form soft, this implies that soft
3BBF may produce the eccentric wide binaries observed
with Gaia (e.g., Tokovinin 2020; Hwang et al. 2022). Star
clusters may therefore be robust sources of eccentric wide
binaries. In particular, such binaries may form via 3BBF
interactions in short-lived or dissolving clusters (although
this likely results in a thermal eccentricity distribution,
e.g., Kouwenhoven et al. 2010), or perhaps in the
extended tidal tails of more massive clusters. Although
the local density in tidal tails is significantly lower than in
the core of a star cluster, the highly correlated epicyclic
trajectories of slow escapers in tidal tails may produce
exceptionally low relative velocities between neighboring
bodies conducive to wide 3BBF; recall the 3BBF rate
depends much more steeply on relative velocity than on
density. Survival of newly formed wide binaries and their
deposition into the Galactic field may also be easier in
this case, and the extreme velocity anisotropy in tidal tails
may result in significantly different SMA or eccentricity
distributions than expected from an isotropic assumption
for 3BBF (as in this paper). We shall examine such
prospects in future work.

3. Independent of a mass ratio, the eccentricity distribution
of hard binaries formed through 3BBF is universally well
described by the classic thermal distribution (e.g.,
Jeans 1919; Heggie 1975). This likely occurs because
an isotropically distributed sea of gravitating bodies will
fully explore phase space, analogous to how resonant
binary—single encounters fullgf explore phase space in the
aforementioned texts. The a” scaling of the cumulative
distribution for SMA also holds for hard binaries in most
cases; a key exception is the (unlikely) pairing of two
massive bodies by a low-mass catalyst.

4. Exploring unequal-mass 3BBF for the first time, our
results refute the common assumption that the two most-
massive bodies are the most likely to pair (e.g., Morscher
et al. 2013). Instead, the two least-massive bodies pair
most frequently in soft/wide binaries while the most-
massive plus least-massive bodies pair most frequently in
hard binaries. Only for mass ratios near unity are the two
most-massive bodies likely to pair (up to ~40% of hard
3BBFs).
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5. Physical stellar collisions are a more likely outcome of a
3UB encounter than hard-binary formation for MS stars
with velocities > 1kms™'. Yet the collisions do not
significantly suppress 3BBF among MS stars (relative to
the point-mass limit) at velocity dispersions <30 kms™'.
This implies that the initial states leading to stellar
collisions in 3UB interactions are largely separate from
those leading to hard-binary formation.

6. PN effects can promote hard-binary BH formation through
GW emission during a close high-speed approach. Yet
such enhancement (and prevalence of BH mergers) is only
significant for o 2 100 km s!, likely only relevant in
nuclear star clusters. In such high-o environments, the
probability of forming short-lived hierarchical triples
through 3UB BH scattering can also be significant,
surpassing the hard 3BBF probability. Formation of
longer-lived triples (surviving for at least several orbits
of the outer tertiary) remains rarer than hard 3BBF, even
when ¢ > 1000 kms .

7. The above results hold for mixed-species interactions
between stellar-mass BHs and MS stars, the dominant
type of 3UB encounters in star cluster models (Weath-
erford et al. 2023). For typical masses and velocities in
globular clusters, neither direct collisions nor PN effects
significantly alter 3BBF rates in this case relative to the
limit of Newtonian point masses. As with MS stars alone,
BH-MS collisions in these mixed-species encounters are
much more common than hard 3BBF, but do not
significantly suppress 3BBF. Since the cross section for
a TDE is larger than for a direct BH-MS collision, 3UB
encounters in star clusters may be a significant source
of TDEs.

8. We confirm that 3BBF can eject bodies from star clusters
at speeds at least a few times their central escape velocity
(depending on the mass ratios in the encounter). In
particular, when an MS star catalyzes the production of a
typical hard BH-MS or BH-BH binary, ~10% and
~90%, respectively, of the MS catalysts exit the 3UB
encounter fast enough to escape their host cluster. 3BBF
in star clusters may therefore contribute to runaway stars
in the Galactic halo, but at rates that remain uncertain
pending future work that more closely examines 3BBF in
a background environment with fully realistic mass and
velocity distributions. Tidal disruption physics may
further enhance the high-speed ejection from 3BBF since
asymmetric mass loss imparts an additional kick to the
stripped star (Kremer et al. 2022). Newly formed binaries
rarely exit 3BBF events with sufficient speed to escape
from the center of a star cluster, even when the catalyst is
much more massive than the binary.

9. Finally, our results agree with an independent analytical
investigation of 3BBF by Ginat & Perets (2024), submitted
during the review process of this work. In particular, Ginat
& Perets (2024) developed a statistical analytic theory
investigating the statistics and distributions of orbital
parameters of equal-mass 3BBF and agree that 3BBF is a
promising source of soft, wide eccentric binaries featuring
superthermal eccentricity distributions. They also corrobo-
rated that the 3BBF probability for binaries formed with
SMA less than their strong interaction region (i.e., a < R;)
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scales as P Xf4'5 and that these binaries have an
approximately thermal eccentricity distribution.

5.2. Future Work

Despite touching on some of the more extreme regimes of
the 3UB parameter space in this work, the overwhelming
majority are yet to be explored (e.g., varying velocity ratios,
nonisotropic environments, energy partitioning). Given the
number of other considerations investigated here, these regimes
are beyond the scope of this work, but may dramatically impact
binary properties.

Proper treatment of tidal physics in the close passages of
stars, including TDEs, in 3UB scattering may be impactful and
requires focused study. In particular, our results in Section 4.3
demonstrate that direct BH—star collisions do not meaningfully
reduce the rate of hard-binary formation, yet they are a more
common outcome. The complex interplay between tidal physics
and hard-binary formation is yet to be explored, but we do
know the tidal disruption rate will be at least twice as frequent
as the collision rate—if only due to gravitational focusing. It
immediately follows that TDEs are likely highly prevalent in
3UB encounters within dense stellar clusters. Additionally,
future studies will be targeted toward specific environments,
enabling us to make concrete and practical environment-
specific 3BBF rate predictions.

In total, our results should serve as a reminder that the 3UB
problem is largely unexplored. Expectations concerning
populations of dynamically assembled binaries may change
significantly when a proper treatment of arbitrary mass-ratio
3UB scattering is incorporated into Monte Carlo star cluster
modeling codes such as CMC. While 3BBF features obvious
applications in constraining the history of dynamically
assembled compact-object binaries and their subsequent
mergers observable through GWs, the potential for enhancing
our understanding of stellar binary formation provides a further
incentive for renewing investigations into 3BBF as a critical
topic in dynamical astrophysics.
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Appendix

Table 1 comprises all the 3BBF probabilities from Figure 10.

Table 1
The 3BBF Probabilities from Figure 10 for Selected Cases of Unequal Masses, Distinguished by Hardness and Specific Mass Pairing

Atallah et al.

All

(15 g2)

PIOI

Po;

Po

Py

(0.10, 0.10)
(0.25, 0.10)
(0.40, 0.10)
(0.55, 0.10)
(0.70, 0.10)
(0.85, 0.10)
(1.00, 0.10)

(4.05 £ 0.00) x
(7.04 £ 0.01) x
(8.78 £ 0.01) x
(9.64 £ 0.01) x
(9.96 £ 0.01) x
(9.98 £ 0.01) x
(9.82 £ 0.01) x

1073
1073
1073
1073
1073
1073
1073

(9.54 £ 0.02) x 10~*
(1.04 + 0.00) x 1073
(1.02 + 0.00) x 1073
(9.44 £ 0.02) x 10~
(8.60 + 0.02) x 10~*
(7.80 £ 0.02) x 10~*
(7.09 + 0.02) x 10~*

(9.53 £ 0.02) x
(2.53 £ 0.00) x
(3.60 £ 0.00) x
(4.20 £ 0.00) x
(4.48 £ 0.00) x
(4.57 £ 0.00) x
(4.55 £ 0.00) x

107*
1073
1073
1073
1073
1073
103

(2.14 £ 0.00) x
(3.47 + 0.00) x
(4.16 £ 0.00) x
(4.49 + 0.00) x
(4.62 + 0.00) x
(4.62 + 0.00) x
(4.55 + 0.00) x

1073
1073
1073
1073
1073
1073
1073

(0.33, 0.33)
(0.44, 0.33)
(0.56, 0.33)
(0.67, 0.33)
(0.78, 0.33)
(0.89, 0.33)
(1.00, 0.33)

(1.73 £ 0.00) x
(1.86 = 0.00) x
(1.90 £ 0.00) x
(1.89 £ 0.00) x
(1.86 = 0.00) x
(1.81 £ 0.00) x
(1.75 £ 0.00) x

1072
1072
102
1072
1072
1072
1072

(4.82 +0.00) x 1072
(4.71 +£0.00) x 1073
(4.46 + 0.00) x 1073
(4.19 4+ 0.00) x 1073
(3.90 + 0.00) x 1073
(3.64 +0.00) x 1073
(3.39 + 0.00) x 1073

(4.78 £ 0.00) x
(5.80 £ 0.00) x
(6.49 £ 0.00) x
(6.86 £ 0.01) x
(7.03 £ 0.01) x
(7.08 £ 0.01) x
(7.04 £ 0.01) x

1073
1073
1073
1073
1073
1073
1073

(7.69 £ 0.01) x
(8.05 £ 0.01) x
(8.07 £ 0.01) x
(7.90 £ 0.01) x
(7.64 £ 0.01) x
(7.36 £ 0.01) x
(7.04 £ 0.01) x

1073
1073
1073
1073
1073
1073
1073

(0.50, 0.50)
(0.58, 0.50)
(0.67, 0.50)
(0.75, 0.50)
(0.83, 0.50)
(0.92, 0.50)
(1.00, 0.50)

(2.49 £ 0.00) x
(2.51 £ 0.00) x
(2.50 & 0.00) x
(2.47 £ 0.00) x
(2.42 £ 0.00) x
(2.36 £ 0.00) x
(2.30 & 0.00) x

1072
1072
1072
1072
1072
1072
1072

(7.38 £0.01) x 1072
(7.14 £ 0.01) x 1073
(6.84 £ 0.01) x 1073
(6.55+0.01) x 1073
(6.25 +0.00) x 1073
(5.92 4+ 0.00) x 1073
(5.65 + 0.00) x 1073

(7.38 £ 0.01) x
(7.90 £ 0.01) x
(8.29 £ 0.01) x
(8.50 £ 0.01) x
(8.63 £ 0.01) x
(8.68 £ 0.01) x
(8.67 £ 0.01) x

1073
1073
1073
1073
1073
1073
1073

(1.02 £ 0.00) x
(1.01 =+ 0.00) x
(9.87 £ 0.01) x
(9.62 £ 0.01) x
(9.33 £0.01) x
(8.98 £ 0.01) x
(8.67 £ 0.01) x

1072
1072
1073
1073
1073
1073
1073

(15 92)

Plot

ag;/ags,; < 10

Py,

Po

Pia

(0.10, 0.10)
(0.25, 0.10)
(0.40, 0.10)
(0.55, 0.10)
(0.70, 0.10)
(0.85, 0.10)
(1.00, 0.10)

(3.03 +0.03) x
(8.70 £ 0.06) x
(1.34 £ 0.01) x
(1.50 £ 0.01) x
(1.49 £ 0.01) x
(143 £0.01) x
(1.39 £ 0.01) x

1073
107°
1074
107
1074
107*
107

(141 +0.02) x 1073
(1.06 + 0.02) x 107°
(779 £ 0.17) x 107°
(5.53 £0.15) x 107°
(3.98+0.12) x 10°°
(3.02 £0.11) x 107°
(2.34 +0.10) x 107

(1.42 £ 0.02) x
(6.78 £ 0.05) x
(1.07 £ 0.01) x
(1.13 £ 0.01) x
(1.01 £ 0.01) x
(839 £ 0.06) x
(6.80 % 0.05) x

1073
107°
1074
1074
1074
1073
107°

(1.97 + 0.09) x
(8.55 £ 0.18) x
(1.89 + 0.03) x
(3.12 £ 0.03) x
(4.44 £ 0.04) x
(5.63 £ 0.05) x
(6.84 =+ 0.05) x

10°°
10°¢
107°
1073
107°
1073
107°

(0.33, 0.33)
(0.44, 0.33)
(0.56, 0.33)
(0.67, 0.33)
(0.78, 0.33)
(0.89, 0.33)
(1.00, 0.33)

(3.69 +0.01) x
(4.08 £ 0.01) x
(4.17 £0.01) x
(4.07 £0.01) x
(3.90 +0.01) x
(3.67 £0.01) x
(346 +0.01) x

107*
107
10°*
107
107*
107*
107

(1.52 4+ 0.01) x 107*
(135 £0.01) x 10~
(1.18 £ 0.01) x 107*
(1.04 £ 0.01) x 10~*
9.11 £ 0.06) x 107°
(8.05 + 0.06) x 107°
(7.14 £ 0.05) x 107°

(1.50 +0.01) x
(1.89 £ 0.01) x
(2.00 +0.01) x
(1.92 £ 0.01) x
(1.76 +0.01) x
(1.56 £ 0.01) x
(137 £0.01) x

107
107
1074
107
107*
107
1074

(6.75 £ 0.05) x
(8.44 £ 0.06) x
(9.96 + 0.06) x
(1.12 £ 0.01) x
(1.23 £ 0.01) x
(131 £0.01) x
(137 £0.01) x

1073
1073
1073
1074
1074
1074
1074

(0.50, 0.50)
(0.58, 0.50)
(0.67, 0.50)
(0.75, 0.50)
(0.83, 0.50)
(0.92, 0.50)
(1.00, 0.50)

(7.05 £ 0.02) x
(7.02 £ 0.02) x
(6.84 £ 0.02) x
(6.62 £ 0.02) x
(6.34 £ 0.02) x
(6.00 £ 0.02) x
(5.69 £ 0.01) x

1074
107*
10°*
107
1074
1074
10°*

(2.65 £ 0.01) x 10~*
(2.46 £ 0.01) x 10~
(2.24 +0.01) x 107*
(2.09 +0.01) x 107*
(1.93 £ 0.01) x 107*
(1.77+£0.01) x 107*
(1.64 £ 0.01) x 10~*

(2.65 +0.01) x
(2.72 £0.01) x
(2.68 +0.01) x
(2.56 £ 0.01) x
(2.42 £ 0.01) x
(221 £0.01) x
(2.03 £0.01) x

1074
107
10°*
107
1074
1074
1074

(1.76 £ 0.01) x
(1.85 £ 0.01) x
(1.92 £ 0.01) x
(1.96 £ 0.01) x
(2.00 + 0.01) x
(2.02 £ 0.01) x
(2.03 £ 0.01) x

1074
1074
1074
1074
1074
1074
1074

(15 92)

Plut

ag/ags; <3

POI

P02

P12

(0.10, 0.10)
(0.25, 0.10)
(0.40, 0.10)
(0.55, 0.10)
(0.70, 0.10)
(0.85, 0.10)
(1.00, 0.10)

(1.66 £ 0.08) x
(3.97 +£0.12) x
(534 £ 0.14) x
(5.24 £ 0.14) x
(4.62 £ 0.13) x
(4.26 £ 0.13) x
(3.92 £ 0.12) x

10°°
10°°
1076
10°°
107
10°°
10°°

(8.21 £ 0.56) x 1077
(6.12 + 0.49) x 1077
(4.324+041) x 1077
(275 £0.33) x 1077
(1.98 £0.28) x 1077
(1.68 + 0.26) x 1077
(1.254+0.22) x 1077

(8.01 £ 0.56) x
(3.18 £0.11) x
(444 £0.13) x
(4.18 £0.13) x
(327 £0.11) x
(2.50 4+ 0.10) x
(1.84 4+ 0.08) x

1077
1076
107°¢
10°°
10°°
10°°
10°°

(4.03 £ 1.25) x
(1.83 £ 0.27) x
(4.66 £ 0.42) x
(7.83 £0.55) x
(1.15 £ 0.07) x
(1.59 £ 0.08) x
(1.95 + 0.09) x

1078
1077
1077
1077
10°¢
1076
10°°
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Table 1
(Continued)
All

(q1, 92) Piot Po, Py Py

(0.33, 0.33) (1.69 £ 0.03) x 107° (7.52 £0.17) x 107° (750 £0.17) x 107 (1.84 £ 0.08) x 107°
(0.44, 0.33) (1.75 £ 0.03) x 107> (6.67 +0.16) x 107° (8.48 +0.18) x 10°° (2.36 +0.10) x 107°
(0.56, 0.33) (1.66 £ 0.03) x 107° (5.80 £ 0.15) x 10°© (8.06 +0.18) x 10°© (279 +0.10) x 1076
0.67, 0.33) (1.55 £0.02) x 107> (5.20 £ 0.14) x 10°° (717 £0.17) x 107 (3.17 £0.11) x 107°
(0.78, 0.33) (1.44 £ 0.02) x 1073 (470 £0.13) x 107° (6.14 £0.15) x 107 (3.58 £0.12) x 107°
(0.89, 0.33) (131 £0.02) x 107> (4.10 £ 0.13) x 107° (5.124+0.14) x 107°° (3.914+0.12) x 107°°
(1.00, 0.33) (121 £0.02) x 1073 (3.69 +0.12) x 10°° (4.154+0.13) x 10°© (421 40.13) x 10°°
(0.50, 0.50) (2.94 +0.03) x 107> (121 +£0.02) x 1073 (123 £0.02) x 1073 (5.074+0.14) x 10°°
(0.58, 0.50) (2.90 £ 0.03) x 107> (1.16 £ 0.02) x 107° (1.19 £ 0.02) x 107° (5.50 £0.15) x 107°
0.67, 0.50) (271 £0.03) x 1073 (1.04 £ 0.02) x 1073 (1.09 +0.02) x 1073 (5.814+0.15) x 10°°
(0.75, 0.50) (2.57 £0.03) x 107° (9.89 + 0.20) x 107° 9.81 £0.19) x 107 (6.02 £0.15) x 107°
(0.83, 0.50) (2.4240.03) x 1073 (9.23+0.19) x 10°° (8.76 +0.18) x 10°© (623 +0.16) x 10°°
0.92, 0.50) (227 £0.03) x 107° (8.53 £0.18) x 107° (7.63 £0.17) x 107 (6.50 £0.16) x 107°
(1.00, 0.50) (2.13 £0.03) x 1077 (8.01 £0.18) x 107° (6.57 +0.16) x 10°© (6.69 +0.16) x 10°°

ag/ag; < 1

q1> 42) Piot Py, Py, Py,

(0.10, 0.10) (4.63 +1.34) x 1078 (2.12 4+ 0.90) x 1078 (2.324+0.95) x 1078 (2.024+2.79) x 1070
(0.25, 0.10) (1.60 + 0.25) x 1077 (3.024+1.08) x 1078 (1.26 £ 0.22) x 1077 (4.034+3.95) x 107°
(0.40, 0.10) (1.81 £0.26) x 1077 (1.71 £0.81) x 10°® (149 £ 0.24) x 1077 (1.51 £0.76) x 1078
(0.55, 0.10) (1.86 £ 0.27) x 1077 (2.01 £0.88) x 10°# (1.41 £0.23) x 1077 (2.52 £0.99) x 1078
(0.70, 0.10) (1.39 £ 0.23) x 1077 (1.21 £ 0.68) x 1078 (1.01 £ 0.20) x 1077 (2.62+1.01) x 1078
(0.85, 0.10) (1.17 £ 0.21) x 1077 (4.03+3.95) x 107° (735 +1.69) x 1078 (3.934+1.23)x 1078
(1.00, 0.10) (120 £ 0.22) x 1077 (9.07 £5.92) x 107° (5.74 £ 1.49) x 1078 (534 + 1.44) x 1078
(0.33, 0.33) (5.94 £0.48) x 1077 (2.56 £0.32) x 1077 (2.86 £ 0.33) x 1077 (5.14 £ 1.41) x 1078
(0.44, 0.33) (5.99 +0.48) x 1077 (2.474+031) x 1077 (2.97 £ 0.34) x 1077 (5.55+147) x 1078
(0.56, 0.33) (5.48 £ 0.46) x 1077 (2.11 £0.29) x 1077 (2.56 £0.31) x 1077 (8.07 £ 1.77) x 1078
(0.67, 0.33) (5.15 4 0.45) x 1077 (1.95+0.27) x 1077 (2.38 +0.30) x 1077 (827 4+1.79) x 1078
(0.78, 0.33) (492 £0.44) x 1077 (1.87 £0.27) x 1077 (1.82 £0.27) x 1077 (1.23 £0.22) x 1077
(0.89, 0.33) (4.354+041) x 1077 (1.62 +0.25) x 1077 (1.35 4 0.23) x 1077 (1.374+0.23) x 1077
(1.00, 0.33) (3.88 £0.39) x 1077 (131 £0.23) x 1077 (141 £0.23) x 1077 (1.16 £0.21) x 1077
(0.50, 0.50) 9.70 £ 0.61) x 1077 (4.23 £ 0.40) x 1077 (4.11 £ 0.40) x 1077 (136 £0.23) x 1077
(0.58, 0.50) (9.49 +0.61) x 1077 (3.87 +0.39) x 1077 (4.04 +0.40) x 1077 (1.57+0.25) x 1077
0.67, 0.50) (8.64 +0.58) x 1077 (3.934+0.39) x 1077 (3.28 £ 0.36) x 1077 (1434 024) x 1077
(0.75, 0.50) (8.21 £ 0.56) x 1077 (3.77+0.38) x 1077 (2.74 £ 0.33) x 1077 (1.69 +0.26) x 1077
(0.83, 0.50) (8.18 £0.56) x 1077 (3.44 £ 0.37) x 1077 (279 £0.33) x 1077 (1.95 £0.27) x 1077
(0.92, 0.50) (7.60 + 0.54) x 1077 (3.42 4+ 0.36) x 1077 (2.44 £ 0.31) x 1077 (1.74 £ 0.26) x 1077
(1.00, 0.50) (6.87 +£0.52) x 1077 (2.854+0.33) x 1077 (1.92 4 0.27) x 1077 (2.10 £ 0.29) x 1077

Note. Each subtable contains the values for different minimum hardness (a;;/ars ;), rows contain probabilities for a specific set of mass ratios (¢, ¢») with fixed go = 1,
and columns specify pairing combination. Additionally, the 95% confidence interval is included for every probability. There are exactly 10° simulations generated per

mass ratio or 2.1 x 10'° in total.
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