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Abstract

We apply for the first time orbit-averaged Monte Carlo star cluster simulations to study tidal tail and stellar stream
formation from globular clusters (GCs), assuming a circular orbit in a time-independent spherical Galactic
potential. Treating energetically unbound bodies—potential escapers (PEs)—as collisionless enables this fast but
spherically symmetric method to capture asymmetric extratidal phenomena with exquisite detail. Reproducing
stream features such as epicyclic overdensities, we show how returning tidal tails can form after the stream fully
circumnavigates the Galaxy, enhancing the stream's velocity dispersion by several kilometers per second in our
ideal case. While a truly clumpy, asymmetric, and evolving Galactic potential would greatly diffuse such tails, they
warrant scrutiny as potentially excellent constraints on the Galaxy’s history and substructure. Reexamining the
escape timescale Δt of PEs, we find new behavior related to chaotic scattering in the three-body problem; the Δt
distribution features sharp plateaus corresponding to distinct locally smooth patches of the chaotic saddle
separating the phase-space basins of escape. We study for the first time Δt in an evolving cluster, finding that

( )D ~ - -t E E,J
0.1

J
0.4 for PEs with (low, high) Jacobi energy EJ, flatter than for a static cluster ( -EJ

2). Accounting for
cluster mass loss and internal evolution lowers the median Δt from ∼10 Gyr to 100Myr. We finally outline
potential improvements to escape in the Monte Carlo method intended to enable the first large grids of tidal tail/
stellar stream models from full GC simulations and detailed comparison to stream observations.

Unified Astronomy Thesaurus concepts: Globular star clusters (656); Star clusters (1567); Stellar dynamics (1596);
N-body simulations (1083); Tidal disruption (1696); Galactic archeology (2178); Stellar astronomy (1583); Tidal
tails (1701); Stellar streams (2166); Three-body problem (1695)
Supporting material: figure sets

1. Introduction

Recent astronomical surveys, especially the exquisite
kinematics from Gaia (Gaia Collaboration et al. 2016), have
revealed extensive substructure in the Milky Way (MW),
including nearly 100 stellar streams—for a recent review and
catalog, see Helmi (2020) and Mateu (2023), respectively.
Many of these strands of stars sharing similar orbits are debris
from either dwarf galaxies recently accreted and tidally
disrupted by the MW or dissolved/dissolving globular clusters
(GCs; e.g., Bonaca et al. 2021). Aiding this linkage, tidal tails
directly emanate from ≈15 MW GCs (MWGCs; e.g., Piatti &
Carballo-Bello 2020), some extending into full streams.

As kinematically cold structures sensitive to subtle perturba-
tions on long timescales, stellar streams are outstanding probes
of the MW’s mass and gravitational potential, dark matter (DM)
halo, internal substructure, and assembly history (e.g., Koposov
et al. 2010; Bonaca et al. 2014; Küpper et al. 2015; Bovy et al.
2016; Bonaca & Hogg 2018). Stream morphology and
kinematics can provide especially tantalizing hints to the nature
of particulate DM (e.g., Banik et al. 2021); for example, cold
DM should produce cuspier (more centrally dense) DM subhalos
than alternatives such as warm DM (Peebles 1982), which
suppresses primordial density fluctuations on small scales, or

ultralight scalar fuzzy DM (Hui et al. 2017), which forms less
small-scale substructure. So, the frequency and morphology of
gaps and kinematic heating induced in streams by passing DM
subhalos depends on DM’s identity (e.g., Ibata et al. 2002;
Johnston et al. 2002; Carlberg 2009).
Yet, capitalizing on the prospect of DM inference with stellar

streams has proven challenging since many phenomena
simultaneously and degenerately affect stream morphology
and kinematics. Stream gaps, overdensities, and fanning
naturally arise via the epicyclic trajectories of slow GC
escapers even in static MW potentials without any clumpy
substructure (e.g., Capuzzo Dolcetta et al. 2005; Küpper et al.
2008), and also from perturbations by many baryonic
substructures, including giant molecular clouds (Amorisco
et al. 2016), the MW spiral arms or disk (Banik & Bovy 2019;
Carlberg & Agler 2023), infalling MW satellites (Garavito-
Camargo et al. 2019), and other GCs (Doke & Hattori 2022).
Further complicating matters, MW substructures, such as a
rotating bar (Hattori et al. 2016; Pearson et al. 2017) or even
modified gravity (Thomas et al. 2018; Kroupa et al. 2022), can
induce stream asymmetry and observational artifacts can cause
false gaps/overdensities (Ibata et al. 2020). Internal GC
dynamics is impactful, too; in particular, dynamical heating
from central black hole (BH) binaries can dramatically
accelerate the evaporation rate at the end of a GC’s life (e.g.,
Banerjee & Kroupa 2011; Whitehead et al. 2013; Contenta
et al. 2015; Chatterjee et al. 2017; Giersz et al. 2019;
Weatherford et al. 2021), thereby increasing the tidal tail
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density (Gieles et al. 2021; Gieles & Gnedin 2023; Roberts
et al. 2024). Disentangling the individual contributions of such
diverse phenomena in observations (e.g., to measure the
properties of DM subhalos specifically) will require compre-
hensive modeling of stream formation and disruption.

The importance of stellar streams to Galactic archeology
strongly motivates further theoretical study of escape from
GCs. This work is the second of a series on this topic that
began with a thorough exploration of escape mechanisms
(Weatherford et al. 2023, hereafter W23). W23 emphasized
more strongly high-speed ejection, relevant to the production of
runaway or hypervelocity stars in the MW halo. Focusing more
on low-speed escape, we now apply for the first time orbit-
averaged GC models—using the Hénon (1971a, 1971b)Monte
Carlo method—to study stellar stream formation.

At first glance, orbit-averaged GC models are not an obvious
choice for this application. The impacts of the GC potential and
collisional dynamics steeply diminish beyond the tidal
boundary, so it is common when simulating streams to neglect
the GC’s internal dynamics in favor of collisionless streakline
or particle spray techniques (e.g., Varghese et al. 2011; Küpper
et al. 2012; Lane et al. 2012; Bonaca et al. 2014; Gibbons et al.
2014; Fardal et al. 2015; Shipp et al. 2018; Grondin et al.
2023). Stars are simply sprayed at a prescribed rate and
velocity distribution from a point representing the GC (or the
Lagrange points on its tidal boundary) orbiting in an external
Galactic potential. Key benefits of fully modeling the GC are
then to accurately determine the stellar escape rates and
velocities, and internal stream details such as stellar masses,
luminosities, and binary properties. Direct summation N-body
codes (e.g., nbody6; Aarseth 1999) are the gold standard for
such purposes due to their exquisite accuracy and accommoda-
tion of GC asymmetry (essential for tidal physics) and stages of
the GC’s life spent out of virial equilibrium or with small N
(essential for late-stage dissolution). Yet direct summation is
computationally intensive; despite steady computing advances,
the method still has not been used to model a GC with a density
and initial N typical of MWGCs over a full Hubble time (e.g.,
Wang et al. 2016; Arca Sedda et al. 2023). So direct summation
is ill-suited to generating large model grids of extratidal
structures from dense GCs, necessary to optimally match
specific MW streams or explore the many aforementioned
factors that can significantly influence stream properties.

The Monte Carlo method is a much faster alternative to
direct summation, capable of simulating MWGCs of typical
mass and density using 103–104 times fewer CPU hr. Of the
two main algorithmic lineages (excellently summarized by
Vasiliev 2015), the orbit-averaged version descended from
Hénon (1971a, 1971b) is the only one still in regular use—
specifically as the codes MOCCA and our Cluster Monte
Carlo (CMC; respectively overviewed by Giersz et al. 2013
and Rodriguez et al. 2022). Instead of direct orbit integration,
Hénon’s method applies a statistical treatment of stellar
dynamics by modeling the cumulative effect of many distant
two-body encounters as a single effective scattering between
neighboring bodies, radially sorted into pairs. This occurs
each time step on the relaxation timescale tr rather than the
dynamical timescale, leveraging that distant two-body
encounters dominate evolution in each body’s energy E and
angular momentum J. Only especially strong encounters are
handled via a small-N direct integrator, greatly hastening the
computation. At the end of the time step, each body’s

position and velocity (r, vr, vt) are randomly sampled from
the time-averaged orbit consistent with the body’s new E
and J.
Hénon’s method compares well to both direct summation

and observations of typical GCs in most regimes (e.g., Giersz
et al. 2013; Rodriguez et al. 2016; Kremer et al. 2020), but
imposes three key assumptions: (1) the radial sorting and orbit
averaging impose spherical symmetry (but not velocity
isotropy), (2) the statistical treatment imposes a large N and
virial equilibrium, preventing the study of the final stages of
GC dissolution, and (3) the orbit averaging neglects global
evolution occurring on timescales =tr, such as sharply
evolving tides (tidal shocks). All three assumptions are relevant
to escape, but most critically the assumed spherical symmetry
means that unmodified the method cannot resolve tidal tails.
We test a simple solution to this challenge by removing

bodies from CMC once they obtain sufficient energy to escape
(usually in the GC’s core) and evolving their trajectories from
there in the full asymmetric tidal field. We explore how well
this approach—implemented as a post-processing step applic-
able to any CMC simulation—reproduces known features of
tidal tails and stellar streams in the case of a circular GC orbit
in a time-independent spherical MW potential. While a vast
simplification, this well-studied regime—standard for Hénon’s
method—is ideal for a first test of our approach. Crucially, it
also enables us to investigate several nuances that have yet to
be explored in even this simple case, including chaotic
behavior in the escape (survival) timescale of energetically
unbound bodies within GCs, modification of this timescale by
evolution of the GC potential, and impact of return trajectories.
Note that our modification does not generalize the internal
dynamics of the Monte Carlo method to nonspherical potentials
(e.g., Vasiliev 2015) or its escape prescriptions to evolving
external tides (e.g., Sollima & Mastrobuono Battisti 2014;
Rodriguez et al. 2023). Such enhancements are complementary
to our approach and the latter especially are similar to our
intended future upgrades to CMC (see Section 6).
As in W23, we shall often refer to escape before and after the

core collapse, the GC’s observable change from a flat (non-
core-collapsed; NCC’d) to a steep (core-collapsed; CC’d)
central surface brightness. This occurs upon ejection of the BH
population, which weakens binary burning—hardening of
binaries via encounters with passing bodies (e.g., Heggie
1975; Hills 1975). The potential energy released by the binaries
heats the bodies involved, supporting the GC’s core against
collapse. BH binaries are strong heat sources due to their mass,
but GCs born especially dense quickly harden and eject them;
binary burning then relies on (less massive) white dwarfs,
reducing heating and allowing the core to observably collapse
(e.g., Chatterjee et al. 2013; Kremer et al. 2019, 2020; Rui et al.
2021a; Kremer et al. 2021). We recap how this affects GC
escape mechanisms in Section 5.1, but see also W23.
This paper is organized as follows. We review relevant

theory in Section 2 and describe our GC simulations in
Section 3. We explain how we integrate (in post-processing)
the trajectories of unbound bodies removed from the
simulations in Section 4. In Section 5, we first examine the
escape energies and escape timescale from typical NCC’d and
CC’d GCs. We then examine how GC mass loss affects the
escape timescale and how return trajectories impact stream
morphology and kinematics. In Section 6, we discuss
observational implications, additional complexities and
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caveats, and potential upgrades to escape in CMC. We conclude
with a summary of our findings and planned future work in
Section 7.

2. Theory

We examine escape in the simplified case of an evolving
spherical GC potential fc circularly orbiting within a time-
independent spherical Galactic potential fg. We assume that
once a cluster member becomes a potential escaper (PE) by
gaining enough energy to eventually escape it ceases to be
influenced by scattering with other stellar bodies. This
collisionless approximation allows the PE mass distribution
to follow the nonspherical tidal field despite the spherical fc in
CMC. The PE trajectories in this case are an example of the
circular restricted three-body problem (CR3BP; e.g., Szebehely
1967; Marchal 1990; Hénon 1997; Valtonen & Karttunen
2006; Koon et al. 2022). In this section, we review the elements
of the CR3BP most essential to our new results on the escape
timescale and return trajectories, leaving details of our
algorithmic implementation to Section 3. While the classic
CR3BP features time-dependent fc and fg, much of its
conceptual framework remains useful in our case, and we
comment where relevant on the impact of fcʼs time
dependence.

2.1. Problem Setup

We study trajectories of stellar bodies in the gravitational
fields of their birth GC—of slowly evaporating mass m(t)—and
the MW, each on instantaneously circular orbits about their
mutual center of mass at a constant angular speed of ω= vg/
Rgc, where vg is the GC’s circular speed at Galactocentric
distance Rgc. To satisfy Kepler’s third law at t= 0, we define
the MW’s mass enclosed within Rgc to be a constant

( )º -M R v G m 0ggc
2 . Technically, a constant M, ω, vg, and

Rgc is mildly inconsistent with a decreasing m(t) that would
transfer about half of its lost mass to the volume within Rgc, but
these assumptions are very accurate since m/M∼ 10−6 for a
MWGC and since the circular speed profile in the MW halo is
very flat. Defining coordinates in the center-of-mass frame XYZ
in units of Rgc, the MW and GC centers instantaneously trace
circles in the XY-plane with respective dimensionless radii [μ
(t), 1− μ(t)], where μ(t)≡m(t)/[M+m(t)].5

We also define a clustercentric frame xyz, in units of Rgc, that
corotates with the GC as it orbits the center of mass. In this
frame, the GC’s center is the origin (rc= 0) with velocity

[ ( )] ˆm= -v yt v1c g , while the MW’s center has a constant
position of ˆ= -r xg . The effective potential at position r in this
frame is

( ) ( ) ( ) {[ ( )] }
( )

f f f mº + - + - +r r rt t
v

x t y, ,
2

1 ,

1

c g
g

eff

2
2 2

where the last term is centrifugal. feff sets the tidal boundary’s
shape and the minimum energy a body in the GC must have to
escape. If feff were static and the cluster dynamics
collisionless, then the motion of each body with speed v in
the xyz frame would conserve a quantity known as the Jacobi

energy (in our case time-dependent):

( ) ( ) ( ) ( ) ( )fº + -rE t
v t

t A t
2

, . 2J

2

eff

Here, ( ) [ ( )]f= =A t z tmax 0,eff , achieved at the L4/L5
Euler–Lagrange points, tips of both in-plane equilateral
triangles whose base vertices are rc and rg. The convention
of subtracting A (e.g., Spitzer 1987; Fukushige & Heggie 2000)
has no impact on trajectories but affects normalized energy
definitions like Ẽ in Equation (3), so it is essential when later
comparing to the latter study, hereafter referred to as FH00.
Since v2� 0, Equation (2) implies that bodies with energy EJ

cannot enter regions where feff(r)> EJ+ A. Figure 1 shows the
xy-plane’s intersection with these forbidden realms (gray) for
several EJ (in its normalized form Ẽ; see below). As EJ
increases, the zero-velocity surface bounding these realms
(feff= EJ+ A) ranges from separately enclosing the GC and
MW centers (upper left/middle panels), to allowing passage
through one or two openings directly toward and away from the
latter (upper right–lower center) to disappearing entirely from
the xy-plane (lower right).
Slowly shrinking due to global mass loss, the GC’s tidal

boundary lies on the highest-EJ zero-velocity surface that (at
the time) fully encloses the GC (upper center). This boundary
terminates nearest to the Galactic center at a saddle point of
feff(r) known as the L1 Euler–Lagrange point and furthest just
shy of another saddle, L2.6 Their respective locations, r1(t) and
r2(t), are numerically solvable from the definition of a critical
point, ∇feff(r, t)= 0, but for MWGCs (μ∼ 10−6), a second-
order expansion about μ→ 0 is very accurate—to about one part
in 4μ−1/3 (Szebehely 1967). In this limit |r2− rc|→ |r1− rc|
and feff(r2)→ feff(r1), so the tidal boundary is symmetric,
terminating exactly at both saddles. Yet for generality, we define
the tidal radius as the maximum clustercentric distance to
the tidal boundary, rt≡ |r1− rc|Rgc. For Keplerian fc and fg, the
expansion under μ→ 0 yields rt/Rgc≈ (μ/3)1/3, becoming
rt/Rgc≈ (μ/2)1/3 for a logarithmic fg closer to that of the
MW halo (e.g., Spitzer 1987).
Bodies within the tidal boundary can only pass beyond it if

they have EJ(t)> Ecrit(t), where Ecrit(t)≡ feff(r1, t)− A(t). We
shall refer to this escape criterion as the raw criterion to
distinguish it from more complex modeling alternatives
discussed later. Following FH00 and to emphasize the
trajectories’ extreme sensitivity to EJ as  +E EJ crit, we
henceforth express this criterion in normalized form as

˜( ) ( ) ( )
∣ ( ) ∣

( )º
-

>E t
E t E t

E t
0. 3J crit

crit

This definition has the benefit that ˜ ˜= =E E 14 when feff= A.
Here and elsewhere, the Ẽ subscript i indicates it is the value of
Ẽ at the Euler–Lagrange point Li for v= 0.
The space accessible to PEs (white space in Figure 1) varies

with Ẽ and reduces to three domains: the cluster and the
Galactic interior and exterior (beyond the tidal boundary at
Galactocentric distances <Rgc and >Rgc, respectively). For
˜ E 0, transit between domains is energetically disallowed, but
once ˜ ˜> =E E 01 , a neck in the zero-velocity surface opens at
L1 to allow transit between the cluster/Galactic interior. A
similar neck at L2 allows transit between the cluster/Galactic5 The Galactic nucleus’ high density means that MWGCs have μ= 1 even at

low Rgc, so accounting for μ is pedantic in our context. We do so to be precise
and mindful of related contexts where μ is non-negligible, e.g., GCs in dwarf
galaxies, which we may explore later in this series.

6 Various texts label the Euler–Lagrange points differently. We follow the
aerospace convention numbered by increasing feff (e.g., Koon et al. 2022).
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exterior once ˜ ˜>E E2. This is the most relevant geometry to
tidal tail formation from MWGCs, for which ˜ ˜»E E1 2. Only
once ˜ ˜>E E3 (corresponding to L3, the third and final saddle
point of feff) is direct transit between the Galactic interior/
exterior possible. The forbidden realm disappears entirely from
the xy-plane once ˜ ˜ =E E 14 , though it still exists at z≠ 0,
receding away from the xy-plane as Ẽ grows. So escape at high
Ẽ is nearly unconstrained, while escapers at low Ẽ must pass
near L1/L2.

2.2. Tidal Tail and Stellar Stream Formation

The equations of motion in the CR3BP in the xyz frame are

̈ ( ) ( ) ( ˆ ˆ)
( )

  wf f w= - - ´ = - + -r r r r x yy x2 2 .
4

eff eff

The second term in each equality, the Coriolis acceleration,
drives much of the trajectories’ behavior, including production

of tidal tails from low-Ẽ PEs. Since these must escape near L1/
L2, their velocities in the necks are biased to be parallel to ˆx.
The Coriolis effect then bends these trajectories into tails
leading/trailing the GC, respectively, and induces epicycles in
each trajectory’s projection onto the xy-plane (Figure 1). The
epicycles’ characteristic size depends on μ and Ẽ , but for
( ˜) m E, 1, the Coriolis effect keeps escapers near the GC’s
orbital path, forming elongated stellar streams along it. Since
each epicycle has a turning point minimizing the velocity
parallel to the stream, there are periodic overdensities in the
streams near these points, spaced ∼10rt apart for ˜ E 1 (e.g.,
Capuzzo Dolcetta et al. 2005; Küpper et al. 2008, 2010, 2012;
Just et al. 2009). The Coriolis effect also stabilizes trajectories
retrograde to the GC orbit, slowing the escape of bodies on
retrograde orbits and allowing those with ˜ >E 0 within and
even beyond the tidal boundary to remain near the GC for an

Figure 1. Slices in the xy-plane of the rotating, clustercentric frame, illustrating features of the CR3BP for the case of Keplerian fg and fc, μ = 1/101, and in units
where G = ω = 1. The panels distinguish different choices of excess relative energy Ẽ , in terms of the values Ẽi at each Euler–Lagrange point (Li) when v = 0. These
points and the centers of the Galaxy (G) and cluster (C) are labeled in the first panel but appear in all. The forbidden realm (gray) is bounded by the zero-velocity
surface and cannot be entered by bodies with the given Ẽ or lower. The blue curves in the last four panels exemplify trajectories at the given Ẽ initiated with
(x, y, z) = (μ, 0, 0), velocity ˆv y0 , and integrated for 20 full orbits of the cluster in the Galaxy. Upper left: ˜ <E 0, so bodies cannot transit between the cluster interior,
Galactic interior (within Rgc), or Galactic exterior (beyond Rgc). Upper center: ˜ =E 0, so the zero-velocity surface can expand no further before opening a neck
between the cluster and Galactic interiors at L1. The closed portion of the surface passing through L1 is the tidal boundary. Upper right: ˜ ˜ ˜< <E E E1 2 opens the neck
at L1. The example trajectory—nearly periodic in the rotating frame—transits back and forth through the cluster/Galactic interiors and illustrates an escaper taking
many tc to escape before eventually returning to the cluster. Lower left: ˜ ˜ ˜< <E E E2 3 opens a second neck at L2, connecting all three domains. The example trajectory
illustrates an escaper that immediately finds the neck to the Galactic interior and briefly passes again through the cluster after nearly 20 full Galactocentric orbits.
Lower center: ˜ ˜ ˜< <E E E3 4 opens a third neck at L3. The example trajectory transits between all three domains, with the escaper temporarily returning to the cluster
after only four orbits about the Galaxy (to the cluster’s three in that time). Lower right: ˜ ˜= =E E 14 , at which point the entire xy-plane is available to escapers, though
the zero-velocity surface still exists out of plane. The example trajectory alternates between orbiting in the Galactic interior/exterior, passing back through the cluster
during each transit. Though at higher Ẽ and not nearly as regular, this trajectory is loosely analogous to those of some Jovian comets.
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arbitrarily long time (Hénon 1970; FH00; Read et al. 2006;
Ernst et al. 2008).

2.3. Dynamical Systems Theory and Return Trajectories

Stellar escape from GCs can be given extensive mathema-
tical formalism from the standpoint of dynamical systems
theory (e.g., FH00; Ernst et al. 2008; Tanikawa & Fukushige
2010; de Assis & Terra 2014; Zotos 2015a, 2015b; Zotos &
Jung 2017). For each neck, twin, infinitely winding/branching
tubes in phase space known as invariant manifolds enclose all
possible transit trajectories into or out of the GC. Trajectories
outside the invariant manifolds cannot transit between the
CR3BP’s three domains, implying that some portion of even
bodies with ˜ >E 0 would never escape without the aid of
perturbations from other bodies or evolution in feff (e.g., via
GC mass loss, an evolving fg, an eccentric GC orbit, or
passage near MW substructure). These effects induce
additional phase-space diffusion, enabling bodies otherwise
stuck forever on nontransiting orbits outside the invariant
manifolds to move to transiting orbits within them. Reframed
energetically, the internal gravitational scattering and evolution
of feff cause diffusion in Ẽ . Since the shapes of the manifolds
change with Ẽ , this effectively smears them out to encompass
more phase space, promoting escape.

Trajectory families known as heteroclinic orbits asymptoti-
cally connect the saddle points to each other. Through the
union of such orbits, one can design heteroclinic chains that,
e.g., periodically alternate between orbiting in the interior and
exterior Galactic domains, crossing (and temporarily orbiting
within) the GC during each transit. The intentional design of
such itineraries in the solar system context is essential to many
space missions (e.g., Koon et al. 2022) but these trajectories
exist naturally, too. For example, some comets, including
Oterma and Gehrels 3 (e.g., Belbruno & Marsden 1997; Koon
et al. 2000), periodically transition from heliocentric orbits
outside to inside the orbit of Jupiter and vice versa. During each
transition, the comets become temporarily bound to Jupiter.
The existence of such orbits (with the Sun–Jupiter system
analogous to the MWGC system) means that GCs can
recapture past members that previously escaped. In GC models,
the recapture rate is typically assumed negligible due to a time-
dependent and/or asymmetric fg and diffusion of the return
trajectories by MW substructure. Yet the rate may be
significant in the case of a nearly circular GC orbit in a time-
dependent fg. Indeed, we demonstrate that robust returning
tidal tails resulting from such trajectories can form in this case
in Section 5.4. Though idealized, this case is a reasonable
starting point since the impact of returning bodies on stellar
streams has not been studied before. The idealization also
enables us to determine upper bounds on the impact of
returners on stream observables (e.g., surface density and
velocity dispersion) under more realistic conditions.

2.4. Escape Timescale

Weak, diffusive two-body relaxation has long been known to
dominate energy transport in GCs (e.g., Ambartsumian 1937;
Spitzer 1940; Chandrasekhar 1942). Despite some early
caveats in the idealized context of isolated GCs (e.g., Hénon
1960, 1969), relaxation therefore naturally dominates escape
from GCs in a tidal field (e.g., Spitzer & Shapiro 1972; W23).
So while various strong encounters propel some bodies to

˜ E 1, ejecting them on the crossing timescale tc, most bodies
first acquire sufficient energy to escape by gradually random-
walking in energy to ˜ >E 0, remaining at ˜ E 1 for
potentially many relaxation times.
Since the necks about L1/L2 are narrow for ˜ E 1,

relaxation-driven PEs may take many tc to find and escape
through these necks, a fact highlighted in the seminal work by
FH00 (see also Tanikawa & Fukushige 2010). Via direct N-
body modeling with analytical support, they showed that the
typical escape timescale Δtesc—between first satisfying ˜ >E 0
and crossing beyond rt—is of order an entire Hubble time for
MWGCs in the idealized case of a static fc. They also found
that for ˜ E 1 and static fc, then ˜D µ -t Eesc

2. Yet Δtesc has
attracted little further study, likely due to its limited relevance
to direct N-body models (though see Baumgardt 2001), which
typically only remove bodies once they pass beyond several rt
anyway. Δtesc is important for models that use energy-based
escape criteria, however, like most Fokker–Planck or Monte
Carlo codes, including CMC and MOCCA. For reasons we
discuss in the next section, such codes usually remove bodies
immediately once they satisfy ˜ >E 0 or a similar energy-based
criterion, effectively assuming Δtesc= 0 (e.g., Spitzer & Shull
1975; Lee & Goodman 1995; Giersz et al. 2008; Chatterjee
et al. 2010). Especially since the MOCCA code now implements
delayed escape based on FH00ʼs idealized findings (Giersz
et al. 2013), Δtescʼs extreme length merits revisiting. In
particular, Δtesc in a realistically evolving fc—a highly
practical scenario that should hasten escape due to GC mass
loss—has yet to be explored at all, motivating our later
attention to this case.

3. GC Simulations

We employ the latest public version of the CMC code
(Rodriguez et al. 2022) to simulate GCs. CMC includes
numerous physical processes essential to GC evolution,
including single stellar evolution (SSE) and binary stellar
evolution (BSE) with COSMIC (Breivik et al. 2020b)—based
on SSE/BSE (Hurley et al. 2000, 2002)—two-body relaxation
(Joshi et al. 2000; Pattabiraman et al. 2013), Galactic tides
(Joshi et al. 2001; Chatterjee et al. 2010), strong binary
encounters and physical collisions (Fregeau et al. 2003;
Fregeau & Rasio 2007), and three-body binary formation
(Morscher et al. 2013, 2015). CMC simulates strong binary
encounters via the small N-body direct integrator fewbody,
which accounts for post-Newtonian dynamics (Fregeau et al.
2004; Antognini et al. 2014; Amaro-Seoane & Chen 2016;
Rodriguez et al. 2016, 2018a, 2018b). CMC also allows for two-
body binary formation through gravitational-wave dissipation
and tidal capture (Kremer et al. 2021; Ye et al. 2022), but for
simplicity, we only allow the former in this study.
We study escape in four cases (Table 1): an archetypal

NCC’d and CC’d MWGC, each under two distinct escape
criteria. The corresponding GCs from the CMC Cluster
Catalog (Kremer et al. 2020) are numbered 2 and 8 in W23.
Other than the escape criteria (see below), these simulations
differ only in the initial virial radius rv= 0.5 pc (for the CC’d
GC) and 2 pc (for the NCC’d GC). All other initial parameters
are identical, such as the initial total number of particles
(singles plus binaries) Ni= 8× 105, Galactocentric distance
Rgc= 8 kpc, and metallicity Z/Ze= 0.1. As in W23, stellar
masses (primary mass, in the case of a binary) draw from the
standard Kroupa (2001) stellar initial mass function (IMF) from
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0.08–150Me. We also assume that all neutron stars born in
core-collapse (electron-capture) supernovae receive natal kicks
drawn from a Maxwellian with dispersion σ= 265 km s−1

(20 km s−1). Natal kicks for BHs share the core-collapse kick
distribution of the neutron star but are reduced in magnitude by
the fraction of the stellar envelope’s mass that falls back onto
the BH via the prescription from Hobbs et al. (2005)—see also
Fryer et al. (2012). For any further details or justifications
regarding the models other than the two updates from W23
mentioned below, see W23 and references therein.

For completeness, we note two minor differences from the
earlier versions of the models used in W23. Both changes are
purely to bolster consistency with concurrent and future works
using CMC. First, instead of a uniform initial binary fraction
fb= 5%, we now set fb= 5% for stars born with mass
M< 15Me (in accord with present-day MWGC observations,
e.g., Milone et al. 2012) and fb= fb,high= 50% for those born
with M� 15Me (more in line with observations in young star
clusters, e.g., Sana et al. 2009, 2012; Moe & Di Stefano 2017).
Though still simplistic, this two-component initial binary
fraction is more consistent with models of binary formation
in star clusters embedded in molecular clouds (e.g., Cournoyer-
Cloutier et al. 2021; Guszejnov et al. 2023), in which fb
increases steeply with stellar mass. The update has minimal
impact on the GC evaporation rate or distribution of escape
mechanisms and energies (evident by comparing later figures to
those in W23). We also now utilize the Fryer et al. (2012)
delayed supernova prescription—CMCʼs new default—to
compute compact remnant masses since this treatment
produces a robust remnant population in the BH lower-mass
gap (2–5Me), in line with observations from the third
Gravitational Wave Transient Catalog (Abbott et al. 2023).
This was not the case under the Fryer et al. (2012) rapid
supernova prescription used in the CMC Cluster Catalog models
used in W23. This change has negligible dynamical impact but
expands the population of bodies labeled as BHs and so
explains an increase in BH ejections seen in later figures
relative to those in W23.

3.1. Escape Criteria in CMC

While CMC allows for an arbitrary time-varying tidal field
(specified by a tidal tensor; see Rodriguez et al. 2023), we
explore CMCʼs default tidal scenario—the time-dependent
CR3BP from Section 2 with a logarithmic Galactic potential
and ωRgc= vg= 220 km s−1, typical of MWGCs (e.g., Spitzer
1987; Binney & Tremaine 2008). CMCʼs tidal radius is then

( ) [ ( ) ] [ ( ) ] ( )m wº = -r t t R Gm t2 . 5t
CMC 1 3

gc
1 3 2 3

Note the time dependence due to GC mass loss via escape and
stellar evolution. The GC’s spherical potential ( )f r t,c

CMC is
similarly time dependent, computed at each CMC time step from

the positions of all bodies. Unless otherwise noted, this time
dependence carries over to our integration of escape trajectories
in post-processing. Its main impact is to slowly raise (make less
negative) fc and thereby Ẽ , promoting escape.
Since the raw escape criterion ˜ >E 0 involves feff, CMCʼs

spherical version of this criterion is approximate, becoming

˜ ( )
∣ ∣

( )º
-

>E t
E E

E
0, 6CMC

CMC
crit
CMC

crit
CMC

where

( ) ( ) ( ) ( )fº +E t
v t

r t
2

, , 7c
CMC

2
CMC

and

( ) [ ( ) ] ( )fºE t r t t
3
2

, . 8c tcrit
CMC CMC CMC

As explained in W23ʼs Appendix A.2, a term ( )»- r r Bt
2

(where B= 12 for logarithmic fg or 9 for Keplerian fg) is
omitted from the coefficient of Equation (8) since most bodies
first satisfy the escape criterion with r/rt= 1.
The raw energy criterion for escape has never strictly been

used in CMC. Instead, CMCʼs current default is to remove bodies
in a two-step process at every time step: first, any bodies with
clustercentric apocenter distance >r ra t

CMC, and then any
remaining bodies satisfying a modified version of the raw
criterion we call the α criterion (Giersz et al. 2008):

( ) [ ( ) ] ( )af>E t r t t, , 9c t
CMC CMC CMC

where

⎜ ⎟⎛⎝ ⎞⎠ ( )a º -
L

N
1.5 3

ln
. 10

i

1 4

In the Coulomb logarithm, ( )gL = Nln ln i , we use γ= 0.01,
appropriate for GCs with realistic stellar IMFs (e.g., Freitag et al.
2006; Rodriguez et al. 2018c, 2022). The first step’s purpose is
simply to ease comparison to GC models using apocenter-based
criteria (e.g., CMC before 2010 or most direct N-body codes).7

Physically, the two steps reduce to solely the α criterion, which
all bodies with >r ra t

CMC must satisfy for α> 1 (Ni 5× 103,
below which Hénon’s method is unreliable anyway; Aarseth
et al. 2008).
The α criterion’s purpose is to make escape slightly harder to

account for the scattering of PEs back to ˜ <E 0 (e.g.,
Chandrasekhar 1942; King 1959; Baumgardt 2001). This
would occur if the PEs were to continue participating in
collisional dynamics on their way out of the GC since weak
encounters induce a random walk in Ẽ . Over the escape
timescale (typically long; FH00), this could either increase or
decrease Ẽ—in the latter case, potentially delaying escape. The
effect’s strength scales inversely with Ni; specifically,
Baumgardt (2001) found that averaged over the half-mass
time of a GC, the fraction of bodies within rt that are PEs scales
roughly as [ ( ) ]~ L Nln i

1 4 . Using this factor as a measure of
the strength of backscattering, Giersz et al. (2008) tuned the

Table 1
Simulations

# rv/pc Status at 12 Gyr Escape Criterion

1 2 NCC’d Raw: Equation (6)
2 0.5 CC’d

3 2 NCC’d α: Equation (9)
4 0.5 CC’d

Note. For all, Ni = 8 × 105, Rgc = 8 kpc, and Z = 10−1 Ze.

7 CMC no longer defaults to the ra > rt criterion because this was found to
significantly underpredict the evaporation rate compared to direct N-body
codes (Giersz et al. 2008; Chatterjee et al. 2010). This occurs because rt is the
maximum clustercentric distance to the tidal boundary, so bodies can satisfy
˜ >E 0 without satisfying ra > rt. See also W23ʼs Appendix A.2.
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second coefficient in Equation (10) so that Hénon-type codes
like MOCCA and CMC best match the evaporation rate from
direct N-body codes. Since the only intent was to improve
accuracy for internal GC evolution, the impact on tidal tails
(e.g., their velocity dispersion and corresponding width) was
not considered and remains untested.

It is unclear if the α criterion should lead to more accurate
tidal tails than the raw criterion. By roughly accounting for the
impact of ongoing collisional dynamics on PEs, the former
may better reproduce the escape timescale for PEs, and hence
the evaporation rate, as it slightly raises the Ẽ at which
removal from CMC (promotion to PE status) occurs. This
should hasten the escape of PEs, qualitatively matching the
expectation if CMC were to allow continued relaxation for PEs
rather than removing them immediately. But by raising Ẽ , the
α criterion may artificially increase the velocity dispersion
(width) in the tidal tails. We therefore study and compare
escape under both criteria. Carefully doing so now may aid
future efforts to improve escape physics in CMC by providing
a rough sense of how much accounting for the impact of
collisional dynamics on PEs changes the morphology and
kinematics of tidal tails.

4. Escape Trajectory Integration

We now describe how we evolve PEs removed from CMC
with the galactic dynamics code Gala (Price-Whelan 2017).
All of these steps are currently executed in the post-processing
of CMC output using Python scripts; the functionality is not yet
embedded into CMCʼs base code, though see Section 6.4 for a
discussion of such potential enhancements in the future.

4.1. Coordinate Systems and Trajectory Initialization

Since CMC imposes spherical symmetry, the output phase-
space coordinates of removed bodies are (rrmv, vr,rmv, vt,rmv), the
radial position, and radial and tangential velocities, respectively
—all in the rotating clustercentric frame xyz at removal time trmv.
(To tidy notation, we forgo subscript “rmv” in the rest of this
subsection.) Yet trajectories in the true nonspherical feff require
full phase-space coordinates, so we isotropically project the
PEs’ positions/velocities at removal into full six-dimensional
phase space. We first orient each PE in the xyz frame with
position r= (0, 0, r) and velocity v= (vt, 0, vr). To distribute
vt isotropically relative to vr, we rotate v about ẑ by angle ψ=U
(0, 2π), where U(a, b) indicates a random sample from the uniform
distribution between a and b. To isotropically distribute r and v,
we then rotate each about ŷ by angle [ ( )]q = -Uarccos 1, 1 and
again about ẑ by angle f=U(0, 2π), yielding positions
[ ] [ ]q f q f q=x y z r, , sin cos , sin sin , cos and velocities

⎡
⎣⎢⎢

⎤
⎦⎥⎥

⎡
⎣⎢⎢

⎤
⎦⎥⎥

( )
( )

( )





q q y f y f
q q y f y f

q y q
=

+ -
+ +

-

x
y
z

v v v
v v v

v v

sin cos cos cos sin sin
sin cos cos sin sin cos

cos cos sin
.
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r t t

r t t

r t

Whenever we convert to the nonrotating XYZ coordinates we
also need to specify a phase, so we define the cluster to be
located at (X, Y, Z)= (1− μ, 0, 0) at time t= 0. The coordinate

transformation from xyz to XYZ at any time is then⎡
⎣⎢⎢

⎤
⎦⎥⎥

⎡
⎣⎢⎢

⎤
⎦⎥⎥

( )
( )
( )

[ ( ) ( )] ( ) ( ) ( )
[ ( ) ( )] ( ) ( ) ( )

( )
( )

m w w
m w w=

+ - -
+ - +

X t
Y t
Z t

x t t t y t t
x t t t y t t

z t

1 cos sin
1 sin cos . 12

4.2. Trajectory Integration

We use the galactic dynamics code Gala (Price-Whelan
2017) to integrate the PE trajectories in the true feff from the
time and location of removal from CMC (usually deep within
the GC; W23). The trajectory integration takes place in the
rotating frame and uses Galaʼs wrapper for the DOP853
SciPy integrator, an implementation of the Dormand–Prince
method—within the Runge–Kutta family—of order 8(5,3).
This implementation internally yields positional errors less than
one part in 1010 per output interval, which we set to be every
million years. When solving the trajectories using the truly
time-dependent fc, we do so up to our simulations’ final age
14 Gyr (i.e., an integration time of 14 Gyr− trmv) or until the
first time in the above output that the PE’s Galactocentric
distance exceeds 2Rgc, whichever comes first. This limits the
computational burden while enabling the resolution of full
stellar streams and return trajectories. When solving the
trajectories using a constant fc(trmv) to compare directly to
FH00, we use a full 14 Gyr integration time, regardless of trmv.

4.3. Ensuring Consistency in Ẽ between CMC and Gala

To smoothly transition PEs removed from CMC into an orbit
integration in Gala, we must ensure consistency between the
sphericalized Ẽ estimated by CMC—Equation (6)—and Ẽ
numerically computed in Gala from fc, fg, and the PE’s
position and velocity at trmv. In Gala, we use the logarithmic
Galactic potential ( ) ( )f =R v Rlng g

2 with vg= 220 km s−1. This
is identical to the fg assumed by CMC when computing rt

CMC

and thereby Ecrit
CMC—Equations (5) and (8), respectively. It thus

ensures that fgʼs contribution to Ẽ via Ecrit is consistent
between CMC and Gala. Consistency in the contribution to Ẽ
from the cluster potential fc is harder to ensure. While a recent
Gala upgrade allows users to input cylindrical spline
potentials built from CMC-like lists of masses and positions,
this functionality is still being optimized; at present, the
computation is orders of magnitude faster for analytic
potentials.
An analytic fit to fc

CMC must be chosen carefully. While fgʼs
functional form has a greater impact on the tidal boundary,8 fc
more strongly affects Ẽ since PEs typically first satisfy the
escape criterion in the GC’s core (W23). So even slight
inconsistencies in fc between CMC and Gala greatly affect Ẽ
(Figure 2), and thereby the escape timescale. For example, a
Keplerian fit fc

fit parameterized by the GC mass m(t) is too
steep in the core relative to the true fc

CMC. This causes Gala to
underestimate ˜( )E trmv , enough to prevent all but the most
energetic PEs from crossing beyond rt(t) within a Hubble time.
Meanwhile, a Plummer (1911) fc

fit set by m(t) and the GC half-
mass radius causes the opposite issue; this choice is too shallow
in the core and escape occurs far too rapidly, on the crossing
timescale. Finally, though our simulations sample initial

8 Because the GC’s enclosed mass profile (and thus ∇fc) near the tidal
boundary is very flat compared to that of the MW (and ∇fg).
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positions/velocities from a King (1966) profile, which also fits
well fc after core collapse, we find it is not an ideal match prior
to collapse (most ages; explained shortly). In all cases, these
discrepancies are far more visually apparent in the logarithmic
enclosed mass profile as it magnifies changes in ∇fc at small r.

We find a three-component Plummer potential—Equation (13)
—provides a generally excellent fit to fc

CMC (and the GC’s
enclosed mass profile) across all t and r. We determined this via
trial and error upon observing that once BHs segregate to the
core, but before their eventual loss precipitates core collapse, the
enclosed mass profile in CMC deviates strongly from a typical
Plummer or King profile. Specifically, the mass density profile
becomes bimodal due to the BHs forming a denser subcluster in
the deep core, naturally leading to a two-component profile (one
for BHs, one for stars). That a three-component fit also performs
slightly better in Figure 2 is due more to the additional degrees
of freedom. We use SciPyʼs curve-fitting functionality to fit
such a potential to each simulation snapshot, linearly
interpolating the fitted parameters both spatially and in time to
yield ( )f r t,c

fit for the Gala integration:

⎡⎣⎢ ⎤⎦⎥( ) ( )
( )

( )
( )

( )åf = -
å += =

r t
Gm t

m t

m t

r b t
, . 13c

i i i

i

i

fit

1
3

1

3

2 2

The six fitted parameters mi(t) and bi(t) are the characteristic
masses and Plummer scale lengths, respectively, for each piece
of fc

fit, interpolated to time t. This definition guarantees the

GC’s enclosed mass tends to ( ) ( )= å =m t m ti i1
3 as r→∞.

While a vast improvement over the above alternatives, the
interpolated three-component Plummer fit still allows small
inconsistencies between fc

CMC and fc
fit, enough to affect the Ẽ

distribution in Figure 2. So, we add a final step to correct for
this. The equivalent of Equations (6)–(8) after the fit/
interpolation are

˜
∣ ∣

( )º
-

E
E E

E
, 14fit

fit
crit
fit

crit
fit

( ) ( )fº +E
v

r
2

, 15c
fit rmv

2
fit

rmv

and

[ ( ) ] ( )fºE r t t
3
2

, . 16c tcrit
fit fit CMC

rmv rmv

To correct the inconsistency in Ẽ from fitting/inter-
polating fc, we then slightly adjust v so that ˜ ˜=E Efit

rmv
CMC

˜ ( )ºE tCMC
rmv . The corrected speed that achieves this is

[( ˜ ) ] ( )º + - -v v E E E2 1 . 17corr rmv
2

rmv
CMC

crit
fit fit

Figure 2. Upper panel: CDF for Ẽ at key steps transforming CMCʼs Ẽ (solid gray curve; approximate due to the assumption of spherical symmetry) into Galaʼs Ẽ
(solid black curve; the true Ẽ in the full, asymmetric tidal field). Since Gala uses analytically defined potentials, deviation from a perfect analytic fit to the numerical
CMC potential can dramatically bias the Ẽ fed into Gala. For illustrative purposes, the dotted red, yellow, and teal curves exemplify how such biases arise, with
decreasing severity, from fitting Kepler, Plummer, and two-component Plummer potentials, respectively. Even fitting a three-component Plummer potential (our final
choice; dashed light blue curve) still biases Ẽ to higher values. We undo this fitting-induced bias by minutely changing the velocities of each escaper via
Equation (17), yielding the dashed dark blue curve—a perfect realignment of the post-fit Ẽ to match the original CMC distribution. Finally, the projection of radially
symmetric CMC positions and velocities into full six-dimensional phase space (and precise numerical computation of Ecrit, rather than the expansion as in the CMC
definition) smears out the low end of the Ẽ distribution when accounting for the asymmetry of the true tidal field in Gala (black curve). Lower panel: The final Ẽ CDF
as computed in the Gala potential—the black curve from the upper panel—but shown for four different models: the archetypal NCC’d and CC’d GCs under both
energy criteria—Equations (6) and (9). The α criterion results in significantly higher Ẽ .
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The resulting Ẽ is ˜ ∣ ∣º -E E E Ecorr corr
crit
fit

crit
fit , where ºEcorr

( )+ -E v v 2fit
corr
2

rmv
2 . In the few cases (1 in 104 PEs) this

results in imaginary vcorr, we instead use vcorr= vrmv. The (10th,
50th, and 90th) percentiles of vcorr/vrmv are ≈(0.99, 1.00, 1.01).
While small, this correction does impact Ẽ in Figure 2; in the
top panel, the uncorrected Ẽ fit (dashed light blue curve)
deviates significantly from ẼCMC (solid gray curve). The
correction works as intended, bringing Ẽcorr (dashed dark blue
curve) in line with ẼCMC. For reference, we also show Ẽ fit

when instead setting fc
fit to be Keplerian, Plummer, or two-

component Plummer (dotted red, yellow, and cyan lines,
respectively).

Technically, the above correction only accounts for
inconsistency in Ẽ between CMC and Gala directly attributable
to inaccuracy in fitting/interpolating fc

CMC. There are two other
minor discrepancies. First, the raw criterion in CMC is only a
spherical approximation, whereas the true Ẽ—defined in Gala
as in Equation (3)—depends on the PE’s full positional
coordinates. So projecting the PEs into full six-dimensional
phase space for initialization in Gala changes Ẽ from what
CMC measured. The inconsistency has a small impact, causing
∼5% of CMCʼs “PEs” to actually have ˜ <E 0 when measured
under the true raw criterion in Gala (solid black). These
mostly have low |z(trmv)| and high |x(trmv)|—see, e.g., W23ʼs
Equation (A4). To avoid bias, we exclude them from our
analysis of the escape timescale in Section 5. Second, rt

CMC and
Ecrit

CMC are both first-order approximations in μ (albeit excellent
ones) to the actual location and feff of L1, so both criteria in
CMC—Equations (6) and (9)—are only approximate, whereas
Equation (3) in Gala is exact to within machine precision.
Other uncertainties in GC physics dwarf this tiny incon-
sistency, so, like all cluster-modeling codes we are aware of,
we do not account for it in CMC.

5. Results

Figure 3 shows the evolution of our archetypal NCC’d and
CC’d GCs (solid and dashed curves, respectively) under both
the raw (black) and α (blue) escape criteria. For reference, we
also include the nearly identical models from W23 (red), which
used the α criterion. The top panels show the retention fractions
of the initial number of particles N(t)/Ni (left) and cluster mass
M(t)/Mi (right). The CC’d GCs (rv= 0.5 pc) evaporate faster
than the NCC’d GCs (rv= 2 pc) due to their higher density and
correspondingly shorter dynamical and relaxation timescales.
As intended, the α criterion lowers the evaporation rate by
raising the escape threshold—to ˜ E 0.1 (Figure 2). Yet the
impact on the evaporation rate is small—less than the typical
stochastic variation between separate statistical realizations of
CMC models. This is unsurprising given that Giersz et al. (2008)
saw relatively modest changes for Ni= 104, 80 times smaller
than our Ni. Since α scales inversely with Ni in Equation (9),
the two criteria are much closer in our case. Together, Figures 2
and 3 suggest that changing from the raw to α criterion
primarily affects Ẽ , and thereby the escape timescale and
escaper velocities, rather than the evaporation rate. So, tuning
the escape criterion to most accurately capture the latter (due to
its greater relevance to internal GC evolution) may not be ideal
for Galactic archeology applications, where the former are also
important.

The lower left panel of Figure 3 shows a rolling average of
the theoretical core radius rc, expressed as a ratio to the half-
mass radius rh. The steep drop in rc/rh between 8 and 13 Gyr
for the CC’d GCs demonstrates how their cores indeed collapse
within a Hubble time, accompanying the transition from a
centrally flat to a centrally steep surface brightness (an
observationally CC’d state) upon loss of most BHs (e.g.,
Kremer et al. 2020; Rui et al. 2021b; Kremer et al. 2021). The
lower right panel shows the evolution of r99/rt, the normalized
radius enclosing 99% of the GC’s mass. Each GC significantly
underfills its tidal boundary at birth but tends toward a tidally
filling state where r99/rt 0.626—the minimum clustercentric
distance to the tidal boundary for a logarithmic Galactic
potential (in the z-direction; Claydon et al. 2017).

5.1. Escaper Energy Distribution

Figure 4 shows the distribution of Ẽ versus the clustercentric
position rrmv/rt when each PE first satisfies ˜ >E 0. Corner
plots show the cumulative density functions (CDFs) in Ẽ and
rrmv/rt, while the lower left and central panels show the
corresponding scatter plots for the NCC’d and CC’d GCs (solid
and dashed curves in the CDFs, respectively). Each uses the
raw criterion since the equivalent plot under the α criterion
simply shifts PEs with ˜ E 0.1 to ˜ E 0.1. Colors distinguish
escape mechanisms, indicated in the legends and caption. As a
reproduction of Figure 2 in W23, with only slightly updated
models and the vertical axis now Ẽ instead of velocity, we only
highlight the figure’s key features. For a more detailed
discussion, including the algorithmic definitions of escape
mechanisms, see W23.
First, two-body relaxation (yellow) dominates overall,

producing escapers with ˜ E 1. About half of escapers from
relaxation originate within the typical core radius at removal
rc(trmv), indicated by the vertical line and shaded interval in
each scatter plot. This reflects that even bodies with Ẽ just
below 0 in the GC halo typically first cross to ˜ >E 0 only after
first plunging back through the core, where the higher density
greatly enhances relaxation’s efficiency (e.g., Spitzer &
Shapiro 1972). Strong fewbody encounters dominate escape
at high Ẽ and from the deep core (though relaxation still
dominates in the core overall). Strong encounters are especially
prolific in the CC’d GC (dashed curves), which also features
several times more escapers from strong binary–single (light
blue) and binary–binary (dark blue) interactions, as well as
two-body relaxation. These reflect the increased density and
correspondingly faster dynamics. Meanwhile, the faster loss of
BHs in the CC’d clusters quenches three-body binary formation
(from three singles; red) due to its steep mass dependence (see
W23). This mechanism dominates high-Ẽ escape prior to
observable core collapse, corresponding to the present in most
MWGCs (Trager et al. 1995).
The expression of energy as a fractional difference from Ecrit

is an important qualitative difference from the similar figure in
W23 since it emphasizes behavior at ˜ E 1. This reveals that
two-body relaxation in CMC applies stronger kicks at higher
density (smaller r). This arises because the average squared
velocity kick applied to each body per (spatially uniform) time
step in CMCʼs relaxation algorithm is proportional to the local
density—see Equation (9) of Rodriguez et al. (2022). This
discretization introduces some uncertainty to Ẽ from relaxation
since it is truly a continuous diffusive process. Ẽ from three-
body binary formation also decreases with increasing r
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Figure 3. Evolution of the GC models over time. Top left: number of particles relative to their initial number. Top right: cluster mass relative to the initial mass.
Bottom left: core radius over half-mass radius (rolling average). Bottom right: 99% Lagrange radius over tidal radius (rolling average). In all panels, solid/dashed
curves correspond to the NCC’d/CC’d GCs, black/blue to the raw/α escape criterion, and red to the near-identical simulations in W23 (which used the α criterion).

Figure 4. Escapers from the archetypal NCC’d (lower left panel) and CC’d (central panel) GC models, distributed according to position rrmv/rt and excess relative
energy Ẽ upon removal from CMC (t = trmv). The corner plots show the corresponding CDFs for rrmv/rt and Ẽ , with solid (dashed) curves corresponding to the NCC’d
(CC’d) model. The gray curves in the CDFs include all escapers, while other colors distinguish different escape mechanisms. Regardless of the mechanism, escapers
(single or binary) containing a BH (black) or neutron star (but no BH; teal) are shown separately. All other escapers are categorized by mechanism: those caused by
the induced kick from a binary companion’s supernova (magenta), three-body binary formation (from three singles; red), binary–single (light blue), and binary–binary
(dark blue) strong encounters, and two-body relaxation (yellow). The legends display the total number of escapers and subtotals for each category. The vertical lines
and surrounding shaded intervals indicate the median and 10th–90th percentile range of the theoretical density-weighted core radius rc(trmv) from Casertano & Hut
(1985), normalized by rt(trmv).
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because CMC limits the semimajor axis of the newly formed
binary to a minimum ( )sº á ña Gm m m50min 1 2

2 , where m1 and
m2 are the binary’s component masses, 〈m〉 is the local average
mass, and σ is the local velocity dispersion (see Section 2.3.1 of
Rodriguez et al. 2022). So the maximum potential energy
released in binding the binary is 25〈m〉σ2, and both quantities
scale inversely with r.

Figure 5 complements Figure 4 by showing the distribution
of Ẽ versus removal time trmv. The first ejections occur
primarily from strong binary-mediated scattering (blues) in
both the NCC’d and CC’d GCs, but especially in the latter due
to its higher density. Bursts of BH and neutron star ejections
(black and teal, respectively) follow from 10–100Myr, mostly
due to supernovae. The smaller secondary burst of BH
ejections arises from the BHs ejected by the supernova of a
neutron star companion. A similar secondary burst of neutron
star ejections at ≈60Myr is a result of electron-capture
supernovae, which occur a bit later and at lower ejection
speeds than the dominant core-collapse supernovae. By
t∼ 100Myr, escape occurs through a mix of two-body
relaxation, three-body binary formation, and strong binary
encounters, with many bursts of escapers at common times
(vertical streaks) visible due to gravothermal oscillations, a
mathematically chaotic phenomenon in which the core sharply
contracts and reexpands at frequent irregular intervals
throughout the GC’s life (e.g., Heggie & Hut 2003). These
density spikes especially promote three-body binary formation
since the rate for this process scales with the density cubed. A
burst of strong binary-mediated ejections from 0.2 t/Gyr 1
occurs in the NCC’d GC due to its unusually long and deep
early core contraction (Figure 3) reversed by BH binary
burning. The loss of almost all BHs in the CC’d GC curtails
three-body binary formation around t∼ 10 Gyr and induces
core collapse, promoting strong binary-mediated ejections
instead.

The typical Ẽ decreases over time—most notably for three-
body binary formation since the average mass of bodies in the
core drops as the GC ejects its BHs—but peaks again after core

collapse in the CC’d GC due to the increased core density.
Note in the right corner plot (identical between Figures 4 and 5)
that Ẽ is cumulatively higher across all times and escape
mechanisms in the NCC’d GC (solid gray curve), but the CC’d
GC (dashed gray curve) has a comparable typical Ẽ when
restricted to ages near a Hubble time. This is attributable to its
high post-collapse core density and the correspondingly
stronger relaxation kicks and a late burst of strong encounters.

5.2. Escape Timescale

We now examine the distribution of escape times,
Δtesc≡ tesc− trmv, between removal from CMC (becoming a
PE) and the first passage beyond rt, at which point we may say
the body has escaped. While such escapers can and often do
circulate back within the GC’s tidal boundary at least once
before the GC’s eventual dissolution, we examine the
ramifications of these return trajectories later, focusing here
on the timescale to cross beyond rt for the first time (e.g.,
FH00; Ernst et al. 2008; Tanikawa & Fukushige 2010; de Assis
& Terra 2014; Zotos 2015b, 2016; Zotos & Jung 2017).
Figure 6 shows survival functions for Δtesc (left panels) and

its normalized form from FH00, ˜ ˜w= Dt t Eesc
2 (right panels).

In the top two rows, we separately evolve each PE’s trajectory
for 14 Gyr past the time trmv that it first satisfies the raw (top) or
α (second from the top) escape criteria, assuming constant
fc= fc(trmv). This guarantees the conservation of Ẽ , while
making escape take longer (by neglecting GC mass loss) and
allows direct comparison to the results of FH00, who also
assumed a constant fc. In the bottom two rows (again, one for
each criterion), we instead evolve each trajectory with
trmv< 13 Gyr for only 1 Gyr each in the true evolving CMC
fc(t). In this case, we do not know fc(t) beyond the simulation
end time (14 Gyr), so we impose the 1 Gyr cutoff to avoid
biasing the Δtesc distribution to smaller values (since many PEs
removed at large trmv will not have had time to escape). Again,
solid curves denote the NCC’d GC and dashed curves the CC’d
GC. The thick black curves represent the total survival across

Figure 5. Same as Figure 4, but the horizontal axis is now the time of removal from CMC, trmv.
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all Ẽ while the thinner rainbow curves each correspond to the
partial contribution from each of several thin bands in Ẽ spaced
1/4 dex apart from ( ˜) [ ]Î -Elog 2.5, 0.510 (dark red to violet,
respectively; see the caption for more detail). Curves are
truncated because of the many escapers that do not cross
beyond rt

CMC within the integration time.
Numerous interesting results are apparent in Figure 6, so we

start by comparing the overall Δtesc distributions (black curves;
left panels). As pointed out by FH00, the dominance of two-
body relaxation (low Ẽ) causes a large fraction (40%) of PEs
under the raw criterion to escape on the Hubble timescale tH, at
least when integrated in a constant fc (top row). On its own,
this would appear problematic for GC modeling, which often
neglects phenomena occurring on tH—e.g., the evolution of the
Galactic potential. However, removal under the raw criterion

neglects the impact of ongoing weak two-body encounters
during Δtesc. By raising the Ẽ necessary to become a PE in an
attempt to roughly account for these interactions, the α
criterion dramatically reduces the probability of Δtesc tH
(second row from the top). Further accounting for the impact of
GC mass loss by integrating PEs in CMCʼs true evolving fc(t)
also hastens escape (lower two rows) but is less influential than
the escape criterion because the initial dissolution timescale
for most MWGCs surviving today is tH. For all four
combinations of escape criterion and fc assumption, Δtesc
overall is significantly shorter for the NCC’d GCs (solid) than
the CC’d GCs (dashed curve). This is unsurprising since
Figure 2 showed the former have higher Ẽ overall (due to more
strong ejections from BH-driven three-body binary formation;
Figures 4 and 5, and W23).

Figure 6. Survival functions (1-CDF) for the escape timescale Δtesc (left panels) and its normalized equivalent ˜ ˜w= Dt t Eesc
2 (right panels). In the top two rows, we

integrate each PE’s trajectory for a full 14 Gyr beyond the time trmv that it first satisfies the raw (top) or α (second from the top) escape criteria, assuming constant
fc = fc(trmv). In the bottom two rows (again, one for each criterion), we instead integrate all PEs with trmv < 13 Gyr for only 1 Gyr beyond trmv in CMCʼs truly time-
dependent fc(t)—see the explanation in the text. Again, solid curves denote the NCC’d GC and dashed curves the CC’d GC. The thick black curve shows the survival
function across all escapers, while the remaining curves show the contributions from each of the 13 thin bins in Ẽ . These are colored in rainbow order (right to left in
the left panels) with bin centers Ẽcen uniformly spaced in log-scale 1/4 dex apart from ˜ = -E 10cen

2.5 (dark red) to ˜ =E 10cen
0.5 (violet). Each bin’s lower/upper bound

is defined narrowly as ( ˜ ˜ ) ( ) ˜= ´E E E, 0.9, 1.1low upp cen. Truncation of curves corresponds to the exclusion of PEs that do not cross beyond rt
CMC within the integration

time. Finally, we show for comparison the fitted t̃ distributions (dotted black) from Figure 9/Table 1 of FH00 (see the text).
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A visually striking feature of Figure 6 is the appearance of
successive plateaus in the Δtesc distribution, especially at
intermediate energies—the yellow, gray, and teal curves with
respective ˜ ( )»E 0.1, 0.18, 0.32 . These features are not
evident in the results of FH00, Ernst et al. (2008), or Tanikawa
& Fukushige (2010), perhaps in part due to their focus on low
Ẽ , where Δtesc is so long that these plateaus are minute. Yet
both FH00 and Tanikawa & Fukushige (2010) show Δtesc for
similar bands in Ẽ as high as 0.24, so the phenomenon may be
unapparent in their results simply because they cut out low
Δtesc, where the plateaus are most noticeable. Regardless, the
plateaus are a true physical feature arising from the geometry of
the zero-velocity surface. For ˜< <E0 0.1 (dark red to orange
curves), the necks are so narrow that PEs typically loop back
many times through the GC before finally finding and escaping
through a neck. For ˜ E 0.5 (light blue to violet), the necks are
so large that most PEs cross directly beyond rt. But for

˜ E0.1 0.5, especially near the center of that interval,
escape often requires a small number of additional crossings
before the body finally passes through either neck. We show in
Figure 7 that bodies escaping immediately before the th
plateau in the Δtesc distribution typically correspond to - 1
such additional crossings.

That the plateaus become less obvious as  and Δtesc
increase relates to chaotic scattering theory, in which the basins
(regions) of phase space leading to escape through different
necks in an underlying conservative potential are separated
from each other by a nonattracting fractal boundary known as a
chaotic saddle (see, e.g., Ott & Tél 1993; Ott 2002; Tél &
Gruiz 2006; Ernst et al. 2008; Seoane & Sanjuán 2013, and
references within). Such fractals also appear in the phase-space
basins corresponding to different bins in the Δtesc distribution
(e.g., de Assis & Terra 2014; Zotos 2015a, 2015b, 2016; Zotos
& Jung 2017). In general, though there are regions of phase
space where trajectories are regular and Δtesc is effectively
infinite (especially retrograde orbits in the CR3BP, e.g., FH00),
 and Δtesc increase where the phase-space winds into finer
(more chaotic) regions of the fractal boundary. Infinitely many
locally smooth patches of each basin (for escape through either
neck) exist in the saddle, each with a different characteristic
Δtesc that, when exceeded, induces a sharp drop off in the

overallΔtesc distribution as PEs from the patch exit the GC in a
burst, leaving behind a plateau. The shrinking size and winding
of these patches in the chaotic saddle as  and Δtesc increase
diminishes the bursts and blurs them together until, for
Δtesc→∞, the surviving fraction of PEs decays roughly
exponentially with Δtesc. For an excellent discussion with
graphics in the context of the Hénon–Heiles potential, see
Aguirre et al. (2001), especially their Section IV.A/Figure 9
relating to the plateaus.
Figure 6 also shows that for either constant or evolving fc,

changing the escape criterion negligibly alters the Δtesc
distributions for almost all specific Ẽ (excluding ˜ »E 0.1 in
yellow). This is reasonable; while exact phase-space details
affect Δtesc, Ẽ controls the width of the zero-velocity surface’s
openings. We see more significant differences when comparing
Δtesc at specific Ẽ between the CC’d and NCC’d GCs. Δtesc is
higher in the former at all Ẽ shown (especially ˜ »E 0.1 in
yellow) except ˜ E 0.02 (red curves), where the opposite is
true. These discrepancies at identical Ẽ must relate to
differences in the initial phase-space distributions of PEs.
Figure 4 shows that ˜ »E 0.1 corresponds mostly to relaxation
deep in the core (r rc/10), while ˜ E 0.02 corresponds
mostly to relaxation in the halo (r rc). So relative to the
NCC’d GCs, relaxation in the CC’d GC yields slower escape
from the deep core and faster escape from the halo.
The faster escape in the halo of the CC’d GC may result

from radial velocity anisotropy (bias to |vr|> vt), which
develops in the halos of GCs born centrally dense, especially
near core collapse, but not in GCs born more diffuse (e.g.,
Giersz & Heggie 1997; Takahashi et al. 1997; Takahashi & Lee
2000; Baumgardt & Makino 2003; Tiongco et al. 2016; Zocchi
et al. 2016; Claydon et al. 2017). PEs on such elongated orbits
have long been known to escape more easily for ˜ < E0 1
since they probe the full tidal boundary, precessing to
eventually find either neck. The stability of near-circular
retrograde orbits within or near the tidal boundary also
promotes preferential escape of radial orbits. Meanwhile, the
slower escape from the deep core of the CC’d GC may result
from the faster loss of BHs, an important driving source of
strong kicks, which increase the effective orbital eccentricity of
the kicked body. So, the early loss of BHs in the CC’d GC may

Figure 7. Escaper trajectories selected from the solid teal curve in the upper left panel of Figure 6— ˜ [ ]Î ´ -E 0.9, 1.1 10 1 2—assuming a constant fc = fc(trmv) from
the removal time trmv of each escaper. Each is projected into the xy-plane and integrated for time 1.1Δtesc, just beyond when they cross rt (blue circle; note the
projection only makes it appear some of these do not cross rt). Each panel shows 20 such escapers, one highlighted in red for clarity, belonging to a different Δtesc
interval (see labels), selected to be immediately before/between the first four plateaus visible in the Δtesc distribution at this Ẽ . Trajectories immediately before the
th plateau typically loop back - 1 times before escape. We show in blue the L1 (left) and L2 (right) Euler–Lagrange points and in gray the two forbidden realms
(of the 80 across all shown trajectories) enclosing the GC the least (dark gray) and most (light gray). This spread is due primarily to the finite Ẽ bin width when
selecting the displayed escapers and secondarily to the variation in μ(trmv) across these since they are removed from CMC at different ages.
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dampen radial velocity anisotropy in the deep core, slowing
escape, but a more solid explanation of such subtleties will
require further study.

The right column in Figure 6 shows the Δtesc distribution in
normalized form, ˜ ˜wº Dt t Eesc

2. This is motivated by the
approximate scaling relation ˜wD µ - -t Eesc

1 2 derived by FH00
for the most common case ˜ E 1 (see also Tanikawa &
Fukushige 2010; Renaud et al. 2011). If this scaling is correct, t̃
distributions at different Ẽ in this limit should be nearly
identical. They should also roughly match the fitted t̃
distributions from Figure 9/Table 1 of FH00 (dotted black)
since Ẽ is independent of N—their Equation (9)—and weakly
dependent on the central concentration or assumed fg
(Tanikawa & Fukushige 2010). But cumulatively, there are
significant differences between FH00ʼs setup and our own; the
former assumed a Keplerian (instead of logarithmic) fg and
sampled PEs from a static King (1966) fc, while we sample
PEs from (and for the lower panels, even evolve trajectories
within) CMCʼs time-dependent fc. This fc features large density
fluctuations (gravothermal oscillations), velocity anisotropy,
and Ẽ drawing from numerous escape mechanisms.

Given the above differences, the relatively close match in the
t̃ distribution for ˜ <E 0.1 under constant fc in Figure 6 is
encouraging. For these curves (top two rows, red through
orange), our t̃ distributions converge and do not show a
monotonic trend in the t̃ space (e.g., gradual drift to lower t̃ as
Ẽ decreases). This supports the ˜-E 2 scaling of Δtesc under
constant fc in FH00. Yet this is contrary to how t̃ increases
monotonically with Ẽ at ˜ E 1 (blue and violet). The FH00
scaling relation, based on the phase-space flow rate near L1/
L2, is not valid at such high Ẽ since the corresponding flow is
no longer restricted to the vicinity of L1/L2. This also largely
explains the discrepancy between our overall t̃ distributions in
black and those of FH00. The tail at high t̃ in the former
(literally a sum over the continuous procession of the nearly
vertical blue curves) arises from our inclusion of many escapers
from strong encounters. The fits to FH00 are worse in the upper
panels because many PEs that have not yet escaped are

excluded in our curves. If our simulations were run longer, new
escapers beyond rt would be added at the top left in each panel,
pushing the tail at high t̃ down until it appears more like the
thick black curves in the right panel second from the top.

5.3. An Empirical Escape Timescale for an Evolving Cluster
Potential

When fc(t) is allowed to evolve during the trajectory
integration (bottom two rows of Figure 6), the t̃ distributions
for different ˜ E 1 no longer overlap, indicating Δtesc no
longer scales as ˜-E 2 in this more complex case. This is hard to
see in Figure 6 because the truncation at 1 Gyr cuts out nearly
the entire t̃ distribution for each of the red and orange curves,
but it is at least clear that for such low energies, t̃
monotonically decreases with Ẽ . This occurs because the
initial dissolution timescale of old MWGCs is ∼tH, so it has
negligible impact for moderate to high Ẽ , which have
Δtesc= tH. But as Ẽ decreases and Δtesc lengthens, GC mass
loss grows more relevant, limiting Δtesc. The pattern is much
more evident in Figure 8, a duplicate of the lower two rows of
Figure 6 that only shows escapers from trmv< 4 Gyr, allowing
us to truncate without bias the Δtesc distribution at 10 Gyr.
Figure 8 shows how GC mass loss causes the Δtesc distribution
at low Ẽ to converge; for Ẽ low enough that escape proceeds
on tH, GC evaporation itself limits Δtesc.
Please note however that the curves in Figure 8 are not

directly comparable to Figure 6. Except for ages after core
collapse, lowering the maximum removal time from 13 to
4 Gyr increases the typical Ẽ , greatly reducing overall Δtesc in
black. Due mostly to stellar winds in young massive stars and
supernovae, GC mass loss is faster at early times (Figure 3), so
more rapidly increases ˜( )E t of PEs as they find their way out of
the GC. This truncates the Δtesc curves more sharply in
Figure 8 than in Figure 6 for any specific, but sufficiently low,
Ẽ . The distributions at higher Ẽ change less between these
figures since the correspondingly faster escape reduces the
impact of GC mass loss on Δtesc.

Figure 8. Same as the bottom two rows of Figure 6, but we instead integrate all PEs with trmv < 4 Gyr for 10 Gyr beyond trmv.
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Figure 8 shows a very nearly uniform ≈0.47 dex gap
between each of our red curves at different ˜ »-E 10 0.031.5

and a ≈0.40 dex gap between each of our blue/violet curves at
˜ »-E 10 0.560.25 . Since the curves are 1/4 dex apart in Ẽ ,
these trends suggest that for a realistically evolving fc, ˜ ˜µt E1.9

for ˜< E0 0.03 and ˜ ˜µt E1.6 for ˜ E 0.56. So
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We provide no expression for ˜ E0.03 0.56 because it is
apparent in Figures 6 and 8 that there is no clean power-law
scaling due to the elevated importance of the specific initial
phase-space coordinates at these energies and resulting
appearance of more complex features like the plateaus in both
the Δtesc and t̃ distributions.

From the above expressions, we can redefine the normalized
escape timescale for the case of an evolving fc as
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We verify these empirical relations in Figures 9 and 10,
which show that t̃evol in Equation (19) leads to much better
convergence in the normalized escape time distributions at low
and high Ẽ , respectively. We also note that we have tested
power-law exponents in the vicinity of the ones specified above
and found them to indeed provide the narrowest convergence
(especially the one for high Ẽ).

5.4. Formation of Tidal Tails and Stellar Streams

Having empirically reexamined the escape timescale, we
turn our attention to the tidal tails and stellar streams from our
simulated GCs. Future upgrades to CMCʼs escape physics will
involve tuning via careful comparison to direct N-body models,
so for now we simply demonstrate macroscopic features
(including new returning tails) and show that escapers from
CMC can already reasonably reproduce established tidal
phenomena for circular GC orbits in a static, spherical MW
potential, so long as PE trajectories are evolved collisionlessly.

Figure 11 projects into the clustercentric xy-plane sample PE
trajectories (from the raw criterion’s NCC’d GC) integrated
under constant fc= fc(trmv), distinct for each PE. Each panel

shows 50 trajectories, one highlighted in red as a visual aid,
belonging to different narrow bins spaced 1/2 dex apart in the
range ˜ [ ]Î -E 10 , 102 2 —see the caption. To give a sense of the
timescale and avoid clutter, we cut off each trajectory 2 Gyr
after it first crosses to r> rt. The PEs with low Ẽ (top left)
escape through the necks in their forbidden realm (gray) near
L1/L2, the points on the blue circle indicating rt(t). Increasing
Ẽ expands the necks, allowing PEs to cross beyond rt with
higher y or z (in/out of the page). The lower panels show how
the forbidden realm’s retreat from the xy-plane at ˜ E 1
enables more immediate return to the GC. At ˜ »E 1 (lower
left), in particular, the Coriolis effect causes ∼10% of escapers
to temporarily return to r< rt—sometimes many times, akin to
periodic extratidal orbits (e.g., Hénon 1969)—before moving
beyond several rt from the GC.
In the rotating center-of-mass frame of the GC and MW

(Figure 12) the trajectories with ˜ E 1 complete a single
epicycle every ∼10rt (as expected from, e.g., Küpper et al.
2008; Just et al. 2009)—longer for higher Ẽ . Many of the
escapers with ˜ ~E 102 (lower right panel) entirely circumna-
vigate the MW in this frame within 2 Gyr. Even the trajectories
at ˜ E 1 do so in ≈8 Gyr, well within the dissolution
timescale of most MWGCs. This, too, agrees well with the
epicyclic approximation for low Ẽ , where escapers drift away
from the GC along the tails at a speed vd≈ 2ωrt for a
logarithmic fg—e.g., Equation (18) of Küpper et al. (2010). In
our case, ωRgc≈ 220 pcMyr−1 and Rgc/rt≈ 80, so vd≈
5.5 pc Myr−1. Since the distance traveled per full orbit about
the MW is 2πRgc≈ 5× 104 pc, the drift period in the tails
(timescale to return to the GC) is Td≈ 9 Gyr.
The potential impact of return trajectories is apparent in

Figure 13, containing several views of the PEs from the CC’d
GC under the α criterion at age 12 Gyr (a snapshot from a full
14 Gyr-long movie linked in the caption). The lower right panel
shows the projected positions in the orbital (XY) plane of the
inertial center-of-mass frame, and the other panels the three
orthographic projections along each axis of the rotating
clustercentric frame (see the caption). Since weak two-body
relaxation dominates escape at t= 12 Gyr, the streams closely
follow the GC’s circular orbit. This contrasts with ages 3 Gyr,
when a clumpier, more energetic Ẽ distribution (Figure 5) leads
to more irregular, branching streams (see the full movie). But
perhaps the most notable feature—novel in the context of star
cluster literature—is the appearance (lower right) of robust

Figure 9. Same as the right panels in Figure 8 but with t̃ redefined from
Equation (18) for low ˜ E 0.03, the red curves. These converge much better to
a common t̃ distribution.

Figure 10. Same as Figure 8 but with t̃ redefined from Equation (18) for high
˜ E 0.56, the blue and violet curves. These, too, converge much better to a
common t̃ distribution.
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“returning tidal tails,” which form an X-like structure with the
usual outgoing tails. This structure only appears at ages Td, so
coloring the PEs by trmv emphasizes the large age difference
between the outgoing (mostly red) and returning (yellow) tails.
Crucially, however, the robustness of the latter is largely due to

the assumptions of a circular GC orbit in a spherical, time-
independent fg. In reality, perturbations from MW substructure
and an asymmetric, evolving fg likely disperse such tails to
much lower density. We further discuss these caveats in
Section 6.1.

Figure 11. As in Figure 7, but the panels now distinguish subsets (of 50 escaper trajectories each) belonging to eight bins in ˜ [ ]Î -E 10 , 102 2 from the archetypal
NCC’d GC under the raw criterion and integrated to age trmv + Δtesc + 2 Gyr. Except in the last panel (due to its high Ẽ), this time limit excludes the portions of the
trajectories that return to the GC after entirely circumnavigating the Galaxy in the rotating frame, cleaning up the figure considerably (see also Figure 12, identical to
this one but in the inertial center-of-mass frame). Unlike in Figure 7, there is no additional filter for escapers belonging to specific windows in Δtesc, so we make the
bins 10 times narrower—between 0.99 and 1.01 the Ẽ specified in each panel. This makes the difference between the least and most enclosing forbidden realm in each
panel nearly imperceptible.

Figure 12. As Figure 11, but shown in the rotating center-of-mass frame of the Galaxy and GC.
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5.5. Stream Morphology

To examine stream morphology in more detail, we show in
Figures 14 and 15 the surface number density Σ of PEs near the
tidal boundary and along the full stream, respectively, from the
CC’d GC under the α criterion. Σ is time averaged between
ages t/Gyr ä [11, 13], achieved by stacking 2001 snapshots of
the PEs in that interval, finely binning the PEs by position, and
dividing each bin count by 2001 and the bin area in square
parsecs. The new clustercentric coordinates ( )¢ ¢x y, , still in units
of Rgc, are flattened to map the full circular orbit to the line
segment [ ]p p¢ Î -y , , where ( )¢ ¢ =x y, 0 corresponds to the
GC’s center. Specifically, [ ( )( )]m q¢ º + - -x x 1 1 cos

qcos and ( )m q¢ º -y 1 , where [ ( )]q mº + -y xarctan 2 1 .
So in each figure, the GC’s velocity points to the right and the
upper panel is a face-on view to the orbit (with the MW’s center

down the page at ¢ = -x 1), while the lower panel is a
panoramic edge-on view from the MW’s center. The extreme
sample size (108 individual stellar positions) achieved from
time-averaging escaper trajectories from such large GC
simulations makes these figures the highest-resolution tidal
tail/stellar stream density profiles we were able to find in the
literature.
The full stream consists of a leading and trailing tail

sandwiching a low-density channel of width ≈0.036Rgc≈ 3.4rt
(our GC models have an average of rt≈ 85pc in the chosen
age range). This channel closely follows the zero-velocity
surface for ˜ < E0 1, which has width »r r2 3 3.46t t—see
Equation (17) of Just et al. (2009). The width of each of the
adjacent tails is ≈2.3rt, in good agreement with the direct N-
body models and epicyclic approximation presented by Just
et al. (2009); their Equations (17) and (34) result in tail width
≈2.1rt. Epicyclic overdensities are readily apparent, spaced

Figure 13. Two-dimensionally projected positions of PEs, colored by time since removal from CMC, at age t = 12 Gyr (but see a full 14 Gyr movie accessible via
doi:10.5281/zenodo.10714860 and YouTube).9 We show the denser CC’d GC under the α criterion simply to optimize visualization, as the higher density produces
more PEs and the lower Δtesc under the α criterion amplifies the color contrast. The lower left panel shows the projected positions in the static center-of-mass coordinates
(Section 4.1), a face-on view of the GC orbit. The other panels show the three orthographic projections along each of the cardinal directions in the rotating clustercentric
coordinates. The views in the upper row are edge-on to the GC’s orbit, looking along (upper left) and perpendicular to (upper right) the ray connecting the cluster center to
the Galactic center, while the view in the lower right panel is face-on to the cluster orbit. In the three orthographic panels, the blue circles have radii r/rt = [1, 2, 3, 4, 5]. In
the lower left panel, the red circles have radii R/kpc = [2, 4, 6, 8, 10, 12], and the blue circle radius r/rt = 5 with guiding center at R = Rgc. The true cluster center’s slight
offset from this circle’s center illustrates the subtle decrease in the distance between the GC and center of mass as the GC loses mass.

9 youtu.be/zJKCvAf6U3E
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≈12.2rt apart. This is between the epicyclic approximations of
8.9rt (Küpper et al. 2010) and 15.4rt (Just et al. 2009)—their
respective Equations (20) and (22), given a logarithmic fg has
epicyclic frequency w2 . Their disagreement arises from their
differing assumptions on the starting point for escapers’
epicyclic trajectories: ¢ =x rt or ¢ =x r3 t, respectively. Our
results suggest an optimal approximation is intermediate to
these extremes. Note the above distances in terms of rt are
independent of GC mass M and Rgc in the MW halo (Just et al.
2009), where fg remains logarithmic.

The figures’ exceptional resolution also reveals a subtle
feature common to all four simulations: double-ridged density
peaks in the tails near each epicyclic overdensity. These arise
from a phase difference in the trajectories of low-Ẽ escapers
from opposing sides of each tail’s neck (i.e., on either side of
L1/L2); the corresponding overdensities streaking out from the
tidal boundary are visible in the upper panel of Figure 14 (see
also the Appendix). This phenomenon disperses each epicyclic
overdensity compared to the typical particle spray approximation
(e.g., Küpper et al. 2008; Just et al. 2009; Küpper et al. 2010,
2012) that escapers all exit the GC at exactly L1/L2 ( ¢ =y 0).

While Figures 14 and 15 display variations between
simulations, these are relatively minor. Most notably, the α

criterion reduces the PE number density at clustercentric
distances 0.6 r/rt� 1. This range, spanning the minimum
and maximum r to the tidal boundary, is where the GC density
deviates most significantly from spherical. The disagreement,
resulting from faster escape under the α criterion, means
comparison to matching direct N-body models could
determine which energy criterion best reproduces GC
properties (e.g., density and velocities) within 0.6 r/rt� 1.
But given the asymmetry here, it is likely that no spherically
symmetric criterion (even one based on energy and angular
momentum, e.g., Spurzem et al. 2005) will allow our
collisionless PE approximation to reproduce all GC properties
of interest here on its own. So development of more nuanced
escape physics in CMC, perhaps using basis expansion to allow
the Monte Carlo method to handle mildly asymmetric fc (e.g.,
Vasiliev 2015) may be worthwhile for this zone (see also
Section 6.4).
Happily, changing between the α and raw criterions has

lesser impact on features beyond the tidal boundary. For
example, the former slightly widens the tail at the tidal
boundary due to the higher typical Ẽ and correspondingly
larger necks about L1/L2. Further from the GC, this widening
is most perceptible again at the first epicyclic overdensities. But

Figure 14. Projected surface number density Σ of PEs from the CC’d GC under the α criterion. Σ is time-averaged between ages t/Gyr ä [11, 13], achieved by
stacking 2001 snapshots of PEs in that interval, finely binning PEs by location, and dividing each bin count by 2001 and the bin area in pc2. As described in the text,
the new clustercentric coordinates ( )¢ ¢x y, , still in units of Rgc, are flattened to map the full circular orbit to the line segment [ ]p p¢ Î -y , , where ( )¢ ¢ ¢ =x y z, , 0
corresponds to the GC center. So the GC’s velocity is to the right. The upper panel is a face-on view to the GC orbit (with the Galactic center down the page at
¢ = -x 1) while the lower panel is a panoramic edge-on view from the Galactic center to any point along the GC orbit.

(The complete figure set (4 images) is available.)

Figure 15. As in Figure 14 but with the horizontal axis compressed to fully span the entire GC orbit. The first several epicyclic overdensities are visible in the lower
panel, spaced of order 10rt apart. In the upper panel, the strip from [ ]¢ Î -x R r 2, 2tgc has much lower density than in the tails/streams due to the presence of the
forbidden realm there for low Ẽ (most escapers).
(The complete figure set (4 images) is available.)
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this latter difference is minute, especially given our extreme
time-averaged sample size is well beyond that achievable by
observations, even stacking tails from many MWGCs. So,
unlike for the asymmetric but still collisional region within the
tidal boundary, upgrades to escape in CMC should minimally
impact the morphology of simulated stellar streams, in which
the collisionless approximation is quite accurate.

5.6. Stream Density and Internal Velocities

While two-dimensional projections of stream properties are
qualitatively revealing, it is easier to study variations between
simulations and the impact of the returning tails via quantities
averaged along the stream axis. As bulk properties, the stream
density and internal velocity profiles are an ideal starting
point. To this end, Figure 16 shows the surface number
density Σ of PEs (when viewed from the MW’s center; top
panel), their mean speed 〈v− vc〉 with respect to the GC’s
circular speed (middle), and the dispersion in this speed

( )s º á - ñ - á - ñv v v vc
2

c
2 (bottom), all from 501 uniform

bins along the stellar stream’s flattened ¢y -axis. Based on
Figure 15, we define the stream at any time t as all PEs with
∣ ( )∣¢ <x t 0.05 and |z(t)|< rt(t)/Rgc, including for reference the
PEs within the tidal boundary. The results are again time-
averaged across t/Gyr ä [11, 13] and the solid/dashed curves
correspond to the NCC’d/CC’d GCs under the raw criterion.
The blue/red curves distinguish the contributions from the
leading/trailing tails to their combined profile (black).

The epicyclic overdensities are again apparent and Σ is
nearly symmetric between the leading and trailing tails. The
former is only ≈5% denser since the neck at L1 opens at
slightly lower Ẽ than the neck at L2. The density in both tails
gradually decreases as they extend further from the GC before
reaching a minimum and increasing again about a quarter orbit
before returning to the GC. In the earliest portion of each tail’s

outgoing half— ¢ >y 0 (leading) and ¢ <y 0 (trailing)—Σ is
about twice as high from the CC’d GC than the NCC’d GC,
consistent with their evaporation rates in Figure 3. This factor
shrinks closer to three halves just before the tails return to the
GC, consistent with steady leakage of PEs from the stream over
time. Finally, since the circular speed ωR at any Galactocentric
distance R is constant in a logarithmic fg, then ω is slightly
higher in the leading tail. This explains why the crossing point
between the tail densities apparent at the far left of the top panel
occurs at p¢y just slightly >−1.
Under the epicyclic approximation, the mean speed in the

stream relative to the GC’s circular speed is 〈v− vc〉≈ [(2ω/
κ)2− 2]ωrt, where κ is the epicyclic frequency—see Equation
(21) of Küpper et al. 2010. For logarithmic fg, k w= 2 , so
〈v− vc〉≈ 0. The central panel of Figure 16 reproduces this
expectation along the entire stream, and locally to within
∼1 km s−1. 〈v− vc〉 locally peaks/troughs between the
epicyclic overdensities in the leading/trailing tails since most
(low-Ẽ) PEs here have a velocity near directly parallel/
antiparallel relative to the GC’s velocity at the same ¢y . At each
epicyclic overdensity, however, most PEs are briefly moving
back toward the GC—or at least counter to the velocity of their
epicyclic trajectory’s guiding center, which is offset from the
GC’s orbit. This instead causes 〈v− vc〉 to trough/peak,
respectively. These features remain, albeit with lower
magnitude, in the combined stream profile (black) since each
tail’s returning half— ¢ <y 0 (leading) and ¢ >y 0 (trailing)—is
less dense than the outgoing half.
The amplitude in the 〈v− vc〉 oscillations is slightly greater

from the CC’d GC than the NCC’d GC. This is counterintuitive
since (to recap Section 5.1) the NCC’d GC has cumulatively
higher ejection Ẽ due to longer retention of BHs, which
promote strong ejections from three-body binary formation
(W23). Though we also noted the CC’d GC has comparable or

Figure 16. The surface number density of PEs (viewed from the Galactic center; upper panel), their mean speed 〈v − vc〉 relative to the GC’s circular speed (middle
panel), and the dispersion in this speed ( )s º á - ñ - á - ñv v v vc

2
c

2 (lower panel), along the stellar stream’s flattened ¢y -axis. The profiles are time-averaged across
t ä [11, 13] Gyr and split into 501 bins of uniform width ≈100 pc. To be counted in the tail/stream, a PE at time t must have ∣ ( ) ∣¢ <x t 0.05 and |z(t)| < rt(t)/Rgc. As
usual, solid/dashed curves indicate the NCC’d/CC’d GCs—in this case, under the raw escape criterion. The blue/red curves correspond to the leading/trailing tails
and the black curves to their sum.
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greater typical Ẽ when limited to t 10 Gyr, due to the higher
post-collapse density’s promotion of strong encounters and
relaxation, this turns out not to explain the CC’d GC’s higher
〈v− vc〉 amplitude in Figure 16. (As we show shortly in
Figure 17, restricting the stream to only PEs ejected after
10.5 Gyr instead causes the CC’d GC to have minutely lower
〈v− vc〉 amplitude than the NCC’d GC). Rather, the CC’d
GC’s faster mass loss—twice that of the NCC’d GG—is likely
responsible since the mass loss decreases |fc|, causing the PEs
to lose less speed while traveling up the GC’s potential well to
escape.

While the stream’s 〈v− vc〉 profile is very similar between
the models, there is a larger difference in the profile of its
velocity dispersion σ (lower panel). Since σ should correlate
with the local tail width, it is unsurprising that σ peaks between
epicyclic overdensities and troughs within them (based on the
overdensity locations in Figure 15). Further along the tail, σ
both increases and oscillates less since small deviations in the
typical epicycle period for different Ẽ compounds to randomize
the velocity vector far from the GC (apparent in how the
epicyclic overdensities distort and overlap far from the GC in
Figure 15). On average, σ is ≈20% higher from the NCC’d
GCs than from the CC’d GCs. This is a direct result of
including the returning tails, which allows bodies ejected many
gigayears ago to contribute to Figures 14–16, despite only
stacking snapshots of the stream in the age range of 11–13 Gyr.
The NCC’d GC’s wider spread in Ẽ before ∼10 Gyr, due to
more ejections from BH-driven three-body binary formation,
thus inflates σ in the NCC’d GC’s stream even at late times.

Due to the impact of the returning tidal tails and their likely
disruption by MW substructure in a realistic fg, we reproduce
Figure 16ʼs black curves (both tails combined) in Figure 17,
this time showing all four simulations and eliminating the
contribution of the returning tails. We do so by excluding from
each snapshot in the figure’s 11–13 Gyr stack any escapers for

which >500Myr have elapsed since their first crossing to
r> rt. This cutoff produces streams with an angular span in
Galactic longitude of ≈40°, roughly average for streams
associated with MWGCs (e.g., Mateu 2023)—hence the
truncated horizontal axis.
The primary difference in Figure 17 with respect to Figure 16

is that the amplitude in the 〈v− vc〉 oscillations is about two
times higher while the dispersion σ is about three times lower.
Eliminating the returning tail increases the former because
there is no longer a returning flow opposing the outgoing tail
(given our chosen viewpoint from the MW’s center). That
opposing flow significantly increases 〈v− vc〉—compare, for
example, the blue/red curves to the combined black curve in
Figure 16, or, for a helpful visual aid, see maps of the two-
dimensional projected 〈v− vc〉 in the Appendix. These maps
show that neglecting returning tails reduces σ for the same
reason, though the lower dispersion in Ẽ at late times (Figure 5)
likely helps.
Unlike when including the returning tails in Figure 16,

neglecting the returning tails in Figure 17 results in there being
little difference in σ between the tails at tä [11, 13]Gyr from
the NCC’d GCs versus those from the CC’d GCs. This is
because the NCC’d and CC’d GCs have more similar Ẽ
distributions at tä [11, 13]Gyr (unlike their Ẽ distributions
cumulatively). In particular, looking back at Figure 5 for that
age range, we see that though the NCC’d GC still has more
high-Ẽ ejections from three-body binary formation (due to
longer BH retention; W23), the CC’d GC now has significantly
more high-Ẽ ejections from binary–single and binary–binary
interactions (due to the higher density after core collapse). As a
result, the total number of high-Ẽ escapers contributing to σ
within this age window is roughly equivalent between the
NCC’d and CC’d GCs, leading to a similar Ẽ distribution and σ
within the tidal tails.

Figure 17. As in Figure 16 (including being a stack of 2001 snapshots spanning ages 11–13 Gyr), except for the following changes. To simulate the impact of stream
disruption, we now exclude the PEs in each snapshot for which >500 Myr have elapsed since their escape (first crossing beyond r > rt). We also only show the sum of
the leading/trailing tails (i.e., the black curves from Figure 16) and do so for all four simulations. The solid/dashed curves still correspond to the NCC’d/CC’d GCs,
and the blue/red curves to the raw/α escape criteria. Finally, because of the limited tail length from the time cutoff, we use finer bins in ¢y —2001 across the entire GC
orbit, corresponding to bin widths ≈25 pc.
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Together, Figures 16 and 17 show that the average speed of
bodies in the tail 〈v− vc〉 is not a reliable measure of a GC’s
state of core collapse, and by extension, its presently retained
BH population. Yet 〈v− vc〉 and its dispersion are good
indicators of the presence of a returning tidal tail, potentially
making these quantities a useful constraint on the MW potential
and the number and properties of massive perturbers—e.g.,
giant molecular clouds and DM subhalos—in the MW
halo since these control stream disruption.

6. Discussion

6.1. Implications and Caveats of Returning Tails

A novel finding in this work is the appearance of returning
tails in our simulations. When interpreting these features, it is
crucial to recognize that our idealizations of a circular GC orbit
in a time-independent, spherical MW potential are a best-case
scenario for the stream density. In reality, they should be much
more diffuse as asymmetry, substructure, and time dependence
—including perturbations from the MW disk and bar,
molecular clouds, and DM subhalos—should all naturally
disrupt streams, blending them into the stellar background.
Even detection of the denser outgoing tails remains difficult;
the number of GCs observed to have them remains low
(≈15; Piatti & Carballo-Bello 2020). In none of these cases are
returning tails apparent.

The MW is also not an especially accommodating place for
returning tails as they need a drift period Td less than the GC’s
age to form. In the MW halo, where the circular speed vc is
very flat (enclosed mass M∝ Rgc), µ ~-T R M v Rd cgc

1 3 1
gc
4 3

(e.g., Binney & Tremaine 2008). So Td, already ≈9 Gyr at
Rgc= 8 kpc, exceeds the age of many MWGCs altogether. Nor
is it much shorter in the MW bulge since vc∝ Rgc there
( µM vc

2), yielding a sublinear scaling ~T Rd gc
2 3. So bulge

substructure, perhaps aided by a rotating bar (e.g., Hattori et al.
2016; Pearson et al. 2017), would have ample time to disrupt
the streams. Eccentricity or even precession of the GC orbit—
induced by, e.g., a triaxial fg (Capuzzo Dolcetta et al. 2005)—
could also misalign the bulk of the returning orbits from the GC
at most phases of its orbit, preventing consistent returning tails
at the tidal boundary. Even so, the sheer number of escapers
(often >105) and their wide dispersal on the MW’s crossing
timescale (Figure 13), means that even major disruption or
misalignment of the stream is unlikely to prevent some escapers
from returning to their original host GC after circumnavigating
the MW. Tidal capture also requires low Ẽ (Koon et al. 2022),
so recapture of past escapers from a dispersed stream may still
exceed capture from the MW’s stellar background. It is merely
unclear whether more diffuse returning tails would be
observable.

Yet, the detection of returning tails is not hopeless. Clearly,
an approach reliant on stellar surface density alone would be
hindered by the background, and also the narrowness of the gap
between the outgoing and returning tails; from many viewing
angles, no gap is apparent (e.g., the lower panels in Figures 14
and 15). However, kinematic detection is more promising;
thanks to kinematic (and chemodynamic) measurements, many
MW streams are already known to be extremely elongated
(Mateu 2023). So while no streams to date have been traced
over more than a full orbit of the MW, this may be achievable
with future surveys. Notably, we found in Section 5.6 that the
opposing flow of the outgoing and returning tails boosts the

stream’s velocity dispersion by ≈3 km s−1—substantial since
the stream’s dispersion without accounting for the returning
tails is only ≈1 km s−1. This boost is similar in magnitude to
that from perturbations by MW substructure, such as DM
subhalos or the MW disk (e.g., Carlberg 2009; Carlberg &
Agler 2023). It is also much greater than the likely inflation of
σ by unresolved binaries in streams. Multiepoch radial velocity
measurements of stars in streams (Li et al. 2019, with the S5
Survey) and in the MW halo (Conroy et al. 2019; with the H3
Survey), indicate that systematic uncertainties from phenomena
like binarity inflate observed σ by an amount similar to the
known uncertainties from the surveys’ pipelines: ≈0.5 km s−1.
So while the true impact of returning tails on σ in streams
should be substantially weaker than the 3 km s−1 boost in our
ideal case, returning tails may be relevant on a level
comparable to observing biases such as unresolved binaries.

6.2. BH Mergers from Return Trajectories

In Section 5.4, we noted many escapers at moderate ˜ ~E 1
promptly return to r< rt, even multiple times, before moving
more than several rt from the GC. An intriguing ramification is
that BHs ejected from the GC may pass back through the core
and undergo a strong encounter, potentially re-binding to the
GC. In the case of BHs ejected by gravitational-wave merger
kicks, this may enhance the dynamical production of
hierarchical BH mergers (e.g., Miller & Hamilton 2002;
Rodriguez et al. 2019). Checking all four simulations, we find
that within the 14 Gyr simulation runtime, BH escapers pass
from r> rt to r� rt an average of 200 times per GC—six times
when limited to BH merger remnants. These drop to 3.5 and
0.25 times, respectively, when considering only core passages
from r> rc to r� rc (the density-weighted core radius from
Casertano & Hut 1985). Assuming a typical rc∼ 1 pc
containing stellar number density 103 pc−3 and a BH remnant
with mass 30Me and speed 50 km s−1, then the rate of strong
encounters between returning BH merger remnants and typical
stars in the core (capable of scattering the BHs back to ˜ <E 0)
is only ∼10−8 per GC per Hubble time. This suggests that
returning BH merger remnants negligibly enhance hierarchical
BH merger rates in GCs.

6.3. How Cluster Density and BHs Affect Streams

While external tides dominate stellar stream morphology,
factors internal to GCs are also relevant. In particular, the GC’s
initial number density n (set by rv and N in CMC) determines the
timescales for both relaxation and stronger encounters (e.g.,
Spitzer 1987; Heggie & Hut 2003; Binney & Tremaine 2008).
Along with Rgc, n also determines how fully the GC’s mass
distribution fills its tidal boundary. These considerations have
competing effects; higher n leads to faster relaxation, hastening
evaporation, but also leads to a deeper central potential and so a
larger gap between Ecrit and the typical Ẽ in the GC. Since most
bodies achieve ˜ >E 0 in the GC’s core this means higher n can
also hinder escape, slowing evaporation. The competing effects
can lead to seemingly divergent conclusions in the literature on
nʼs impact on evaporation. The speed-up of relaxation
dominates in this study, so our denser (CC’d) models evaporate
faster, yielding denser streams. This holds for typical CMC
models, which have initial n, N, and Rgc, leading to evolved
GCs consistent with most MWGCs today (Kremer et al. 2020).
But lower density can lead to faster evaporation in CMC for
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GCs that more fully fill their tidal boundary (low Rgc and high
rv or low N; see W23ʼs Figure 1). Relevant to diffuse, low-N
GCs in the MW halo, such as Palomar 5, this regime has been
more strongly emphasized in recent direct N-body modeling
(Gieles et al. 2021; Gieles & Gnedin 2023; Roberts et al. 2024).

BH dynamics is similarly relevant as central heating from
BH binary burning supports the GC against collapse, lowering
the core density. As our models are tidally underfilling, our
denser CC’d GCs evaporate faster and form denser streams
despite ejecting their BHs earlier. But in the tidally filling
regime, BH heating increases the mass-loss rate and stream
density. Gieles et al. (2021) showed this may explain
Palomar 5ʼs unusually dense tidal tails, finding that low-n
direct N-body models could reproduce the tails if BHs make up
≈20% of Palomar 5ʼs current mass. More broadly, variation in
BH retention may help explain why only some MWGCs have
observed tails (Gieles & Gnedin 2023; Roberts et al. 2024). To
holistically investigate this prospect and extrapolate to the full
MWGC population, future studies of the impact of GC density
and BH dynamics on tidal tails should consider both tidally
filling and underfilling GCs.

By extension, tidal tails and streams in the MW halo may be
useful probes of not just BH populations in GCs but also more
fundamental uncertainties regulating BH formation and
retention, such as the stellar IMF and supernova kick strengths.
Notably, GCs born with top-heavy IMFs can produce so many
BHs—and so much BH burning—that they rapidly dissolve in
∼1 Gyr (e.g., Banerjee & Kroupa 2011; Whitehead et al. 2013;
Contenta et al. 2015; Chatterjee et al. 2017; Giersz et al. 2019;
Weatherford et al. 2021), potentially producing very dense tidal
tails. That the 20% BH mass fraction in Palomar 5 suggested by
Gieles et al. (2021) is already higher than achievable from a
canonical stellar IMF supports that tails may be a useful
constraint on the IMF in low-density GCs. The accelerating
evaporation rate near the end of such GCs’ lives may further
help explain why the density of some tidal tails (e.g.,
Palomar 5ʼs) rises steeply with decreasing distance from the
GC. We plan to investigate such prospects further in
future work.

6.4. Prognosis for Modeling Streams via the Hénon Method

6.4.1. Collisional Dynamics for PEs

We have compared the raw energy criterion to the Giersz
et al. (2008) α criterion, designed to account for the scattering
of PEs back to ˜ <E 0 prior to escape. Though motivated by
conservation of Ẽ in the CR3BP, which does not hold for
collisional dynamics, noncircular GC orbits, or evolving fc or
fg, such energy-based escape criteria remain useful when the
energy change is slow compared to the crossing timescale and
fg is not highly substructured near the GC. The intent of our
comparison is not to identify which criterion yields more
accurate streams, a judgment requiring direct N-body codes,
but rather to gauge how much collisional dynamics for PEs
during their escape may affect Δtesc and stream properties.

Summarizing our findings, the α criterion raises the Ẽ of PEs
(Figure 2), reducing Δtesc (Figure 6) and lowering by several
times the surface density of PEs in the portion of the GC’s halo
that is significantly nonspherical (0.6 r/rt 1; Figure Set
14). So collisional dynamics for PEs may significantly alter the
morphology and kinematics of the GC within the tidal
boundary. Yet the two criteria yield very similar evaporation

rates N (Figure 3) and extratidal properties, including the
stream density and velocity dispersion profiles. This is
expected for slow, steady evaporation (  Dt N Nesc ), as in
our models representative of typical MWGCs. The small
extratidal impact implies collisional dynamics can reasonably
be neglected for PEs when simulating tails and streams from
MWGCs, though perhaps not for r< rt, or small N and fast N
(e.g., near GC dissolution).
To the extent that better accounting for PE collisional

dynamics may still have small effects, keep in mind that weak
two-body scattering is a competition between cooling
(dynamical friction) and heating (relaxation)—e.g., Section 7.8
of Binney & Tremaine (2008). By scattering some PEs back to
˜ <E 0 before they can escape, cooling should reduce the
evaporation rate, which the α criterion achieves by raising the
threshold for removal from the GC dynamics to ˜ E 0.1. But
this does not account for how cooling would also lower the
speed of the PEs that do escape; by raising the threshold Ẽ , the
criterion does the opposite. This may unintentionally help
account for heating of PEs during escape, but whether the α
criterion does so accurately is unclear. The accuracy should at
least vary with PE mass since cooling dominates at high mass
and heating at low mass (most stars).
A more physically motivated alternative is delayed escape, in

which PEs continue participating in collisional dynamics
before removal from the GC simulation. This option has been
implemented into MOCCA by Giersz et al. (2013). MOCCA
identifies PEs every time step ΔT via the raw criterion. Based
on FH00ʼs results, it estimates the probability the PE will
escape during ΔT as ( ) ( ˜ )wD º - + D -P T b E T1 1 c2 , where
b≈ 3 and c≈ 0.8 are tuned to best fit the mass-loss rate from
direct N-body codes. Random sampling with this probability
determines which PEs to remove each ΔT. Yet the scaling

˜D µ -t Eesc
2 from FH00 neglects GC dynamics and mass loss

and only applies for ˜ E 1. So Δtesc from MOCCAʼs algorithm
does not necessarily scale properly with Ẽ . Our results
accounting for GC evolution show that ( ˜ ˜ )D ~ - -t E E,esc

0.1 0.4

for PEs with (low, high) Ẽ , with some ambiguity in between
due to chaotic scattering. In principle, these new scalings can
be swapped with the ˜-E 2 relation in MOCCAʼs algorithm, and
the coefficients b and c retuned against direct N-body codes.
While MOCCAʼs delayed escape prescription could mildly

improve accuracy for escaper kinematics, it has not been
implemented into CMC since the impact on the GC mass-loss
rate is small. And like the simpler energy criteria with
immediate escape, it still limits the Hénon method’s capacity
to simulate more complex aspects of stellar stream morphology
arising from evolution or substructure in the tidal field. More
general alternatives are therefore necessary.

6.4.2. Generalizing to Nonspherical Clusters and Evolving Tides

There are many sources of evolving tides that we do not
account for in this work. The orbits of most MWGCs are
eccentric and inclined relative to the MW disk (Baumgardt
et al. 2019), traits that induce tidal shock heating from passage
near the MW’s center or through its disk, respectively. This
hastens GC dissolution and causes the GC’s bound mass to
fluctuate (e.g., Gnedin & Ostriker 1997; Baumgardt & Makino
2003; Webb et al. 2013, 2014a, 2014b; Madrid et al. 2014).
The eccentricity also causes the tidal tails to fan (e.g., Küpper
et al. 2008, 2010) and more realistic, nonspherical MW
potentials add further complexity. For instance, a triaxial fg
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(e.g., Capuzzo Dolcetta et al. 2005) produces further stream
gaps/overdensities and causes the GC orbit to precess, while a
rotating Galactic bar induces further fanning and asymmetry in
the lengths of the leading and trailing tails (Hattori et al. 2016;
Pearson et al. 2017). Modifications to gravity, an alternative to
DM, can cause similar asymmetry (Thomas et al. 2018; Kroupa
et al. 2022). Finally, as noted in Section 1, finer MW
substructures such as DM subhalos, molecular clouds, other
GCs, and infalling MW satellites can all heat and strip stars
from streams, leaving behind significant gaps and kinks. These
introduce fine time dependence to the tides experienced by a
GC, but tidal evolution on longer timescales is also likely,
especially for the many GCs in the MW halo suspected to have
been accreted from disrupted MW satellites (e.g., Helmi 2020).

Our motivations for developing the Hénon method for
stream modeling are its detail for internal stream populations
and its speed—and thus its capacity, in principle, to generate
large model grids of streams to explore the impacts of the many
competing factors above. To realize this prospect, improve-
ments to CMCʼs escape criteria and tidal physics must be
sufficiently general while not dramatically slowing CMC.

One option is to allow nonspherical fc and dynamics via
basis expansion and position-dependent velocity diffusion
coefficients (Vasiliev 2015). While this only enables mild
(factor of 2) asymmetries, so it cannot on its own resolve tidal
tails, it accounts for fcʼs asymmetry and allows PEs to continue
participating in dynamics until escape. Collisionless trajectory
integration could then follow as in our approach. But critical
drawbacks accompany these advantages: (1) The method
requires following each body’s orbit and applying diffusion
on the dynamical timescale, making it far slower than the
Hénon method. (2) The asymmetry makes assigning pairs of
nearest neighbors highly nontrivial, hindering the implementa-
tion of strong encounters. (3) Updating CMC to use the method
or adding many years of CMC development (stellar evolution,
strong encounters, escape) to Vasiliev’s code would be time-
consuming. The benefits for stream modeling are not likely
enough to outweigh these drawbacks. As we argued above,
explicit treatment of collisional dynamics for PEs should not
substantially alter stream properties and fcʼs mild asymmetries
in the GC halo are not as relevant to streams as external tides or
dynamics in the core, where most diffusion to ˜ >E 0 occurs
(Spitzer & Shapiro 1972; W23).

To generalize the Hénon method to evolving tides, Sollima
& Mastrobuono Battisti (2014) developed an escape prescrip-
tion for noncircular GC orbits in two distinct cases of a static,
cylindrically symmetric MW potential: a point-mass fg and fg
with bulge, disk, and halo components. At each time step ΔT,
for each body in the GC, their algorithm isotropically samples a
random escape vector, along which it computes the distance
(and feff at) the tidal boundary. It flags as PEs bodies with
sufficient energy and angular momentum to cross the boundary
during ΔT, based on each body’s orbital period in the GC.
(Note this is mildly improper as it assumes escape occurs
within several crossing times.) The orbits of the GC and all PEs
are then integrated within the external fg for a full orbital
period of the GC in the MW. PEs are only removed from the
simulation if they pass beyond the maximum rt of the GC
during this integration, allowing PEs to continue participating
in dynamics prior to removal. Drawbacks are that the PE
trajectories do not account for fc and that the above selection of
PEs is based on laborious calculations (in their Appendix) for

their specific choices of fg, an approach hard to generalize to
more substructured fg.
More recently, Rodriguez et al. (2023) developed new CMC

escape prescriptions for noncircular GC orbits and applied
them to an evolving, substructured fg from a FIRE-2 MHD
simulation of a MW-like galaxy. They first extracted time
series data on the tidal tensor (spatial second derivatives of the
local fg) from the orbits of particles representing GCs in the
galaxy simulation, then ran CMC computing rt every time step
based on that data (loaded as an input file). When loading tidal
tensor data from Gala integrations of eccentric GC orbits in a
static fg (with bulge, disk, and halo components), CMC
reproduced well the mass evolution of equivalent direct N-
body models (Webb et al. 2014a)—at least when using rapo> rt
rather than an energy criterion. However, mass loss was
slower/faster than in the direct N-body models for low-/high-
eccentricity GC orbits. These respective deviations are at least
partly due to ˜ >E 0 not universally implying rapo> rt, the
maximum distance to the tidal boundary, and the algorithm’s
inability to recapture some escaped bodies when the boundary
reexpands after each perigalacticon.
In the near term, when applying CMC to model streams from

GCs on eccentric or inclined orbits, or in evolving,
substructured fg, we will blend our collisionless integration
of escape trajectories—similar to Sollima & Mastrobuono
Battisti (2014)—with the tidal tensor technique of Rodriguez
et al. (2023). Specifically, we intend to identify PEs in the same
way as Rodriguez et al. (2023), immediately removing them
from CMC (neglecting collisional dynamics for PEs during their
escape due to their small impact on stream properties). We can
then directly integrate the PE trajectories over each time step in
post-processing as in this work. This is advantageous since it
will not entail building into CMC a separate collisionless
integrator for escaping/escaped bodies. Unlike in this work, the
orbit integration would occur in an inertial Galactocentric
frame since the pseudo-forces (centrifugal, Coriolis, Eulerian,
etc.) in the noninertial GC frame are not generally known for an
evolving, substructured fg.
In the longer term, we aspire to add a galactic dynamics

integrator to CMC to allow collisional dynamics (and delayed
escape) for PEs and recapture of escaped bodies. Due to the
lack of a general definition for Ẽ in an evolving, substructured
fg, and to avoid missing any bodies capable of escape, we
would select PEs via a more liberal version of the apocenter
criterion than used by Rodriguez et al. (2023)—e.g., rapo/
rt> 2/3. This corresponds roughly to the minimum distance to
the tidal boundary, and the radius beyond which the GC is
significantly nonspherical. Rather than being removed
immediately from CMC, PEs flagged in this manner would
then be randomly projected into full six-dimensional phase-
space coordinates (as in this work) and their trajectories
integrated in the full combined fc+ fg with the integration
time set to CMCʼs current time step. At the end of the
integration, CMC would remove the PE from its collisional
dynamics if r/rt> 2/3, but if r/rt� 2/3, the body would stay
in the GC to take part in dynamics in the next time step.
(Repeating this procedure every time step is appropriate since
CMC operates on the relaxation timescale, over which bodies’
orbits are randomized.) Collisionless integration of the escapers
would continue from there, separately but still internal to CMC.
At the end of every time step, escapers that return within r/
rt< 2/3 could then be transferred back to the main collisional
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dynamics routine. This would allow recapture, unlike the
methods of Sollima & Mastrobuono Battisti (2014) or
Rodriguez et al. (2023), but implementation would not be
trivial as it requires expanding CMCʼs parallelization scheme to
escapers.

7. Summary and Future Work

We have applied for the first time orbit-averaged star cluster
models to study the formation of tidal tails and stellar streams
from GCs. Specifically, we use CMC—a state-of-the-art,
publicly available implementation of the Hénon (1971a,
1971b) Monte Carlo method. Though this method assumes
spatial spherical symmetry in its collisional dynamics, we show
that treating energetically unbound bodies (PEs) as collision-
less enables formation in post-processing of asymmetric tidal
phenomena such as tidal tails with exquisite detail. The benefits
of the Hénon method are that it is much faster than direct
summation N-body methods for GCs of typical N and density,
making it far better suited to large-parameter-space modeling of
tidal tails and stellar streams from GCs—an essential feature
due to the vast array of considerations internal and external to
the GC relevant to stream properties. While even faster but
more approximate stream simulation is possible via common
particle spray techniques, CMC can generate streams with many
of the advantages of a full GC-modeling code. These include
highly accurate details on the time of escape, escaper
kinematics, and details on streams’ internal populations (e.g.,
masses, star types, binary properties, etc.). CMC may be
especially ideal for rapid but reliable exploration of tidal tails
from large grids of nonstandard GCs, such as those with
atypical stellar IMFs, extreme density, unusual binary fractions,
or intermediate-mass BHs (work in progress). Key limitations
are that the Hénon method’s assumptions of evolution on the
relaxation timescale, virial equilibrium, and high N105 (for
realistically broad stellar IMFs), make it unsuited for modeling
tidal shocking or the final stage of GC dissolution. Yet, as
discussed in Section 6, further refinements can allow the Hénon
method to simulate streams from GCs on noncircular orbits,
even in an evolving, highly substructured external potential.

The main findings of this work, the second in our series on
escape from GCs, are as follows:

1. We demonstrate that the Hénon method can accurately
reproduce known features of tidal tails and stellar streams
from GCs on circular orbits within a time-independent,
spherical Galactic potential. This is achieved by collision-
lessly integrating the trajectories of PEs in the full
tidal field.

2. We examine for the first time the in-cluster survival
timescale (escape timescale Δtesc) of PEs in a realistically
evolving GC potential, and also account roughly for the
impact of ongoing collisional dynamics on PEs via the
Giersz et al. (2008) α escape criterion. Escape, in this
case, occurs on a timescale of ≈100Myr instead of
≈10 Gyr in the static, collisionless case.

3. GC mass loss leads to a new scaling of Δtesc with excess
relative energy Ẽ—namely, ( ˜ ˜ )D µ - -t E E,esc

0.1 0.4 for
˜( ) E 0.03, 0.56 , respectively—much shallower than the
scaling ˜D µ -t Eesc

2 for a static GC potential.
4. We highlight discreteness in the Δtesc distribution arising

from chaotic scattering. Different characteristic Δtesc

within distinct locally smooth regions of the phase space
of PEs introduce successive plateaus in the Δtesc
distribution for ˜ E0.03 0.56. This hinders a clean
power-law scaling of Δtesc on Ẽ in this interval.

5. We analyze for the first time the impact of return
trajectories circumnavigating the Galactic center, finding
they produce robust returning tidal tails on a timescale of
∼10 Gyr for GCs at Rgc= 8, kpc in our idealized
circumstances. Though a realistically evolving Galaxy
with significant substructure is likely to disperse such
tails, they may eventually be observable in proper motion
space and could excellently constrain the history and
substructure of the Galaxy over longer timescales than
typical streams. Returning tails may be more relevant for
GCs in dwarf galaxies, where the timescale for low-Ẽ
escapers to return to the GC is much shorter.

6. In our ideal case, the returning tails increase velocity
dispersion in stellar streams by several kilometers per
second, an effect similar in magnitude to the perturbative
influence on streams by giant molecular clouds, the
Galactic disk, and DM subhalos. Though the velocity
dispersion enhancement is likely much smaller for
streams dispersed by a realistically evolving and
substructured Galaxy, the boost to velocity dispersion
may still be comparable to the 0.5 km s−1 boost from
other observing biases, such as unresolved binaries.

In future work, we will further refine escape prescriptions in
CMC to model streams from GCs on noncircular orbits in an
evolving, substructured Galaxy. To do so, we will combine our
collisionless integration of escape trajectories with the general
computation of an approximate spherical tidal boundary relying
on tidal tensors (Rodriguez et al. 2023). We will also study in
more detail the internal stellar populations inhabiting the tidal
tails and streams from our simulated GCs. This will include an
analysis of observability by continuing stellar evolution for
escapers and converting their luminosities to common
observing magnitudes (e.g., with Gaia), following the
technique of Rui et al. (2021a). Other focii will be binaries in
our streams (relevant to velocity dispersion biases) and mass
segregation both parallel and perpendicular to the stream axis,
which respectively would bias the observed length and width of
streams due to lower observing completeness at lower mass.
The former case (Webb & Bovy 2022) naturally develops since
GCs tend to eject low-mass stars faster, and therefore earlier on
average. Mass segregation perpendicular to the stream has not
been considered before, but may arise from velocity-dependent
ejection speeds of stars—e.g., due to the strength of the
velocity kick scaling inversely with mass, or due to the higher
rate of strong encounters for high-mass stars segregated in the
GC’s core. Such analysis would improve our understanding of
observing biases relevant to stream morphology and kine-
matics, useful to reducing uncertainties when applying stream
observations to, e.g., place firm constraints on the nature of
DM. In summary, CMCʼs speed and aforementioned capabil-
ities/planned improvements should enable us to construct for
the first time large grids of stream models using a dedicated
GC-modeling code, along with detailed comparisons to stream
observations.
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Appendix
Tidal Tail Speed Maps

To aid visual interpretation of Figures 16 and 17, we
include here a more detailed pair of two-dimensional maps of
the speed profile 〈v− vc〉 in Figures 18 and 19. Each shows
the CC’d GC under the α escape criterion and use the same
binning strategy and coordinates of Figure 14 described in
Section 5.5, except that only escapers with ∣ ( )∣¢ <x t 0.05 and
z(t)< rt(t)/Rgc are counted (consistent with Figures 16 and 17).
Figure 19 further excludes the returning tails by cutting
out PEs 500 Myr after their first escape (crossing to r> rt).
Doing so clearly increases 〈v− vc〉 from the perspective of
the Galactic center (lower panels) and reduces the dispersion
in 〈v− vc〉 (spread in color) at any ¢y because there is no
longer a returning tail to oppose the local flow of the
outgoing tail.

Figure 18. As in Figure 14, but mapping the time-averaged local mean stream speed 〈v − vc〉 relative to the GC circular speed instead of the surface density, and
counting only PEs with ∣ ( ) ∣¢ <x t 0.05 and z(t) < rt(t)/Rgc. Black regions indicate bins outside this interval or where no escapers are present in any of the 2001
snapshots across ages t ä [11, 13] Gyr.

Figure 19. As in Figure 18, but excluding the returning tails by cutting out PEs 500 Myr after their first escape (crossing to r > rt).
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