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ABSTRACT

Inspired by the success of graph contrastive learning, researchers
have begun exploring the benefits of contrastive learning over hy-
pergraphs. However, these works have the following limitations in
modeling the high-order relationships over unlabeled data: (i) They
primarily focus on maximizing the agreements among individual
node embeddings while neglecting the capture of group-wise collec-
tive behaviors within hypergraphs; (ii) Most of them disregard the
importance of the temperature index in discriminating contrastive
pairs during contrast optimization. To address these limitations,
we propose a novel dual-level HyperGraph Contrastive Learning
framework with Adaptive Temperature (HyGCL-AdT) to boost
contrastive learning over hypergraphs. Specifically, unlike most
works that merely maximize the agreement of node embeddings
in hypergraphs, we propose a dual-level contrast mechanism that
not only captures the individual node behaviors in a local con-
text but also models the group-wise collective behaviors of nodes
within hyperedges from a community perspective. Besides, we de-
sign an adaptive temperature-enhanced contrastive optimization to
improve the discrimination ability between contrastive pairs. Em-
pirical experiments conducted on seven benchmark hypergraphs
demonstrate that HyGCL-AdT exhibits excellent effectiveness com-
pared to state-of-the-art baseline models. The source code is avail-
able at https://github.com/graphprojects/HyGCL-AdT.
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1 INTRODUCTION

Hypergraphs, which introduce versatile structures through hyper-
edges connecting multiple nodes to represent intricate relationships,
have been investigated across diverse domains such as social net-
works and knowledge graphs [2, 7, 8]. Inspired by the success of
graph contrastive learning, recent works [7, 16] extend contrastive
learning to hypergraphs for modeling hypergraph structures via
hypergraph neural networks (HyGNNs) over unlabeled data. How-
ever, current contrastive methods over hypergraphs [15, 16] still
have limitations in modeling the high-order relationships and col-
lective behaviors within hypergraphs over unlabeled data: (i) These
works primarily focus on maximizing agreements among node em-
beddings while neglecting the capture of group-wise behaviors
within hypergraphs; (ii) They consider the temperature index in
contrastive learning as a hyper-parameter while underestimating
the importance of temperature in differentiating contrastive pairs
during contrast optimization.

To handle these challenges, in this work, we design a novel dual-
level HyperGraph Contrastive Learning framework with Adaptive
Temperature called HyGCL-AdT to enhance hypergraph con-
trastive learning. Specifically, we first introduce a noise-enhanced
module over augmented hypergraphs to generate challenging hy-
pergraph pairs. Afterward, the noise-enhanced hypergraph aug-
mentations are fed to the HyGNNs encoder to obtain the node
embeddings and the hyperedge embeddings. To address the first
challenge, we design a dual-level contrast mechanism that aims to
maximize the agreements among individual node embeddings at
the node level and also focuses on capturing the group-wise behav-
iors within hyperedges at the community level, simultaneously. To
handle the second challenge, we design an adaptive temperature-
enhanced optimization to dynamically adjust the temperature dur-
ing dual-level contrast optimization. This adaptation serves to en-
hance the discriminative capacity between contrastive pairs. To
conclude, this work makes the following contributions:
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o Novelty: We design a novel dual-level hypergraph contrastive
learning framework that is enhanced by adaptive temperature
optimization to pre-train HyGNNs encoder over unlabeled data.

e Generalization: HyGCL-AdT is designed as a general frame-
work that unifies various hypergraph augmentations to boost
hypergraph representation learning and enhance the model per-
formance over various downstream tasks.

o Effectiveness: Empirical experiments over seven benchmark hy-
pergraphs demonstrate the effectiveness of HyGCL-AdT.

2 RELATED WORK

Inspired by existing graph contrastive learning works [10, 22] over
graph datasets [13, 14, 18, 20, 21, 23-25], researchers start to explore
the benefits of contrastive learning over hypergraphs [7, 16]. For
instance, HyperGCL [16] proposes a generative method to create
generative augmentations of hypergraphs. CHGNN [15] designs an
adaptive augmentation strategy for hypergraph augmentation and
further proposes the updated hypergraph encoder to learn the node
embedding over the unlabeled data. However, these works still have
limitations in describing the group-wise collective node behaviors
during hypergraph contrastive learning. However, these works
do not consider the influence of temperature index in contrastive
optimization. Motivated by these works, we design a dual-level hy-
pergraph contrastive learning with an adaptive temperature frame-
work to reach agreements among node embeddings and group-wise
community embeddings.

3 METHODOLOGY

In this section, we present the details of HyGCL-AdT: (i) noise-
enhanced augmentation; (ii) dual-level hypergraph contrastive strat-
egy; (iii) adaptive temperature enhanced optimization.

Noise-Enhanced Hypergraph Augmentation. Given the hy-
pergraph augmentation set 7~ including hyperedge removal, edge
perturbation, attribute masking, node dropping, and subgraph, we
randomly select one pair of hypergraph augmentation methods
from 7~ and further obtain the augmented hypergraph pair (G1, G2).
Inspired by the conclusion that relatively challenging contrastive
learning tasks can enhance the ability of representation learning
compared with easy contrastive learning tasks [9, 11, 12, 17, 22],
we propose to generate challenging augmented hypergraph pairs
by performing random noise over the augmented hypergraphs.
Specifically, with the augmented graph pair (G1, G2), for each node
v; € V, we perform a random noise ; following a specific dis-
tribution (e.g., uniform distribution) to the node attribute feature
x;. The attribute feature with noise is formulated as X = X + § =
[x1 + 81502 + O2; - - ;xN + ON], where X is the original node at-
tribute feature, [-; -] is the concatenation operator among attribute
features. Afterward, we obtain two noise-enhanced hypergraphs
(G = ((V1,81,(\~’1),Q~2 = (V3, 82, X2)], where V, and &, are the
set of nodes and the hyperedges in the corresponding G-.

Dual-Level Hypergraph Contrastive Strategy. After obtaining
noise-enhanced augmented hypergraphs, a dual-level contrastive
strategy is devised to align the node embeddings locally and match
the group-wise community embeddings globally.
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Node-Level Hypergraph Contrastive Learning. Following existing
works (e.g., HyperGCL [16]), we also employ a node-level hyper-
graph contrastive learning (HyGCL) module to ensure that the same
nodes from different augmented hypergraphs are encoded closely,
while different nodes are embedded farther apart. Specifically, given
two nodes (v;,v;) from (él,éz), we obtain the node embeddings
(u}, u?) by feeding the augmented graph (G1,G2) to any HyGNNs
encoder. Here we employ AllDeepSet [5] as the encoder. We then
feed (u}, u?) to projection head h(-). (v;, v;) is a positive contrastive
pair if i = j. Otherwise, it is a negative pair in node-level HyGCL.

Community-Level Hypergraph Contrastive Learning. Although the
node-level HyGCL captures the information of individual nodes,
it may not be sufficient for capturing the collective node behav-
iors within hyperedges. Therefore, we propose the community
embeddings to capture the collective node behaviors within hyper-
edges. Consider two hyperedges (el.l, e]z.) from augmented graphs

(G1.G2) where ¢/
nodes {vs3, v4, v7}, as illustrated in Figure 1. Contrastive learning on
hyperedge embeddings might be insufficient to distinguish negative
hyperedge pair el.1 and e?, as they share most of the nodes during in-

contains nodes {v1,v2, 03,04} and ejz. contains

formation propagation. In light of this, we design a community-level
HyGCL module to capture the group behaviors within hyperedges
from a global perspective. Specifically, for each hyperedge e; € &,
we first get the hyperedge embedding z; via the HyGNNs encoder.
Then the community embedding is formulated as:

1
hi=z; @ —— E
i Zl@d(ei) Um,

mee;

ey

where h; denotes the community embedding distinguied by hy-
peredge e;, u,, represents the embedding of node v,, within the
hyperedge e;, d(e;) denotes the degree of e;, and & is the concate-
nation operator. With community embeddings h% and h? from G,

and G», we consider the community embeddings distinguished by
the same hyperedge from different augmented hypergraphs as the
positive contrastive community pairs, and we expect that their com-
munity embeddings would stay closer than others. On the contrary,
the community embeddings distinguished by different hyperedges
from different augmented hypergraphs should be far apart. To make
it clear, (h},h?) will be viewed as positive contrastive pair if i = j.
Otherwise, it would be a negative contrastive community pair.

Adaptive Temperature Enhanced Contrastive Optimization.
To make positive contrastive pairs closer and negative pairs farther,
several contrastive losses are designed, e.g., NT-Xent loss [4]. All
contrastive losses occupy the temperature index 7 as a proxy to
scale the embeddings and control the penalties on negative sam-
ples. However, most consider 7 as a hyper-parameter to scale the
representations but ignore the fact that a fixed temperature may
not be optimal during the whole training process.

Adaptive Temperature in Dual-Level Hypergraph Contrastive Learn-
ing. In light of this, we design a module where the temperature
can be learned at an adjustable pace based on the distance among
these negative contrastive pairs. If the distance among negative
contrastive pairs is small (hard negative pairs), the temperature de-
creases rapidly, while it decreases slowly when the distance among
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Figure 1: The framework of HyGCL-AdT: (i) given a hypergraph G, HyGCL-AdT samples A1, A, from hypergraph augmentation
set 7. Here A1 and A; denote hyperedge removal and node dropping, respectively. With the augmented hypergraphs, it performs
noise ¢ over augmented graphs for generating challenging hypergraph pairs; (ii) augmented graphs G; and G; are fed into
HyGNNs encoder f(-) and projection head A(-) to get node and hyperedge embeddings. (iii) a dual-level contrastive strategy is
designed to reach agreements among node embeddings from a local view and agreements among community embeddings from
a global perspective. The dual-level contrast optimization is enhanced via the adaptive temperature 7,; and 7, respectively.

negative pairs is large (easy negative pairs). Eventually, the tem-
perature will converge to an optimal value. Formally, the adaptive

module in dual-level HyGCL is formulated as:
[VIIVI]
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Here Tr(l;) is the adaptive temperature in node-level HyGCL at

(2)

Tem is the adaptive temperature in
(t)1

Ot — a2 and [[n{"" — 02| are
the pairwise distances among nodes and communities in the em-
bedding space from different augmented hypergraphs Gi and G at
time t. n denotes the learning rate; p is the scaling factor to control
the influence of distance among embeddings; 7;,,, is the hyperpa-
rameter to control the lower bound. Mention that, the lower bound
Tjow 1S to prevent the temperature from becoming too small or
approaching zero, ensuring a more reliable learning process.

the current training epoch ¢.

community-level HyGCL. ||u

Overall Optimization. With the designed adaptive temperature in
both node-level and community-level HyGCL-AdT, the overall con-
trastive loss L, ¢ can be formulated as:

Lnd em =M * Lnag + Ay ¥ Lem, where

Lpag =~ log Z

v; eV

Lem = —log Z

e; €&

exp (sim (u},u?)/r;d)

kéiexp (sim (u},u)/7} ;) +exp (sim (uj,v?) /7" ) ’

®3)
exp (sim (h!, h2) /7¢,,)
3 exp (sim (0] 03) /22) + exp (sim (] )/ )
+i

Here A; and A, are hyper-parameters to balance node-level and
community-level HyGCL-AdT. 7, , and 7, are the adaptive tem-
peratures at both levels.
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4 EXPERIMENTS

Experimental Setup
Dataset: We employ seven benchmark datasets from existing HyGNNs
literature, including three co-citation and co-authorship networks
from [19] (i.e., Cora, Citerseer, Cora-CA), one drug trafficking hyper-
graph for user role classification classification (Twitter-HyDrug [7]),
two hypergraph datasets (i.e., Zoo and Mushroom) from the UCI
categorical machine learning repository [1], one computer vision
hypergraph data (i.e., NTU2012) from [3]. Baseline Methods: To
evaluate the performance of HyGCL-AdT, we consider three base-
line methods, including three HyGNNs5 (i.e., HCHA [2], UniGC-
NII [6], and AllDeepSets [5]) and one recent contrastive learning
method over hypergraphs, i.e., HyperGCL [16]. Experimental Set-
tings: All experiments are conducted under the environment of
the Ubuntu 16.04 OS, plus an Intel 19-9900k CPU, two GeForce
GTX 2080 Ti Graphics Cards, and 64 GB of RAM. To make fair
comparisons, we exactly follow the settings of HyperGCL: (i) We
train all methods with 500 epochs; (i) The train/val/test ratio is
10%/10%/80%; (iii) We adopt AllDeepSets [5] as the encoder over all
datasets. nd the average performance multiplied by 100 on testing
data is reported. In Equation 3, A; and A, are set as 1.0.

Experiment Analysis

HyGCL-AdT Enhances Semi-supervised Learning. Table 1
shows the accuracy performance of all methods over seven datasets
for node classification tasks. From this table, we conclude that: (i)
contrastive learning over unlabeled data boosts the representation
learning in hypergraphs as HyperGCL outperforms AllDeepSets
over all datasets. (ii) HyGCL-AdT outperforms all baseline methods,
showing the effectiveness of HyGCL-AdT in enhancing hypergraph
representation learning, showing the effectiveness of our dual-level
HyGCL and the adaptive temperature optimization.
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Table 1: Accuracy performance comparison for node classification. Purple shaded numbers indicate the best result and gray

shade numbers represent the runner-up performance.

Cora Citeseer Cora-CA Twitter-HyDrug Zoo Mushroom NTU2012
HCHA 72.20 £ 1.69 65.33 £ 0.57 75.12 £ 0.99 66.69 £ 0.74 69.51 £ 10.02 97.65 £ 0.45 73.88 £ 1.74
UniGCNII 71.23 £ 0.66 65.71 £ 1.48 77.35 £ 0.27 66.59 £ 1.38 69.09 + 10.64 99.85 £ 0.04 74.27 £ 1.41
AllDeepSets 68.14 £ 1.31 63.60 £ 1.27 68.52 £ 2.67 67.65 £ 1.18 58.48 + 9.13 99.72 £ 0.18 72.54 £ 1.42
HyperGCL 73.52 £ 1.05 66.82 £ 0.98 76.57 £ 1.70 68.45 £ 1.05 58.77 £ 6.09 99.76 £ 0.15 76.16 £ 1.26
Ours 76.20 £ 0.44 79.39 £ 1.32 78.59 £ 0.51 68.76 £ 0.41 69.88 + 12.45 99.92 + 0.05 77.64 £ 0.84
Temperature Analysis in HyGCL-AdT. We conducted additional [3] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. 2003. On visual

experiments to study the influence of temperature on HyGCL-AdT.
Figure 2 illustrates the performance of HyGCL-AdT with static 7,
and HyGCL-AdT without the lower bound constraint zj,,,. We find
out that the static values of 7 achieve excellent performance but still
do not yield the best performances. Besides, HyGCL-AdT without
T]o decreases obviously over these datasets. These findings show
the rationality of our adaptive contrast optimization.

Cora Cora-CA

78 77 81 80
Static T=1.0 HyGCL-AdT \ Tiow Static T=1.0 HyGCL-AdT \ Tiow
B statict=0.3 HyGCL-AdT N Static 7=0.3 HyGCL-AdT
76 75 79 78
74 73 77 76
72 ACC F1 775 ACC F1 74

Figure 2: Performance of HyGCL-AdT under different con-
trast optimization strategies over Cora and Cora-CA datasets.
The left axis is for accuracy and the right axis is for Macro-F1.

5 CONCLUSION

The paper designs an adaptive temperature-enhanced dual-level
hypergraph contrastive learning model to enhance hypergraph con-
trastive learning. To handle the limitations of existing hypergraph
contrastive learning w.r.t. underestimating group-wise behaviors
and ignoring the importance of temperature in contrast optimiza-
tion, HyGCL-AdT introduces a dual-level contrast mechanism to
capture individual behaviors and group-wise behaviors simultane-
ously. Besides, it designs adaptive temperature-enhanced contrast
optimization to improve discrimination ability between contrastive
pairs. Empirical experiments on seven hypergraphs demonstrate
the effectiveness of HyGCL-AdT.
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