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ABSTRACT

The opioid crisis has been one of the most critical society concerns
in the United States. Although the medication assisted treatment
(MAT) is recognized as the most effective treatment for opioid mis-
use and addiction, the various side effects can trigger opioid relapse.
In addition to MAT, the dietary nutrition intervention has been
demonstrated its importance in opioid misuse prevention and re-
covery. However, research on the alarming connections between
dietary patterns and opioid misuse remain under-explored. In re-
sponse to this gap, in this paper, we first establish a large-scale
multifaceted dietary benchmark dataset related to opioid users at
the first attempt and then develop a novel framework - i.e., namely
Opioid Misuse Detection with INterpretable Dietary Patterns (Diet-
ODIN) - to bridge heterogeneous graph (HG) and large language
model (LLM) for the identification of users with opioid misuse and
the interpretation of their associated dietary patterns. Specifically,
in Diet-ODIN, we first construct an HG to comprehensively incor-
porate both dietary and health-related information, and then we
devise a holistic graph learning framework with noise reduction
to fully capitalize both users’ individual dietary habits and shared
dietary patterns for the detection of users with opioid misuse. To fur-
ther delve into the intricate correlations between dietary patterns
and opioid misuse, we exploit an LLM by utilizing the knowledge
obtained from the graph learning model for interpretation. The
extensive experimental results based on our established benchmark
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with quantitative and qualitative measures demonstrate the out-
standing performance of Diet-ODIN on exploring the complex in-
terplay between opioid misuse and dietary patterns, by comparison
with state-of-the-art baseline methods. Our code, built benchmark
and system demo are available at https:/github.com/Diet-ODIN.
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1 INTRODUCTION

Opioids are a class of drugs including the illegal drug heroin, syn-
thetic opioids like fentanyl, and prescription pain relievers such as
oxycodone [35]. Besides pain relief, opioids could produce euphoria
and therefore might be easily misused [8, 39, 40] - e.g., 10.1 million
Americans reported misusing opioids in 2019; an estimated 108,000
drug overdose deaths in the United States in 2021 [4], 90% of which
involved opioids [47]. Besides the negative impact on public health,
opioid misuse and addiction have also caused devastating socioe-
conomiic crises (e.g., domestic violence, child abuse). To battle the
deadly opioid epidemic, medication assisted treatment (MAT) [14],
which takes the opioid agonists such as methadone or buprenor-
phine in combination with counseling, has been recognized as the
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Figure 1: The illustration of (a) dietary role in opioid misuse prevention/recovery, and (b) goal of Diet-ODIN.

most effective treatment for opioid misuse and addiction [30]. De-
spite its effectiveness, the various induced side-effects can often
trigger opioid relapse [8, 30, 34], which calls for novel solutions to
promote health resilience for people against the opioid epidemic.

In addition to MAT, it has been demonstrated that dietary nu-
trition intervention could play an important role in opioid misuse
prevention and recovery [6, 8, 23, 25, 34, 52]. As illustrated in Figure
1.(a.1), the research has shown that opioid misuse can often lead
to malnutrition, nutrient deficiencies such as reduced protein [28]
and dietary fiber intake [24], metabolic disorders that compromise
nutrition, and altered body composition, which in turn impede its
prevention and recovery; while Figure 1.(a.2) and (a.3) have also
exemplified the interplay between opioid misuse recovery and as-
sociated dietary patterns. These indicate that the distinct dietary
patterns may serve as subtle yet informative indicators for the
early detection of opioid misuse, particularly in scenarios such as
self-medication or poly-pharmacy, where individuals might not
recognize their misuse [29], or in cases where misuse is intention-
ally concealed. Moreover, the task can not only assist in the timely
identification of at-risk individuals for healthcare providers and
relevant authorities to intervene, but also pave a new paradigm in
opioid misuse and addition treatment through the understanding of
dietary patterns linked to opioid misuse. This naturally brings up
the question: how can we leverage dietary data to identify users with
potential opioid misuse, and enhance the understanding of both known
and less-known dietary patterns associated with opioid misuse?

To answer this question, existing works [23, 25, 30, 34, 52] pre-
dominantly rely on traditional methods, such as limited surveys and
case studies. There exists a notable gap in automating larger scale
data analysis to comprehensively explore the alarming connections
between dietary patterns and opioid misuse. To bridge this gap, as
shown in Figure 1.(b), in this work, we establish a large-scale multi-
faceted dietary benchmark dataset related to opioid users at the first
attempt and develop a novel framework - i.e., namely Opioid Misuse
Detection with INterpretable Dietary Patterns (Diet-ODIN) - to
bridge heterogeneous graph (HG) and large language model (LLM)
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for the identification of users with opioid misuse and the interpreta-
tion of their associated dietary patterns. Specifically, in Diet-ODIN,
based on the National Health and Nutrition Examination Survey
(NHANES) data [5], which intends to evaluate the health and nu-
tritional status of adults and children in the United States, we first
construct the NHANES Dietary Graph with heterogeneous graph
structure to comprehensively incorporate users’ dietary and health-
related information. Then, Diet-ODIN is designed to detect users
with potential opioid misuse through their dietary patterns, includ-
ing food choices and eating habits, and to further provide pertinent
interpretations. Nevertheless, distinguishing users with potential
opioid misuse from others through their dietary patterns is a non-
trivial task, as it involves comprehensively leveraging multifaceted
yet complex information, including (1) the common dietary patterns
among users, and (2) the specific foods and/or habits adopted by
individuals; (3) in addition, noise in real-life dataset, such as users’
faulty dietary recollections or data recording errors, renders the
task more challenging. To jointly tackle the three grand challenges
above for the detection of users with potential opioid misuese, based
on the constructed NHANES Dietary Graph, Diet-ODIN presents
the Noise Reducing Heterogeneous Graph Neural Network (NR-
HGNN) by introducing a holistic graph learning framework to fully
integrate both users’ individual dietary habits and shared dietary
patterns with a refinement component for denoising. Moreover,
to interpret the correlation between detected users and associated
dietary patterns, Diet-ODIN further bridges LLM and NR-HGNN
to provide explicit explanations by utilizing the knowledge learned
from the NR-HGNN as prompts for LLM. Lastly, the new findings
based on the extensive analysis performed over the outputs from
Diet-ODIN unveil new insights for combating the opioid crisis.
Overall, the key contributions of this work are summarized as:

e To the best of our knowledge, this is the first Al-driven frame-
work that comprehensively explores the correlations between
opioid misuse and users’ diets with explainable outputs. In this
work, we have also established a large-scale multifaceted dietary
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benchmark dataset related to opioid users at the first attempt for
other researchers and practitioners towards this line of research.
We develop an innovative and holistic framework named Diet-
ODIN to detect users with potential opioid misuse with inter-
pretable dietary patterns. Based on the builit NHANES Dietary
Graph, this framework presents a novel NR-HGNN model to
jointly capitalize shared dietary patterns among users with a
micro-level aggregation module and individual dietary behaviors
with a macro-level aggregation module, while also emphasizing
noise reduction with a refinement component. Moreover, to inter-
pret the relationship between dietary patterns and opioid misuse,
Diet-ODIN implements two innovative strategies leveraging the
knowledge learned from NR-HGNN for an LLM to enhance its
effectiveness in analytical reasoning.

We conduct extensive experiments based on our established
benchmark, whose results show that Diet-ODIN outperforms
existing baselines in detecting potential opioid misuse and offers
reliable interpretations of the correlations between opioid misuse
and dietary patterns, aligning with both existing literature and
statistical analysis. These interpretations provide new insights
for combating the opioid crisis, shedding light on prospective
avenues for future research.

2 RELATED WORK

Heterogeneous Graph Neural Networks. Graph Neural Net-
works (GNNs) have demonstrated effective in a variety of graph
learning tasks, outperforming traditional methods [17, 37, 45] by
leveraging advanced message-passing frameworks [19, 26, 51]. How-
ever, many approaches mainly focus on homogeneous graphs and
struggle to interpret the complex semantics inherent in heteroge-
neous graphs, which consist of diverse node and relation types.
To address this, several studies [10, 16, 54-56, 63] have utilized
meta-paths to capture high-order semantics from such graphs. De-
spite their advances, these methods often heavily rely on expert
knowledge for meta-path definition and might overlook contextual
information. In response, alternative efforts [22, 27, 41] have intro-
duced type-specific transformations to better respect the graphs’
heterogeneity on simpler, direct connections, but at the risk of
underrepresenting longer-range dependencies. Moreover, both ap-
proaches may struggle with noise frequently existing in real-world
heterogeneous graphs. In contrast, based on our NHANES Dietary
Graph, NR-HGNN addresses these issues by balancing the integra-
tion of both micro- and macro-level information aggregation for
richer node embeddings and introducing a refinement module for
noise reduction in practical settings.

Large Language Models for Reasoning. Large language mod-
els [3, 48, 49, 59, 62] have demonstrated remarkable reasoning capa-
bilities across a range of commonsense tasks [3, 50]. Despite their
success, LLMs often encounter challenges in fields that demand spe-
cialized knowledge, including healthcare [60], law [2], finance [44],
and medicine [46]. Addressing this limitation, researchers have
enriched LLMs with domain-specific knowledge through manual
interventions, such as tailored prompts [44, 46] and in-context learn-
ing [2, 60], by elucidating task-specific factors. Drawing on these
advancements, we propose to enhance LLMs’ reasoning abilities
to discern correlations between dietary patterns and opioid usage.
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Specifically, by utilizing the knowledge learned from the NR-HGNN
as prompts, we elegantly bridge LLM and NR-HGNN to interpret
the complex interplay between opioid misuse and dietary patterns.
Opioid Misuse Detection. Research in opioid misuse detection
encompasses both quantitative and qualitative approaches. Quanti-
tative studies predominantly employ machine learning algorithms
for predicting opioid overdose [57, 64] or relapse risk from medi-
cal records [15, 20], or for identifying opioid users and traffickers
through social media data analysis [13, 21, 38]. Nonetheless, these
approaches primarily focus on prediction rather than offering de-
tailed analyses or innovative insights into opioid misuse prevention.
On the qualitative side, research within healthcare domain examines
the link between dietary patterns and chronic opioid usage through
case studies and qualitative analyses [7, 58], highlighting signifi-
cant correlations [1, 28]. Yet, these studies are often restricted to
specific instances and lack a predictive model applicable universally.
Addressing this gap, we introduce a comprehensive framework that
not only detects but also provides interpretable analyses of opioid
misuse based on dietary patterns.

3 NHANES DIETARY GRAPH

In this section, we first elucidate the key concepts foundational to
our study, followed by an exposition on NHANES Dietary Graph.

Definition 3.1 (Heterogeneous Graphs). A Heterogeneous Graph
(HG) [53] is denoted as G = (V, &, T, R), comprising sets of nodes
V and edges &. 7 and R represent the types of nodes and edges,
respectively, with the condition that |77 + |R| > 2. Additionally,
7(-) and ¢(-; -) serve as mapping functions to identify the types of
nodes and edges, where 7(i) € 7 forany i € V, and ¢(i, j) € R
for any edge (i, j) € &.

Definition 3.2 (Meta-Path). A Meta-path m € M [54] represents
a sequence of node and edge types, functioning as a composite of

R R Rin-
relations: Pp, : 71 BALN T3 BAN A N Tn. It encapsulates a par-
ticular form of high-order semantics within an HG, with different

meta-paths potentially offering complementary insights.

Definition 3.3 (Meta-Path-based Neighborhoods). Meta-path-based
neighborhoods refer to sets of neighborhoods interconnected through
specific meta-paths. We define #p, (i, j) as the function measuring
the path count connecting nodes i and j via meta-path m, thereby
delineating these neighborhoods as Né‘,m(i) = {jlPm(,j) > k},
typically with k = 1.

Constructing NHANES Dietary Graph. Utilizing NHANES data
from 2003 to 2020, we developed NHANES Dietary Graph, the first
graph dataset aiming at investigating the relationship between
dietary patterns and opioid misuse. This graph is constructed from
data on food intake, dietary habits, and prescription drug usage. As
depicted in Figure 2, it features five types of nodes: user, food, habit,
ingredient, and category, and four types of relationships: user-eat-
food, user-have-habit, food-contain-ingredient, and food-belong_to-
category. Within this graph, we can difine different meta-paths,
such as User-Habit-User (UHU) and User-Food-User (UFU), which
represent shared dietary habits and food consumption patterns
among users, respectively. Opioid users are identified by either
(1) records of illicit opioid drug use, like heroin, within a year,
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Figure 2: The schema of NHANES Dietary Graph.

alcohol more than average. User — Food — User

or (2) records of prescription opioid medication use for over 90
days, which is a criteria commonly employed in the domain [18].
Thus, we form the opioid user detection as a binary classification
task. User features include anonymized demographic information,
while food features comprise nutritional values, such as calories,
protein, and sodium. For text-described node types such as food,
habit, ingredient, and category, we employ pre-trained BERT [9]
to encode their descriptions into node features. Details on feature
processing and dataset statistics are available in Appendix A.

4 THE FRAMEWORK OF DIET-ODIN

Based on the built NHANES Dietary Graph, we introduce an inno-
vative framework for Opioid Misuse Detection with INterpretable
Dietary Patterns (Diet-ODIN), illustrated in Figure 3. The frame-
work incorporates a Noise Reducing Heterogeneous Graph Neural
Network (NR-HGNN) aimed at identifying users with opioid mis-
use (detailed in Section 4.1), and a LLM-based interpretation module
bridged with NR-HGNN to explore the relationship between dietary
patterns and opioid misuse (outlined in Section 4.2).

4.1 NR-HGNN for Detecting Users with Opioid
Misuse

Detecting users with opioid misuse presents a complex challenge,
requiring comprehensive analysis of (1) shared dietary patterns
among users, (2) individual food consumption or habits, and (3)
reducing noise introduced in data collection. Our NR-HGNN model
addresses these issues by jointly aggregating the information at
both macro-level (to tackle the first challenge) and micro-level
(to address the second challenge) and performing noise reduction
through graph refinement strategies (to resolve the third challenge).
As illustrated in Figure 3 (a), the NR-HGNN model comprises three
principal components: (1) shared dietary pattern learning with
marco-level aggregation (i.e., Figure 3 (a.1)), (2) individual dietary
habit learning with micro-level aggregation (i.e., Figure 3 (a.2)), and
(3) graph refinement with noise reduction for the detection (i.e.,
Figure 3 (a.3)), with detailed discussions to follow.
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4.1.1  Shared Dietary Pattern Learning with Marco-level Aggregation.
Users with opioid misuse often exhibit unique dietary preferences,
notably towards sugar and high-calorie foods, distinguishing them
from non-opioid users [31, 32]. Motivated by this observation, we
introduce macro-level aggregation to utilize shared dietary pat-
terns between users for the detection of opioid misuse. Specifically,
we employ meta-paths User-Habit-User (UHU) and User-Food-User
(UFU) to capture the shared food consumption and habit patterns
among users. Following the methodology of [54], these meta-paths
facilitate the extraction of subgraphs by linking users with identical
dietary patterns, thereby preserving intricate high-order seman-
tics. Nevertheless, direct extraction may lead to the inclusion of
noisy subgraphs, as dietary patterns are not solely determined by
individual foods or habits [1, 28]. For example, deducing similar
dietary habits from a single shared meal, such as fried chicken, is
over-simplistic. Addressing this, we introduce a novel subgraph
extraction method, termed connectivity filtering, which establishes
connections between two users only if they share multiple dietary
habits or foods:

G™ = (V™ E™,E™ ={(i,j)lj € Ny, (D}, (1)

where G™ represents the subgraph generated through meta-path
Pm, and k signifies an empirically determined threshold for se-
lection. This methodology ensures the retention of only the most
pertinent connections within the subgraphs.

Following the establishment of meta-path-induced subgraphs,
we delve into the extraction of semantics from each meta-path,
effectively modeled through message-passing mechanisms:

b = 2k, o) @ - WY

@)
where h'™ represents node embeddings within subgraph G, W de-
notes a learnable matrix, and a;’.’ signifies the correlation between
nodes i and j, which is learnable or fixed. To capture fine-grained
knowledge, we further attention mechanisms to dynamically allo-
cate these correlations:

exp(a(a’ - [Wh" || WhT']))
Yieng (i ©P(o@l - [Whi || Whi']))’

with o(-) as the activation function and a as the learnable attention
vector. Recognizing the complex etiology behind opioid misuse,
the attention also evaluates the significance of various factors (e.g.,
food and habits) in prediction. Integration of insights from different
meta-paths (UFU and UHU) involves analyzing their importance:

ajy =

®)

hM% = o(Zmem B - 1), 4
g = exp(Ljeym q' - tanh(Wh;)) )
Zmem exp(Tieym q" - tanh(Why))’
where hM encapsulates the macro-level node embeddings, and q is

an additional attention vector that discerns the relevance of various
meta-paths. This hierarchical attention mechanism empowers the
model to discern nuanced high-order semantics within the graph.

4.1.2 Individual Dietary Habit Learning with Micro-level Aggre-
gation. Macro-level aggregation captures high-order information
within HGs, yet may overlook crucial localized knowledge essential
for accurate opioid misuse identification [7, 58]. This localized infor-
mation, embodying the direct relationships between users and their
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Figure 3: The overview framework of Diet-ODIN, which consists of (a) a graph learning framework called NR-HGNN for
detecting opioid users, and (b) an LLM-powered reasoning module for interpreting the most important dietary patterns.

dietary behaviors—specifically, their food intake and habits—varies
in its prediction for opioid misuse. To incorporate this low-order
information, we introduce a micro-level aggregation module. This
module is designed to discern the relevance of particular dietary
patterns dynamically, thereby facilitating prediction accuracy:

Mi _ 1 Mi Mi
W = ol Zienva @i We(n by, (6)
where hM? represents the micro-level node embedding, (i) indi-
cates node i’s direct neighbors, and W ;) applies node-type spe-
cific transformations reﬂecting HG’s inherent heterogeneity. The
micro-level attention a '! quantifies each neighbor’s significance,

capturing the dietary pattern-user relationship:
Mi
Wi - [Wep b1/)

W () and W,(. .y enable precise modeling of node and relation
types, enhancing the framework’s ability to navigate HG’s com-

aMi

i = softmax ([Wr(i)hf\'ﬁ]—r

plexity. The introduction of a normalization factor Vd in attention
scoring mitigates potential gradient vanishing and stabilizes train-
ing [50]. Beyond enhancing prediction capabilities, this attention-
based method prioritizes specific dietary behaviors in the reasoning
process, as further discussed in Section 4.2.

4.1.3  Graph Refinement with Noise Reduction for the Detection.
The macro-level aggregation captures high-order information while
micro-level aggregation processes low-order information, both of
which are essential and complementary aspects of our NR-HGNN.
To integrate these embeddings and fully leverage the information
within the HG, we apply the following fusion operation:

h; = ReLU(W - [hM4 || k] 4+ b). 8)
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However, empirical evidence suggests that directly applying the
fused embedding h for prediction leads to sub-optimal. We attribute
this to potential noise from data collection processes, where inaccu-
racies may arise from users’ faulty recollections of dietary intake or
frequency of certain habits, as well as possible errors introduced by
interviewers. Such inaccuracies can manifest as either spurious or
missing connections in the graph, consequently generating noise in
the graph structure. This noise can render the embeddings derived
from the two aggregation modules unreliable by falsely correlating
graph structure with predictions. To address this, we propose ini-
tially refining the noisy dietary patterns within the graph structure.
Subsequently, we input both the node embeddings and the refined
graph into an additional GNN to derive more accurate embeddings.

We consider leveraging user correlations for refinement, positing
that users with similar dietary patterns are likely to exhibit similar-
ities. To consolidate various yet complementary dietary patterns,
we integrate different meta-paths into a unified graph:

guni — UmeM gm — (rvuni’ auni)’ (9)

where M represents the set of meta-paths, including User-Food-
User and User-Habit-User. To determine the refinement signal, we
consider if two connected users share the same label, the connection
would be reliable, based on the hypothesis that dietary patterns of
opioid and non-opioid users differ significantly. This leads us to
model refinement through a link prediction approach:

Lrefine = —ﬁ STy log(yi) + (1-yij) log(1-iy),
train (LJ')GS?T"J,,,

(10)

where y;; = predrefme([hiﬂhj]) predicts the edge reliability. A

subset of edges, 8#{; > is selected for training the refinement model,
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ensuring it only accesses nodes from the training dataset to prevent
information leakage from unseen nodes. Subsequently, the refine-
ment model evaluates all edges in G4 for reliability, discarding

those deemed unreliable:
gre — ((Vuni’arE)’sre — {(i, j) c suni|y;j — 1}. (11)

This process enhances graph homophily, a crucial aspect in analyz-
ing social phenomena between people [12]. The refined graph is
then employed to derive reliable node embeddings for predictions:

h; = ¢(hi, G™), (12)
yi = preduode (H,) = softmax(W - Hi +b), (13)

where ¢(-,-) denotes the GNN for refining node embeddings h,
and g represents the model predictions. Optimization is achieved
through minimizing the cross-entropy loss:

> yilog(yi) + (1 - yi) log(1 - ).
eV

L= (14)

1
V]
As refined graphs maintain more reliable patterns, they also en-
hance the reasoning process, as elucidated in Section 4.2.

4.2 Bridging NR-HGNN and LLM for
Interpretation

Beyond detecting users with opioid misuse, our Diet-ODIN frame-
work also excels at interpreting key dietary patterns associated with
opioid misuse, thereby aiding in the prevention and treatment of its
misuse. To achieve this, Diet-ODIN bridges NR-HGNN and LLM to
investigate the nexus between opioid misuse and dietary behaviors,
providing individuals with meaningful insights. To this end, our
objective is to design prompts that enable LLM to perform trustwor-
thy reasoning. As demonstrated in Figure 4, a prompt consists of
three parts: (1) Instruction, (2) Context, and (3) Notes. The Instruction
conveys task-specific directives to the LLM, clarifying the task at
hand. The Context provides user-specific information, facilitating
tailored reasoning. The Notes are employed to guide LLM behav-
ior, such as restricting output length. Notably, Context is the most
crucial component, presenting user information. A straightforward
context design is to directly convert the characteristics of users and
their dietary patterns in text, satisfying the input format of LLM;
but the method cannot fully exploit the potential of LLM, particu-
larly in domains like healthcare, where domain-specific knowledge
is vital [46]. To address this, recent studies [2, 60] have incorpo-
rated domain-specific knowledge into prompt generation, thereby
enriching the information available for reasoning. Inspired by these
works, we introduce two strategies to boost the reasoning power
of LLM for our task.

Strategies for facilitating domain-specific reasoning. We
identify two primary limitations preventing advanced reasoning
capability. Firstly, LLMs may not distinguish among various types
of dietary patterns (foods and habits) when examining their corre-
lation with opioid misuse. This issue could derive from the lack of
domain knowledge of the relationship between specific dietary pat-
terns and opioid misuse, rendering LLMs unable to identify specific
foods or habits crucial for detecting opioid misuse.

Secondly, the presence of outliers among users poses another
challenge. For instance, certain opioid users might exhibit dietary
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Instruction: Act as a skilled nutritionist. Your task is to judge if these

Domain Knowledge-Enhanced Prompt

dietary patterns are important in terms of predicting opioid misuse.

Context: User A is an opioid user. (Users with Shared Dietary Patterns):
User A shares similar patterns with 10 opioid users and 2 non-opioid users.
(Dietary Pattern with Attention): The most important factors for
predictions are: “Food 1: Chocolate Cake, ...”, and “Habit 1: Drink Alcohol

more than average, ...”. The other food and habits items are ...
\N otes: You should keep your answer concise and accurate. J
/ N

(b) LLM Responses

Based on the information provided, when deciding whether the User A is an

opioid user, the most indicative dietary food items are “salty ham, ...”, the
\most indicative dietary habit items are “add lots of salt at table; ...”. Y,

Figure 4: The prompts (highlighted in blue and red) generated
from the NR-HGNN for interpreting key dietary patterns that
indicate opioid misuse in individuals.

patterns more commonly associated with non-opioid users, mis-
leading LLMs in interpreting key dietary patterns of opioid misuse.

To address the first limitation, we introduce Dietary Pattern with
Attention, which aims to help the LLM leverage critical dietary
patterns that NR-HGNN learns in detecting users with opioid mis-
use. Specifically, we utilize attention scores retrieved in Micro-level
Aggregation (Section 4.1.2) to rank foods and habits according to
their importance. We empirically select the top-10 foods and habits
for each user. By highlighting the importance of specific dietary
patterns, we reduce the uncertainty of the LLM, thereby enhancing
the reliability of their final interpretations. For the second limita-
tion, we introduce the Users with Shared Dietary Patterns strategy to
assess the typicality of users based on shared dietary patterns. This
strategy aids in determining if dietary patterns accurately indicate
opioid usage. In particular, we define typical users as individuals
who share patterns with a substantial number of peers holding the
same labels. We evaluate the user typicality on the refined graph
(Equation 11), as it preserves more reliable patterns.

In this way, we avoid the LLM to capture the pseudo-correlation
between dietary patterns and interpretations. These two strategies
complement each other, which enables the LLM offering more
accurate analyses by considering both individual and shared dietary
patterns.

5 EXPERIMENTS

5.1 Experiment Setup

Baselines. To demonstrate the superiority of NR-HGNN in detect-
ing users with opioid misuse, we select a range of graph learning
baselines. These include vanilla MLP, homogeneous GNNs such
as GCN [26], GraphSAGE (SAGE) [19], and GAT [51], alongside
heterogeneous GNNs like RGCN [41], HAN [54], HGT [22], and
the state-of-the-art Simple-HGN (SHGN) [27] and SeHGNN [61].

Evaluation Settings. In this study, we evaluate two settings with
distinct training, validation, and testing splits. Specifically, 20%
and 40% of nodes are selected randomly to create the training sets,
with the remainder being evenly divided into validation and testing
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Table 1: Performance comparison between NR-HGNN and existing methods for identifying users with opioid misuse. Results
are reported as mean + std%. The best performance is bolded and runner-ups are underlined.

Train 20% — Valid 40% — Test 40% Train 40% — Valid 30% — Test 30%
Methods Accuracy  Precision Recall F1-Score  ROC-AUC | Accuracy  Precision Recall F1-Score  ROC-AUC
MLP 70.15+0.18  68.31+0.69  75.19+0.17  71.57+0.45  77.52+0.08 | 70.40+0.33  68.33£0.94  76.13£0.20  72.00£0.40  77.38+0.04
GCN[26] 73.26+0.24  69.87£0.20  81.72+0.61  75.33+0.28  78.09+0.12 | 72.94+0.21  68.98+0.18  83.36+£0.54  75.49+0.24  78.10+0.12
SAGE[19] 73.93+0.25  70.08+0.27  83.46+0.56  76.19+0.25  78.62+0.14 | 73.11+0.27  69.05£0.17  83.77+£0.56  75.70+0.30  78.50+0.11
GAT[51] 75.06+0.12  69.96+0.12  87.78+0.36  77.87+0.14  80.93+0.02 | 74.54+0.06  69.57£0.05  87.24+0.17  77.41+0.07  80.33+0.02
RGCN[41] 75.64+0.09 70.15+0.21 89.24+0.37 78.55+0.03 81.27+0.02 74.82+0.17 69.82+0.10 87.43+0.34 77.64+0.18 80.93+0.03
HGT[ZZ] 75.72+0.06 69.38+0.06 92.02+0.01 79.11+0.04 81.14+0.01 74.62+0.05 68.96+0.04 89.54+0.07 77.92+0.04 80.69+0.01
HAN[54] 75.10+0.02  70.37£0.01  86.64+0.03  77.66+0.02  80.02+0.01 | 74.26%0.03  69.66£0.02  85.95:£0.07  76.96+0.04  80.52+0.01
SHGN[27] 73.92£1.20  70.51+1.33  82.34+4.23  75.90+1.59  80.80+0.85 | 73.74+1.13  71.20+0.89  79.77+2.97  75.21+1.43  81.06%0.68
SeHGNN[61] 75.48+0.17  70.00£0.20  89.16+0.60  78.42+0.20  81.23+0.18 | 74.63+0.22  69.63+0.23  87.35+0.59  77.49+0.23  80.84+0.19
NR-HGNN (Ours) | 91.23:0.63 88.55+1.53 94.74:1.19 91.52:0.54 96.50:0.44 | 91.68+0.24 89.65:0.52 94.24:0.60 91.89+0.23 96.62+0.34

Table 2: Performance comparison with different variants of our proposed NR-HGNN, including (a.1) macro-level aggregation,
(a.2) micro-level aggregation, and (a.3) graph refinement with noise reduction.

Train 20% — Valid 40% — Test 40% Train 40% — Valid 30% — Test 30%

(a.1) (a.2) (a.3) | Accuracy  Precision Recall F1-Score ROC-AUC | Accuracy  Precision Recall F1-Score  ROC-AUC
\/ - - 84.75+0.72 82.60+0.56  88.03+1.11 85.22+0.74 91.41+0.42 85.08+0.62 82.90+0.58 88.38+1.04  85.55+0.64 91.53+0.35
- \/ - 73.96+0.94 72.23£1.59  78.12+6.22 74.90+2.07  81.39+0.72 75.30+0.86 73.01+1.04  80.43+4.64  76.45+1.65 82.35+0.16
\/ \/ - 89.46+0.43 87.50+1.51 92.12+1.89 89.72+0.42 95.01+0.14 88.84+0.77  86.74+2.20  91.84+2.54  89.16+0.67 95.47+0.13
\/ - \/ 86.99+0.70 80.79+0.95 97.06+0.45 88.18+0.57 92.69+0.45 88.34+0.82  83.65+1.31 95.36+0.71  89.11+0.68 93.35£0.50
- \/ \/ 70.91+10.37  65.65+9.45 94.74+3.05 77.04+5.73 76.28+12.1 60.02+8.71 56.92+8.20  95.14+3.42 70.77+458  65.01+9.51
vV v v | 91.23:0.63 88.55:1.53 94.74+1.19 91.52:0.54 96.50+0.44 | 91.68+0.24 89.65:0.52 94.24:0.60 91.89:0.23 96.62:0.34

sets. Each model is executed on ten consecutive seeds to reduce
the influence of randomness. To thoroughly assess the model’s
performance across various dimensions, we employ five widely
recognized metrics: Accuracy, Precision, Recall, F1-Score, and ROC-
AUC score. For a balanced comparison, all methods are configured
with a hidden dimension of 256 and utilize the Adam optimizer with
a learning rate of 0.001 and a weight decay of 0.001. We fix the total
number of epochs at 500. For baseline methods that incorporate an
attention mechanism, the number of attention heads is set to four.

5.2 Results

Performance Comparison. Table 1 demonstrates the performance
of baselines and our NR-HGNN in detecting users with opioid mis-
use on the proposed NHANES Dietary Graph, where our NR-HGNN
notably surpasses existing methods, including the state-of-the-art
SeHGNN. This substantial performance improvement is attributed
to the model’s adeptness at concurrently capturing low and high-
level information with micro- and macro-level aggregations from
the graph, along with graph refinement for noise reduction. Con-
trary to expectations, increasing training data results in a slight
decrease in the performance of most baselines, which might stem
from potential over-fitting, where additional data may introduce
redundant information. Nevertheless, our model performs better
on the 40% training set split, which indicates the robustness of our
methods. Notably, conventional methods demonstrate limitations
in accurately identifying non-opioid users, as indicated by high
recall but low precision values. This discrepancy may arise from
these models accentuating patterns common to both opioid and
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non-opioid users. In contrast, our NR-HGNN addresses this chal-
lenge through its graph refinement process, thereby enhancing the
reliability of patterns used for detecting users with opioid misuse.
Ablation Study. Our method performs significantly better than
other baselines. Therefore, to discern the elements contributing
to such performance enhancement, we have conducted a compre-
hensive ablation study, as depicted in Table 2. Our observations
reveal that each component independently enhances the model’s
proficiency in detecting users with opioid misuse. When these
three components are integrated, the model demonstrates optimal
performance, highlighting the synergistic effect of concurrently
processing high-order and low-order information alongside noise
reduction refinement. Notably, employing either low-order or high-
order information in isolation results in a diminished effectiveness
of the refinement process. This outcome underscores the impor-
tance of synergistically aggregating information at both micro-
and macro- levels to capture diverse facets of the graph, thereby
ensuring the reliability of the refined patterns.

Visualization. To elucidate the efficacy of our NR-HGNN model,
we execute a visualization analysis using t-SNE, which elucidates
the decision boundary between opioid and non-opioid users as
depicted in Figure 5. Relative to established methods such as GCN,
RGCN, and the advanced SeHGNN, NR-HGNN exhibits superior
clustering performance, as indicated by its compact intra-class dis-
tances and expansive inter-class distances. Conversely, the other
three baselines tend to cluster users into smaller and more dis-
parate groups. Furthermore, NR-HGNN demonstrates significantly
higher Normalized Mutual Information (NMI) and Adjusted Rand
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Figure 5: T-SNE Visualization of opioid (blue) and non-opioid
(orange) users embeddings.
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Figure 6: System Demo - Reasoning analysis on food patterns.
(a) Word clouds generated from the ingredient names for
both opioid and non-opioid groups. (b) The top ten frequent
ingredients consumed by opioid and non-opioid groups. The
analysis on dietary habits is in Appendix D.

Index (ARI) values, underlining its superiority. This enhanced per-
formance may be attributed to NR-HGNN’s ability to effectively
discern reliable patterns within the NHANES Dietary Graph.

6 DEEP DIVE INTO THE DIETARY PATTERNS

In addition to detecting potential opioid misuses, our Diet-ODIN
also provides the provision of interpretive analyses of predictions.
To this end, we select a random subset of 250 users, prompted with
the dietary patterns with attention and users with shared dietary
patterns using NR-HGNN. In alignment with the methodology de-
lineated in Section 4.2, we conduct textual analysis and subsequent
evaluations on the output. To vividly demonstrate our findings and
the process, we deploy a demonstration for our system. One of
the primary sections of our system is the statistical analysis panel
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Table 3: Nutrient correlation analysis (t-test) reveals a strong
correlation between potential opioid users and nutrient in-
take, corroborating Diet-ODIN’s findings on sugar intake.

. Daily Avg. Daily Avg.
Nutrient (Opioid Users) (Regular Users) p-value
Sugar 111 (g) 99 (g) < 0.001
Calories 1867 (kcal) 1726 (kcal) < 0.001
Sodium 2929 (mg) 2749 (mg) < 0.001
Caffeine 172 (mg) 78 (mg) < 0.001

to manifest the result of our qualitative analysis. We will dive deep
into opioid users’ dietary patterns by demonstrating the statistical
analysis panel of Diet-ODIN.

6.1 Reasoning Analysis

The statistical analysis panel categorizes and visually presents the
results from the reasoning module. Take Sugar intake for example,
Figure 6.(a) demonstrates a word cloud contrasting keyword fre-
quencies between opioid and non-opioid user groups. As we can
see, the non-opioid group demonstrates a wider variety of dietary
preferences, whereas the opioid group frequently references items
like "chocolate", "cookie". This trend is echoed in the adjacent bar
chart (Figure 6.(b)), where the ingredient mentions of the opioid
group, normalized based on group population size, reveal a similar
pattern on sugar intensive ingredients. These results suggest a po-
tential link between opioid use and sugar consumption. In addition
to sugar intake, Diet-ODIN has identified several other noteworthy
patterns. For example, dietary habits related to salt consumption,
alcohol use, and smoking are prominent in our analysis, suggesting
potential associations (as demonstrated in Appendix D). To further
identify the reliability of the conclusions drawn from the reasoning
process, we provide analyses to show that the observations align
with existing literature and statistical analysis in the section below.

6.2 Qualitative Analysis

Diet-ODIN identifies key dietary factors—such as sugar intake, salt
consumption, and alcohol and smoking behaviors—as significant in
detecting opioid misuse. To validate these findings, we analyze
the NHANES dataset from 2003 onward, revealing patterns that
support Diet-ODIN’s conclusions. Specifically, a t-test comparing
nutritional components between opioid users and non-users (Ta-
ble 3) shows a notable difference in sugar and calorie intake, with
a p-value less than 0.001, indicating statistical significance. This
is further corroborated by related research [1, 33, 36]. Moreover,
a chi-square test is performed to examine dietary habits among
opioid users (Table 4), confirming a strong connection between salt
consumption and opioid misuse. This association is reinforced by
dietary habits related to salt intake and the literature [42, 43], as
well as by analyzing daily sodium intake (Table 3). Additionally,
the connection between opioid misuse and alcohol and smoking
behaviors is affirmed by statistical analysis (Table 4) and literature
review [11, 65]. Collectively, these analyses validate Diet-ODIN’s
effectiveness and reliability.
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Table 4: Habit correlation analysis (chi-square test) reveals
a tight linkage between certain dietary habits and potential
opioid misuse, thereby validating Diet-ODIN’s findings on
alcohol and smoking behaviors, salt consumption, and new
insights not previously explored.

. Opioid | Total
Habit Category UP; ers ¥ Users p-value
NHANES Data 2728 95872 -
i Uses tobacco rarely 82 1852 < 0.001
g Uses tobacco often 383 3155 < 0.001
@ Drinks alcohol less than avg. 778 26419  0.2627
°: Drinks alcohol more than avg. 835 8634 < 0.001
S Light cigarette smoker 465 11317 < 0.001
< Heavy cigarette smoker 164 3398 < 0.001
g Uses little to no salt in preparation 764 20596 < 0.001
S Uses lots of salt in preparation 912 34341 < 0.010
*= Adds little to no salt at table 674 26604 < 0.001
& Adds lots of salt at table 499 9654 < 0.001
Drinks little or no milk 503 11717 < 0.001
2 Drinks lots of milk 1029 45901 < 0.001
Z  Takes few or no supplements 1161 53782 < 0.001
Takes lots of supplements 770 14027 < 0.001

6.3 Dietary Pattern Discovery

Beyond identifying established dietary patterns related to opioid
misuse, Diet-ODIN also unveils significant yet previously unex-
plored factors critical for detecting potential opioid misuse, pro-
viding new insights for future research aimed at combating opioid
misuse. Notably, Diet-ODIN highlights the unique influence of milk
consumption and nutritional supplement intake on opioid misuse,
revealing that users with opioid misuse are (1) less likely to con-
sume milk and (2) more inclined to rely on nutritional supplements
instead of traditional food sources for their nutrient intake. This
finding is further supported by statistical analysis (Table 4) of the
NHANES database. Such observations imply that users with opioid
misuse may neglect their diet, however to our best knowledge, little
literature has explored these specific directions. These emerging
patterns warrant deeper investigation for future research avenues.

7 CONCLUSION

In this study, we introduce Diet-ODIN, an innovative framework de-
signed to detect users with opioid misuse through interpretable anal-
ysis of dietary patterns. Diet-ODIN establishes a large-scale mul-
tifaceted dietary benchmark dataset and proposes the NR-HGNN
model, which adeptly utilizes both shared and individual dietary
patterns with a denoising refinement process. To uncover critical
factors in opioid misuse identification, Diet-ODIN employs LLMs
for reasoning and implements two innovative strategies to boost
reasoning capabilities. The performance of NR-HGNN in detect-
ing users with opioid misuse significantly exceeds that of various
baseline models. Furthermore, our qualitative analysis verifies that
the reasoning outcomes align with existing literature and statis-
tical analysis. Moreover, we build a system to demonstrate these
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analyses, offering fresh perspectives, illuminating potential, more
effective intervention strategies for addressing the opioid crisis.
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A GRAPH CONSTRUCTION DETAILS

In general, the user information comes from the demographic sec-
tions of NHANES data, and the nutrition information is gathered
from the dietary sections of NHANES data. The ingredients and
category information come from the FNDDS dataset, while the
dietary habits information comes from the questionnaire section of
NHANES data. We processed the questionnaire data to construct
dietary habit features. The details are described as follows:

Nutritional Information. The food records in NHANES data
are recorded using Food and Nutrient Database for Dietary Studies
(FNDDS) food code. This database, integral to USDA, catalogs food
and beverage consumption in What We Eat In America (WWEIA)
database and NHANES data to help researchers conduct enhanced
analysis of nutrient values in dietary intakes. By leveraging this
dataset, we link the food items in NHANES dataset with food in-
gredients and WWEIA food category information, and create food,
ingredient and category nodes.

Dietary Habit Information. We compile dietary habit data
from various NHANES tables, such as Diet Behavior table or Con-
sumer Behavior table. Given the diverse nature of these features,
traditional processing methods were inadequate. A team of four
reviewers meticulously examines the NHANES data, identifying
features indicative of dietary habits, such as the awareness towards
healthy diet or the frequency of having frozen food. For each fea-
ture, we take the top 10% and bottom 10% of the users and assign
these users the habit tags. For example, we take all those respond
to milk drinking questionnaire, and assign the 10% users who drink
the most milk the habit “drink lots of milk”, and the 10% users who
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drink the least the habit “drink little or no milk”. In this way, we
summarize 54 distinct habits that serves as the habit node in the
graph. This habit information is of vital importance and faithfully
reflect many insights into users’ dietary patterns as we demonstrate
later in the paper.

As for the node features, we use the demographic information
as the features for the user nodes, and the nutrient values as the
features for the food nodes. To associate other node types with
their content, we use the pre-trained BERT embeddings to encode
the description of the nodes, serving as the corresponding node
representations. The edges record the connections between the
nodes and are free of weights or directions.

For the label for our benchmark dataset, we mark a user as an
active user with opioid misuse if: 1) a user has records of using
heroin within the year, or 2) a user has records of using a prescrip-
tion opioid medicine continuously over 90 days, which is a criteria
commonly employed in the domain [18]. In this way, we generate
the labels and form our problem into a binary classification task.
The detailed graph statistics can be seen in Table 5.

Table 5: The statistics of NHANES Dietary Graph

Item Count
Nodes # User = 4,826, # Food = 5,896, # Ingredient = 2,792,
# Category = 174, # Habit = 54
. # Food - User = 136,967, # Food - Ingredient = 19,410,
Relations

# Food - Category = 5,896, # User - Habit = 46,947

B EXPERIMENTAL SETTINGS

B.1 Environmental Settings

The experiments are conducted in the Windows 10 operating sys-
tem with 64GB of RAM. The training process involves the use of
one NVIDIA GeForce RTX 3090 GPU and one NVIDIA A40 GPU,
with the framework of Python 3.8.18, Pytorch 2.1.0 and Pytorch-
geometric 2.4.0.

B.2 Split Settings

We randomly split the data into a 2-4-4 group (20% training set, 40%
valid set and 40% test set), and 4-3-3 group and conduct experiments
on these two split settings. The random split is only performed once
and all experiments are done on the same split seed.

For the noise reduction phase, since we use the user label to
identify whether two users share the same label, we filter the user
pairs to make sure the two users always come from the training set
to avoid data leak. Also, at this stage, we use the model from the last
training epoch instead of the one performs best on the validation
set to avoid data leakage on valid data during inference.

B.3 Hyperparameters

In our experiments, for the macro-aggregation stage, we set the
hidden dimension to 64, and in micro-aggregation stage to 256.
Both stages involve 4 attention heads. The pooling layer afterwards
use a simple MLP with the concatenated hidden dimension of the

two model as the input, and has hidden dimension of 256 as output.
We perform Adaptive Moment Estimation (Adam) to optimize the
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models with a learning rate of 0.001 and L2 regularization as 0.001
for 100 epochs. For the subsequent opioid user prediction module,
we train a simple GCN layer for 500 epochs, which has a hidden
dimension of 128, a learning rate of 0.0001, a L2 regularization as
0.001 and a dropout rate of 0.6. All experiments utilize the cross en-
tropy as the loss function. In the training, all models are evaluated
on the valid sets and the model state with the best valid set perfor-
mance is used to evaluate the test set. To improve reproducibility,
for each split setting, we evaluate the models using the same set of
10 consecutive seeds, and report their mean and standard deviation.

C FINE-GRAINED CORRELATION BETWEEN
DIETARY PATTERNS AND OPIOID MISUSE

To further analyze the fine-grained factors in detecting users with
opioid misuse, we would analyze the impact of the ingredients to
the foods, enabling us to discover more intricate patterns. In partic-
ular, we also utilize the attention score extracted from Contextual
Aggregation (Section 4.1.2) to rank the importance of ingredients
in detecting opioid users. We employ a similar context prompt,
which is formulated as “Food A is <food description>. The model
thinks the most important ingredients are: ingredients 1: <>, Ingre-
dient 2: <>, ..., and the remaining ingredients 1: <>, Ingredient 2: <>,
..., and 7. Through the more fine-grained ingredient level analysis,
this process helps us navigate to the most important ingredients
that contributes to the identification of users with opioid misuse.
For example, when cakes with chocolate icing is identified, we can
further see it’s the ingredient chocolate, instead of eggs or flour
that makes the food indicative.

D MORE QUALITATIVE ANALYSIS

In this section, we further elaborate on the reasoning analysis
and the qualitative analysis we do that demonstrate Diet-ODIN’s
efficacy and reliability.

Figure 7 illustrates the analysis of alcohol and smoking habits,
as selected via the top buttons in the system. The bar chart be-
low the buttons presents the most frequent habits counts among
opioid and non-opioid user groups from the reasoning result. The
chart includes four specific habits related to alcohol and cigarette
use (e.g., op1-drinking alcohol more, nonop6-drinking alcohol less
than average, op2-heavy cigarette smoking, nonop9-light cigarette
smoking), indicating a significant correlation between opioid usage
and alcohol or cigarette consumption. Additionally, a word cloud,
positioned next to the bar chart, highlights the most common terms
associated with these habits. Notably, terms like "drinks alcohol”
and "cigarette smoker" predominate in the opioid user group. Simi-
lar patterns can be found in salt consumption. Opioid users tend to
have habits related to using more salt, such as op4-Adds lots of salt
at table, and op6-Uses lots of salt in preparation. Similarly, in next
paragraphs, we utilize statistical analysis and existing literature to
show Diet-ODIN’s reasoning is aligned with real-world scenarios.

Opioid Use and Salt Consumption. As evidenced by Table 4,
all patterns related to salt consumption are statistically correlated.
This finding is further substantiated by the analysis of daily average
sodium intake in Table 3, where the p-value indicates a statistically
significant difference between the opioid user group and the non-
opioid user group. The literature corroborates this pattern as well.
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Figure 7: Reasoning analysis for habits: (a) Word cloud gen-
erated from the habit names for both opioid and non-opioid
groups. (b) The top ten frequent habit counts by opioid and
non-opioid groups. Because of the length of the habit names,
we hide the name captions and refer by its column sequence.
For example, op1 and nonop — 1 refers to the leftmost bar of
upper and lower barplot respectively.

For example, as Smith et al [42, 43] discussed in their research that
opioid dependence can affect dietary salt intake, often resulting in
a preference for foods with higher salt concentrations.

Opioid Use and the Use of Alcohol and Smoking. In a man-
ner akin to the examination of salt consumption, numerous stud-
ies have investigated the relationship between opioid usage and
the consumption of other substances. A well-established body of
research indicates a positive correlation between opioid use and
excessive alcohol consumption and smoking behavior, as noted
in studies by [11, 65]. These associations are also detected in our
analysis using the NHANES data. The majority of the alcohol and
cigarette use patterns identified by our method have been corrobo-
rated as correlational. (We amalgamated "tobacco use’ and 'cigarette
smoking’ during the reasoning phase.)

E ETHICS AND PRIVACY STATEMENT

Addressing privacy and ethical considerations is paramount, partic-
ularly when dealing with health-related sensitive data. The National
Health and Nutrition Examination Survey (NHANES) exemplifies
commendable practices in this domain, rigorously adhering to con-
fidentiality safeguards as mandated by public legislation. This foun-
dational commitment to privacy enables the attainment of our core
research objectives within the framework of established survey poli-
cies. To be specific, the original NHANES dataset has performed
an anonymization process to ensure the concealment of personally
identifiable information (PII) such as social security number (SSN)
or physical address. Despite the absence of PII, the dataset remains a
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rich resource for comprehensive analysis, allowing the exploration
of dietary patterns associated with opioid misuse introduced in the
paper. When it comes to deployment, the usage of prediction results
is also privacy-protected as a part of personal medical records. By
operating within these parameters, we ensure our research upholds
the highest standards of ethical integrity and privacy protection.

F LIMITATIONS AND DISCUSSION

Although our developed Diet-ODIN has been demonstrated its out-
standing performance on exploring the complex interplay between
opioid misuse and dietary patterns, it could also be subject to certain
limitations: data incompleteness and lacking quantitative measure
of the interpretations. For data incompleteness, in this work, the
quantities of foods are not accessible where analysis bias may ex-
ist. Due to the lack of food quantities, the developed model is not
able to incorporate edge weights to capture more detailed dietary
patterns, which is inclined to answer how frequent a user eats a
certain food. Nevertheless, edge weights might be helpful in certain
scenarios, for example, our method doesn’t consider “coffee” an
important factor because it is such a common drinking in daily life
that everybody would drink. However, the drinking amounts weigh
differently in one’s dietary structure. In table-3, we demonstrate
that opioid users on average consume more than double amount of
caffeine than that of the regular users, which should be an indicator
captured by both detection and reasoning tasks. This limitation can
be mitigated by implementing edge-weighting scheme on user-food
edges. Nevertheless, our experiments and analysis demonstrate the
majority of dietary patterns can be captured through edge-weight
free methods. Thus, we leave the edge weighting implementation
for our future work.

For the lack of quantitative measure of the interpretations, our
reasoning experiments mainly rely on statistical qualitative analysis,
which posts influence by reflecting real-life patterns and pointing
out future research directions. The consistent matching findings
between Diet-ODIN and real-life statistics and literature indicate
the efficacy and reliability of the patterns. However, the limitation
remains that the reasoning process lacks control and quantitative
benchmarks to evaluate its efficacy. We argue that our work set a
strong baseline by providing insights and setup benchmarks that
connect dietary and healthcare information in NHANES data. We
appreciate the suggestions from the peer reviewers and agree that
our findings could benefit more with quantitative experiments, and
we leave this to future work to establish a standardized and quan-
titative benchmark for properly evaluating the interpretability of
our methods against other baselines. Despite these limitations, our
work in this paper is the first attempt to exploit Al-driven tech-
niques for comprehensive exploration of the correlations between
opioid misuse and users’ diets with explainable outputs, which
could provide new insights and pave promising research directions
for other researchers and practitioners to combat the devastating
and lethal opioid epidemic.
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