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Abstract: We use a generative deep learning method based on denoising diffusion probabilistic 
model to improve the design of plasmonic phase-imaging sensors for broadband operation. This 
flexible method enables optimized inverse design for a wide range of target specifications. © 2023 
The Author(s) 

 
1. Introduction 
Generative deep learning techniques, such as generative adversarial network (GAN) and variational autoencoder 
(VAE), have recently emerged as a powerful tool for the design of nanophotonic devices with advanced operational 
characteristics [1, 2].  This approach is particularly well suited for the development of flat-optics metasurface devices, 
which typically involve a large number of geometrical parameters to be optimized.  Substantial work has already been 
reported on the deep learning inverse design of metasurface-based free-space passive components such as metalenses 
[3]. The past few years have also seen an explosive increase in research on a novel generative deep learning method, 
called denoising diffusion probabilistic model (DDPM) [4], which has been applied to text-to-image generation 
services, including Dall×E and Stable Diffusion. Its first application to nanophotonics has only just been reported [5].  

Here we consider active metasurface devices designed to interface free-space radiation with waveguided modes 
for wavefront sensing and phase imaging applications, following our recent work with plasmonic grating couplers [6]. 
Compared to conventional phase imaging systems [7] that require complex and bulky setups, these devices can 
measure the phase gradient of the incident light directly, without the need for additional optical elements. However, 
the diffractive devices of our prior work [6] are limited to operation under monochromatic illumination due to their 
strong spectral dispersion, which renders them unsuitable for practical scenarios involving broadband light. Achieving 
achromatic operation requires intricate metasurface structures, which are incompatible with trial-and-error design 
methodologies. In this work, we employ DDPM to design a wavefront sensing meta-structure with enhanced response 
and reduced spectral dispersion. 

 
Fig. 1. (a) Light transmission through a phase object and its detection with angle-sensitive photodetectors. (b) Plasmonic angle-sensitive device 
based on a simple periodic grating [6]. (c) Similar device with an aperiodic nanostripe array optimized by machine learning. (d), (e) Responsivity 
ℛ vs incidence angle θ at different wavelengths for the devices of (b) and (c), respectively. 

2.  Device design, results, and discussion 

The transmission or reflection of light from a transparent phase object results in a deflection by an angle proportional 
to the local phase gradient [Fig. 1(a)].  Our devices consist of planar photodetectors coated with a plasmonic structure 
that introduces a sharp dependence of responsivity ℛ on illumination angle q around normal incidence.  In our prior 
work [6], this structure was based on a metallic diffraction grating designed to couple light incident at a small angle 
from the surface normal to surface plasmon polaritons (SPPs) supported by an underlying metal film [Fig. 1(b)].  These 
guided waves are then scattered into the detector active layer by a set of slits perforated through the metal film on one 
side of the grating.  On the other side, an aperiodic array of metallic nanostripes (reflector) is used to scatter any 
incoming SPPs back into free-space radiation.  As a result, the photodetector responsivity exhibits a strong asymmetric 



dependence on angle of incidence [Fig. 1(d)], which allows measuring the local direction of light propagation.  When 
combined in a pixel array with an imaging lens, these devices can therefore be used to sense the incident wavefront, 
and thus image transparent phase objects for applications such as biomedical microscopy and surface profiling [6].  

In the present work, we employ a generative deep learning approach to design a fully aperiodic array of metallic 
nanostripes [Fig. 1(c)] that can replace the diffraction grating and reflector region of our previous devices, and 
correspondingly produce the desired asymmetric angular response with large slope over a broad spectral region [Fig. 
1(e)]. In the design protocol, a 15-µm-wide grating region is represented by 1500 pixels, each with 10-nm width either 
with or without a Au nanostripe coating. A minimum feature size of 50 nm (consistent with state-of-the-art 
nanofabrication processes) is enforced during the training data generation and sampling processes. Initially, 1650 
designs of random patterns and periodic gratings with different pitch, width, and chirp were created and modeled by 
Lumerical/Ansys FDTD simulations (where we computed the transmittance through the metasurface into the 
underlying photodetector active layer). Each design is represented by a 1D vector with 1500 elements plus 100 dummy 
elements for U-NET size constraint and is labeled with its transmittance data at two angles (+1 and -1 degrees) and 
multiple wavelengths (from 1500 to 1600 nm), which are used to train the DDPM network.  

The training process consists of DDPM training with labels (classes) as shown in Fig. 2(a), wherein the denoising 
process uses a 1D U-NET, and 1000 time steps are chosen. The training time is typically 15 minutes for 500 epochs 
on a PC with an RTX 4090 GPU board. We then take the four best training data as the initial data 𝑥!, with added 
noise, and after the denoising process we obtain the output grating data 𝑥".	 The generation (sampling) phase is 
depicted in Fig.2(b). For the injection of the initial data 𝑥! , the time step of 𝑆 = 994 is chosen to balance the 
resemblance to the input data and some randomness to generate better data. For the selection of the input data 𝑥!, we 
use a figure of merit consisting of two components: the mean value and standard deviation of the slope of transmittance 
versus angle around normal incidence (i.e., the difference between transmittance at +1 deg and -1 deg) at different 
wavelengths. The sampling process of 64 grating data takes 15 seconds, and additional FDTD validation takes 30 
seconds each. We iterate the training and generation process twice, with a total computational time of less than 2 
hours. 

 
Fig. 2 (a) DDPM training process, wherein a 1D U-NET is used to describe the denoising process with additional labels, and 𝑇 = 999 is used. (b) 
Sampling method, where known good grating patterns with noise are injected at time 𝑥!, with 𝑠 = 994 chosen in our case. (c) Slope of the angular 
response around normal incidence vs wavelength for the original baseline design [6] and for the optimized design generated by deep learning. 

The slope data for the best design, optimized by deep learning for broadband high-slope angular response in the 
1500 – 1600 nm spectral range, are shown in Fig. 2(c) together with those of the baseline design (the device of ref. 6). 
It is clearly seen that the deep learning design features a much higher slope across the entire wavelength range 
considered in these simulations compared to the baseline device. As a result, this new design would allow for accurate 
wavefront sensing and unambiguous phase imaging under broadband illumination across the same spectral range. The 
optimized Au metasurface pattern is aperiodic with uneven pitch, linewidth, and spacing of all the nanostripes, and 
thus would be impractical to design using a parameter sweep. Additional related nanophotonic applications and 
optimization methods for the DDPM-based inverse design process will also be presented. 
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