

1 Running head: Heterogeneity promotes resilience

2

3 **Heterogeneity promotes resilience in restored prairie: implications for the ‘environmental**
4 **heterogeneity hypothesis’**

5 **Ashley A. Wojciechowski^{1,4}, John M. Blair², Scott L. Collins³, and Sara G. Baer¹**

6 ¹Kansas Biological Survey & Center for Ecological Research and Department of Ecology and
7 Department of Evolutionary Biology, University of Kansas, Lawrence, Kansas 66047 USA,

8 ²Division of Biology, Kansas State University, Manhattan, Kansas 66506 USA,

9 ³Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA

10 ⁴Corresponding author email: ashley.wojciechowski@ku.edu

11

12

13

14

15

16

17

18

19 Open Research Statement: The subset of data used to prepare this manuscript has been archived
20 in Dryad (<https://doi.org/10.5061/dryad.fqz612k0d>).

21

ABSTRACT

22 Enhancing resilience in formerly degraded ecosystems is an important goal of restoration
23 ecology. However, evidence for the recovery of resilience and its underlying mechanisms
24 requires long-term experiments and comparison to reference ecosystems. We used data from an
25 experimental prairie restoration that featured long-term soil heterogeneity manipulations and data
26 from comparable remnant (reference) prairie to (1) quantify the recovery of ecosystem
27 functioning (i.e., productivity) relative to remnant prairie, (2) compare resilience of restored and
28 remnant prairies to a natural drought, and (3) test whether soil heterogeneity enhances resilience
29 of restored prairie. We compared sensitivity and legacy effects between prairie types (remnant
30 and restored) and among four prairie sites that included two remnant prairie sites and prairie
31 restored under homogeneous and heterogeneous soil conditions. We measured sensitivity and
32 resilience as the proportional change in aboveground net primary productivity (ANPP) during
33 and following drought (sensitivity and legacy effects, respectively) relative to average ANPP
34 based on four pre-drought years (2014-2017). In non-drought years, total ANPP was similar
35 between remnant and restored prairie, but remnant prairie had higher grass productivity and
36 lower forb productivity compared to restored prairie. These ANPP patterns generally persisted
37 during drought. Sensitivity of total ANPP to drought was similar between restored and remnant
38 prairie, but grasses in restored prairie were more sensitive to drought. Post-drought legacy effects
39 were more positive in restored prairie, and we attributed this to the more positive and less
40 variable legacy response of forb ANPP in restored prairie, especially in the heterogeneous soil
41 treatment. Our results suggest that productivity recovers in restored prairie and exhibits similar
42 sensitivity to drought as remnant prairie. Furthermore, creating heterogeneity promotes forb
43 productivity and enhances prairie resilience to drought.

44 *Keywords:* drought legacy effects; drought sensitivity; ecological restoration; grasslands;
45 productivity; resiliency; soil heterogeneity; tallgrass prairie

46 INTRODUCTION

47 Ecological restoration aims to steer recovery of ecosystems degraded by human activity to attain
48 components and functions representative of a reference ecosystem, including resilience to
49 periodic stress or disturbance (Gann et al. 2019). Ecosystem resilience is the capacity to absorb
50 or bounce back from disturbance that causes change in the environment, indicated by retaining or
51 returning to a similar identity, composition, and functioning (Holling 1963, McDonald et al.
52 2016, Gann et al. 2019). In this way, ecological restoration can buffer the impacts of interannual
53 variability in climate and climate extremes by reestablishing species and complexity that
54 promote resilience to future disturbances (Zabin et al. 2022). For example, improved river-flood
55 plain connectivity can mitigate flood impacts (Opperman et al. 2010) and restoring coastal
56 foundation species can protect shorelines from disturbance (Gedan et al. 2011). Knowledge of
57 conditions that will enhance resilience of restored ecosystems under increasingly variable and
58 more extreme climates is needed to guide ecological restoration, and ecological theory should
59 robustly inform factors influencing functioning, sensitivity, and resilience of restored ecosystems
60 (Bradshaw 1987, Smith 2011, Maurer et al. 2020).

61 The ‘environmental heterogeneity hypothesis’ predicts that greater variability in
62 resources enables more species to coexist (Ricklefs 1977, Huston 1979), and higher biodiversity
63 can increase ecosystem functioning and resilience to drought and climate extremes (Tilman and
64 Downing 1994, Isbell et al. 2015). Ecosystem resistance (or insensitivity) to drought is indicated
65 by negligible change in functioning relative to average during drought, whereas resilience
66 reflects rate of recovery to average or higher than average functioning following drought (i.e.,

67 positive legacy effect) (Tilman and Downing 1994, Yahdjian and Sala 2006, Hoover et al. 2014,
68 Griffin-Nolan et al. 2018). Aboveground net primary productivity (ANPP) is a common measure
69 of ecosystem functioning used to assess sensitivity and resilience to perturbations such as
70 drought (Gann et al. 2019). Grassland ecosystems, such as the tallgrass prairie, have been shown
71 to be both sensitive and resilient to drought as demonstrated by reductions in ANPP during
72 drought and increased ANPP following drought (Griffin-Nolan et al. 2018, Luo et al. 2023).

73 The productivity of tallgrass prairie is spatially and temporally heterogeneous (Knapp
74 and Smith 2001). Spatial heterogeneity in ANPP is created [in part](#) by variation in fire frequency
75 (Knapp and Seastedt 1986, Blair 1997) and grazing by megaherbivores (Knapp et al. 1999,
76 Collins and Smith 2006, Elson and Hartnett 2017). Long-term studies in the Flint Hills region of
77 the North American Great Plains have shown that soil depth, which varies with topography, and
78 nitrogen (N) availability are also deterministic drivers of ANPP in tallgrass prairie (Briggs and
79 Knapp 1995, Turner et al. 1997, Collins et al. 2018). Typically, ANPP is lower in shallow upland
80 soils overlaying limestone rock compared to deep lowland soil (Briggs and Knapp 1995), and
81 ANPP is higher in N fertilized soils (Blair 1997, Turner et al. 1997, Nieland et al. 2021).
82 Temporal heterogeneity of ANPP in tallgrass prairie results from climate variability and
83 extremes, including droughts (Knapp and Smith 2001, Hoover et al. 2014, Griffin-Nolan et al.
84 2018, Zambreski et al. 2018, Ratajczak et al. 2019). In contrast to remnant prairie in the Flint
85 Hills, restored prairies are often located on deep, formerly cultivated soils. ANPP in prairie
86 restored on deep and homogeneous cultivated soils is less spatially heterogeneous than ANPP of
87 prairie restored in soil where rooting depth and nutrient availability were manipulated to promote
88 soil heterogeneity (Baer et al. 2016).

89 The majority of the tallgrass prairie ecosystem has been converted row-crop agriculture
90 (Samson and Knopf 1994, Comer et al. 2018) and restoring grassland reverses many ecosystem
91 disservices caused by cultivating soil, including resilience of ecosystem functioning (Birgé et al.
92 2016). Although ANPP can increase rapidly following grassland restoration on formerly
93 cultivated soil (Baer et al. 2002, 2003), there are knowledge gaps about the extent to which
94 productivity dynamics in restored grassland reflect never cultivated prairie over the long term,
95 and whether restored grassland is resilient to perturbations such as drought. Sensitivity to
96 drought might develop as restorations age. For example, prairies restored for less than a decade
97 showed no reduction in ANPP (lack of sensitivity) response to natural (Manning and Baer 2018)
98 and experimental drought (Carter and Blair 2012). In contrast, a much older restored prairie (>65
99 years) exhibited comparable reductions in productivity (sensitivity) as similarly managed
100 remnant prairie during years with water stress (Kucharik et al. 2006). The discrepancy in restored
101 grassland ANPP response to drought might be explained by the development of resilience over
102 time in ecosystems recovering from disturbance (Odum 1969, Kominoski et al. 2018).

103 Here, we leveraged ANPP data from a multi-decadal prairie restoration experiment and
104 two long-term experiments in remnant (never cultivated) prairie collected prior to, during, and
105 after a severe growing season drought to ascertain (1) whether multi-decadal restored grassland
106 functions similar to remnant prairie and (2) whether environmental heterogeneity in multi-
107 decadal restored prairie increases ecosystem functioning and resilience to drought. The
108 experimental restoration was established in 1997 on formerly cultivated soil to test the
109 applicability of the ‘environmental heterogeneity hypothesis’ to restoring biodiversity. The
110 restoration experiment contained homogeneous and heterogeneous soil treatments (Baer et al.
111 1999, 2003, 2016), and [after](#) 20 years of restoration the heterogeneous soils supported higher

112 plant diversity and richness than prairie restored on homogeneous soil (Baer et al. 2020). For
113 comparison to remnant prairie, we obtained ANPP data from unmanipulated control plots in two
114 nearby long-term experiments in remnant prairie under the same management regime as the
115 restored prairie. In all experiments, ANPP was collected using the same methods and in the same
116 years prior to drought, during drought, and following drought. These datasets enabled us to
117 determine whether ecosystem functioning before, during, and after drought (including drought
118 sensitivity and legacy effect) in multi-decadal restored prairie is similar to remnant prairie, and
119 test the hypothesis that greater resource heterogeneity (corresponding with higher plant diversity)
120 increases ecosystem functioning and resilience to drought.

121 METHODS

122 *Study Site*

123 All experiments were located at the Konza Prairie Biological Station (KPBS) and Long-Term
124 Ecological Research site in Riley County, KS ($39^{\circ}05'N$, $96^{\circ}35'W$). The remnant (never
125 cultivated) prairie is dominated by perennial C₄ grasses (*Andropogon gerardii*, *Sorghastrum*
126 *nutans*, *Panicum virgatum* and *Schizachyrium scoparium*) and includes some of the >300
127 subordinate forb species that occur throughout the site. The climate is characterized by warm,
128 dry summers and wet, cool winters. From 1989-2019, mean annual precipitation was 832 mm
129 and a mean annual temperature was 13°C (Konza Data Catalog data sets APT01 and AWE01
130 [Nippert 2024a, 2024b]). Across the six study years (2014-2019), Riley County experienced a
131 locally severe-to-extreme drought in the growing season months of April to September in 2018
132 (Appendix S1: Figure S1), described as reaching a Palmer Drought Severity Index of -2 to -4.9
133 (Palmer 1965).

134 The restored and remnant prairie experiments were located 0.75 km from one another, on
135 similar soils, in similar topographic positions (lowland), and included treatments with similar
136 management history. The restoration experiment was established on a former agricultural field
137 that had been continuously cropped for >50 years. The soil at the restoration site is classified as
138 Reading silt loam (fine-silty, mixed, superactive, mesic typic Pachic Argiudoll). The two
139 remnant prairie experiments used in this study were located on Irwin silty clay loam (fine,
140 mixed, superactive, mesic Pachic Argiustolls) soil (Knapp et al. 2001, Carson and Zeglin 2018).
141 Both remnant prairie experiments included control plots managed similar to the restored prairie:
142 not grazed by cattle or bison and burned annually each spring. Annual burning is a common
143 practice in the region to prevent woody encroachment (Briggs et al. 2005, Collins et al. 2021).

144 *Experimental Design*

145 We used a subset of whole plots in the restoration prairie experiment representing the most
146 homogeneous (RES_{HOM}) and most heterogeneous (RES_{HET}) soil treatments for this study. Each
147 whole-plot heterogeneity treatment was assigned to a 6 m x 8 m plot in each of four blocks
148 according to a randomized complete block design (Baer et al. 1999). The RES_{HET} plots contained
149 a 2 x 3 factorial combination of soil depth and nutrient availability assigned to vertical and
150 horizontal strips according to a split block design. Soil depth (two levels: shallow or deep) was
151 assigned to two of four alternating 2 m x 6 m strips (Fig. 1). Prior to the initial planting, shallow
152 soil depth was achieved by excavating the soil to a depth of 20-25 cm, burying pieces of rough-
153 cut limestone slabs in the maximum heterogeneity treatments to mimic the uplands of the Flint
154 Hills, and returning the topsoil to the plots. All plots were excavated to control for disturbance
155 prior to burying the limestone slabs (Baer et al. 1999). Soil nutrient availability (three levels:
156 reduced-N, ambient-N, and enriched-N) was assigned to one of three 2 m x 8 m strips

157 (perpendicular to depth treatments). Reduced-N strips were created by incorporating 5.5 kg dry
158 sawdust/m² prior to planting in 1998 and have received 84.2 g C/m² (~200 g sucrose/m²) three
159 times during the growing season since 2003 to maintain microbial demand and immobilization of
160 N (Baer et al. 2003). Enriched-N treatments have received 5 g N/m² in June of every year since
161 1998 by hand-broadcasting ammonium-nitrate pellets (Baer et al. 2003). The deep ambient-N
162 strips never received experimental manipulations (Fig. 1). Baer et al. (2016, 2020) demonstrate
163 that the heterogeneous treatment increased variation in soil depth and available inorganic
164 nitrogen (Appendix S1: Table S1). RES_{HOM} plots receive no soil manipulations.

165 All plots were initially sown and later over-seeded with the same species. Each restored
166 prairie plot was originally sown with 42 prairie species in late fall of 1997 using a log-normal
167 distribution of dominant grasses and subordinate forbs to resemble the distribution of species in
168 never-cultivated tallgrass prairie. All plots received supplemental seed additions of 15 new forb
169 species in 2005 and 17 new species (2 grasses and 15 forbs) repeatedly sown from 2013 to 2017
170 (Baer et al. 2020). The experimental area was fenced in 1998 to prevent deer browsing and has
171 been burned annually in the early spring since 1998, except in 2000 and 2003.

172 The remnant prairie experiments used in this study have historically been referred to as
173 the “irrigation transect” and the “belowground plot” experiments at KPBS, referred to here as
174 REM_{IRT} and REM_{BGP}, respectively. The irrigation transect experiment has manipulated water
175 availability by irrigation since 1991 (described in detail by Knapp et al. [2001]). We used ANPP
176 data from six non-irrigated control plots (10 m²) for comparison with the restoration experiment
177 (Fig. 1). REM_{BGP} has manipulated fire frequency, mowing, and nutrient availability since 1986
178 (described in detail by Carson and Zeglin [2018]). We used ANPP data from four annually

179 burned, unmowed, and unfertilized control plots (12.5 m²) for additional comparison with the
180 restoration experiment (Fig.1).

181 *Data Sources and Measurements*

182 Daily precipitation totals from 2014 to 2019 were obtained from the Konza LTER Data Catalog
183 data set APT01 (Nippert 2024a) and used to calculate cumulative precipitation patterns. The 30-
184 year average cumulative precipitation pattern was calculated using daily precipitation totals from
185 1989 to 2019.

186 The ANPP data from the restored and remnant prairie experiments were accessed from
187 the Konza LTER Data Catalog data sets PRP01 (Baer et al. 2024), WAT01 (Blair 2023) and
188 PBB01 (Blair and Zeglin 2023). Total, grass, and forb ANPP were determined for the same time
189 period (2014-2019) using the same methods in remnant and restored prairie experiments. In all
190 experiments, plant material was harvested from 0.1 m² quadrats at peak biomass. Biomass was
191 sorted into grasses, forbs, and litter produced in the sampling year. All biomass was dried at
192 60°C and weighed to estimate ANPP (Briggs and Knapp 1991). In the restoration experiment, we
193 harvested biomass from twelve quadrats in each plot (n = 4 per heterogeneity treatment). In
194 REM_{IRT}, ANPP was estimated from six quadrats in each of 6 control plots. In REM_{BGP}, ANPP
195 was estimated from two quadrats in each of 4 control plots.

196 *Statistical Analysis*

197 Prior to statistical analyses, ANPP estimates from multiple quadrats within a plot were averaged
198 for each plot for each year (2014-2019) and then averaged across years to calculate average
199 ANPP for each plot in each experiment. Average, drought year (2018), and post-drought year
200 (2019) ANPP were used to calculate drought sensitivity and drought legacy effect relative to
201 their pre-drought ANPP average (2014-2017) according to Griffin-Nolan et al. (2018), where:

202 drought sensitivity = $|(ANPP_{2018} - ANPP_{Avg})/ ANPP_{Avg}|$ and drought legacy effect = $(ANPP_{2019} - ANPP_{Avg})/ANPP_{Avg}$.

204 We analyzed ecosystem functioning (average, drought year, and post drought year
205 ANPP) and resilience (sensitivity and legacy effect) in two ways: by prairie type (restored vs.
206 remnant prairie) and among prairie sites (REM_{IRT} vs REM_{BGP} vs RES_{HOM} vs RES_{HET}). We
207 compared the functioning and resilience of restored to remnant prairie type by assigning all plots
208 from REM_{IRT} and REM_{BGP} to remnant prairie (n = 10) and all plots from RES_{HOM} and RES_{HET}
209 treatments to restored prairie (n = 8). Restored prairie ANPP was compared to remnant prairie
210 ANPP using ANOVA ($\alpha = 0.05$). For the second set of analyses, we tested whether heterogeneity
211 explained differences in functioning and resilience between restored and remnant prairie sites.
212 We compared responses among all prairie experiments (sites) using independent plots as the
213 replicate in each remnant and restored prairie (REM_{IRT}, REM_{BGP}, RES_{HOM}, and RES_{HET}); data
214 were analyzed using a one-way analysis of variance (ANOVA, $\alpha = 0.05$) followed by post-hoc
215 least squares means comparisons (Lenth 2016). All variables were normally distributed based on
216 the Shapiro-Wilks normality test. All statistical analyses were performed in R (R Core Team
217 2020).

218 **RESULTS**

219 Total precipitation across the six years of observation (2014-2019) ranged from 706 mm to 1003
220 mm at KPBS (Fig. 2). The cumulative precipitation in each of these six years shows the growing
221 season drought in 2018 (Fig. 2). In April and June of 2018, KPBS received only 52% and 30% of
222 the 30-year cumulative monthly average, which resulted in the 2018 growing season receiving
223 the lowest cumulative precipitation during the six years of observation (Fig. 2). Conversely,
224 KPBS received +119% and +117% of the 30-year growing season and annual average

225 cumulative precipitation, making 2019 one of the wettest growing seasons and years in the six
226 years of observation (Fig. 2).

227 Across years and growing seasons with average precipitation (2014-2017), total ANPP
228 was similar between remnant and restored prairie ($F_{1,16} = 2.34, P = 0.146$, Fig. 3A) and among all
229 sites and heterogeneity treatments ($F_{3,14} = 1.15, P = 0.362$, Fig. 3B). Total ANPP during the
230 drought year was less similar between restored and remnant prairie ($F_{1,16} = 3.68, P = 0.073$, Fig.
231 3A) but the site analysis revealed no significant differences among the remnant prairie
232 experiments or heterogeneity treatments in restored prairie ($F_{3,14} = 1.25, P = 0.330$, Fig. 3B).
233 Post-drought (2019) total ANPP was 27% higher in restored prairie than remnant prairie ($F_{1,16} =$
234 $6.93, P = 0.018$, Fig. 3A). Total ANPP in the RES_{HOM} treatment was similar to both remnant
235 prairie sites, whereas total ANPP in the RES_{HET} treatment was 35% to 64% higher compared to
236 other prairie sites and treatments in 2019 ($F_{3,14} = 9.12, P = 0.001$, Fig. 3B).

237 Despite similar total ANPP prior to and during drought, the grass and forb components of
238 ANPP differed among the restored and remnant prairies. Remnant prairie had 23% higher grass
239 ANPP than restored prairie in the years used to calculate average precipitation ($F_{1,16} = 7.47, P =$
240 0.015 , Fig. 3C), which was attributed to moderately lower grass ANPP in RES_{HOM} ($F_{3,14} = 2.74,$
241 $P = 0.083$, Fig. 3D). During the 2018 drought, remnant prairie had 57% higher grass ANPP than
242 restored prairie ($F_{1,16} = 11.72, P = 0.003$, Fig. 3C), largely due to higher grass ANPP in one of
243 the remnant prairies (REM_{IRT}) relative to the homogeneous restoration ($F_{3,14} = 3.85, P = 0.034$,
244 Fig. 3D). Post drought grass ANPP, however, was similar between remnant and restored prairie
245 types ($F_{1,16} = 0.15, P = 0.708$, Fig. 3C) and among prairie sites ($F_{3,14} = 2.52, P = 0.100$, Fig. 3D).

246 Forb ANPP was consistently higher in the restored prairie than remnant prairie prior to,
247 during, and after the 2018 growing season drought. In the period used to calculate average

248 productivity, restored prairie had 69% higher forb ANPP than remnant prairie ($F_{1,16} = 5.29, P =$
249 0.035, Fig. 3E), and forb ANPP did not differ between the homogeneous and heterogeneous
250 treatments ($F_{3,14} = 2.48, P = 0.103$, Fig. 3F). During drought, forb ANPP in restored prairie was
251 nearly twice that in remnant prairie ($F_{1,16} = 4.27, P = 0.055$, Fig. 3E), resulting from the
252 combined response of prairies within type that was not attributed to a particular site ($F_{3,14} = 2.03,$
253 $P = 0.157$, Fig. 3F). The year following drought, restored prairie had 3.8 times more forb ANPP
254 than remnant prairie ($F_{1,16} = 27.88, P < 0.001$, Fig. 3E). Forb ANPP was 3.5 to 5.3 times higher
255 in the RES_{HET} than in both remnant prairie sites, while the RES_{HOM} had 3.8 times higher forb
256 ANPP than one of the remnant prairie sites ($F_{3,14} = 11.07, P < 0.001$, Fig. 3F).

257 Differences between restored and remnant prairie in sensitivity of ANPP response to
258 drought varied with ANPP category. Sensitivity of total ANPP to drought was similar between
259 prairie types ($F_{1,16} = 0.51, P = 0.485$, Fig. 4A) and among prairie sites ($F_{3,14} = 0.38, P = 0.768$,
260 Fig. 4B). However, sensitivity of grass ANPP to drought was 70% greater in restored prairie than
261 in remnant prairie ($F_{1,16} = 5.10, P = 0.038$, Fig. 4A), and did not differ between heterogeneity
262 treatments due to high variation and low statistical power ($F_{3,14} = 1.72, P = 0.208$, Fig. 4A). Forb
263 ANPP sensitivity to drought was highly variable and did not differ between remnant and restored
264 prairie types ($F_{1,16} = 0.02, P = 0.886$, Fig. 4A) or among prairie sites ($F_{3,14} = 0.22, P = 0.883$,
265 Fig. 4B).

266 Drought legacy effects were positive in both prairie types. Restored prairie, however,
267 exhibited 70% more positive drought legacy effect for total ANPP than did remnant prairie ($F_{1,16}$
268 = 11.34, $P = 0.004$, Fig. 4C). The higher drought legacy effect in restored prairie resulted from
269 the RP_{HET} having a 30-40% higher drought legacy effect relative to the remnant prairie sites
270 ($F_{3,14} = 5.55, P = 0.010$, Fig. 4D). Grass ANPP drought legacy effects were not different between

271 remnant and restored prairie types ($F_{1,16} = 1.73, P = 0.207$, Fig. 4C) or among prairie sites ($F_{3,14} =$
272 $1.78, P = 0.197$, Fig. 4D). Forb ANPP drought legacy effects were highly variable in all prairies,
273 resulting in no differences between prairie types ($F_{1,16} = 2.15, P = 0.162$, Fig. 4C) or among
274 prairie sites ($F_{3,14} = 0.86, P = 0.485$, Fig. 4D). Although not significant, average forb drought
275 legacy effects were 2.1 times higher in the restored prairie compared to remnant prairie due to
276 the extremely high productivity of forb species that were not distributed evenly within and
277 among plots (Fig. 4C).

278 DISCUSSION

279 A core question in restoration ecology is whether ecological theory can be applied to restoring
280 ecosystem functioning and promoting resilience to periodic stress (Bradshaw 1987). We
281 addressed this question by comparing productivity and resilience to drought in remnant prairie to
282 a multi-decadal restored prairie that, uniquely, contained contrasting environmental soil
283 heterogeneity treatments. Most studies of temporal ANPP dynamics in restored prairie capture
284 only the first decade of restoration, often the establishment years (Baer et al. 2003, 2014, Polley
285 et al. 2007, Carter and Blair 2012, Willand et al. 2013, Manning and Baer 2018), when there is
286 large variation in community composition among volunteer and sown species. Ours is the first
287 study to demonstrate that in terms of ANPP, long-term restored prairie functions similarly to
288 remnant prairie and exhibits similar or greater resilience to drought than remnant prairie when
289 restored under higher environmental heterogeneity. However, when the productivity of grasses
290 and forbs were considered separately, restored and remnant prairies differed during average
291 precipitation years and during the 2018 drought regardless of heterogeneity treatment, suggesting
292 mechanisms of resilience may vary between restored and remnant prairie.

293 The restored prairie was functionally similar to remnant prairie in terms of total ANPP
294 prior to and during drought, but not in the post-drought year. Following drought, restored prairie
295 exhibited greater ANPP than remnant prairie due to higher ANPP in prairie restored on
296 heterogeneous soil. Higher ANPP in the heterogeneous soil was driven by higher ANPP of forbs
297 following drought, which has been shown to explain recovery of ANPP from drought in other
298 grasslands (Xu et al. 2017). Contrary to our hypothesis, ANPP in prairie restored under
299 heterogeneous soil conditions was not higher than ANPP in the homogeneous soil in average and
300 drought conditions despite that the heterogeneity treatment supported higher plant diversity in
301 timeframe of this study (Baer et al. 2020 and A. Wojciechowski *unpublished data*). However, the
302 heterogeneous soil treatment did have higher ANPP than the homogeneous soil treatment in the
303 post-drought year, supporting the notion that diversity increases recovery of ecosystem
304 functioning from disturbance (Isbell et al. 2009, Tilman et al. 2012, 2014), including resilience to
305 drought (Isbell et al. 2015).

306 Resilience can be assessed by examining the sensitivity of productivity during drought
307 and the recovery of productivity following drought (Tilman and Downing 1994, Hoover et al.
308 2014, Griffin-Nolan et al. 2018). Here, restored and remnant prairies were similarly sensitive to
309 drought in terms of total ANPP, but grass ANPP was more sensitive to drought (across both
310 heterogeneity treatments) in restored prairie than remnant prairie. A previous rainfall
311 manipulation experiment at KPBS found that resilience of remnant prairie to size and frequency
312 of rain events (Knapp et al. 2002) was related to drought-adapted genotypes of *A. gerardii*
313 (Avolio and Smith 2013). Although we did not assess genotypic differences between remnant
314 and restored prairies, the cultivar seed source of *A. gerardii* used in the restoration lacked the 9X
315 cytotype that is more tolerant to drier conditions (Keeler 2004, McAllister et al. 2015). The

316 potential absence of drought tolerant genotypes could result in greater sensitivity of restored
317 prairie to drought than remnant prairie. Although sensitivity to the amount and variability of
318 rainfall is driven by grasses that primarily use water from relatively shallow soil depths (Knapp
319 et al. 2001, Nippert et al. 2006), remnant prairie may contain plants with deeper roots accessing
320 deeper soil water (Nippert and Knapp 2007, Kitchen et al. 2009, Ebeling et al. 2014). We did not
321 assess the depth distribution of roots in our restored prairie, but remnant prairie contain more
322 roots deeper in the soil profile than restored prairie that have been established for decades on
323 formerly cultivated soil (Matamala et al. 2008).

324 Drought legacy effects can be highly variable (Hoover et al. 2014, Yahdjian and Sala
325 2006, Griffin-Nolan et al. 2018) but are generally negative across grasslands and forest
326 ecosystems (Sala et al. 2012, Anderegg et al. 2015), which likely reflects response to greater
327 drought severity in arid or dryland systems (Yahdjian and Sala 2006, Anderagg et al. 2015).
328 Contrary to the global trend, mesic grassland tends to show positive (higher ANPP than expected
329 following drought) or no drought legacy effects (Hoover et al. 2014, Wagg et al. 2017, Griffin-
330 Nolan et al. 2018). Consistent with other studies in tallgrass prairie, all but one remnant prairie
331 plot and all restored prairie plots exhibited a positive drought legacy effect. A positive post-
332 drought productivity legacy effect could result from accumulation of available nitrogen during
333 drought with less plant uptake of nitrogen (Seastedt and Knapp 1993), supported by greater
334 recovery of ANPP following drought under chronic nutrient enrichment (Bharath et al. 2020).
335 Alternatively, positive legacy effects have been observed in grasslands resulting from
336 community functional dispersion due to mortality or senescence of dominant species and
337 corresponding fast growth rate of drought avoiding/escaping forbs (Griffin-Nolan et al. 2019).
338 Here, drought legacy effects were more positive in restored prairie than remnant prairie, which

339 we attributed to the strong post-drought growth response of forbs, less variability in the positive
340 legacy effect observed in forbs among plots in heterogeneous soil, and overall higher ANPP of
341 forbs in the restored prairie on heterogeneous soil.

342 Nearby comparable non-disturbed ecosystems are often used to assess recovery of
343 ecosystem processes in response to human intervention that aims to reverse environmental
344 degradation (Aronson et al. 2017). Here, we demonstrate that restored prairie can attain
345 productivity levels comparable to remnant prairie and respond similarly to drought, though grass
346 productivity was more sensitive to drought in restored prairie. Our results also show that prairie
347 restored on heterogeneous soil can exhibit (1) higher productivity than remnant prairie and
348 prairie restored on homogeneous soil following drought and (2) a more positive drought legacy
349 effect than remnant prairie. These results demonstrate that prairie restored on heterogeneous soil
350 can be more resilient to drought than remnant prairie, and equally or more resilient to drought
351 than prairie restored on homogeneous soil. Restoring prairie can also achieve higher ecosystem
352 functioning than remnant prairie following drought due to higher forb productivity. Thus, sowing
353 a high ratio of forbs:grasses or over-seeding restored prairie with forbs to increase floristic
354 diversity (Deever et al. 2023, Dickson and Busby 2009, Klopf et al. 2014, Baer et al. 2020,
355 Drobney et al. 2020) may also increase resilience to drought and promote multi-functionality of
356 restored grasslands (Zavaleta et al. 2010).

ACKNOWLEDGEMENTS

358 Funding for this research was provided by the National Science Foundation (award #1922915)
359 with support from the NSF Long-Term Ecological Research program and the Konza Prairie
360 Biological Station. We thank current and former Baer Lab members and KPBS staff for
361 collecting data used in this study and maintaining these long-term field experiments.

362

LITERATURE CITED

363 Anderegg, W. R. L., C. Schwalm, F. Biondi, J. J. Camarero, G. Koch, M. Litvak, K. Ogle, J. D.
364 Shaw, E. Shevliakova, A. P. Williams, A. Wolf and E. Ziaco. 2015. Pervasive drought
365 legacies in forest ecosystems and their implications for carbon cycle models. *Science* 349:
366 528-532.

367 Aronson, J., J. N. Blignaut, and T. B. Aronson. 2017. Conceptual frameworks and references for
368 landscape-scale restoration: reflecting back and looking forward. *Annals of the Missouri
369 Botanical Garden* 102:188–200.

370 Avolio, M. L., and M. D. Smith. 2013. Mechanisms of selection: phenotypic differences among
371 genotypes explain patterns of selection in a dominant species. *Ecology* 94:953–965.

372 Baer, S. G., T. Adams, D. A. Scott, J. M. Blair, and S. L. Collins. 2020. Soil heterogeneity
373 increases plant diversity after 20 years of manipulation during grassland restoration.
374 *Ecological Applications* 30:e02014.

375 Baer, S. G., J. M. Blair, and S. L. Collins. 2016. Environmental heterogeneity has a weak effect
376 on diversity during community assembly in tallgrass prairie. *Ecological Monographs* 86:94–
377 106.

378 Baer, S. G., J. M. Blair, and S. L. Collins. 2024. PRP01 Konza prairie long term restoration study
379 of aboveground annual net primary productivity (ANPP). Environmental Data Initiative.
380 <http://dx.doi.org/10.6073/pasta/45c020a2d9129bd83a6556418ead2b10>.

381 Baer, S. G., J. M. Blair, S. L. Collins, and A. K. Knapp. 2003. Soil resources regulate
382 productivity and diversity in newly established tallgrass prairie. *Ecology* 84:724–735.

383 Baer, S. G., J. M. Blair, and A. K. Knapp. 1999. Manipulation of soil resource heterogeneity in a
384 tallgrass prairie restoration. *Proceedings of the North American Prairie Conference* 16:78–
385 87.

386 Baer, S. G., D. J. Gibson, D. J. Gustafson, A. M. Benscoter, L. K. Reed, R. E. Campbell, R. P.
387 Klopf, J. E. Willand, and B. R. Wodika. 2014. No effect of seed source on multiple aspects
388 of ecosystem functioning during ecological restoration: cultivars compared to local ecotypes
389 of dominant grasses. *Evolutionary Applications* 7:323–335.

390 Baer, S. G., D. J. Kitchen, J. M. Blair, and C. W. Rice. 2002. Changes in ecosystem structure and
391 function along a chronosequence of restored grasslands. *Ecological Applications* 12:1688–
392 1701.

393 Baer, S. G., C. K. Meyer, E. M. Bach, R. P. Klopf, and J. Six. 2010. Contrasting ecosystem
394 recovery on two soil textures: implications for carbon mitigation and grassland
395 conservation. *Ecosphere* 1:1-22.

396 Bharath, S., E. T. Borer, L. A. Biederman, D. M. Blumenthal, P. A. Fay, L. A. Gherardi, J. M. H.
397 Knops, A. D. B. Leakey, L. Yahdjian, and E. W. Seabloom. 2020. Nutrient addition
398 increases grassland sensitivity to droughts. *Ecology* 101: e02981.

399 Birgé, H. E., R. A. Bevans, C. R. Allen, D. G. Angeler, S. G. Baer, and D. H. Wall. 2016.
400 Adaptive management for soil ecosystem services. *Journal of Environmental Management*
401 183:371–378.

402 Blair, J. M. 1997. Fire, N availability, and plant response in grasslands: a test of the transient
403 maxima hypothesis. *Ecology* 78:2359–2368.

404 Blair, J. M. 2023. WAT01 Konza Prairie long-term irrigation transect study. Environmental Data
405 Initiative. <http://dx.doi.org/10.6073/pasta/3037d44d496df3d12fbe9668c7d618a6>.

406 Blair, J. M., and L. Zeglin. 2023. PBB01 Belowground Plot Experiment: aboveground net
407 primary productivity of tallgrass prairie based on accumulated plant biomass.
408 Environmental Data Initiative.
409 <http://dx.doi.org/10.6073/pasta/93e96b1d750a67db887ed65f76021510>.

410 Bradshaw, A. D. 1987. Restoration: an acid test for ecology. Pages 23–29 in W. R. Jordan, M. E.
411 Gilpin, and H. J. D. Aber, editors. Restoration ecology: a synthetic approach to ecological
412 restoration. Cambridge University Press, Cambridge, UK.

413 Briggs, J. M., and A. K. Knapp. 1991. Estimating aboveground biomass in tallgrass prairie with
414 the harvest method: determining proper sample size using jackknifing and Monte Carlo
415 simulations. The Southwestern Naturalist 36:1-6.

416 Briggs, J. M., and A. K. Knapp. 1995. Interannual variability in primary production in tallgrass
417 prairie: climate, soil moisture, topographic position, and fire as determinants of
418 aboveground biomass. American Journal of Botany 82:1024–1030.

419 Briggs, J. M., A. K. Knapp, J. M. Blair, J. L. Heisler, G. A. Hoch, M. S. Lett, and J. K.
420 McCarron. 2005. Ecosystem in transition: causes and consequences of the conversion of
421 mesic grassland to shrubland. BioScience 55:243–254.

422 Carson, C. M., and L. H. Zeglin. 2018. Long-term fire management history affects N-fertilization
423 sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biology and
424 Biochemistry 121:231–239.

425 Carter, D. L., and J. M. Blair. 2012. High richness and dense seeding enhance grassland
426 restoration establishment but have little effect on drought response. *Ecological Applications*
427 22:1308–1319.

428 Collins, S. L., and M. D. Smith. 2006. Scale-dependent interaction of fire and grazing on
429 community heterogeneity in tallgrass prairie. *Ecology* 87:2058–2067.

430 Collins, S. L., M. L. Avolio, C. Gries, L. M. Hallett, S. E. Koerner, K. J. La Pierre, A. L. Rypel,
431 E. R. Sokol, S. B. Fey, D. F. B. Flynn, S. K. Jones, L. M. Ladwig, J. Ripplinger, and M. B.
432 Jones. 2018. Temporal heterogeneity increases with spatial heterogeneity in ecological
433 communities. *Ecology* 99:858–865.

434 Collins, S. L., J. B. Nippert, J. M. Blair, J. M. Briggs, P. Blackmore, and Z. Ratajczak. 2021. Fire
435 frequency, state change and hysteresis in tallgrass prairie. *Ecology Letters* 24:636–647.

436 Comer, P. J., J. C. Hak, K. Kindscher, E. Muldavin, and J. Singhurst. 2018. Continent-scale
437 landscape conservation design for temperate grasslands of the Great Plains and Chihuahuan
438 Desert. *Natural Areas Journal* 38:196–211.

439 Deever, D. T., N. M. Soley, K. Fullin, and B. J. Wilsey. Recruitment limitation of early- and
440 late-flowering grassland forbs can be overcome with transplanting in prairie restorations.
441 *Journal of Applied Ecology* (early view).

442 Dickson, T. L., and W. H. Busby. 2009. Forb species establishment increases with decreased
443 grass seed density and with increased forb seedling desnsity in a northeast Kansas, U.S.A.,
444 experimental prairie restroation. *Restoration Ecology* 17: 597-605.

445 Drobney, P., D. L. Larson, J. L. Larson, and K. Viste-Sparkman. 2020. Toward improving
446 pollinator habitat: reconstructing prairies with high forb diversity. *Natural Areas Journal* 40:

447 252-261.

448 Ebeling, A., S. Pompe, J. Baade, N. Eisenhauer, H. Hillebrand, R. Proulx, C. Roscher, B.

449 Schmid, C. Wirth, and W. W. Weisser. 2014. A trait-based experimental approach to

450 understand the mechanisms underlying biodiversity–ecosystem functioning relationships.

451 Basic and Applied Ecology 15:229–240.

452 Elson, A., and D. C. Hartnett. 2017. Bison increase the growth and reproduction of forbs in

453 tallgrass prairie. The American Midland Naturalist 178:245–259.

454 Gann, G. D., T. McDonald, B. Walder, J. Aronson, C. R. Nelson, J. Jonson, J. G. Hallett, C.

455 Eisenberg, M. R. Guariguata, J. Liu, F. Hua, C. Echeverría, E. Gonzales, N. Shaw, K.

456 Decler, and K. W. Dixon. 2019. International principles and standards for the practice of

457 ecological restoration. Second edition. Restoration Ecology 27:S1–S46.

458 Gedan, K. B., M. L. Kirwan, E. Wolanski, E. B. Barbier, and B. R. Silliman. 2011. The present

459 and future role of coastal wetland vegetation in protecting shorelines: answering recent

460 challenges to paradigm. Climate Change 106: 7-29.

461 Griffin-Nolan, R.J, D.M. Blumenthal, S.L. Collins, T.E. Farkas, A.M. Hoffman, K.E. Mueller,

462 T.W. Ocheltree, M.D. Smith, K.D. Whitney, and A.K. Knapp. 2019. Shifts in plant

463 functional composition following long-term drought in grasslands. Journal of Ecology 107:

464 2133-2148.

465 Griffin-Nolan, R. J., C. J. W. Carroll, E. M. Denton, M. K. Johnston, S. L. Collins, M. D. Smith,

466 and A. K. Knapp. 2018. Legacy effects of a regional drought on aboveground net primary

467 production in six central US grasslands. Plant Ecology 219:505–515.

468 Holling, C. S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology

469 and Systematics 4:1–23.

470 Hoover, D. L., A. K. Knapp, and M. D. Smith. 2014. Resistance and resilience of a grassland
471 ecosystem to climate extremes. *Ecology* 95:2646–2656.

472 Huston, M. 1979. A general hypothesis of species diversity. *The American Naturalist* 113:81–
473 101.

474 Isbell, F., D. Craven, J. Connolly, M. Loreau, B. Schmid, C. Beierkuhnlein, T. M. Bezemer, C.
475 Bonin, H. Bruelheide, E. De Luca, A. Ebeling, J. N. Griffin, Q. Guo, Y. Hautier, A. Hector,
476 A. Jentsch, J. Kreyling, V. Lanta, P. Manning, S. T. Meyer, A. S. Mori, S. Naeem, P. A.
477 Niklaus, H. W. Polley, P. B. Reich, C. Roscher, E. W. Seabloom, M. D. Smith, M. P.
478 Thakur, D. Tilman, B. F. Tracy, W. H. Van Der Putten, J. Van Ruijven, A. Weigelt, W. W.
479 Weisser, B. Wilsey, and N. Eisenhauer. 2015. Biodiversity increases the resistance of
480 ecosystem productivity to climate extremes. *Nature* 526:574–577.

481 Isbell, F. I., H. W. Polley, and B. J. Wilsey. 2009. Biodiversity, productivity and the temporal
482 stability of productivity: patterns and processes. *Ecology Letters* 12:443–451.

483 Keeler, K. H. 2004. Impact of intraspecific polyploidy in *Andropogon gerardii* (Poaceae)
484 populations. *The American Midland Naturalist* 152:63–74.

485 Kitchen, D. J., J. M. Blair, and M. A. Callaham. 2009. Annual fire and mowing alter biomass,
486 depth distribution, and C and N content of roots and soil in tallgrass prairie. *Plant and Soil*
487 323:234–247.

488 Klopf, R. P., S. G. Baer, and D. J. Gibson. 2014. Convergent and contingent community
489 responses to grass source and dominance during prairie restoration across a longitudinal

490 gradient. *Environmental Management* 53:252–265.

491 Knapp, A. K., J. M. Blair, J. M. Briggs, S. L. Collins, D. C. Hartnett, L. C. Johnson, and E. G.
492 Towne. 1999. The keystone role of bison in North American tallgrass prairie. *BioScience*
493 49:39–50.

494 Knapp, A. K., J. M. Briggs, and J. K. Koelliker. 2001. Frequency and extent of water limitation
495 to primary production in a mesic temperate grassland. *Ecosystems* 4:19–28.

496 Knapp, A. K., P. A. Fay, J. M. Blair, S. L. Collins, M. D. Smith, J. D. Carlisle, C. W. Harper, B.
497 T. Danner, M. S. Lett, and J. K. McCarron. 2002. Rainfall variability, carbon cycling, and
498 plant species diversity in a mesic grassland. *Science* 298:2202–2205.

499 Knapp, A. K., and T. R. Seastedt. 1986. Detritus accumulation limits productivity of tallgrass
500 prairie. *BioScience* 36:662–668.

501 Knapp, A. K., and M. D. Smith. 2001. Variation among biomes in temporal dynamics of
502 aboveground primary production. *Science* 80:-:481–484.

503 Kominoski, J. S., E. E. Gaiser, and S. G. Baer. 2018. Advancing theories of ecosystem
504 development through long-term ecological research. *BioScience* 68:554–562.

505 Kucharik, C. J., N. J. Fayram, and K. N. Cahill. 2006. A paired study of prairie carbon stocks,
506 fluxes, and phenology: comparing the world's oldest prairie restoration with an adjacent
507 remnant. *Global Change Biology* 12:122–139.

508 Lenth, R. V. 2016. Least-squares means: the R package *lsmeans*. *Journal of Statistical Software*
509 69:1–33.

510 Luo, W., Y. Shi, K. Wilkins, L. Song, N. Te, J. Chen, H. Zhang, Q. Yu, Z. Wang, X. Han, and

511 S.L. Collins. 2023. Plant traits modulate grassland stability during drought and post-
512 drought periods. *Functional Ecology* 37: 2611-2620.

513 Manning, G. C., and S. G. Baer. 2018. Interannual variability in climate effects on community
514 assembly and ecosystem functioning in restored prairie. *Ecosphere* 9:e02327.

515 Matamala, R., J. D. Jastrow, R. M. Miller, and C. T. Garten. 2008. Temporal changes in C and N
516 stocks of restored prairie: implications for C sequestration strageies. *Ecology* 18: 1470-
517 1488.

518 Maurer, G. E., A. J. Hallmark, R. F. Brown, O. E. Sala, and S. L. Collins. 2020. Sensitivity of
519 primary production to precipitation across the United States. *Ecology Letters* 23:527–536.

520 McAllister, C., R. Blaine, P. Kron, B. Bennett, H. Garrett, J. Kidson, B. Matzenbacher, A.
521 Glotzbach, and A. J. Miller. 2015. Environmental correlates of cytotype distribution in
522 *Andropogon gerardii* (Poaceae). *American Journal of Botany* 102:92–102.

523 McDonald, T., J. Jonson, and K. W. Dixon. 2016. National standards for the practice of
524 ecological restoration in Australia. *Restoration Ecology* 24: S4-S32.

525 Nieland, M. A., P. Moley, J. Hanschu, and L. H. Zeglin. 2021. Differential resilience of soil
526 microbes and ecosystem functions following cessation of long-term fertilization.
527 *Ecosystems* 24:2042–2060.

528 Nippert, J. B. 2024a. APT01 daily precipitation amounts measured at multiple sites across Konza
529 Prairie. Environmental Data Initiative.
530 <http://dx.doi.org/10.6073/pasta/434ea64024920232e8260f42f00c3fb6>.

531 Nippert, J. B. 2024b. AWE01 meteorological data from the Konza Prairie headquarters weather

532 station. Environmental Data Initiative.

533 <http://dx.doi.org/10.6073/pasta/743c6b205e38a087bc54925ed258f549>.

534 Nippert, J. B., and A. K. Knapp. 2007. Linking water uptake with rooting patterns in grassland

535 species. *Oecologia* 153:261–272.

536 Nippert, J. B., A. K. Knapp, and J. M. Briggs. 2006. Intra-annual rainfall variability and

537 grassland productivity: can the past predict the future? *Plant Ecology* 184:65–74.

538 Odum, E. P. 1969. The strategy of ecosystem development. *Science* 164:262–270.

539 Opperman, J. J., R. Luster, B. A. McKenney, M. Roberts, and A. W. Meadows. 2010. Ecological

540 functional floodplains: connectivity, flow regime, and scale. *Journal of the American Water*

541 *Resources Association* 46: 211-226.

542 Palmer, W. C. 1965. Meteorological drought. U.S. Weather Bureau, Research Paper No. 45:1–

543 65.

544 Polley, H. W., B. J. Wilsey, and J. D. Derner. 2007. Dominant species constrain effects of

545 species diversity on temporal variability in biomass production of tallgrass prairie. *Oikos*

546 116: 2044-2052.

547 R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for

548 Statistical Computing, Vienna, Austria.

549 Ratajczak, Z., A. C. Churchill, L. M. Ladwig, J. H. Taylor, and S. L. Collins. 2019. The

550 combined effects of an extreme heatwave and wildfire on tallgrass prairie vegetation.

551 *Journal of Vegetation Science* 30:687–697.

552 Ricklefs, R. E. 1977. Environmental heterogeneity and plant species diversity: a hypothesis. The

553 American Naturalist 111:376–381.

554 Sala, O. E., L. A. Gherardi, L. Reichmann, E. Jobbágy, and D. Peters. 2012. Legacies of
555 precipitation fluctuations on primary production: theory and data synthesis. Philosophical
556 Transactions of the Royal Society B: Biological Sciences 367:3135–3144.

557 Samson, F. L., and F. B. Knopf. 1994. Prairie conservation in North America. BioScience
558 44:418–421.

559 Scott, D. A., S. G. Baer, and J. M. Blair. 2017. Recovery and relative influence of root,
560 microbial, and structural properties of soil on physically sequestered carbon stocks in
561 restored grassland. Soil Science Society of America Journal 81:50–60.

562 Seastedt, T. R., and A. K. Knapp. 1993. Consequences of nonequilibrium resource availability
563 across multiple time scales: the transient maxima hypothesis. The American Naturalist 141:
564 621–633.

565 Smith, M. D. 2011. The ecological role of climate extremes: current understanding and future
566 prospects. Journal of Ecology 99:651–655.

567 Tilman, D., and J. A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367:363–
568 365.

569 Tilman, D., F. Isbell, and J. M. Cowles. 2014. Biodiversity and ecosystem functioning. Annual
570 Review of Ecology, Evolution, and Systematics 45:471–493.

571 Tilman, D., P. B. Reich, and F. Isbell. 2012. Biodiversity impacts ecosystem productivity as
572 much as resources, disturbance, or herbivory. Proceedings of the National Academy of
573 Sciences of the United States of America 109:10394–10397.

574 Turner, C. L., J. M. Blair, R. J. Schartz, and J. C. Neel. 1997. Soil N and plant responses to fire,
575 topography, and supplemental N in tallgrass prairie. *Ecology* 78:1832–1843.

576 Wagg, C., M. J. O'Brien, A. Vogel, M. Scherer-Lorenzen, N. Eisenhauer, B. Schmid, and A.
577 Weigelt. 2017. Plant diversity maintains long-term ecosystem productivity under frequent
578 drought by increasing short-term variation. *Ecology* 98:2952–2961.

579 Willand, J. E., S. G. Baer, D. J. Gibson, and R. P. Klopf. 2013. Temporal dynamics of plant
580 community regeneration sources during tallgrass prairie restoration. *Plant Ecology*
581 214:1169–1180.

582 Xu, X., H. W. Polley, K. Hofmockel, and B. J. Wilsey. 2017. Species composition but not
583 diversity explains recovery from the 2011 drought in Texas grassland. *Ecosphere* 8: e01704.

584 Yahdjian, L., and O. E. Sala. 2006. Vegetation structure constrains primary production response
585 to water availability in the Patagonian Steppe. *Ecology* 87:952–962.

586 Zabin, C. J., L. J. Jurgens, J. M. Bible, M. V. Pattern, A. L. Chang, E. D. Grosholz, and K. E.
587 Boyer. 2022. *Frontiers in Ecology and the Environment* 20: 310-318.

588 Zambreski, Z. T., X. Lin, R. M. Aiken, G. J. Kluitenberg, and R. A. Pielke. 2018. Identification
589 of hydroclimate subregions for seasonal drought monitoring in the U.S. Great Plains.
590 *Journal of Hydrology* 567:370–381.

591 Zavaleta, E. S., J. R. Pasari, K. B. Hulvey, and G. D. Tilman. 2010. Sustaining multiple
592 ecosystem functions in grassland communities requires higher biodiversity. *Proceedings of*
593 *the National Academy of Sciences of the United States of America* 107:1443–1446.

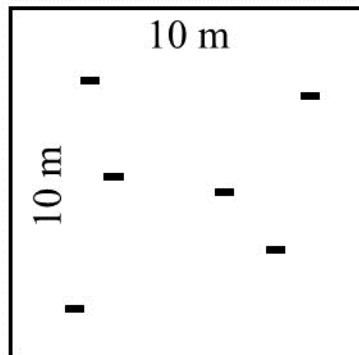
595 **Figure 1.** Dimensions and number of ANPP quadrats in each experimental unit (plot) within
596 each of the remnant prairies (REM_{IRT} = irrigation transects; REM_{BGP} =belowground plots) and
597 restored prairie experiment containing homogeneous (RES_{HOM}) and heterogeneous (RES_{HET})
598 treatments used in this study.

599 **Figure 2.** Daily cumulative precipitation each year of this study from 2014 to 2019 and the 30-
600 year average (30YR) at KPBS. The dashed box indicates the growing season (April-September).

601 **Figure 3.** Mean (\pm standard error) total, grass, and forb ANPP from 2014 to 2017 prior to
602 drought (= average ANPP), ANPP during the drought of 2018, and in the post-drought year of
603 2019 (A, C, E) between prairie types [remnant vs. restored] and (B, D, F) among prairie sites
604 [REM_{IRT} vs REM_{BGP} vs RES_{HOM} vs RES_{HET}]. Comparisons between prairie types and among
605 prairie sites were performed by average, drought, and post-drought period. Means accompanied
606 by the same letter were not significantly different ($\alpha = 0.05$).

607 **Figure 4.** Mean (\pm standard error) drought sensitivities of total, grass, and forb ANPP (A)
608 between prairie types and (B) among prairie sites. Mean (\pm standard error) drought legacy effects
609 of total, grass, and forb ANPP (C) between prairie types and (D) among prairie sites. Means
610 accompanied by the same letter within a ANPP type were not significantly different ($\alpha = 0.05$).

Prairie Type, Prairie Site

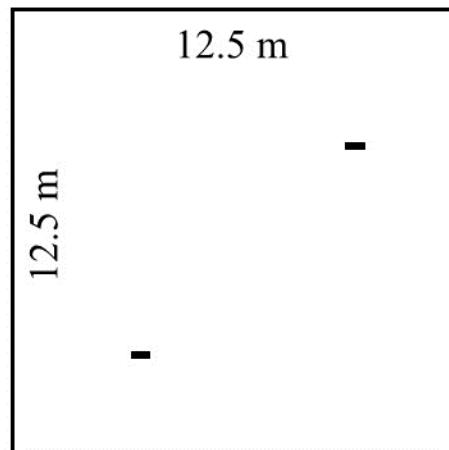

- = ANPP (0.1 m²)

Remnant, REM_{IRT}

(Irrigation Transects)

Plots = 6

ANPP Quadrats = 6

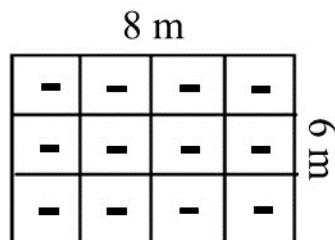


Remnant, REM_{BGP}

(Belowground Plots)

Plots = 4

ANPP Quadrats = 2

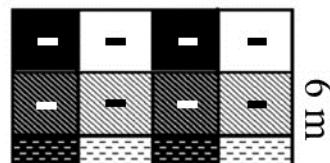


Restored, RES_{HOM}

(Homogeneous Plots)

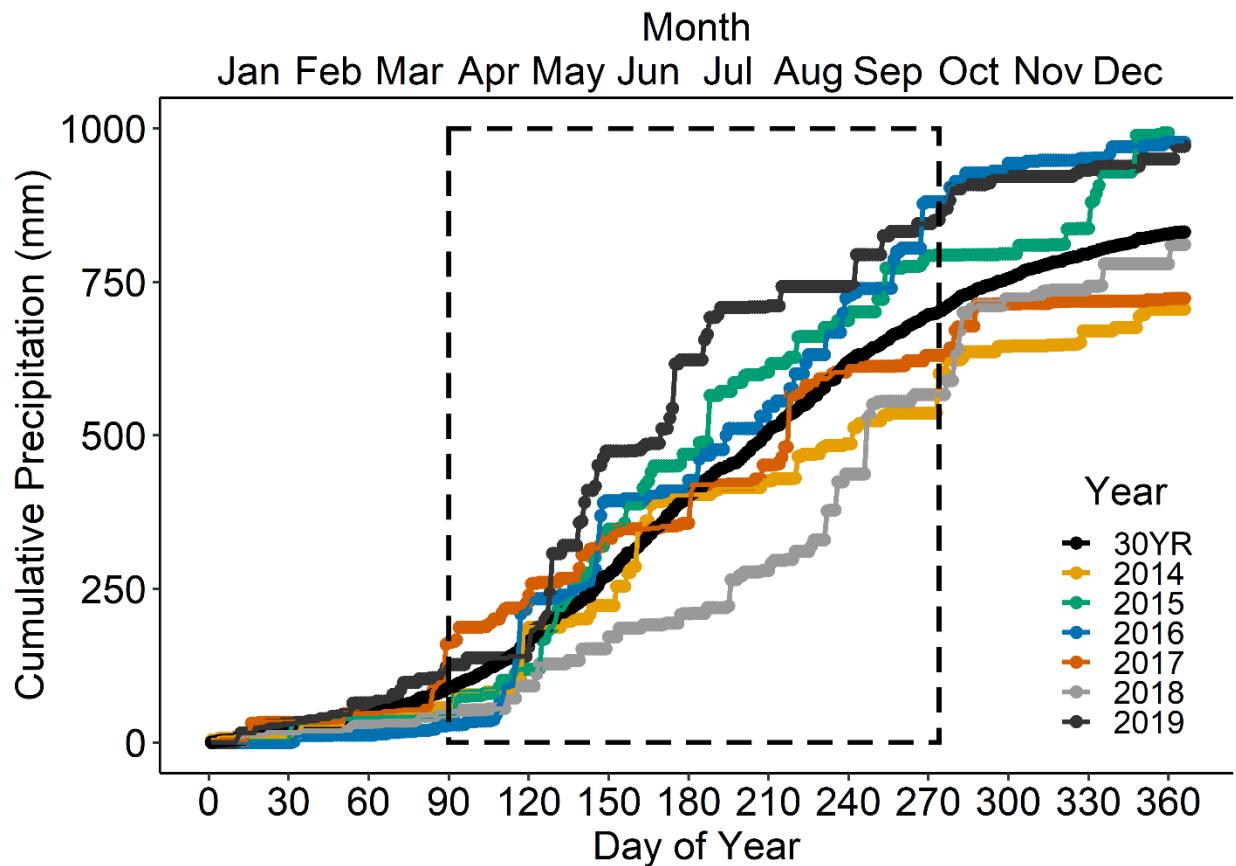
Plots = 4

ANPP Quadrats = 12

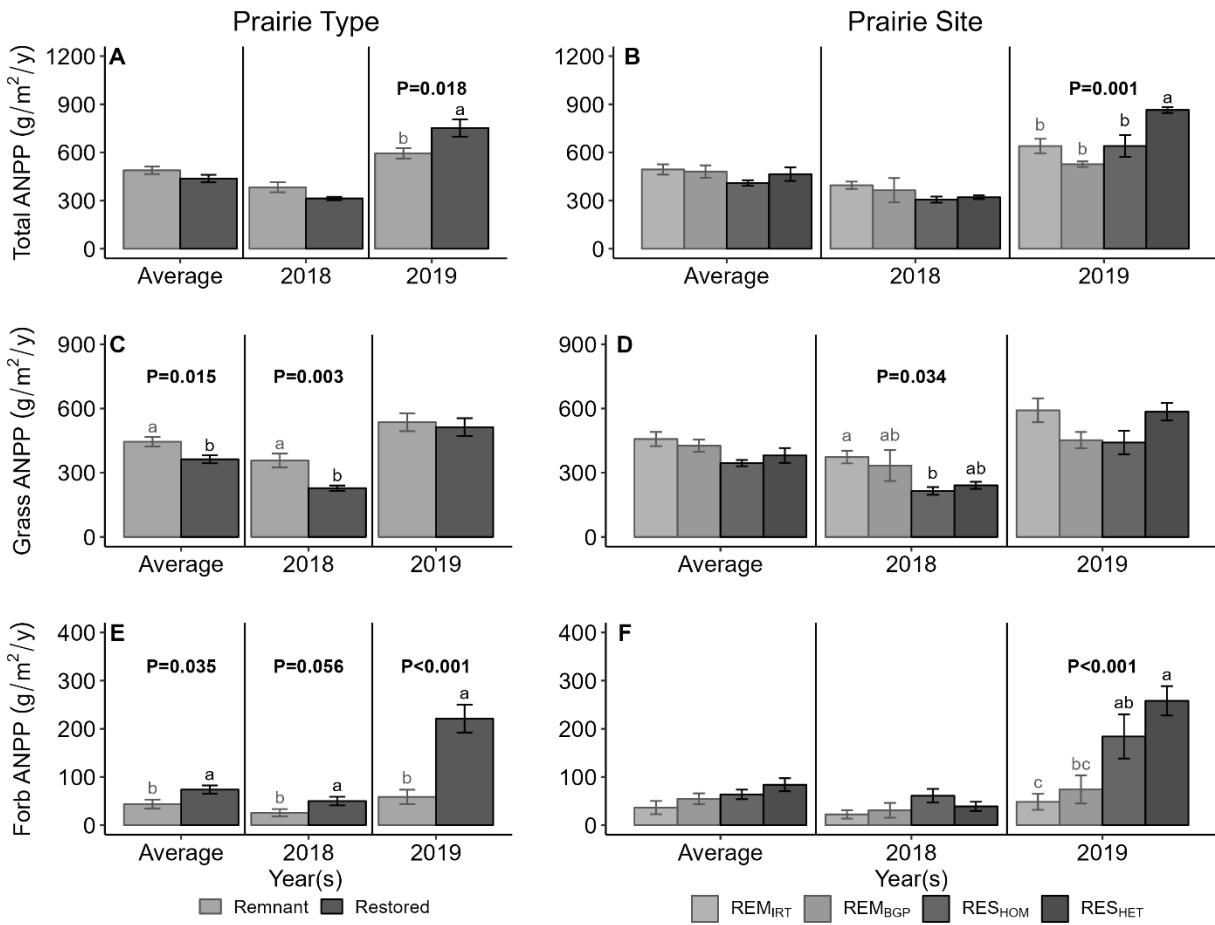


Restored, RES_{HET}

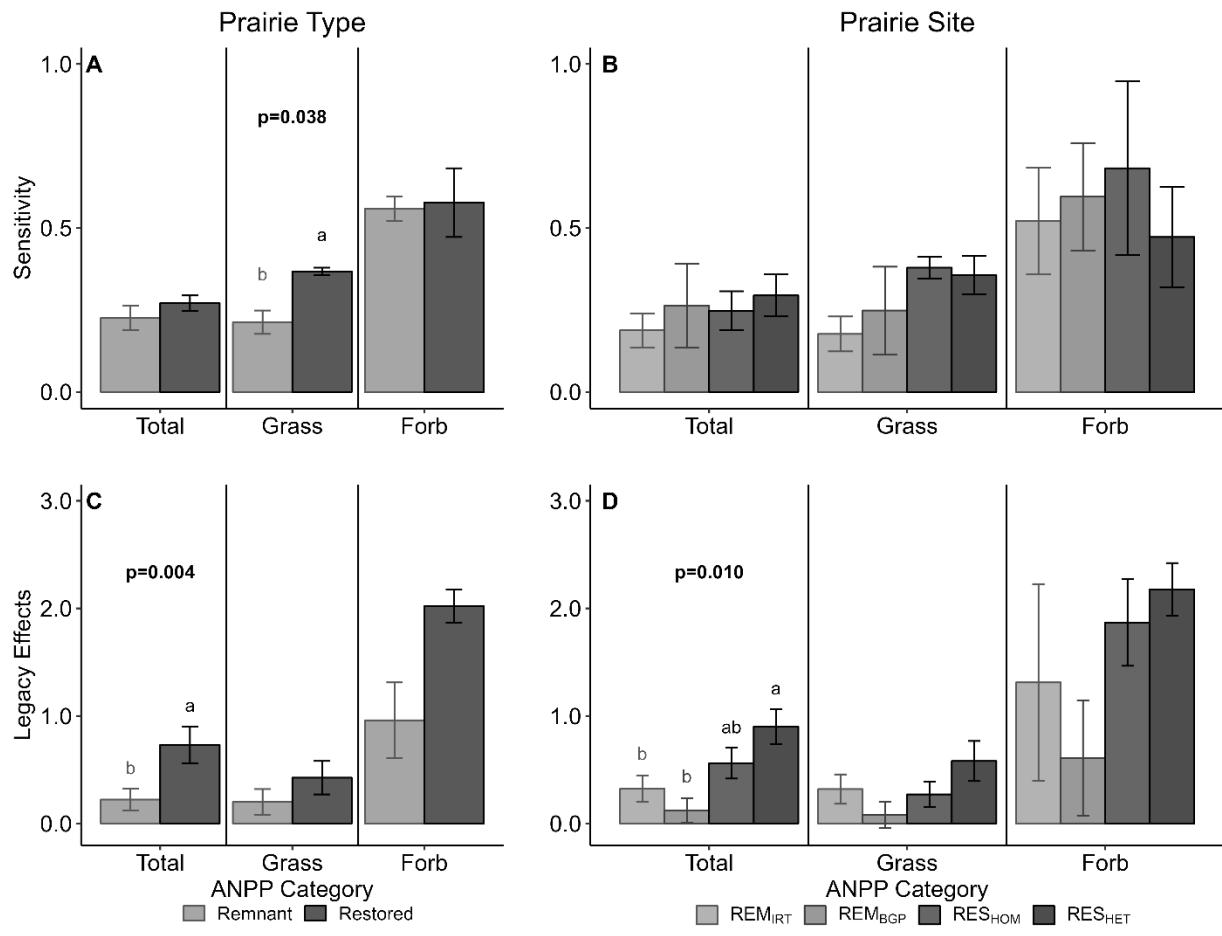
(Heterogeneous Plots)


Plots = 4

ANPP Quadrats = 12


611

612 Fig. 1


613

614 Fig. 2

615

616 Fig. 3

617

618 Fig. 4