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Abstract

Understanding the anisotropic sintering behavior of 3D-printed materials requires massive analytic studies on their grain
boundary (GB) structures. Accurate characterization of the GBs is critical to study the metallurgical process. However, it
is challenging and time-consuming for sintered 3D-printed materials due to immature etching and residual pores. In this
study, we developed a machine learning-based method of characterizing GBs of sintered 3D-printed materials. The developed
method is also generalizable and robust enough to characterize GBs from other non-3D-printed materials. This method can
be applied to a small dataset because it includes a diffusion network that generate augmented images for training. The study
compared various machine learning methods commonly used for segmentation, which include UNet, ResNeXt, and Ensemble
of UNets. The comparison results showed that the Ensemble of UNets outperformed the other methods for the GB detection
and characterization. The model is tested on unclear GBs from sintered 3D-printed samples processed with non-optimized
etching and classifies the GBs with around 90% accuracy. The model is also tested on images with clear GBs from literature
and classifies GBs with 92% accuracy.
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Introduction

Grain boundaries (GBs) are an essential feature of polycrys-
talline materials, which significantly influence the mechan-
ical, electrical, and thermal properties of the materials. GB
detection is crucial for understanding the microstructure of
materials and for developing new materials with improved
properties. As close-up images of the cross-sections of the
materials become available with the advancement of optical
microscopy, micro-structural analysis has been applied in
many different industries to identify GBs and to help under-
stand the micro-structural behaviors of a material.

The traditional way to determine the GBs from the cross-
section images was through segmenting the GBs by hand
(Dengiz et al., 2005); however, such manual approach is
usually prone to operator fatigue, human errors, and leads
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to inconsistency across analysis of images. To alleviate the
burden or such repetitive tasks, traditional image process-
ing methods such as thresholding, tolerance-based neighbor
analysis, or Euclidean distance measurement were used
to automatically segment the GBs from the cross-section
images (Catania et al., 2022; Dengiz et al., 2005).

However, the traditional image processing methods for
GB detection are time-consuming and require significant
effort to obtain accurate results. With the advancement in
machine learning (ML) in image processing, ML-based tech-
niques provide an alternative approach to detect GBs from
the cross-section images more efficiently and accurately.
DeCost and Holm applied “bag of visual features” image
representation and trained a support vector machine (SVM)
for classification of the microstructure dataset (Decost &
Holm, 2015). Gupta and Sarkar reported a phase segmenta-
tion and GB detection processing technique in plain carbon
steel samples using modern image processing operators like
linear iterative clustering and skeletonization (Gupta et al.,
2019). Friel and Prestridge developed an algorithm to detect
GBs accurately by thresholding, followed by a higher-level
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boundary completion process to complete the missing sec-
tions (Friel et al., 1990).

Deep learning is a process applying a hierarchy of multiple
trainable layers used to generalize some objective function
relating a set of input and output data (W. J. Zhang et al.,
2018). Neural network (NN) based deep learning methods
have also come to interest in the past few years. Li and Chen
proposed an end-to-end deep neural network (DNN) based on
adversary network and feature learning for faster GB detec-
tion in Al-Si-Mg alloys (Li et al., 2020). Bordas and Zhang
provided an end-to-end workflow of a NN-based holistically
nested edge detection (HED) model for autonomous grain
size analysis in microscopy images (Bordas et al., 2022).

In addition to the above ML algorithms, some studies have
used a combination of different algorithms to improve the
accuracy of GB detection. Wei and Peng explored the option
of boosting, which is a type of supervised learning algo-
rithm that converts a set of weak learners into a strong one to
reduce high bias, followed by principal component analysis
(PCA) to extract the location and trace of GBs in a pure alu-
minum bi-crystal (Wei et al., 2019). Kim and Cho presented
a combined NN and fuzzy logic application which uses spa-
tial relationships among neighboring edges around the edge
segments of interest to improve GB detection performance
in noisy images (J. S. Kim & Cho, 1994).

Even though the current ML methods can be used for
image-based GB detection, they have limitations that they
require high quality input images with a clear visualization
of the GB structure. Clear visualization of GBs often relies
on a thoughtful metallographic preparation, which involves
employing an appropriate etching methodology based on
prior knowledge of the target materials (Rohrer, 2011). For
bulk materials, especially those typical materials presented
in the previous studies such as carbon steel, these materials
already have a mature methodology and a standard opera-
tion procedure to follow in material science to help produce
clear GB images; however, when it comes to a new material
system with lacked prior understanding, the metallographic
preparation process needs to start from the common way and
go through some trial and error processes to obtain a satisfac-
tory GB structure appearance. This makes the presentation
of clear GB to be time-consuming.

Additive manufacturing can be described by the approach
of ‘design thinking’ which is comprised of two functions,
creating a solid layer and joining two solid layers together
(Tony et al., 2023). Different types of additive manufacturing
can then be classified depending on how those two functions
are carried out. This study focuses on the binder jetting clas-
sification of additive manufacturing, where a powder layer is
spread and an adhesive is deposited to bind together selected
areas. The iterative layer-wise spreading of powder with sub-
sequent injection of binder forms a solid part. The part is then
sintered to remove the binder and consolidate the powder
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(Mostafaei et al., 2021). Generally, sintering is a manufac-
turing technology by which powders are consolidated into
the strengthened structure with the help of heating, pressure
and/or physical fields (Olevsky & Dudina, 2018). It is noted
that while fused deposition modeling was initially referred to
3D printing, the term 3D printing has become synonymous
for all types of additive manufacturing (Armstrong et al.,
2022). Therefore, the terms will be used interchangeably in
this study.

In powder-based 3D-printed and sintered materials, the
challenge to present clear GBs under the microscope
becomes even more pronounced. The presence of anisotropic
microstructural features distinguishes the sintering of 3D-
printed materials from the isotropic rigid sintering. With
this consideration, understanding the microstructural evolu-
tion during the anisotropic sintering of 3D-printed materials
requires a reliable identification of GBs structure. Such sin-
tering process normally adopts pressure-less (free) sintering
to avoid any damages on as-built complex shape; however, in
this case, full densification can hardly be achieved. This can
bring a challenge to the detection of GBs, as pores may inter-
fere the recognition of GBs and promote the destruction of
GBs in etching process, which cause the GBs unclear in the
cross-section images as shown in Fig. 1. It is more difficult to
clearly image the GBs without introducing other interfering
products in newly developed 3D-printed materials by only a
few experimental attempts.

Even though cross-sectional GB detection and charac-
terization is critical in sintered 3D-printed materials, little
research has been performed on the GB detection and char-
acterization from the cross-section images with unclear GBs
and interfering products such as pores on the GB. Therefore,
a generalized image-based GB detection and characterization
method is needed for sintered 3D printed materials. Tradi-
tional image processing methods cannot be applied to the
presented task due to the image complexity, but a potential
solution is to utilize deep neural networks based on the liter-
ature review. However, no studies have been performed that
compare various deep learning algorithms for unclear GB
characterization. Furthermore, novel materials are difficult
and expensive to produce which limits experimental train-
ing data sets, so the solution will need to be robust to small
datasets. Another challenge with unclear GBs is the predicted
GB can be incomplete and thus discontinuous.

To resolve these challenges, in this study commonly used
deep neural networks for image segmentation are trained and
compared on the GB detection task. These networks include
UNet, Ensemble of UNets, Masking ResNetXt, and denois-
ing diffusion masking model (Lai et al., 2023; Ronneberger
et al., 2015; Xie et al., 2017). To ensure robustness to small
data sets, the presented method adopted image augmentation
to increase the training data sets. Morphology functions in
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Fig. 1 Exemplary cross-section
images of sintered 3D-printed Ni
samples

the OpenCV library were used along with denoising diffu-
sion generative networks for the augmentation (Community,
2010; Hoetal., 2020). To prevent discontinuities on predicted
GBs, an end of line detection and interpolation between
the end of lines algorithms are developed and applied dur-
ing post processing to connect missing GBs. The proposed
method is shown to perform well on the cross-section images
with unclear GBs as well as the images with clear GBs.
The detailed challenges and methodologies of the proposed
method are described in "Approach" Sect. The results of the
GB detection and characterization using the proposed meth-
ods and the conclusions are provided in "Discussion of the
results" and "Conclusion" Sects., respectively.

Approach
Challenges

To develop a viable method of GB detection and morpho-
logical characterization, it is useful to discuss the visual
properties of GBs and leverage these in the proposed algo-
rithm. Because the GB exists between two or more grains,
it is not possible for a partial GB to exist. Therefore, a GB
must propagate continuously, starting and ending at an image
boundary. This knowledge can be leveraged to eliminate false
GB detection. Figure 2 displays such an instance of a porous
structure that resembles a GB. The selected method must be
able to discriminate between true and false GBs.

Another example of a possible false GB are sur-
face scratches incurred during sample preparation. These
scratches may display light and/or dark features making them
easily confused with GBs. However, the scratches are also
characterized by lack of curvature and continue across the
entire image as shown in Fig. 3. These features can be used
to distinguish them from GBs.

Another complication is the existence of pores along the
GB as seen in Fig. 4. The pore is a separate feature of interest;
however, it is also located along the GB. Therefore, the GB
label should not significantly overlap with the pore because

Fig. 4 Example of pore along the GB
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Fig. 6 Comparison of similar features of pores and GB in close prox-
imity

it is desirable to characterize the pores in the future. Large
pores lying on GBs must also be distinguishable from grains.

Pores may also be incorrectly identified due to errors. The
etching process itself may be a source of confounded porous
structure. An example of this residue is presented in Fig. 5.
The structure can be easily mistaken for pore clustering with-
out careful consideration by the selected algorithm. It is also
noted that running through the cluster is a GB, which adds
further complexity to the segmentation requirements.

Another possible source of pore misclassification arises
from over-etching of the GB. An example of how similar
these two classifications can be is presented in Fig. 6. During
etching, the pores in close proximity connect and elongate
to form features similar to GBs. Similarly, the etching has
eroded the GB such that pores along the GB are barely visible.
The selected algorithm must be able to distinguish between
these two conditions.

Another challenge with the presented dataset is the appear-
ance of incomplete GBs. These regions represent the biggest
challenge in that even among experienced individuals, the
existence of the GB may be disputed. These regions are
labelled to preserve continuity in GB labels. An example
of an incomplete GB is presented in Fig. 7. What appears
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Fig.7 Example of incomplete GB

to start off as a GB on the bottom left, stops abruptly. Since
it is likely the algorithm will label this bottom left region,
a choice must be made for the top right region to maintain
continuity of the GB.

Various image-based algorithms have been developed to
aid process automation. These algorithms can be classified by
their intended application and include image classification,
object detection, and segmentation. Image classification is
the process of labelling an entire image, object detection is
used to localize specific objects within an image, and seg-
mentation labels each pixel in an image. Image classification
is used when the location of the object within the image is
not required. Object detection is used when the location of
the object is desired as well as the number of objects. Seg-
mentation is used when the boundary of the object is desired,
but the number of objects is not important.

In the presented task of GB detection, the GB is shared by
all grains. Therefore, the number of GBs and object detec-
tion is of no interest. Furthermore, all images are assumed
to contain GBs, so classification is also of no interest. How-
ever, which specific pixels represent the GB is of interest.
Therefore, image segmentation is the proper image process-
ing method to apply.

The method of image segmentation is also dependant on
the task. For images with features containing well defined
intensities, thresholding can be applied. Images with well-
defined continuous boundaries can be detected with canny
edge detection (Canny, 1986), and the resulting edge mask
can be filled using a watershed algorithm to segment the
image. These ideal scenarios, however, generally require
careful image pre-processing and fine experimental control
to provide results exceeding a first order approximation. To
demonstrate the applicability of classic algorithms a test was
performed on a typical image in Fig. 8. Of the algorithms, the
threshold filter provides the best results, but it is still inade-
quate since the resulting mask is very noisy and grain edges
are discontinuous. Overall, none of the classic solutions can
be used to characterize grains in the presented dataset.
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Fig. 8 Classic edge detection
algorithms on an etched image
with unclear GB

Input

The same edge detection algorithms on an image with
clear GBs is shown in Fig. 9 The image was sourced from an
earlier grain detection publication (Dengiz et al., 2005). It is
shown that the canny filter and simple thresholding perform
well for GB detection on the image. This stark difference fur-
ther illustrates the complexity of the presented GB labelling
task with the unclear images.

Due to the complexity of images with unclear grain bound-
ary, manual feature engineering and classic edge detection
methods cannot be applied. Therefore, deep neural networks
are applied to the problem which perform automated feature
selection. However, on small datasets, deep neural networks
are capable of overfitting feature selection on the training
set resulting in poor performance on other images. To pre-
vent overfitting, the training images set must be increased
or augmented. Due to the challenges in collecting additional
experimental images in metal 3D printing, image augmenta-
tion was performed via a second deep neural network. This
network is trained on training image set and the latent space
is traversed to generate images that contain features similar
to the training set, but sufficiently different to prevent over-
fitting. The specifics of these techniques are described in the
following sections.

Canny Filter

Sobel Filter

Threshold Filter

Methodology

Given the multiple caveats required in masking GBs prop-
erly, a CNN-based deep learning method is preferred. The
flexibility of deep learning allows relevant features to be auto-
matically extracted from images and used for classification.
Multiple deep learning network architectures are available
to perform image segmentation. Some of these will be com-
pared in this study to determine which is most suitable for
general grain segmentation.

For each of the models, the output layer is composed of
three channels. One channel to label the GB, the second chan-
nel to label pores on the GB, and the final channel to label
internal pores. Since a given pixel can have more than one
label (i.e., a GB and a pore on the GB), a simple mean squared
error (MSE) loss function is used following a sigmoid layer.

Instead of directly training the networks at high resolution,
a stepping scheme is adopted to speed up training time and
increase training variability by initially starting at a lower res-
olution and increasing. During augmentation, a given image
can be cropped in more unique ways with a smaller resolu-
tion than a larger one, preventing overfitting. Once the small
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Fig.9 Classic edge detection
algorithms on image with clear
GB

Input Image

Table 1 General training scheme for networks and hyperparameters used during training; the network is initially trained in step 1 then retrained in
step 2 and again in step 3 with the specified resolution and hyperparameters to reduce overall training time

Training step Input resolution Learning rate Patience Initial augmentation Decay

1 512 0.0001 100 0.25 100
640 0.00005 50 0.10 20
768 0.00005 50 0.01 20

resolution is trained, the network has approached the mini-
mum, to remain in this vicinity, the learning rate is reduced
before subsequent transfer learning at higher resolution.
The training scheme is presented in Table 1. The networks
were trained with three steps. The initial training step uti-
lized the lowest resolution, highest learning rate, and highest
probability for augmentation. The network is trained with
patience of 100 epochs on the validation set (i.e., if the val-
idation loss does not decrease for 100 consecutive epochs,
the training stops). The augmentation policy is handcrafted
and consists of two variables, initial augmentation and decay.
The augmentation probability was set at 25% with a decay of
100 epochs. After the networks is completes training at 512
x 512 cropped image resolution, the resolution is increased
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and the model is fine-tuned with parameters listed for sub-
sequent steps. The training scheme presented in Table 1 was
determined by performing grid search on the learning rate,
patience, augmentation and decay with a UNet. Due to the
long time required to perform the grid search, these param-
eters were also used on the other deep neural networks for
GB segmentation.

In addition, generative deep neural network models are
utilized to augment the image set and prevent overfitting.
In this study we compare generative adversarial networks
(GAN) with denoising diffusion networks for augmenting the
training set. However, these models are also susceptible to
overfitting, so classic image augmentation is applied during
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Experimental
Dataset

Classic Augmentation
Set

Generative
Augmentation Set

I

Fig. 10 Overall training flowchart for GB detection

training to vary the input images. The training flowchart is
displayed in Fig. 10.

U-NET

The UNet architecture is commonly used for applications of
image segmentation. The structure allows for features of the
input image to be extracted in the convolutional layers. Then
the mask is generated in the from the extracted features by
the transpose convolutional (up-conv) layer outputs (Ron-
neberger et al., 2015). At each layer, extracted features are
copied to the outputs as shown in Fig. 11. The resulting seg-
mented image can capture fine features from the input image
because features are extracted and copied to the output at
each level.

In the original UNet implementation, the input size (572 x
572) is larger than the output mask (388 x 388) (Ronneberger
etal., 2015). This presents an issue for the presented applica-
tion because the grain boundaries are thin and pores are small,
so downscaling the mask may result in loss of regions. The
presented implementation differs from the original architec-
ture by increasing the stride of the transpose convolutional
layers so that the layers dimensions copied from the encoder
side of the UNet match the decoder size without cropping.
The resulting mask is then the same size as the input image
and small features can be resolved.

In addition, the loss function of the UNet is modified from
the original implementation from cross entropy loss to mean
squared error loss. This is because a grain and a pore can exist
in the same location, and cross entropy loss assumes that each
pixel is a unique class. Therefore, to use cross entropy loss
an additional class would need to be provided for this case.
Alternatively, mean squared error loss can used without this
requiring additional classes.

The UNet hyperparameters consist of the number of chan-
nels at each level. In Fig. 11, there are 64, 128, 256, 512, and
1024 channels. In this study, the number of convolutional
layers is varied to 32, 64, 128, 256, and 512 channels as well
test performance as a function of complexity. In addition,
an ensemble of UNets is trained on the presented task with
pseudocode presented in Fig. 12. A framework of ensemble
inference has been conceived previously (Modi et al., 2011).

Within the context of framework, each of the UNets trained
are experts in their respective tasks and respond to different
cues within the data. The results of each UNet are then com-
bined to produce a single prediction. The ensemble consists
of four UNets, one to predict the GB mask, one to predict the
inverted GB mask, and two to predict the residuals of each
mask. The first two UNets share two loss functions (Egs. 1
and 2).

Louis = (Pred; x Preds)? 1)

Ladd = (Predy + Pred, — 1)? )

The inverted mask should be 0 everywhere the non-
inverted mask is 1. Therefore Eqs. 1 and 2 enforce these
properties. The other two networks simply predict the resid-
uals of the first two and are trained with the following loss
function (Eq. 3) after the first two networks are trained.

Lres
= (Predres,l — max (min (Pred; — Target, 0), 1)))2
3)

The min and max function are represented by the clamp
function in pytorch. The implementation is used to only
include the positive residuals, or simply, the masks that are
not predicted by the network.

The motivation for training a network on the positive resid-
uals only is so that network performs line completion and
reduce grain discontinuities; that is the residuals networks is
a specialist for line completion because it is trained to only
predict areas missed by the first network. The motivation
for predicting the inverted mask (with the inverted image as
input) is for the second network to predict grains opposed to
GBs. It is anticipated that different features are required for
this task and may improve generalization. During testing, the
networks are averaged with their residuals to yield the output
using Eq. 4.

(Pred1 + Pred,es, ])
2
1-— (Predz + Pred,es,z)
2 (4)

An example of the UNet ensemble prediction is presented
in Fig. 13. The residuals tend to weight areas that are weakly
predicted by the primary network, resulting in line comple-
tion. However, the residuals can also incorrectly predict grain
boundaries. Therefore, residuals can aid in line completion
and prevent incomplete grain boundaries, but they do so at
the possibility of incorrect grain boundary prediction.

In total three UNets were developed for the presented task.
One UNet with 32 initial layers, one with 64 initial layers,

Pred,,s =

+
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Fig. 11 UNet architecture displaying the feature extraction convolutional layer and the generation up-convolution layers (Ronneberger et al., 2015)

Fig. 12 The pseudocode for the
UNet ensemble for the training
and prediction

# Training UNet Ensemble

for input, mask in train set:
predl = UNetl (input)
pred resl = UNet2 (input)

pred2 = UNet3 (~input)
pred res2 = UNet4 (~input)

lossl = (predl - mask) **2
loss2 = (pred2 - mask) **2
Imult = (predl * pred2)**2
ladd = (predl + pred2 -1)**2

lresl = (pred resl -clamp(predl,0,1))**2
lres2 = (pred res2 -clamp(pred2,0,1))**2
loss = lossl + loss2 + Imult + ladd + lresl + lres2

loss.backward/()

mask out =

# UNet Ensemble Prediction
for input, mask in val set:

predl = UNetl (input)
pred resl = UNet2 (input)
pred2 = UNet3 (~input)

pred res2 = UNetd (~input)
(predl + pred resl)/2 + (l-(pred2 + pred res2))/2

and the ensemble with 32 initial layers. Each successive layer
is two times the previous with a total of 5 encoding layers
and 4 decoding layers as shown in Fig. 11.

ResNeXt
ResNeXt is a deep neural network like ResNet but differs in

that the building blocks of each layer are repeated in parallel,
which provides a new dimension known as cardinality, or
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simply put, the width of the network (Xie et al., 2017). The
key takeaway of this design is enhanced accuracy without
increasing complexity as compared to the ResNet architec-
ture (Xie et al., 2017). We adopt the ResNeXt model to
determine if the increased network complexity (with respect
to the UNet) can further generalize the presented task.

The model was modified to include a Unet-like head where
layer outputs of the ResNeXt model body are concatenated
to successive transpose convolutions of the Unet head. The
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Fig. 13 Output of each network from the UNet ensemble, a prediction 1,
b prediction 1 residual, ¢ prediction 2, d prediction 2 residual, e ensem-
ble output, and f ground truth output. The white box indicates an area

four middle layers of the ResNeXt are utilized since the
dimensions are scaled by 2 for each output and can be easily
matched to the transpose convolution output layers. The final
two output layers are used to upscale the dimensions to their
original size and subsequently reduce to the desired num-
ber of channels. The sigmoid function is applied to the final
output to perform pixel-level classification. The pseudocode
for adapting a UNet heat to ResNeXt model is presented in
Fig. 14 and a diagram for the implemented architecture is
presented in Fig. 15.

The pretrained ResNeXt network was utilized with the
initial layer modified so the input is a single channel to match
our image set. In addition, the final fully connected layer and
classification layer of the ResNeXt is removed. The input and
output layers for the Unet head were selected based on the
dimensions shown in Fig. 15. The transpose convolutional
layers have the same number of input and output channels,
and the subsequent convolutional layers reduce the channel
size by half in the first convolution as shown in Fig. 15.

The pretrained ResNeXt50 model was tested as the model
body. The model uses 32 convolutional groups with 4 input

that correctly predicted due to residuals and the red box indicates an
area that is incorrectly predicted due to the residual networks

and output channels. The model was obtained from the offi-
cial pytorch repository. Though higher complexity models
can also be tested with the proposed architecture, they were
not included in this study due to the increased training time
required.

Denoising diffusion segmentation

Denoising diffusion networks are generative models capable
of creating realistic images (Ho et al., 2020). These models
are trained by iteratively adding gaussian noise to an input
image. Then the parameters of a Markov process are learned
by the network to uncover the original input image. Images
can be labelled during training by including an embedded
layer that corresponds to a classification. During image gen-
eration the embedding layer guides the network to generate
images with features common to that classification.

To perform segmentation, gaussian noise is applied to the
mask and the input image is used as the embedding layer
as shown in Fig. 16. The denoising architecture is based on
the UNet. The UNet implemented for the diffusion network
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# pretrained resnext50 model
resnext = resnext50 32x4d(weights=ResNeXt50 32X4D Weights.IMAGENET1K V1)
# copy the weights into a single channel

temp = resnext.convl.weight[:,0:1,:,:].clone()

new_layer = nn.Conv2d(l, 64, kernel size=7, stride=2, padding=3,bias=False)
new_layer.weight([:,:,:,:].data[...] = Variable(temp, requires_grad=True)
my model = nn.Sequential (*list (resnext.children()) [:-2])

class ResNextUnet () :
def _ init_ (self, il = 32):

super (). init_ ()

# Define number of channels for each layer

1 = [il, il1*2, i1%4,i1%8,i1*16]

# Define all resnext layers with skip connections
self.output layers = [0,1,2,3,4,5,6,7]

self.k = ['0', '1','2%, 131, tav, 151, 1gr, 171]

self.pretrained = my model
self.selected_out = OrderedDict()
self.fhooks = []

# Define all upconv layers

self.u0 = self.up_sample (2048, 1[4],2)
self.ud0 = self.down_sample(1[4], 1[4], 3)
self.ul = self.up sample(1[4],1[3],2)
self.udl = self.down_sample(1[3], 1[3], 3)
self.u2 = self.up sample(1[3], 1[2],2)
self.ud2 = self.down sample(1[2], 1[2], 3)
self.u3 = self.up sample(1[2], 1[1],2)
self.ud3 = self.down_sample(1[2], 1[1], 3)
self.u4 = self.up sample(1l[1], 1[0],2)
self.ud4 = self.down sample(1[0], 1[0], 3)
self.out = nn.Conv2d(1([0], 3, kernel size=1)

self.cl = nn.Sigmoid()
# Store all resnext output layers into list
for i,1 in enumerate(list (self.pretrained. modules.keys())):
if 1 in self.output_layers:
self.fhooks.append (
getattr(self.pretrained,l) .register_forward hook(self.forward_hook(1l)))
# Downsample block extracts features to upsample
def down_ sample (self,ci, co, k, s=1, d=1, p=1):
block = nn.Sequential (nn.Conv2d(ci, co, kernel size=k, stride=s, dilation=d, padding=p),
nn.BatchNorm2d (co),nn.ReLU (inplace=True),
nn.Conv2d(co, co, kernel size=k, stride=s, dilation=d, padding=p),
nn.BatchNorm2d (co), nn.RelLU(inplace=True))
return block
# Upsample block increases the size to desired width and height
def up_ sample(self,ci, co, k, s=2, d=1, p=0):
block = nn.Sequential (nn.ConvTranspose2d(ci, co, kernel size=k, stride=s, dilation=d, padding=p),
nn.BatchNorm2d (co) ,nn.ReLU (inplace=True))
return block
# Used to access resnext outputs as a hook
def forward hook(self, layer name) :
def hook (module, input, output):
self.selected out[layer_name] = output
return hook
# Defines skip connects from resnext to unet head
def unet(self,x,t="u"):
xo = self.pretrained(x)
y0 = self.u0l(xo0)
out6 = self.selected out['6"']
y0b = self.ud0 (out6+y0)
yl = self.ul (y0Ob)
out5 = self.selected out['5"']
ylb = self.udl (out5+yl)
y2 = self.u2(ylb)
out3 = self.selected out['3"']
y2b = self.ud2 (out3+y2)
y3 = self.u3(y2b)
out2 = self.selected out['2"']
y3b = self.ud3(out2+y3)
y4 = self.ud (y3b)
y4b = self.ud4 (y4)
out =self.out (y4b)
return out

def forward(self, x):
x1l = self.unet (x)
out = self.cl(x1)
return out

inti  main_ ()
net = ResNextUnet ()
net.forward (torch.rand (1,3, 640,640))

Fig. 14 Python code for attaching a UNet head to a pretrained ResNeXt model with architecture shown in Fig. 15. An example of a random image
inference through the network is shown in the main function
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UpConv Layer
k: kernel Operation k s p Cin Cout
s: stride Transpose Conv2d 2 2 0 C C
p: padding BatchNorm + RelLU
Cin: Channel in Conv2d 3 1 1 C Cc/2
Cout: Channel out BatchNorm + RelLU
Conv2d 3 1 1 C/2 Cc/2
BatchNorm + RelU

Fig. 15 Modified ResNext architecture for image segmentation including tensor shape at each layer output and architecture for each upscaling layer

(UpConv)

Fig. 16 Denoising diffusion
mask generation guided by
embedded input image during
denoising. Following training,
the noise scheduler is removed
and only the input image and
random noise is used to generate
the mask

—
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utilized 32, 64, 128, 256, and 512 channels. When noise is
passed through the UNet structure it is decoded a single step
and begins to resemble the mask. The number of steps iterated
is ahyperparameter and impacts the final quality of mask. Too
few steps result in a noisy image, but too many steps require
excessive time and may overfit the mask to the image.

To track which iteration the diffusion network is process-
ing, time embeddings are utilized. Time embeddings shift

Denoise Denoise

and scale the noisy image to inform the network. The image
embeddings can be applied in a similar way to the same step
to guide the network to the correct mask. A 2D convolution
block witha 1 x 1 kernel is used to match the correct number
of channels and interpolation is used to scale the image to
the correct height and width. The relevant code is shown in
Fig. 17. After the model is trained, masks are generated from
random noise and the embedded input image. Therefore, the
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class Block(nn.Module) :
def init (self, dim, dim out, groups = 8):
super () . init ()
self.proj = WeightStandardizedConv2d(dim, dim out, 3, padding = 1)
self.norm = nn.GroupNorm(groups, dim out)
self.act = nn.SiLU()
def forward(self, x, scale shift = None):
x = self.proj (x)
x = self.norm(x)
if exists(scale shift):
scale, shift = scale shift
X = x * (scale + 1) + shift
x = self.act (x)
return x
class ResnetBlock (nn.Module) :
def init (self, dim, dim out, *, time emb dim = None, classes emb dim = None, groups = 8):
super () . init ()
self.mlp = nn.Sequential (
nn.SiLU(),
nn.Linear (int (time emb dim), dim out * 2)
) if exists(time_emb dim) or exists(classes emb dim) else None
self.blockl = Block(dim, dim out, groups = groups)
self.block2 = Block(dim out, dim out, groups = groups)
self.res conv = nn.Conv2d(dim, dim out, 1) if dim != dim out else nn.Identity()
self.res conv2 = nn.Sequential(
nn.SiLU(),
nn.Conv2d (3, dim out*2, 1))
def forward(self, x, time emb = None, img emb = None) :
scale shift = None
if exists(self.mlp) and exists(time emb) :
cond_emb = time emb
cond_emb = self.mlp(cond emb)
cond_emb = rearrange(cond emb, 'b ¢ -> b c 1 1")
scale shift = cond emb.chunk(2, dim = 1)
xo = torch.nn.functional.interpolate (img emb,x.shape[2], mode='bilinear"')
h = self.blockl(x, scale shift = scale shift)
img shift scale = self.res conv2(xo).chunk(2, dim = 1)
h = self.block2(h, scale shift = img shift scale)
return h + self.res conv(x)

Fig. 17 Code to add image embeddings to the residual blocks for maski

diffusion network learns how to generate image masks guided
by the embedded input image.

Training the denoising diffusion segmentation network
required significant time. Compared to the denoising diffu-
sion generative network discussed in "Deep network image
augmentation" Sect., the denoising diffusion segmentation
network required about 15 times as long to train (approxi-
mately two weeks) on 512 x 512 images. As a result, the
network was not further trained at higher resolutions. There-
fore, additional training may further improve the network
performance but would require approximately an additional
month.
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ng application. Code is modified directly from source in (Ho et al., 2020)

Classicimage augmentation

Classic image augmentation is the process modifying an
image with geometric transformation and photometric shift-
ing techniques (Khalifa et al., 2022). Applying these tech-
niques to the image set increases image variability in a
controllable and computationally inexpensive manner. Aug-
mented images remain accurate because source images are
from the training set and remain within the task domain. Fur-
thermore, operations performed are repeatable, so geometric
transformations performed on the images can be repeated on
the masks to maintain consistency. Due to the diversity of
the image set and its relatively small size, classic image aug-
mentation is essential for reducing overfitting when training
deep neural networks.
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Fig. 18 a Input image,

b augmented image, ¢ ground
truth mask, and d mask
prediction

Augmentation performed includes image scaling, ran-
dom cropping, random gamma, image distortion, and ran-
dom noise addition. To further increase image variability,
each function is called in random order and each can be
weighted independently or combined. In addition, we intro-
duce a healing mask implemented in OpenCV, where a
background-colored line is drawn to obfuscate the image,
then is subsequently healed via the OpenCV inpaint algo-
rithm (Community, 2010). The implementation simulates an
unclear GB and forces the neural network to perform interpo-
lation over the boundary. An example of an augmented image
with cropping, mirroring, gamma adjustment, and healing is
provided in Fig. 18 along with the ground truth mask and
the predicted mask during training. The neural network rea-
sonably interpolates between the obfuscated areas. However,
areas that are too obfuscated are not interpolated (e.g. the top
right of the augmented image). This augmentation increases
the loss when predicted GBs are discontinuous during train-
ing.

During training each augmentation algorithm was initially
set to occur with a probability, p,, and decrease every iteration

via a half-life, \, via the decay function (Eq. 5).

2

In
Paugment = poexp<— EPOCh) 5)

The hyperparameters used during training are reported
in Table 1. In general, it was found that initially increasing
the half-life parameter improves overall model performance,
but increasing it excessively results in over-regularization
and further training time is required. Decreasing the half-life
parameter tended to result in overfitting where conversion
occurred quickly but at a decreased performance. The ini-
tial probability parameter is set to ensure high variability is
achieved while keeping augmented images within the task
domain. If the value is set too high, the image is modified
excessively and no longer resembles the source images. Val-
ues were selected by performing a simple grid search and
increasing '\ by 20 epochs and p, by 5%.

Deep network image augmentation
In addition to classic image augmentation, deep learning

networks, were used to generate an augmented image set.
Two different types of deep generative networks, StyleGAN3
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Image Image
Database Sample
Discriminator
Latent Image
sample Generator

Fig. 19 GAN architecture overview consisting of generator and dis-
criminator, with the discriminator correctly identifying the real and fake
samples

and denoising diffusion, were selected for image augmenta-
tion. The StyleGAN3 network generates images based on
an adversarial approach. Two networks, a generator and dis-
criminator are trained simultaneously as shown in Fig. 19.
The generator’s goal is to produce images that fool the dis-
criminator, and the discriminator’s job is to determine if an
image is real or fake. Therefore, as the networks train and
each becomes better the respective task, more realistic images
are generated. When training is complete, the image genera-
tor is used independently to generate images.

The denoising diffusion model is of the same design dis-
cussed in Sect. "Denoising diffusion segmentation" but does
not contain the embedding images. This is because there is
no need to guide the diffusion within a specific latent space,
it is only necessary to generate images that are similar to the
input image set.

The StyleGAN3 model and diffusion model were train on
the data and compared at low resolution (Ho et al., 2020;
Karras et al., 2021). The results of this initial study showed
similar quality between the generative models as shown in
Fig. 20 However, when attempting to generate larger 640
x 640 images, it became clear that the diffusion model was
advantageous in that training only required about a day, while
the StyleGAN3 model required weeks to train. As a result,
the diffusion model was selected for image augmentation.
The diffusion model was only trained on the training image
set to maintain independence from testing images. The final
images were trained at 800 x 800 resolution.

Post processing

The resulting GB masks are not guaranteed to be continuous,
that is, gaps in the predicted GB can occur despite the aug-
mentation performed during training. For the predicted grain
morphology to be accurate, these boundaries require post
processing to remove discontinuities. This is accomplished
by interpolating the end of predicted GB line to connect with
the closest intersecting GB. In addition, the GB width is on
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the atomic scale and therefore for accurate grain morphol-
ogy, the predicted boundary must be skeletonized so as not
to reduce the grain size. An example of GB post processing
is shown in Fig. 21.

To perform the post processing the GB channel is isolated
from the mask. The GB is scaled to 512 x 512 pixels so that
consistency between image post processing is maintained.
Next a dilation and subsequent erosion of the mask is per-
formed with a4 x 4 kernel. This stage connects GBs that are
close together, i.e., parallel GBs and those that are not quite
connected.

It is then skeletonized using OpenCV and all non-zero
pixels are set to one (T. Y. Zhang & Suen, 1984). Using the
skeleton image, end of lines locations can be easily deter-
mined by padding the image by two pixel and performing
convolution over the image with a 3 x 3 kernel. The convo-
lution output is then multiplied by the skeleton input to only
include location of the input image. The end of the lines are
then all pixels with a value of two, indicating that only itself
and a single neighbour are present at the location. Finally, the
border pixels are removed, and the final output is obtained.
Once the end of the line is determined, the line is traced
back 15 pixels or until a branch is detected which are used to
extend the line via linear interpolation until it intersects with
a GB or image border. The progression is shown in Fig. 22.

Each line is stored in a list and trimming is performed if
intersection between interpolated lines has occurred. Itis pos-
sible that interpolated lines may intersect more than once and
trimming results in a discontinuous line. To prevent this case
the end of line algorithm is performed a second time. During
testing it was found that subsequent end of line interpolations
tends to result in incorrect GBs, therefore, any discontinu-
ous lines after the first two iterations are simply discarded.
The interpolation, while not fully optimized, is time consum-
ing, taking an average of 120ms on a 512 x 512 image. For
comparison, the inference time of the UNet model takes an
average of 20ms. Therefore, the inclusion of postprocessing
makes it impractical for video applications, but acceptable
for processing static images.

After GBs are determined, each grain is masked by select-
ing a random unmasked pixel and performing a floodfill
algorithm as shown in Fig. 23. Once all areas are masked,
the grain masks are compared to the porosity masks. Occa-
sionally, pores on the GB are large enough to be marked as a
grain. If the IOU between a pore and a grain is greater than
0.5, the grain is removed from the list and assumed to be a
pore. An example of pore removal is show in Fig. 24. The
resulting grain population is then used to compute the grain
morphological properties of the image.

The grain properties computed include the grain area,
solidity, aspect ratio, extent, equivalent diameter, angle, and
average curvature. The definition and an example of each of
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Fig. 21 a Input image, b predicted mask, ¢ and GB post processing

those properties are listed in Table 2. Each of the grain prop-
erties is averaged and compared to the ground truth to be used
as an accuracy metric. In addition, the standard deviation of
the grain size as well as the number of grains is recorded and
used in the metric. The mean average of each property is then
computed and reported for the final evaluation.

Data preparation
Experiment setup

The commercial gas atomized pure Ni powders (99.95%
purity and ~ 20pm in average size) were used as the raw
materials for the sample preparation by binder jetting tech-
nology (Fig. 25a). Sugar and maltodextrin with the same
mass fraction were used as the binder making up 1wt.% of
the mixture. The printing powders were mixed in a conven-
tional dry mixer (Turbula®, WAB-Group, Switzerland) for
2 h. The cubic Ni samples with the dimension of 10mm x
10mm x 10mm were printed in a custom-made binder jetting
printer with a layer thickness of 150pm. Then the printed Ni

cubes were subjected to the curing process at 60 °C for 24 h
to bind the particles and stabilize the printed structure.

Before sintering process, the debinding process was con-
ducted in the tube vacuum furnace (GSL-1700X, MTI Corp.,
USA) at 600 °C for 30 min. The temperature profile used for
de-binding process is shown in Fig. 25b. A slow heating rate
(2 K/min) with multiple isothermal stage is to prevent the
collapse of printed structures due to the rapid vaporization
of binder. Later, the printed Ni samples were consolidated
by pressure-less sintering in the tube vacuum furnace (GSL-
1700X, MTI Corp., USA) with a heating rate of 5 K/min
and a temperature of 1400 °C, as shown in Fig. 25c In this
work, four different dwelling time of 0, 30, 60 and 90 min
were applied to investigate the efficiency of ML to detect the
GBs of 3D printed samples with different densifications. The
relative densities of each sintered specimens were measured
using the Archimedes method.

The sintered cubic Ni samples were cut along the building
direction to obtain their corresponding cross-section images.
The preparation procedures were following the regular met-
allographic method, including the grinding of their surfaces
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1) Skeleton Input

2) Convolution Out * Input

3) End of Line Output

4) Traceback

5) Linear Interpolaton

4) Extend Line

Fig. 22 Progression of end of line detection algorithm after skeletonization and subsequent line interpolation

Fig. 23 Grain selected from GB image using floodfill

by sandpapers up to 4000 grit and the following polishing
by 1 wm diamond suspension and OP-S oxide suspension

@ Springer

(Struers, Denmark). To make the GBs visible, the etching
of cross-section area of cubic Ni samples was conducted by
immersing them in HNO3/CH3COOH aqueous solution for
5 s. Finally, scanning electron microscope (SEM, FEI Quanta
450, Thermo Fisher Scientific, USA) was used to obtain the
images of cross-section microstructure of all 3D printed Ni
samples. Here 150 images for each sample were collected
as the data set for the ML algorithm development. Some
exemplary SEM images with GBs and unexpected disturb-
ing noises are shown in Fig. 26.

Ground truth data generation

GBs of each image were manually traced by an experienced
person to generate the ground truth dataset. An example
image with GB mask is presented in Fig. 27. After man-
ual tracing was performed, the masks were skeletonized and
then dilation with a 5 x 5 ellipse kernel was performed to
ensure that the mask GB mask thickness is unbiased.

Pore masking was not performed manually. It is esti-
mated that over 150,000 pores are contained within the
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Table 2 The grain properties characterized by the proposed method

Property Definition Example
image
. . . . 2 \L 4 7
Grain area Area of the selected region in (pixels~) \‘.
7
\ //
Solidity The area fraction of the selected region to the convex hull region (blue and black region) é‘
Aredgrain o
Aredconvex )4
W
Aspect ratio Ratio of the width to height of the selected region H
w
H

Extent

Equivalent diameter

Angle

Average curvature

Ratio of the pixels in the selected region to those of the bounding box

Are“grain
Areapox

The diameter of a circle with equal area to the selected region (pixels)

Angle from the y-axis of the best-fit ellipse to the selected region

Reciprocal of the radius fit to every three consecutive pixels in the perimeter and averaged. (pixels~!)

Fig. 24 a The input image, b masked to yield GB and pore mask, ¢ grain regions that overlap with detected GB pores are removed
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Fig. 25 The preparation routes for printed Ni samples: a SEM image of raw Ni powders; b temperature profile for debinding process and ¢ temperature
profile for sintering process

Fig.26 Exemplary SEM images
of printed Ni samples sintering at
14000C with different dwell
time: a Omin; b 30min; ¢ 60min
and d 90min

Fig. 27 Example of GB mask
and image
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Fig. 28 Generation of training
data for pore classifier, and
trained pore classifier output

Etched Background
images

Output

images, and therefore, pores cannot be manually labelled
due to lack of human resources (i.e., trained experts). Instead,
efforts in previous studies were leveraged to automate pore
masking. The database previously developed in (Satterlee
et al., 2022) included examples cropped images of pores and
non-pores. The masking algorithm used in (Satterlee et al.,
2023) was applied to the pore images generate a mask. The
resulting database contained over 8000 examples of pores
and non-pore images. However, as discussed in “Approach”
Sect., there are many examples of etched images contain-
ing pore features in non-pore areas. Therefore, examples of
these instances were manually cropped and included into
the dataset with a blank mask. Finally, instances of the pore
images, non-pore images, and the background images were
randomly selected to generate a collage. The classifier is then
trained on these generated images and masks to perform pore
detection. An example of this process is presented in Fig. 28.

Existing Pore
images

Input Image

Ground Truth

The collage was quickly generated in large batches by
employing a second GPU to construct the images. This
second GPU starts with a blank matrix and performs con-
volutions on the image with the kernel the same size as the
training data. For areas where the convolution is zero, the area
is empty and is a candidate location to insert the image. The
candidate location is randomly selected, and image insertion
continues until there are no spots remaining for a new image.
In addition, inserted images were randomly rotated to pre-
vent overfitting, however, resizing was not performed so that
distinctions between pores and GBs based on size and aspect
ratio could be maintained.

The trained classifier can now mask pores with high accu-
racy but performs poorly without localization of pores. To
localize the pores in the etched image dataset, the general
pore detection model generated in (Satterlee et al., 2023)
was employed. The image is processed by the pore detection
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Yolov5
Crop

Fig. 30 Input image (left) and
final mask (right) with internal
pores (red), GB pores (green),
and GB (blue), and grains (black)

model and the image is cropped removing all non-pore loca-
tions. The pore classifier is then run on the cropped image
to obtain a ground-truth pore mask. An example of his pro-
cess is shown in Fig. 29. Note that the yolov5 model was
not trained on images with extensive etching and thus tends
to classify GBs as pores, however, by including GBs in the
masking model, these GBs are not present in the final mask.
After pore masking was complete, images were manually
edited to fix masking errors.

With the ground truth GB mask and pore mask data gener-
ated, they are then combined to create the final ground truth
segmentation mask. Pores lying on GBs are given a separate
classification from pores within the grains. An example of a
final ground truth segmentation mask is shown in Fig. 30.

Training and testing data set

Initially 15% of the images were set aside for testing the
machine learning models so that they would remain indepen-
dent from the images generated by the diffusion network. The
remaining images were used to train the diffusion network
and the trained network was used to double the image set.
The generated images were then manually vetted and those
that appeared to be outliers were removed. In total, 81 images
were selected for testing and 745 images were in the training
set (of those 312 are generated images).
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Mask
Pores

The clear GB images were found from publications and
public manufacturing sites. In total, 45 clear GB images with
a large variety were included in the testing dataset. Modifi-
cations to the images were performed as necessary, such as
cropping out multiple images listed in a single figure. Image
rescaling is automatically performed to match the training
size.

Discussion of the results

After each network was trained with the prescribed training
scheme, the threshold was then adjusted to maximize the
accuracy on the validation set, then the resulting parameter
was used to evaluate the test set for that network. The results
of each network on the unclear testing images are listed in
Table 3 and some examples of result images are provided
in Fig. 31. The results suggest that the UNet with 64 initial
layers performs best on the dataset, though the other networks
do not trail behind by much. Note that the IOU is reported, but
its meaning has little significance since the GB is ultimately
skeletonized.

After investigating the data, it is found that 90% of the
images yielded an accuracy above 80% as shown in Fig. 32.
This means that a few outliers are weighting the results. All
the classifiers share the same image outliers. The output of
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UNet64 ResNeXt Input

UNet32E

Diffusion

Fig.31 Examples of predicted GBs with blue (predicted) and white (ground-truth) for each network

each outlier and the input image is displayed in Fig. 33. It is
seen that the outliers contain ambiguous GBs which makes
labelling them challenging. The models are then more likely
to predict discontinuous GBs resulting in increased interpo-
lation. Interestingly, the ResNeXt model appears to perform
very well by visual inspection and may make better decisions
than the ground truth mask on the images. Due to the labelling

ambiguity of these images, the performance without the out-
liers is displayed in Table 4. Eliminating these four outliers
brings the accuracy above 90% for the ResNeXt model.
The networks were then run on the test images found in lit-
erature with results displayed in Table 5. The ResNeXt model
clearly outperforms the other models with grain size metrics
above 92%. In this dataset few of the images contain pores,
and the models tend to over predict pores due to the high
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Fig. 32 Distribution of grain size
accuracy for unclear image set
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Table 3 Unclear image set

accuracy results with the best Mean average UNet32 UNet64 UNet32 ResNeXt50 Denoising

results displayed in bold ensemble diffusion
Grain Size 0.860 0.881 0.877 0.878 0.872
Internal Pore Size 0.853 0.840 0.848 0.844 0.873
GB Pore Size 0.852 0.847 0.788 0.790 0.700
Grain Size Std Dev 0.846 0.888 0.880 0.886 0.869
Internal Pore Size Std  0.741 0.831 0.829 0.827 0.791

Dev

GB Pore Size Std Dev  0.788 0.805 0.761 0.772 0.747
No. Grains 0.826 0.882 0.881 0.889 0.877
No. Internal Pores 0.726 0.800 0.867 0.877 0.861
No. GB Pores 0.713 0.827 0.802 0.834 0.546
Solidity 0.987 0.986 0.983 0.983 0.988
Aspect Ratio 0.938 0.954 0.953 0.953 0.932
Extent 0.979 0.980 0.978 0.977 0.978
Equivalent Diameter 0.927 0.928 0.932 0.926 0.923
Angle 0913 0.940 0.934 0.934 0.901
Curvature 0.921 0.917 0.924 0.927 0.846
Contact Area 0.921 0.918 0.921 0.912 0.916
Length 0.917 0.921 0.923 0914 0916
10U 0.654 0.674 0.678 0.660 0.620

porosity of the training images. Therefore, pores predictions
were not reported on the found image set.

Next, we compare the performance of the networks with
and without interpolation in Table 6. All networks tend to
improve with the interpolation except the ensemble network.
The results indicate that the residual networks and inverted
network ensemble decreased GB discontinuity as intended.
Further supporting the claim is the decrease in performance
of the UNet64 and ResNeXt50 networks when interpola-
tion is eliminated. This leads to the possibility of training
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the ResNeXt50 network along with a companion UNet32 to
predict the residuals and perform interpolation. A potential
improvement to the ensemble is the addition of a negative
residual network to remove parts of the mask the are labelled
incorrectly. To do this we simply swap the target and predic-
tion in Eq. 3.

The diffusion network was also found to be unchanged
with interpolation. However, the results of the test set are
noticeably worse than the unclear image set. Upon examina-
tion, it was found the while the denoising diffusion network
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Fig. 33 Predicted GBs on outlier images with blue (ground truth) and white (predicted) for each network. Images are sorted by prediction accuracy

with lowest at the top

exceeds in generating grain boundaries without discontinu-
ities, it takes liberties in generating these boundaries when
predicting on images outside the training domain as shown
in Fig. 34. The number of denoising steps was varied (40, 50,
100, 150, and 250 steps) but false grain boundaries remained.
It is noted that most of these clear grain boundary images are
lower resolutions (< 512 x 512) so it is unlikely that training
at higher resolutions would improve results.

Discrepancies between the unclear image set and the clear
image set are due to the complexity of the unclear images.
Specifically, where GBs are located is a challenging problem
for many of the images as shown in the outlier images from
Fig. 33. Comparing these images to those found in literature
from Figs. 35 and 36, the unclear images are far more difficult
to label.
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Table 4 Unclear image set
accuracy results without outlier
images. Best results are
displayed in bold

Table 5 Test set accuracy results
with best results displayed in
bold. The ensemble network is
denoted UNet32E

Table 6 Comparison of networks
with and without interpolation
with best results displayed in
bold. Networks without
interpolation are denoted wo/l
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Mean Average UNet64 UNet32E ResNeXt50 Diffusion
Grain Size 0.894 0.899 0.902 0.892
Grain Size Std Dev 0.902 0.895 0.904 0.880
No. Grains 0.895 0.900 0.906 0.892
Solidity 0.986 0.984 0.983 0.987
Aspect ratio 0.956 0.955 0.954 0.943
Extent 0.980 0.978 0.977 0.977
Equivalent diameter 0.937 0.942 0.938 0.912
Angle 0.942 0.934 0.934 0.915
Curvature 0.922 0.926 0.930 0.924
Contact Area 0.927 0.933 0.926 0.920
Length 0.931 0.936 0.927 0.924
Mean average UNet32 UNet64 UNet32E ResNeXt50 Diffusion
Grain Size 0.889 0.904 0.908 0.923 0.820
Grain Size Std Dev 0.880 0.900 0913 0.922 0.897
No. Grains 0.883 0914 0912 0.922 0.834
Solidity 0.994 0.994 0.994 0.994 0.992
Aspect ratio 0.941 0.946 0.937 0.945 0.947
Extent 0.970 0.972 0.977 0.977 0.981
Equivalent diameter 0.939 0.946 0.947 0.954 0.897
Angle 0.927 0.938 0.938 0.943 0.913
Curvature 0.893 0.881 0.878 0.900 0.847
Contact Area 0.930 0.937 0.939 0.947 0.887
Length 0.932 0.926 0.933 0.941 0.889
Mean average UNet64 UNet32E ResNeXt50 Diffusion
w/l wo/l wi/l wo/l w/l wo/l wi/l wo/l

Grain Size 0.904 0.860 0.908 0.925 0.923 0911 0.820 0.822
Grain Size Std Dev 0.900 0.751 0.913 0.891 0.922 0.854 0.897 0.897
No. Grains 0.914 0.829 0.912 0.906 0.922 0.881 0.834 0.837
Solidity 0.994 0.989 0.994 0.991 0.994 0.989 0.992 0.992
Aspect ratio 0.946 0.949 0.937 0.956 0.945 0.959 0.947 0.948
Extent 0.972 0.942 0.977 0.947 0.977 0.941 0.981 0.981
Equivalent diameter 0.946 0.948 0.947 0.957 0.954 0.958 0.897 0.900
Angle 0.938 0.932 0.938 0.941 0.943 0.947 0.913 0.913
Curvature 0.881 0.907 0.878 0.895 0.900 0.889 0.847 0.854
Contact Area 0.937 0.893 0.939 0.943 0.947 0.932 0.887 0.890
Length 0.926 0.916 0.933 0.948 0.941 0.950 0.889 0.892
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Fig. 34 Denoising diffusion
mask prediction at 50 steps (left)
and input image (right). Grain
boundaries are continuous, but
excessive grain boundaries are
produced

Another observation is that the curvature tends to be more
accurate in the unclear data. This is likely because the clear
images are taken from literature, so they are in general much
smaller than the training images. The masks are resized by
the nearest neighbours to ensure that intensity values do not
change. The nearest neighbour resizing will not maintain the
original contour due to pixels being blocked together. Block-
ing does not occur when in the prediction mask since resizing
is not necessary and thus the curvature prediction will vary.

To demonstrate the diversity of the testing set and the
resilience of the methodology, testing images from each pub-
lication are displayed with the resulting mask in Figs. 35
and 36. Many publications contained a college of images
that were cropped and processed independently. Since these
images are generally similar to one another, only one was
selected for display. The results show some errors. False GBs
are marked as a result from unnecessary interpolation and
true GBs are missed in some instances.

Conclusion

This study aims to develop a generalized grain boundary
detection method for sintered 3D-printed metal parts which
do not show clear grain boundaries with traditional etching.
Because the traditional image processing algorithms and ML
methods have limitations on those unclear GB images, the
study developed general GB detection methods using deep
learning, augmentation, and GB interpolation. The results
show that the ensemble of UNets outperformed the other net-
works and predict all grain metrics with an accuracy around
90% for unclear GB images and 92% for clear GB images.

The results demonstrate that grain characterization can
be automated quickly and accurately. Furthermore, it can be
performed on unclear grain boundaries without developing
optimized etching techniques for new materials. This reduces
the overhead of prototyping with powder-based 3D-printed
and sintered materials by reducing the requirement for refined
etching.

@ Springer
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Fig.35 Clear GB image set with GBs labelled in blue. (1) SiO2 doped
YAG (Kochawattana et al., 2008), (2) Austenite (Yue et al., 2010), (3)
Dense Polycrystalline Ceria (Bowman, 2016), (4) Zirconia-Toughened
Alumina (Nanolytical, 2023), (5§) ZnO (Dorraj et al., 2014), (6) Translu-
cent barium titanate (Shimooka et al., 1998), (7) a-alumina (Voytovych

@ Springer

et al., 2002), (8) Fe-3%Si steel (Fenghui et al., 2019), (9) Magnetite
(Materials Chemistry, 2023), (10) AZ31 alloy (Du et al., 2008), (11)
Tuite synthesized from chlorapatite (X. Xie et al., 2013), 12) fully yttri-
astabilized cubic zirconia (Vagkopoulou et al., 2009)
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Fig.36 Clear GB image set with GBs labelled in blue. (13) Cu-Be alloy
(Hung et al., 1999), (14) 316 stainless steel (Shaikh et al., 2006), (15)
Polycrystalline alumina (Harris et al., 2017), (16) 304 stainless steel
(Garfias-Garcia et al., 2010), (17) CdTe film on Mo-glass (Valdna et al.,

2010), (18) PZT polycrystals (Kozinov & Kuna, 2018), (19) Lead mag-
nesium niobato (Londofio et al., 2012), (20) 7075 Al alloy (Binesh &
Aghaie-Khafri, 2016), (21) Alloy 600 (H. P. Kim et al., 2017), (22)
BFO-BTO-Mn ceramic (Chen et al., 2015), (23) Ceramic BETZ (Si-
Ahmed et al., 2018), (24) Sintered ThO2 (Ray et al., 2012)

@ Springer
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Future work will focus on grain boundary area evolu-
tion kinetics by developing a process to quickly assess the
grain boundary area evolution given a series of microstruc-
ture images. However, it is expected that further testing and
finetuning of the model as well as data collection require-
ments will be necessary since error accumulation is expected
when combining predictions to perform kinetic analysis. We
expect the general GB detection method developed in this
study will contribute to the characterization of sintered 3D
printed metal parts.

Funding This work is supported by the National Science Foundation
(Grant No. 2119832).
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