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Abstract

Denoising diffusion models have emerged as a powerful class of generative models
capable of capturing the distributions of complex, real-world signals. However,
current approaches can only model distributions for which training samples are
directly accessible, which is not the case in many real-world tasks. In inverse
graphics, for instance, we seek to sample from a distribution over 3D scenes
consistent with an image but do not have access to ground-truth 3D scenes, only
2D images. We present a new class of conditional denoising diffusion probabilistic
models that learn to sample from distributions of signals that are never observed
directly, but instead are only measured through a known differentiable forward
model that generates partial observations of the unknown signal. To accomplish
this, we directly integrate the forward model into the denoising process. At test
time, our approach enables us to sample from the distribution over underlying
signals consistent with some partial observation. We demonstrate the efficacy of
our approach on three challenging computer vision tasks. For instance, in inverse
graphics, we demonstrate that our model in combination with a 3D-structured
conditioning method enables us to directly sample from the distribution of 3D
scenes consistent with a single 2D input image.

1 Introduction

Consider the problem of reconstructing a 3D scene from a single picture. Since much of the 3D scene
is unobserved, there are an infinite number of 3D scenes that could have produced the image, due to
the 3D-to-2D projection, occlusion, and limited field-of-view that leaves a large part of the 3D scene
unobserved. Given the ill-posedness of this problem, it is desirable for a reconstruction algorithm to
be able to sample from the distribution over all plausible 3D scenes that are consistent with the 2D
image, generating unseen parts in plausible manners. Previous data-completion methods, such as
in-painting in 2D images, are trained on large sets of ground-truth output images along with their
incomplete (input) counterparts. Such techniques do not easily extend to 3D scene completion, since
curating a large dataset of ground-truth 3D scene representations is very challenging.

This 3D scene completion problem, known as inverse graphics, is just one instance of a broad
class of problems often referred to as Stochastic Inverse Problems, which arise across scientific
disciplines whenever we capture partial observations of the world through a sensor. In this paper, we
introduce a diffusion-based framework that can tackle this problem class, enabling us to sample from
a distribution of signals that are consistent with a set of partial observations that are generated from
the signal by a non-invertible, generally nonlinear, forward model. For instance, in inverse graphics,
we learn to sample 3D scenes given an image, yet never observe paired observations of images and
3D scenes at training time, nor observe 3D scenes directly.
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While progress in deep learning for generative modeling has been impressive, this problem remains
unsolved. In particular, variational autoencoders and conditional neural processes are natural ap-
proaches but have empirically fallen short of modeling the multi-modal distributions required in, for
instance, inverse graphics. They have so far been limited to simple datasets. Emerging diffusion
models [1], in contrast, enable sampling from highly complex conditional distributions but require
samples from the output distribution that is to be modeled for training, e.g. full 3D models. Some
recent work in inverse graphics has resorted to a two-stage approach, where one first reconstructs
a large dataset of 3D scenes to then train an image-conditional diffusion model to sample from the
conditional distribution over these scenes [2, 3]. To avoid a two-stage approach, another recent line
of work trains a conditional diffusion model to sample from the distribution over novel views of
a scene, only requiring image observations at training time [4, 5]. However, such methods do not
model the distribution over 3D scenes directly and therefore cannot sample from the distribution
over 3D scenes consistent with an image observation. Thus, a multi-view consistent 3D scene can
only be obtained in a costly post-processing stage [6]. A notable exception is the recently proposed
RenderDiffusion [7], demonstrating that it is possible to train an unconditional diffusion model over
3D scenes from observing only monocular images. While one can perform conditional sampling even
with unconditional models, they are fundamentally limited to simple distributions, in this case, single
objects in canonical orientations.

Our core contribution is a novel approach for integrating any differentiable forward model that
describes how partial observations are obtained from signals, such as 2D image observations and 3D
scenes, with conditional denoising diffusion models. By sampling an observation from our model, we
jointly sample the signal that gave rise to that observation. Our approach has a number of advantages
that make it highly attractive for solving complex Stochastic Inverse Problems. First, our model is
trained end-to-end and does away with two-stage approaches that first require reconstruction of a
large dataset of signals. Second, our model directly yields diverse samples of the signal of interest.
For instance, in the inverse graphics setting, our model directly yields highly diverse samples of 3D
scenes consistent with an observation that can then be rendered from novel views with guaranteed
multi-view consistency. Finally, our model naturally leverages domain knowledge in the form of
known forward models, such as differentiable rendering, with all guarantees that such forward models
provide. We validate our approach on three challenging computer vision tasks: inverse graphics (the
focus of this paper), as well as single-image motion prediction and GAN inversion.

In summary, we make the following contributions:

1. We propose a new method that integrates differentiable forward models with conditional
diffusion models, replacing prior two-step approaches with a conditional generative model trained
end-to-end.

2. We apply our framework to build the first conditional diffusion model that learns to sample from
the distribution of 3D scenes trained only on 2D images. In contrast to prior work, we directly
learn image-conditional 3D radiance field generation, instead of sampling from the distribution
of novel views conditioned on a context view. Our treatment of inverse graphics exceeds a mere
application of the proposed framework, contributing a novel, 3D-structured denoising step that
leverages differentiable rendering both for conditioning and for the differentiable forward model.

3. We formally prove that under natural assumptions, as the number of observations of each signal
in the training set goes to infinity, the proposed model maximizes not only the likelihood of
observations, but also the likelihood of the unobserved signals.

4. We demonstrate the efficacy of our model for two more downstream tasks with structured forward
models: single-image motion prediction, where the forward model is a warping operation, and
GAN inversion, where the forward model is a pretrained StyleGAN [8] generator.

2 Method

Consider observations (O;, ¢;) that are generated from underlying signals S; according to a known
forward model forward(), i.e., O% = forward(S;, ¢}), where ¢} are parameters of the forward

model corresponding to observation O; Each observation can be partial. Specifically, given a
single observation, there is an infinite number of signals that could have generated this observation.
However, we assume that given a hypothetical set of all possible observations, the signal is fully
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Figure 1: Overview of our proposed method. (a) We assume a dataset of tuples of observations (O, ¢)’,
generated from unobserved signals S via a differentiable forward model. (b) We propose to integrate the forward
model directly into the denoising step of a diffusion model: given a pair of observations of the same signal,
we designate context O™ and target O"¢', We add noise to O"', then feed (O™, ¢, O, ") to a neural
network denoise to estimate the signal S;.;. We then apply the forward model to obtain an estimate of the
clean target observation, Of_gl'. (¢) The graphical model of the diffusion process.

determined. In the case of inverse graphics, O; are image observations of 3D scenes S; and (bj
are the camera parameters, where we index scenes with j and observations of the j-th scene via 2.
forward() is the rendering function. Note that if we were to capture every possible image of a 3D
scene, the 3D scene is uniquely determined, but given a single image, there are an infinite number of
3D scenes that could have generated that image, both due to the fact that rendering is a projection
from 3D and 2D, and due to the fact that a single image only constrains the visible part of the 3D
scene. We will drop the subscript j in the following, and leave it implied that we always consider
many observations generated from many signals. Fig. 1 provides an illustration of the data.

We are now interested in training a model that, at test time, allows us to sample from the distribution
of signals that are consistent with a previously unseen observation O. Formally, we aim to model the
conditional distribution p(S|O, ¢). We make the following assumptions:

* We have access to a differentiable implementation of forwardy().

* We have access to a large dataset of observations and corresponding parameters of the forward
model, {(0", ¢')} Y.

e In our training set, we have access to several observations per signal.

Crucially, we do not assume that we have direct access to the underlying signal that gave rise to a
particular observation, i.e., we do not assume access to tuples of (O, ¢, S). Further, we also do not
assume that we have access to any prior distribution over the signal of interest, i.e., we never observe
a dataset of signals of the form {S7};, and thus cannot train a generative model to sample from an
unconditional distribution over signals.

Recent advances in deep-learning-based generative modeling have seen the emergence of denoising
diffusion models as powerful generative models that can be trained to generate highly diverse samples
from complex, multi-modal distributions. We are thus motivated to leverage denoising diffusion
probabilistic models to model p(S|O, ¢). However, existing approaches cannot be trained if we do
not have access to signals S. In the following, we give background on denoising diffusion models
and discuss the limitation.

2.1 Background: Denoising Diffusion Probabilistic Models and their Limitation

Denoising diffusion probablistic models are a class of generative models that learn to sample from
a distribution by learning to iteratively denoise samples. Consider the problem of modeling the
distribution py(x) over samples x. A forward Markovian process ¢(xo.7) adds noise to the data as

q(x¢ | x¢—1) = N(x5 /1 — Bixy—1, BiI). (D

Here, f;, t € 1...T are the hyperparameters that control the variance schedule. A denoising
diffusion model learns the reverse process, where samples from a distribution p(z7) = N (0,1) are

transformed incrementally into the data manifold as py(xo.7) = p(z7) H751=1 po(xi—1 | x¢), where
po(xi—1 | x¢) = N(xp—15 p(xe, ), (e, 1)) @)

A neural network denoisey() with learnable parameters 6 learns to reverse the diffusion process.
It is also possible to model conditional distributions py(xo.7 | ¢), where the output is computed as



denoiseq(xy,t, c). The forward process does not change in this case; in practice, we merely add the
conditional signal as input to the denoising model.

Unfortunately, we cannot train existing denoising diffusion models to sample from p(S | O, ¢), or, in
fact, even from an unconditional distribution p(S). This would require computation of the Markovian
forward process in Eq. 1. However, recall that we do not have access to any signals {S7}; - we thus
can not add any noise to any signals to then train a denoising neural network. In other words, since
no S is directly observed, we cannot compute q(S; | S¢—1).

2.2 Integrating Denoising Diffusion with Differentiable Forward Models

We now introduce a class of denoising diffusion models that we train to directly model the distribution
p(S | O™ ¢™) over signals S given an observation (O™, ¢**'). Our key contribution is to
directly integrate the differentiable forward model forward() into the iterative conditional denoising
process. This enables us to add noise to and denoise the observations, while nevertheless sampling
the underlying signal that generates that observation.

Our model is trained on pairs of “context” and “target” observations of the same signal, denoted
as O™ and O, As in conventional diffusion models, for the forward process, we have q(O}*" |
0/%) = N (0} /T — 5,07, 3:I). In the reverse process, we similarly denoise Q"' conditional
on O™

pa(olfgt |Oclxt ¢ctxt ¢lrgl _ trgt Hp trgt |Otrgt Qe ¢ctxt ¢lrgt) 3)

However, unlike conventional diffusion models, we 1mplement pe(OF 1| O, O™, ot piret) by
first predicting an estimate of the underlying signal S; ; and then mapplng it to an estimate of the
denoised observations via the differentiable forward:

S;.1 = denoisey (O™, O ¢, o, plret), 4)
O = forward(S,.1, ¢") 5)
O/ ~ N(0:; Ct-lé;r_gf7 Bl 6)

Here, O[“’t is an estimate of the clean observation, and the constants Cy.; and BH are chosen to
match the total noise added by the forward process at time ¢-1. See Fig. 1 for an overview. At test
time, a signal is sampled by iterating Eq. 4, 5, and 6 starting with p(Olrgl ) ~ N(0,1). Importantly,
our models define a generative model over the underlying signal via Eq. 4
T
pe,(z)"'g‘(SO:T | Octxt; ¢C[Xt) — Hp@(st-l | O;rgt7 Octxt; ¢ctxl7 ¢trgl>. @)
t=1
We will suppress the subscript in the notation, and refer to this distribution as p(Sg.z | O™"; ¢°™*")
for brevity from now.

Loss Function. We train to minimize the following two loss terms:

L = Eoe gue gest gt ¢ {HO“‘%t — forward(denoisey (O™, OF; t, ¢t 4", Hl"el) ||2} ,

o
®)
L:IglOVe] = Eoctxl7On0vel’¢clxl’¢trg!Td)novel’t |:H OHOVG] — forward(denoiseg(ocm, O;rg[; t, (,thle d)trgt)? ¢n0\’el) ||2:| .

=opy
9
Here, we compute the estimate of the observation from the target, as well as a separate, novel forward

model parameter ¢"°"°. In the supplemental document, we show that these losses approximate a total
observation loss, maximizing the likelihood of all possible observations of the signal S.

Characterizing the Conditional Distribution Over Signals. Due to the complexity of the reverse
process, it may not be clear that the learned distribution over signals will agree with the true
distribution, even in the limit of infinite data. However, this model will indeed asymptotically learn
the true conditional distribution over signals, as we formally prove in the supplement:
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Figure 2: Overview of 3D Generative Modeling. We build a 3D-structured denoise operator on top of
pixelNeRF [9] that learns to sample from the distribution of 3D scenes from image observations only. Given a
context image O™ with camera pose ¢°*', we pick a target pose ¢"'. We render out a deterministic estimate
of the depth, RGB, and features of the target view Ogcg: using pixel-aligned features f**' extracted from the
context view with encoder enc—¢ (left, only RGB shown here). To generate a 3D scene, we concatenate the
deterministic estimate with noise O}*, and extract features f,"*' for the target view with enc;. f;'* and £ now
jointly parameterize the radiance field of the generated scene S.1, and we may render an estimate of the clean
target view (A);r_g{. The model is trained end-to-end via a re-rendering loss.

Proposition 1. Suppose that any signal S can be reconstructed from the set of all all possible
observations of S. Under this assumption, if in the limit as the number of known observations per
signal goes to infinity, there are parameters 6 such that £ggl + £Vl is minimized, then the conditional
probability distribution over signals discovered by our model p(S | O™; ') agrees with the true
distribution p"™¢(S | O™t g,

The proof follows by showing that our losses implicitly minimize a diffusion model loss over fotal
observations, which are collections of all possible observations of our signal. As such, when the
observations suffice to completely reconstruct the signal, the correctness of the estimated distribution
over total observations forces the estimated distribution over signals to be correct, as well.

3 Prior Work on Latent Variable Models for Inverse Problems

Variational Autoencoders [10, 11], normalizing flows [12], conditional [13] and attentive neural
processes [14] are latent-variable models that can be combined with forward models to learn to sample
from the distribution of unobserved signals from observations [15, 16]. However, they empirically
fall short of accurately modeling complex signal distributions - in inverse graphics, for instance,
such models have so far been limited to synthetic 3D scenes. Generative Adversarial Networks can
be trained with differentiable forward models in-the-loop, and have yielded impressive results in
unconditional generative modeling of unobserved signals [17—19]. Similarly, in concurrent work,
diffusion models have been leveraged for unconditional generative modeling through differentiable
forward models [2, 7, 20]. However, unconditional models are limited to tight distributions, and
no conditional generative modeling of similar quality has been demonstrated. Diffusion models
trained directly on signals have been effectively applied to diverse inverse problems such as super-
resolution [21-25], inpainting [21, 23-26], and medical imaging [27]. These works utilize the learned
prior of the data distribution to recover the latent signal through a “plug and play” approach [28-30],
integrating the diffusion model with a forward measurement process according to Bayes’ rule. These
approaches are versatile and can easily adapt to new inverse problems without retraining. However,
unlike our models, they rely on direct supervision over the signals in the form of large datasets.

4 Applications

We now apply our framework to three stochastic inverse problems. We focus on applications in
computer vision, where we tackle the problems of inverse graphics, single-image motion prediction,
and GAN inversion. For each application, we give a detailed description of the forward model, the
dataset and baselines, as well as a brief description of prior work.
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Figure 3: Sample Diversity. We illustrate different 3D scenes sampled from the same context image for
RealEstate10k and Co3D datasets. Unlike deterministic methods like pixeINeRF [9], our method generates
diverse and distinct 3D scenes that all align with the context image. Co3D results are generated using autoregres-
sive sampling, where a 360 degree trajectory can be generated by iteratively sampling target images. Note the
photorealism and diversity of the generated structures for the indoor scene, such as doors and cabinets. Also
note the high-fidelity geometry of the occluded parts of the hydrant and the diverse background appearance.

4.1 Inverse Graphics

We seek to learn a model that, given a single image of a 3D scene enables us to sample from the
distribution over 3D scenes that are consistent with the observation. We expect that 3D regions visible
in the image are reconstructed faithfully, while unobserved parts are generated plausibly. Every time
we sample, we expect a different plausible 3D generation. Signals S are 3D scenes, and observations
are 2D images O and their camera parameters ¢. At training time, we assume that we have access to
at least two image observations and their camera parameters per scene, such that we can assemble
tuples of (O™, g™t QU8 '8} with 2D images O™, O'"¢', and camera parameters ¢!, p'"e".

Scope. We note that our treatment of inverse graphics exceeds a mere application of the presented
framework. In particular, we not only integrate the differentiable rendering forward function, but
further propose a novel 3D-structured denoise function. Here, we enable state-of-the-art conditional
generation of complex, real-world 3D scenes.

Related Work. Few-shot reconstruction of 3D scene representations via differentiable rendering was
pioneered by deterministic methods [9, 31, 32, 32—41] that blur regions of the 3D scene unobserved
in the context observations. Probabilistic methods have been proposed that can sample from the
distribution of novel views trained only on images [4, 5, 42—45]. While results are impressive, these
methods do not allow sampling from the distribution of 3D scenes, but only from the distribution
of novel views. Generations are not multi-view consistent. Obtaining a 3D scene requires costly
post-processing via score distillation [6]. Several approaches [2, 3] use a two-stage design: they first
reconstruct a dataset of 3D scenes, and then train a 3D diffusion model. However, pre-computing large
3D datasets is expensive. Further, to obtain high-quality results, dense observations are required per
scene. RenderDiffusion [7] and HoloDiffusion [20] integrate differentiable forward rendering with
an unconditional diffusion model, enabling unconditional sampling of simple, single-object scenes.
Similar to us, RenderDiffusion performs denoising in the image space, while HoloDiffusion uses a
3D denoising architecture. Other methods use priors learned by text-conditioned image diffusion
models to optimize 3D scenes [46—48]. Here, the generative model does not have explicit knowledge
about the 3D information of scenes. These methods often suffer from geometric artifacts.

Structure of S and forward model render. We can afford only an abridged discussion here -
please see the supplement for a more detailed description. We use NeRF [49] as the parameterization
of 3D scenes, such that S is a function that maps a 3D coordinate p to a color ¢ and density o as
S(p) = (o,c). We require a generalizable NeRF that is predicted in a feed-forward pass by an
encoder that takes a set of M context images and corresponding camera poses {(O;, ¢;)} as input.
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Figure 4: Qualitative Comparison for Inverse Graphics application. We benchmark with SparseFusion [5]
and the deterministic pixeINeRF [9]. SparseFusion samples 2D novel views conditioned on a deterministic
rendering (Diffusion Out.), and generates multi-view consistent 3D scenes only after Score Distillation. Our
method consistently generates higher-quality scenes, while directly sampling 3D scenes.

We base our model on pixelNeRF [9]. pixelNeRF first extracts image features {F;}; from each
context observation via an encoder enc as F; = enc(O;). Given a 3D point p, it obtains its pixel
coordinates in each context view via p‘;iX = 7(p, ¢;) via the projection operator 7, and recovers a
corresponding feature as f; = F; (p?™) by sampling the feature map at pixel coordinate p?™. It then
parameterizes S via an MLP as:

S(p) = (o(p), c(p)) = MLP({(f; ® p;}}"), (10)

where @ is concatenation and p; is the 3D point p transformed into the camera coordinates of
observation . The number of context images M is flexible, and we may condition S on a single or
several observations. It will be convenient to refer to a pixelNeRF that is reconstructed from context
and target observations (O™, ¢**!) and (O"8', p""¢") as

S(- | enc(O™), enc(O"")), (11)

where we make the pixelNeRF encoder enc explicit and drop the poses ¢"™" and ¢°*'. We leverage
differentiable volume rendering [49] as forward model, such that

O = render(S, ¢), (12)
where S is rendered from a camera with parameters ¢.

Implementation of denoise. Fig. 2 gives an overview of the denoising procedure. Following our
framework, we obtain the denoised target observation O;rglt as:

O = render(S;1, ¢"™), where (13)
Si.1 = S(- | enci—o(O™), enc, (O}*")), (14)

where the image encoder enc, is now conditioned on the timestep ¢. In other words, we will generate a
target view O by rendering the pixelNeRF conditioned on the context and noisy target observations.
However, feedmg the noisy O, ¢ directly to pixeINeRF is insufficient. This is because the pixel-
aligned features enc,(O) are obtalned from each view separately - thus, the features generated by
enc;(O}*") will be uninformative. To successfully generate a 3D scene, we have to augment the O}*'
with information from the context view. We propose to generate conditioning information for O‘trgl
by rendering a deterministic estimate O45 = render (S(- | enc;—o(O™)), $"). Le., we condition
pixelNeRF only on the context view, and render an estimate of the target view via volume rendering.
However, in the extreme case of a completely uncertain target view, this results in a completely blurry
image. We thus propose to additionally render high-dimensional features. Recall that any 3D point p,
we have (o(p),c(p)) = MLP;(p). We modify MLP, to also output a high-dimensional feature and
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Figure 5: Qualitative Results for Single-Image Motion Prediction (left) and GAN Inversion (right).

render a deterministic feature map to augment Otrgt (only RGB shown in figure). We generate the

final 3D scene as S;.; = S(- | ency—o(O™), enct(Ozirftt @® 0;*)). The final denoised target view is
then obtained according to the rendering Eq. 13 above.

Loss and Training. Our loss consists of simple least-squares terms on re-rendered views, identical to
the general loss terms presented in Egs. 8 and 9, in addition to regularizers that penalize degenerate
3D scenes. We discuss these regularizers, as well as training details, in the supplement.

4.1.1 Results

Datasets We evaluate on two challenging real-world datasets. We use Co3D hydrants [50] to
evaluate our method on object-centric scenes. For scene-level 3D synthesis, we use the challenging
RealEstate10k dataset [51], consisting of indoor and outdoor videos of scenes.

Baselines We compare our approach with state-of-the-art approaches in deterministic and probabilistic
3D scene completion. We use pixelNeRF as the representative method for deterministic methods that
takes a single image as input and deterministically reconstructs a 3D scene. Our method is the first
to probabilistically reconstruct 3D scenes in an end-to-end manner. Regardless, we compare with
the concurrent SparseFusion [52] that learns an image-space generative model over novel views of
a 3D scene. Score distillation of this generative model is required every time we want to obtain a
multi-view consistent 3D scene, which is costly.

Qualitative Results. In Fig. 3, we show multiple samples of 3D scenes sampled from a monocular
image. For the indoor scenes of RealEstate10k, there are large regions of uncertainty. We can sample
from the distribution of valid 3D scenes, resulting in significantly different 3D scenes with plausible
geometry and colors. The objects are faithfully reconstructed for the object-centric Co3D scenes,
and the uncertainty in the scene is captured. We can sample larger 3D scenes and render longer
trajectories by autoregressive sampling, i.e., we treat intermediate diffused images as additional
context observations to sample another target observation. The Co3D results in Fig. 3 were generated
autoregressively for a complete 360 degrees trajectory. In Fig. 4, we compare our results with
pixelNeRF [9] and SparseFusion [5]. pixeINeRF is a deterministic method and thus leads to very
blurry results in uncertain regions. SparseFusion reconstructs scenes by score-distillation over a 2D
generative model. This optimization is very expensive, and does not lead to natural-looking results.

Quantitative Results. For the object-centric Co3D dataset, we evaluate the accuracy of novel views
using PSNR and LPIPS [53] metrics. Note that PSNR/LPIPS are not meaningful metrics for large
scenes since the predictions have a large amount of uncertainty, i.e., a wide range of novel view images
can be consistent with any input image. Thus, we report FID [54] and KID [55] scores to evaluate
the realism of reconstructions in these cases. Our approach outperforms all baselines for LPIPS,
FID, and KID metrics, as our model achieves more realistic results. We achieve slightly lower PSNR
compared to pixelNeRF [9]. Note that PSNR favors mean estimates, and that we only evaluate our
model using a single randomly sampled scene for an input image due to computational constraints.

4.2 Single-Image Motion Prediction

Here, we seek to train a model that, given a single static image, allows us to sample from all possible
motions of pixels in the image. Given, for instance, an image of a person performing a task, such
as kicking a soccer ball, it is possible to predict potential future states. This is a stochastic problem,
as there are multiple possible motions consistent with an image. We train on a dataset of natural
videos [56]. We only observe RGB frames and never directly observe the underlying motion, i.e, the
pixel correspondences in time are unavailable. We use tuples of two frames from videos within a
small temporal window, and use them as our context and target observations for training.



3D Scene Completion GAN Inversion

Co3D RealEstate 10k FFHQ
PSNRT LPIPS| FID] KID] | FID]  KIDJ FID] KIDJ]
pixelNeRF 17.93 0.54 180.20 0.14 19540 0.14 Determ. | 25.7  0.019
SparseFusion | 12.06 0.63 252.13 0.16 99.44 0.04 Ours 745  0.002
Ours 17.47 0.42 84.63 0.05 42.84 0.01

Table 1: Quantitative evaluation. (left) We benchmark our 3D generative model with state-of-the-art baselines
pixelNeRF [9] and SparseFusion [5]. (right) We benchmark with a deterministic baseline on GAN inversion,
which we drastically outperform.

Related Work. Several papers tackle this problem, where motion in the form of optical flow [57-59],
2D trajectories [60, 61], and human motion [62, 63] are recovered from a static image; however, all
these methods assume supervision over the underlying motion. Learning to reason about motion
requires the neural network to learn about the properties and behavior of the different objects in the
world. Thus, this serves as a useful proxy task for representation learning, and can be used as a
backbone for many downstream applications [60, 64].

Structure of S and forward model warp. Our signal S stores the appearance and motion information
in a 2D grid. At any pixel u, the signal is defined as S(u) = (S.(u), S, (1)), where S.(u) € R? is
the color value, and S,,,(u) € R? is a 2D motion vector. The forward model is a warping operator,
such that warp(S, ¢)(u+ ¢S, (u)) = S.(u) and ¢ is a scalar that changes the magnitude of motion.
We implement this function using a differentiable point splatting operation [65].

Implementation of denoise. The inset figure illustrates our Frame Noise ¢ Motion Frame
design. We use a 2D network that takes O™, O, and ¢ as O 2. 0" Ser  warp O
input, and generates the motion map S,,, as the output. The
signal is then reconstructed as S = (O™'|S,,). Context and
target frames correspond to parameters ¢°*' = 0 and ¢"#' = 1,

and can be reconstructed from the signal using warp.

denoise

Loss and Evaluation. Similar to inverse graphics, we use reconstruction and regularization losses.
The reconstruction losses are identical to Eqgs. 8 and 9, and the regularization loss is a smoothness
term that encourages a natural motion of the scene, see supplement for details. We show results in
Fig. 5 (left), where we can estimate a diverse set of possible motion flows from monocular images.
By smoothly interpolating ¢, we can generate short video sequences, even though our model only
saw low-framerate video frames during training. We also train a deterministic baseline, which only
generates a single motion field. Due to the amount of uncertainty in this problem, the deterministic
estimate collapses to a near-zero motion field regardless of the input image, and thus, fails to learn
any meaningful features from images.

4.3 GAN Inversion

Projecting images onto the latent space of generative adversarial networks is a well-studied problem
[8, 66], and enables interesting applications, as manipulating latents along known directions
allows a user to effectively edit images [67-69]. Here, we solve the problem of projecting partial
images: given a small visible patch in an image, our goal is to model the distribution of possible
StyleGAN?2 [8] latents that agree with the input patch. There are a diverse set of latents that can
correspond to the input observation, and we train our method without observing supervised (image,
latent) pairs. Instead, we train on pairs of (O*', Q"") observations, where O™ are the small
patches in images, and O™ are the full images.

Related Work. While most GAN inversion methods focus on inverting a complete image into
the generator’s latent space [70-78], some also reconstruct GAN latents from small patches via
supervised training. Inversion is not trivial, and papers often rely on regularization [77] or integrate
the inversion with editing tasks [79] for higher quality. We also integrate the inpainting task with
the inversion, and seek to model the uncertainty of the GAN inversion task given only a partial
observation (patch) of the target image.

Structure of S and forward model synthesize. Our signal S € R°!2 is a 512 dimensional latent
code representing the “w” space of StyleGAN2 [8] trained on the FFHQ [80] dataset. The forward
model synthesize(S, @) = GAN(S)[¢] first reconstructs the image corresponding to S using a



forward pass of the GAN. It then extracts a patch using the forward model’s parameters ¢ that encode
the patch coordinates.

Patch Noise ¢ Latent Image
Implementation of denoise, Loss, and Evaluation. Please see O o/ Si1 .o
. . . . . synthesize
the inset figure for an illustration of the method. The denoising 5
network receives O™, Ottrg[, and timestep t as input, and generates |:||:|
an estimate of the StyleGAN latent w. The loss function is identical
to Eq. 8 and compares the reconstructed sample with ground truth.
We show results in Fig. 5 (right). We obtain diverse samples that are all consistent with the input
patch. We also compare with a deterministic baseline that minimizes the same loss but only produces
a single estimate. While this deterministic estimate also agrees with the input image, it does not
model the diversity of outputs. We consequently achieve significantly better FID [54] and KID [55]
scores than the deterministic baseline, reported in Tab. 1 (right).

denoise

5 Discussion

Limitations. While our method makes significant advances in generative modeling, it still has several
limitations. Sampling 3D scenes at test time can be very slow, due to the expensive nature of the
denoising process and the cost of volume rendering. We need multi-view observations of training
scenes for the inverse graphics application. Our models are not trained on very large-scale datasets,
and can thus not generalize to out-of-distribution data.

Conclusion We have introduced a new method that tightly integrates differentiable forward models
and conditional diffusion models. Our model learns to sample from the distribution of signals trained
only using their observations. We demonstrate the efficacy of our approach on three challenging
computer vision problems. In inverse graphics, our method, in combination with a 3D-structured
conditioning method, enables us to directly sample from the distribution of real-world 3D scenes
consistent with a single image observation. We can then render multi-view consistent novel views
while obtaining diverse samples of 3D geometry and appearance in unobserved regions of the scene.
We further tackle single-image conditional motion synthesis, where we learn to sample from the
distribution of 2D motion conditioned on a single image, as well as GAN inversion, where we learn to
sample images that exist in the latent space of a GAN that are consistent with a given patch. With this
work, we make contributions that broaden the applicability of state-of-the-art generative modeling
to a large range of scientifically relevant applications, and hope to inspire future research in this
direction.
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