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Abstract

Denoising diffusion models have emerged as a powerful class of generative models
capable of capturing the distributions of complex, real-world signals. However,
current approaches can only model distributions for which training samples are
directly accessible, which is not the case in many real-world tasks. In inverse
graphics, for instance, we seek to sample from a distribution over 3D scenes
consistent with an image but do not have access to ground-truth 3D scenes, only
2D images. We present a new class of conditional denoising diffusion probabilistic
models that learn to sample from distributions of signals that are never observed
directly, but instead are only measured through a known differentiable forward
model that generates partial observations of the unknown signal. To accomplish
this, we directly integrate the forward model into the denoising process. At test
time, our approach enables us to sample from the distribution over underlying
signals consistent with some partial observation. We demonstrate the efficacy of
our approach on three challenging computer vision tasks. For instance, in inverse
graphics, we demonstrate that our model in combination with a 3D-structured
conditioning method enables us to directly sample from the distribution of 3D
scenes consistent with a single 2D input image.

1 Introduction

Consider the problem of reconstructing a 3D scene from a single picture. Since much of the 3D scene
is unobserved, there are an infinite number of 3D scenes that could have produced the image, due to
the 3D-to-2D projection, occlusion, and limited field-of-view that leaves a large part of the 3D scene
unobserved. Given the ill-posedness of this problem, it is desirable for a reconstruction algorithm to
be able to sample from the distribution over all plausible 3D scenes that are consistent with the 2D
image, generating unseen parts in plausible manners. Previous data-completion methods, such as
in-painting in 2D images, are trained on large sets of ground-truth output images along with their
incomplete (input) counterparts. Such techniques do not easily extend to 3D scene completion, since
curating a large dataset of ground-truth 3D scene representations is very challenging.

This 3D scene completion problem, known as inverse graphics, is just one instance of a broad
class of problems often referred to as Stochastic Inverse Problems, which arise across scientific
disciplines whenever we capture partial observations of the world through a sensor. In this paper, we
introduce a diffusion-based framework that can tackle this problem class, enabling us to sample from
a distribution of signals that are consistent with a set of partial observations that are generated from
the signal by a non-invertible, generally nonlinear, forward model. For instance, in inverse graphics,
we learn to sample 3D scenes given an image, yet never observe paired observations of images and
3D scenes at training time, nor observe 3D scenes directly.
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While progress in deep learning for generative modeling has been impressive, this problem remains
unsolved. In particular, variational autoencoders and conditional neural processes are natural ap-
proaches but have empirically fallen short of modeling the multi-modal distributions required in, for
instance, inverse graphics. They have so far been limited to simple datasets. Emerging diffusion
models [1], in contrast, enable sampling from highly complex conditional distributions but require
samples from the output distribution that is to be modeled for training, e.g. full 3D models. Some
recent work in inverse graphics has resorted to a two-stage approach, where one first reconstructs
a large dataset of 3D scenes to then train an image-conditional diffusion model to sample from the
conditional distribution over these scenes [2, 3]. To avoid a two-stage approach, another recent line
of work trains a conditional diffusion model to sample from the distribution over novel views of
a scene, only requiring image observations at training time [4, 5]. However, such methods do not
model the distribution over 3D scenes directly and therefore cannot sample from the distribution
over 3D scenes consistent with an image observation. Thus, a multi-view consistent 3D scene can
only be obtained in a costly post-processing stage [6]. A notable exception is the recently proposed
RenderDiffusion [7], demonstrating that it is possible to train an unconditional diffusion model over
3D scenes from observing only monocular images. While one can perform conditional sampling even
with unconditional models, they are fundamentally limited to simple distributions, in this case, single
objects in canonical orientations.

Our core contribution is a novel approach for integrating any differentiable forward model that
describes how partial observations are obtained from signals, such as 2D image observations and 3D
scenes, with conditional denoising diffusion models. By sampling an observation from our model, we
jointly sample the signal that gave rise to that observation. Our approach has a number of advantages
that make it highly attractive for solving complex Stochastic Inverse Problems. First, our model is
trained end-to-end and does away with two-stage approaches that first require reconstruction of a
large dataset of signals. Second, our model directly yields diverse samples of the signal of interest.
For instance, in the inverse graphics setting, our model directly yields highly diverse samples of 3D
scenes consistent with an observation that can then be rendered from novel views with guaranteed
multi-view consistency. Finally, our model naturally leverages domain knowledge in the form of
known forward models, such as differentiable rendering, with all guarantees that such forward models
provide. We validate our approach on three challenging computer vision tasks: inverse graphics (the
focus of this paper), as well as single-image motion prediction and GAN inversion.

In summary, we make the following contributions:

1. We propose a new method that integrates differentiable forward models with conditional
diffusion models, replacing prior two-step approaches with a conditional generative model trained
end-to-end.

2. We apply our framework to build the first conditional diffusion model that learns to sample from
the distribution of 3D scenes trained only on 2D images. In contrast to prior work, we directly
learn image-conditional 3D radiance field generation, instead of sampling from the distribution
of novel views conditioned on a context view. Our treatment of inverse graphics exceeds a mere
application of the proposed framework, contributing a novel, 3D-structured denoising step that
leverages differentiable rendering both for conditioning and for the differentiable forward model.

3. We formally prove that under natural assumptions, as the number of observations of each signal
in the training set goes to infinity, the proposed model maximizes not only the likelihood of
observations, but also the likelihood of the unobserved signals.

4. We demonstrate the efficacy of our model for two more downstream tasks with structured forward
models: single-image motion prediction, where the forward model is a warping operation, and
GAN inversion, where the forward model is a pretrained StyleGAN [8] generator.

2 Method

Consider observations (Oi
j , φ

i
j) that are generated from underlying signals Sj according to a known

forward model forward(), i.e., Oi
j = forward(Sj , φ

i
j), where φi

j are parameters of the forward

model corresponding to observation O
i
j . Each observation can be partial. Specifically, given a

single observation, there is an infinite number of signals that could have generated this observation.
However, we assume that given a hypothetical set of all possible observations, the signal is fully
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denoiseθ(xt, t, c). The forward process does not change in this case; in practice, we merely add the
conditional signal as input to the denoising model.

Unfortunately, we cannot train existing denoising diffusion models to sample from p(S | O, φ), or, in
fact, even from an unconditional distribution p(S). This would require computation of the Markovian
forward process in Eq. 1. However, recall that we do not have access to any signals {Sj}j - we thus
can not add any noise to any signals to then train a denoising neural network. In other words, since
no S is directly observed, we cannot compute q(St | St−1).

2.2 Integrating Denoising Diffusion with Differentiable Forward Models

We now introduce a class of denoising diffusion models that we train to directly model the distribution
p(S | O

ctxt;φctxt) over signals S given an observation (Octxt, φctxt). Our key contribution is to
directly integrate the differentiable forward model forward() into the iterative conditional denoising
process. This enables us to add noise to and denoise the observations, while nevertheless sampling
the underlying signal that generates that observation.

Our model is trained on pairs of “context” and “target” observations of the same signal, denoted

as Octxt and O
trgt. As in conventional diffusion models, for the forward process, we have q(Otrgt

t |
O

trgt
t-1) = N (Otrgt

t ;
√
1− βtO

trgt
t−1

, βtI). In the reverse process, we similarly denoise O
trgt conditional

on O
ctxt:

pθ(O
trgt
0:T | Octxt;φctxt, φtrgt) = p(Otrgt

T )

T∏

t=0

pθ(O
trgt
t−1

| Otrgt
t ,Octxt;φctxt, φtrgt), (3)

However, unlike conventional diffusion models, we implement pθ(O
trgt
t−1

| Otrgt
t ,Octxt;φctxt, φtrgt) by

first predicting an estimate of the underlying signal St-1 and then mapping it to an estimate of the
denoised observations via the differentiable forward:

St-1 = denoiseθ(O
ctxt,O

trgt
t ; t, φctxt, φtrgt), (4)

Ô
trgt
t-1 = forward(St-1, φ

trgt) (5)

O
trgt
t-1 ∼ N (Otrgt

t-1;Ct-1Ô
trgt
t-1, β̂t-1I) (6)

Here, Ô
trgt
t-1 is an estimate of the clean observation, and the constants Ct-1 and β̂t-1 are chosen to

match the total noise added by the forward process at time t-1. See Fig. 1 for an overview. At test

time, a signal is sampled by iterating Eq. 4, 5, and 6 starting with p(Otrgt
t=T ) ∼ N (0, I). Importantly,

our models define a generative model over the underlying signal via Eq. 4:

pθ,φtrgt(S0:T | Octxt;φctxt) =
T∏

t=1

pθ(St-1 | Otrgt
t ,Octxt;φctxt, φtrgt). (7)

We will suppress the subscript in the notation, and refer to this distribution as p(S0:T | Octxt;φctxt)
for brevity from now.

Loss Function. We train to minimize the following two loss terms:

Ltrgt

θ = EOctxt,Otrgt,φctxt,φtrgt,t

[

∥Otrgt − forward(denoiseθ(O
ctxt,O

trgt
t ; t, φctxt, φtrgt), φtrgt)

︸ ︷︷ ︸

=Ô
trgt

t-1

∥2
]

,

(8)

Lnovel
θ = EOctxt,Onovel,φctxt,φtrgt,φnovel,t

[

∥Onovel − forward(denoiseθ(O
ctxt,O

trgt
t ; t, φctxt, φtrgt), φnovel)

︸ ︷︷ ︸

=Ônovel
t-1

∥2
]

.

(9)

Here, we compute the estimate of the observation from the target, as well as a separate, novel forward
model parameter φnovel. In the supplemental document, we show that these losses approximate a total
observation loss, maximizing the likelihood of all possible observations of the signal S.

Characterizing the Conditional Distribution Over Signals. Due to the complexity of the reverse
process, it may not be clear that the learned distribution over signals will agree with the true
distribution, even in the limit of infinite data. However, this model will indeed asymptotically learn
the true conditional distribution over signals, as we formally prove in the supplement:
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