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Abstract
In binder jetting followed by sintering, the porosity characterization is critical to understand how the process affects the
structure of the printed parts. Image-based porosity detection methods are widely used but the current solutions are limited
to specific materials and conditions and require manual tuning that precludes real-time porosity detection. The application
of machine learning for automating porosity detection has been also limited to specific materials and conditions and requires
a large training dataset for successful implementation. However, large datasets are difficult to acquire experimentally in
binder jetting due to prohibited material costs and experiment time. To bridge the knowledge gap, this paper investigates
the application of machine learning on automated porosity detection using a small dataset consisting of highly varied cross-
section images of metal parts produced by binder jetting followed by sintering. Stylegan3, a type of generative adversarial
network, is used to increase the number of training images by image augmentation, and YOLOv5, a convolutional neural
network specialized for object detection, is used to detect porosities. The resulting model achieves an F1 score of 88% and
detection time of 3–15 ms per image. Generalized porosity detection is also assessed on a set of images containing highly
varied materials, resolutions, magnifications, and pore densities. Furthermore, morphological information of the classified
porosities such as the distribution of their orientations are automatically extracted using image processing algorithms.
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Introduction

One of the seven categories of additive manufacturing (AM)
technology recognized by ASTM F2792 (ASTM, 2012) is
binder jetting (BJ), which was invented in 1993 at the Mas-
sachusetts Institute of Technology (Sachs et al., 1990). BJ
is commonly used to print green components, which has
remarkable advantages in the easy production of components
with high-complex geometry (Milewski, 2017; Srinivas &
Babu, 2017). BJ uses iterative ink-jet printing of binder on a
powder bed to producemetallic (Bai&Williams, 2015; Chen
& Zhao, 2016; Do et al., 2017; Doyle et al., 2015; Hong
et al., 2016; Mostafaei et al., 2016; Shrestha & Manogha-
ran, 2017; Tang et al., 2016; Wang & Zhao, 2017; Zhou
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et al., 2015) or ceramic (Bergmann et al., 2010; Enneti et al.,
2018; Gaytan et al., 2015; Gonzalez et al., 2016; Islam &
Sacks, 2016; Lanzetta & Sachs, 2001; Lee et al., 2020;
Winkel et al., 2012; Yoo et al., 2008) green components.
The green components need a post-processing such as sin-
tering to consolidate them and to obtain desired properties. In
addition to the advantages mentioned above, BJ can virtually
work with any powdered feedstock including functionally
graded materials (Moon et al., 2001). Since this technology
doesn’t need to sinter or melt the powder bed to produce
the printed part, the residual thermal stresses can be avoided,
and the anisotropic microstructures typical to the powder bed
fusion technologies can be controlled (Do et al., 2015, 2017;
Miyanaji et al., 2016; Mostafaei et al., 2016; Sachs et al.,
1992; Snelling et al., 2015). Moreover, by adding multiple
print-heads and nozzles, BJ can be easily scaled and achieved
high build rates compared with other AM technologies (Bai
& Williams, 2015; Gibson et al., 2015; Winkel et al., 2012).
For example, commercially available machines have a large

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-023-02100-9&domain=pdf
http://orcid.org/0000-0002-4603-0534


1282 Journal of Intelligent Manufacturing (2024) 35:1281–1303

build volume up to 2200 × 1200 × 600 mm. These advan-
tages have attracted attention over BJ in recent years.

The primary challenge of BJ followed by sintering is to
achieve component densities comparable with those pro-
duced by conventional processes. The green components
are typically characterized by a low powder packing density
(Zhang et al., 2014), which results considerable shrinkage
during the follow-up sintering process. The control of dimen-
sional changes during sintering is crucial to achieve the
desired dimensional tolerances. Because the bulk porosity
in the printed component is directly related to the density of
the component, the porosity detection is critical to determine
and control the quality of the component.

The porosity and its evolution play a fundamental role
to understand and model the sintering behavior (Olevsky,
1998). For example, in the models based on the continuum
mechanics (Olevsky, 1998), material properties and consti-
tutive parameters (i.e., normalized shear and bulk modulus
and sintering stress) are defined as a function of porosity and
its evolution (Manière & Olevsky, 2017). Since these mod-
els were developed for the sintering in the traditional powder
processing, they might need to be modified to consider the
effects of the BJ process on the porosity and its evolution
in sintering. Therefore, the capability to detect and quantify
the porosity in the parts produced by BJ followed by sinter-
ing is fundamental to understand how the process, from the
printing to the sintering, influences the structure of the final
component.

Cross section image analysis using industry software
such as Avizio, ImageJ, and Pace are commonly used for
the porosity analysis (García-Moreno et al., 2020). How-
ever, the industry software has limitations to detect all true
pores because it uses intensity thresholding method that
requires non-gradient background and consistent pore inten-
sity (García-Moreno et al., 2020). It also requires user interac-
tion on determining the threshold, which is time-consuming
and hinders automation. In addition, it is error-prone for com-
plex pores and lighting conditions. These disadvantages of
the traditional image-based porosity detectionmethods could
be eliminated by applyingmachine learning (ML) techniques
to process the cross-section images of printed components
(García-Moreno et al., 2020).

A few studies used ML techniques for porosity detection,
however they are optimized for non-complex pore shapes,
single materials, or do not provide high porosity detection
accuracy. For example, image-based porosity detection for
AM has been previously performed with support vector
machines; however, the performance was low yielding an
F1 score of 62% from a precision of 64% and a recall of 60%
(Gobert et al., 2018). Porosity detection in Ti–6Al–4V was
performed during laser powder bed fusion (LPBF) achieving
accuracies of 89.36% for support vector machine (SVM),

78.60% for k-nearest neighbor (KNN), and 84.40% for Arti-
ficial Neural Network (ANN) (Imani et al., 2018). Another
LPBF study focused on classifying porosities in Inconel 625
using a Bayesian classifier resulting in an accuracy of 89.5%
(Aminzadeh & Kurfess, 2019). Another study used optical
images of Ti–6Al–4V parts during LBPF to identify porosi-
ties resulting from lack of fusion reported a 91.5% accuracy
(Abdelrahman et al., 2017). SVMwas also employed to clas-
sify porosities in stainless steel parts created with LPBF and
yielded accuracy of 85% (Gobert et al., 2018). CNNs were
used for pore classification in parts created from sponge
titanium powder with direct energy deposition and yielded
an accuracy of 91.2% (Zhang et al., 2019). Another study
focused on pore classification in Al-5083 composed parts
produced with direct metal deposition using a random forest
classifier resulting in an accuracy of 94.41% (García-Moreno
et al., 2020). However, the results were performed on a sin-
gle material with sparse porosity. Therefore, a generalized
image-based porosity detection algorithm that can be applied
to any materials, pore density, and varied image resolutions
is required.

The objective of this paper is to develop image based auto-
mated porosity detection methods on a limited dataset. This
is accomplished by first augmenting the dataset with a gen-
erative adversarial neural network (GAN), then training two
popular CNNs: the Faster R-CNN and YOLOv5. Transfer
learning was applied to the GAN network to train cross-
section images within a reasonable time, and hyperparameter
tuningwas performed on theCNNs to optimize performance.
The final selected model was assessed on various porous
images obtained from literature containing various materi-
als, magnifications, and resolutions. The results indicate that
the model can perform well on cross-section images beyond
the training set.

Approach

CNNs are widely used for classifying images with defects
(Scime&Beuth, 2018).AcommonCNNclassifierwas found
to be the Faster Region Based CNN (Faster R-CNN) (Ren
et al., 2017). Faster R-CNN has previously been used for
face detection resulting in precision and recall rates at over
95% (Wu et al., 2019). Faster R-CNN has also been used
in automating the detection of maize tassels with unmanned
arial vehicles yielding accuracies from 88 to 95% (Liu et al.,
2020). High accuracies were also obtained with Faster R-
CNN for detectingmarine organismswith data augmentation
(Huang et al., 2019). It has also been utilized extensively in
defect detection including sewer pipe, solar cell, wheel hub
surface, and polymeric polarizer defect detections (Cheng
& Wang, 2018; Lei et al., 2018; Sun et al., 2019; Zhang
et al., 2020). However, the training times of Faster R-CNN is
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around several days (Ren et al., 2017). To address the poten-
tial training time deficiency of Faster R-CNN, YOLOv5,
another common CNN-based classifier was investigated for
image-based defect detection (Bochkovskiy et al., 2020;
Jocher et al., 2020). AccuracieswithYOLOv5 are reported to
be similar to Faster R-CNN but can perform image detection
in real time, with image processing on the order of millisec-
onds (Bochkovskiy et al., 2020; Jocher et al., 2020; Zhao
et al., 2021). YOLOv5 has been used in a variety of appli-
cations including wheat spike detection with an accuracy of
94.1%, kiwi fruit defect detection with accuracies of 94.7%,
and 94.4% accuracy for crack detection in asphalt pavement
(Li et al., 2021; Yao et al., 2021; Zhao et al., 2021).

Equally important to the model is the dataset the model
is trained on. Because of the prohibited material costs and
experiment time, it is difficult to experimentally obtain large
datasets in BJ. Therefore, the study approach includes image
augmentation to increase the training data set. As an addi-
tional complication, the images are composed of varied
materials, yielding a highly varied image set. Due to the small
image set and high diversity of images, unsupervised ML for
detection was not considered. However, unsupervised learn-
ing for image augmentation was incorporated using neural
networks, specifically stylegan3, a type of GAN network, to
increase the existing dataset size (Heusel et al., 2017; Karras
et al., 2021).

This section describes how we designed and tuned the
CNN, Faster R-CNN, YOLOv5, and GAN models for the
application of porosity detection, followed by the dataset
description. The classification metrics used to evaluate and
compare those ML models are introduced first followed by
a description of each algorithm.

Classificationmetrics

The performance of the proposed ML models must consider
how many of the pores in the image are classified correctly
(precision) and how many true pores in the image are classi-
fied (recall). The F1 Score is used to combine both precision
and recall into a single reporting metric (Sasaki, 2007). The
equations to calculate the precision, recall, and F1 score are
provided Eqs. 1, 2, and 3.

Precision = # True Objects Detected

T otal # Objects Detected
(1)

Recall = # True Objects Detected

T otal # True Objects
(2)

F1score = 2 × Precision × Recall

Precision + Recall
(3)

The ML models are retrained over a specified number of
epochs and the mean squared error over a validation curve

Fig. 1 IoU of 95% (left), 67% (left-middle), 49% (right-middle), 34%
(right). Blue represents the ground truth label and yellow is the trained
detector label (Color figure online)

is calculated to determine the performance of the models at
each epoch using the Eqs. 4, 5, and 6.

MSEP =
∑

N (1 − Precision)2

N
(4)

MSER =
∑

N (1 − Recall)2

N
(5)

MSEnet = MSER + MSEP

2
(6)

where N is the number of threshold values evaluated for the
precision and recall obtained at each threshold. An ideal clas-
sifier would have an MSE of 0 for each equation, indicating
a perfect model.

Another metric of interest is the intersection of union
(IoU). The true porosities were manually classified by spec-
ifying a bounding box around the pore. Nonetheless, the
predicted bounding box will not be in the exact same loca-
tion as the training set. Therefore, the boundingboxesmust be
compared, and some limiting overlap thresholdmust be spec-
ified to determine if the pore has been accurately detected.
Themetric used to determine thisminimum intersection is the
IoU. This is defined as the area of the intersection divided by
the area of union. The equation for IoU is presented in Eq. 7.

I oU = AI

AU
= AI

AGT + AD − AI
(7)

where AI is the area of intersection, AU is the area of union,
AGT is the ground truth area (manually labeled area), and
AD is the area marked by the trained detector. The union
area is simply the area of the ground truth plus the area of
the detector minus the intersection area. The IoU is defined
to determine if an area is correctly marked. A demonstration
of IoUs is displayed in Fig. 1.

A final metric to consider is the mean average precision
(mAP). The precision and the recall are both functions of the
confidence threshold of the detector model. When the model
performs a detection, it is accompanied by a confidence value
associated with the probability of the object belonging to a
specific classification. Generally, setting this value to low
results in high recall, but low precision, and setting the value
high results in high precision but low recall. For the model
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to be independent of the confidence threshold, it is common
to integrate over the threshold for the precision metric.

AP =
∫ 1

0
Precision(T )dT (8)

where T is the confidence threshold and AP is the average
precision. The closer AP is to 1, the better the classifier. For a
model that performs multiple classifications, the AP is com-
puted for each class then the mean is computed to obtain the
mAP.

mAP =
∑

APi
N

(9)

where N is the number of classes. When a model performs
single class detection, (8) and (9) are equal.

CNN for image-based porosity detection

Developing a deep neural network from scratch is an iter-
ative and time-consuming process. ResNet deep CNN is
commonly used for image localization and classification.
Its high accuracy pretrained networks are readily available
and are used to classify 1000 everyday objects. We retrained
ResNet50 deep CNN (He et al., 2016) using transfer learning
(Hussain et al., 2019) to use it for porosity detection (Satterlee
et al., 2022). This is accomplished by removing the final two
layers of the ResNet50 network: the fully connected layer
and the classification output. Since only pores and non-pores
are of concern, these final layers must be replaced with lay-
ers that perform only two classifications. As more defects are
added to the image dataset, the layers can be further modi-
fied to account for these defects. The initial layers recognize
basic shapes and contours of the image (Hussain et al., 2019).
Since these layers perform fundamental image processing
that can be applied to any images, these layers need not be
updated. Therefore, theweights of the initial 10 layers are not
updated when the network is retrained with the pore dataset.
This allows the model to be fully trained to detect porosity
in just 13 epochs (just under 15 min). Further in-depth infor-
mation on the setup and training of this model are discussed
in (Satterlee et al., 2022).

The CNN is trained on manually segmented images con-
taining pores and non-pores from the training dataset. The
testing dataset is automatically segmented using the meth-
ods discussed below to produce candidate regions of interest.
The trained CNN classifies the proposed regions to obtain
the results. Potential porous regions to be classified were
selected using a threshold plus gradient method further dis-
cussed in (Satterlee et al., 2022). This initial method required
manual selection of the intensity threshold and the gradient
to select regions. It was performed as a scoping exercise to
determine if automating the threshold and gradient selection

would provide a viable method for region proposals. During
initial testing on the original full dataset, the recall and the
precision for the CNN classifying the proposed regions were
56% and 70%, respectively, for an IoU of 50%. However, the
recall and precision are not considered sufficient for indus-
trial applications, and themethodwas not further considered.
Therefore, another region proposal method was considered.

Another regional proposal method with higher recall was
employed to test the CNN. This method utilized edge detec-
tion to find contours around regions of interest (Dollár &
Zitnick, 2015). These regions however are large and require
segmentation, so a dark mask was applied to the original
image to create seeds for the OpenCV watershed algorithm
(Community, 2010). These dark regions are potential centers
of pores. With this method hundreds of regions are pro-
posed for classification by the CNN. Using this method, the
recall was increased to 72%, however, the precision remained
nearly constant at 71%.

From this assessment, itwas found that the region proposal
algorithms selected for the CNN did not perform adequately.
As a result, additional research was performed to determine a
ML algorithm that both proposes regions and classifies them,
which is introduced in the next section.

Faster R-CNN for image-based porosity detection

A potential solution comes from an extension of the CNN to
the R-CNN. This method combines region proposals with a
CNN to classify the region of interest (RoI). There are three
types of R-CNNs that have been developed: R-CNN, Fast
R-CNN and Faster R-CNN (Ren et al., 2017). The primary
differencebetweenFasterR-CNNand theother twonetworks
is that Faster R-CNN is an integrated part of the deep learning
network.Thismeans that the image is only passed through the
network once. R-CNN, on the other hand, requires a proposal
network to first extract regions of interest, then each region
is extracted, scaled, and independently classified. This ulti-
mately results in longer image classification time and lower
accuracy.

The training time of a Faster R-CNN network is signifi-
cantly longer than a normal CNN. Therefore, a small network
was trained to select hyperparameters, then a larger network
was finally trained to increase result accuracy. Typically, the
trend in accuracy and training time is proportional to the
size of the neural network. For context, the time for train-
ing ResNet-18, ResNet-50, or ResNet-101 were about two
hours, twelve hours, or sixty hours, respectively.

In Faster R-CNN, RoIs are determined by predefined
anchor boxes using a Region Proposal Network (RPN) dis-
played in Fig. 2. Just as a CNN has classification outputs, the
Faster R-CNN also classifies RoIs. As the detector is look-
ing for pores, it uses a sliding window that moves across
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Fig. 2 Faster R-CNN region proposal network (Ren et al., 2017)

Table 1 Number of anchor boxes vs IoU over 15 trials

Num boxes Mean IoU Max IoU

100 0.85 0.88

50 0.83 0.87

35 0.81 0.85

25 0.78 0.84

15 0.77 0.82

10 0.70 0.78

the image. Within the window it uses the previously speci-
fied anchor boxes built into the RPN to propose regions and
classify them. Therefore, it is critical to select anchor boxes
that can accurately bound porosities. The number of anchor
boxes, however, is less important than the dimensional distri-
bution of the boxes selected. Table 1 was generated creating
a cumulative distribution function (CDF) of the training data
bounding boxes then selecting anchor boxes based on this
data using a Monte Carlo method. The process was repeated
15 times for each number of boxes to obtain some statistics.
Themean IoU for the generated anchor boxeswere computed
and the average and max IoUs were extracted over the trails.
It is clear from Table 1 that there are diminishing returns for
selecting a greater number of anchor boxes.

Ultimately, anchor boxes with IoUs greater than 70% for
a ground-truth box will be marked as positive boxes and
boxes that overlap less than 30% for all ground-truth boxes
will be marked as negative boxes during the training (Ren
et al., 2017). Any boxes between these values are unused
during training. Effectively, moving from 50 to 100 boxes
will require more time for the boxes to be classified since it
is known that the additional 50 boxes added only contribute

Fig. 3 ResNet50 MSE for 35 and 15 anchor boxes

to a 1% increase in IoU. In addition, many of these boxes are
not likely meet the 70% requirement over the larger dataset.

Investigation was performed on larger sets of anchor
boxes; however, it was found at testing that increasing the
number of bounding boxes resulted in lower precision and
the detector would not perform at all at probability thresh-
olds greater than 10%. Note that the ResNet18 deep neural
network was used to reduce training time. The observation
reveals that increasing the number of anchor boxes from15 to
35 does not appear to have a major impact, however, increas-
ing to 100 results in a notable change to the regions of interest.
Based on these results, an anchor box of 15 was selected
for training. This assumption was later tested by running
the ResNet50 network with 35 anchor boxes to 140 epochs.
The resulting MSE per epoch for the test set is displayed
in Fig. 3. It was found that decreasing the number of anchor
boxes resulted in a slightly better outcome. However, caution
should be applied in considering this outcome in generality
since the boxes were randomly selected based on the training
set and more iterations may be required to achieve minimum
error.

Another hyperparameter to consider is the learning rate. A
learning rate of 2× 10–3 was used in the ResNet18 bounding
box assessment after finding that a rate of 5 × 10–3 diverges.
After testing the learning rate of 2 × 10–3 on the ResNet50
network, the loss was found to diverge. Therefore, the rate
was reduced to 1 × 10–3 and convergence was observed.

YOLOv5 for image-based porosity detection

The YOLOv5 model consists of three stages, the backbone,
the neck and head. The backbone and neck extract features
from the image and aggregates the features, respectively. The
aggregated features are then passed to the head for bounding
box prediction and classification. Since the features are used
for both bounding box prediction and classification, the algo-
rithm only makes one pass over the image (Zhu et al., 2021).
The model produces multiple outputs to facilitate a larger
range of bounding box sizes, which is a distinct difference
from the Faster R-CNN moving window method.
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Fig. 4 Yolov5 high level architecture

Five default models are provided for YOLOv5,
YOLOv5n6, YOLOv5s6, YOLOv5m6, YOLOv5l6, and
YOLOv5x6. Each model provides a tradeoff between detec-
tion time and accuracy. YOLOv5n6 is the smallest model
(3.2 M parameters) and thus provides the fastest detection
time with the lowest accuracy. YOLOv5x6 is the largest
model (140.7 M parameters) and provides the longest detec-
tion time with the highest accuracy (Jocher et al., 2021).
The “6” at the end of the model name indicates the updated
version over the initial models offered in the release ver-
sion. These models contain an additional output layer, and
they consistently outperform the base models in pretrained
benchmarks (Jocher et al., 2021).

The basic YOLOv5 architecture consists of three stages,
the backbone, neck, and head as shown in Fig. 4. The back-
bone primarily performs feature extraction, neck constructs
a feature pyramid, and the head provides the detected region,
classes, and confidence used for computing the loss and label-
ing the image. Specific architecture for each model differs in
the number of residual blocks used in the backbone. During
training, labeled images from the training set including the
Stylegan3 network generated images are fed into the back-
bone and the network head outputs the image labelswhich are
used to compute the loss and perform backpropagation. The
trained network performs similarly with the network taking

an input image and producing the labels; however, the confi-
dence output is used to limit the number of labels generated
based on a threshold.

An advantage of the YOLOv5 model is the ease of imple-
mentation. The model is set up with default hyperparameters
being applicable to most training scenarios. Manual devi-
ations from the default hyperparameters did not result in
notable performance increases. The base learning rate of
0.01 was decreased to 0.005 but the model failed to con-
verge. The learning rate was increased to 0.05 but resulted
in reduced performance. The weight decay parameter was
also increased to 1e-3 and 5e-3 from the initial 5e-4 value
but no performance gains were observed. However, in addi-
tional to the learning parameters, there are various image
augmentation parameterswhich can also be tuned.Therefore,
additional hyperparameters tuning was performed with the
built-in genetic algorithm (Jocher et al., 2021) for 10 epochs
over 100 iterations for each model. In general, the hyperpa-
rameters tuning resulted in around 1–2% performance gain
during tuning. The performance gain per iteration of the best
model is presented in Fig. 5.

The final training hyperparameters selected from the 100
iterations of tuning are provided inTable 2.ClassBCEweight
(cls_pw) was not modified because there is only a single
class. However, the class weight (cls_pw) is used as the
weight for the implemented IOMA loss function described
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Fig. 5 Percent increase from base parameters of best predicted model
per iteration during genetic hyperparameter tuning

Table 2 Initial and final hyperparameters following tuning

Hyperparameter Final Initial

lr0 0.00908 0.01

lrf 0.01068 0.01

momentum 0.93651 0.937

weight_decay 0.00082 0.0005

warmup_epochs 3.5766 3

warmup_momentum 0.47282 0.8

warmup_bias_lr 0.09904 0.1

box 0.0292 0.05

cls 0.47673 0.5

cls_pw 1.0 1.0

obj 0.82419 0.7

obj_pw 0.73048 1.0

iou_t 0.25474 0.2

anchor_t 5.5188 4

hsv_h 0.00665 0.015

hsv_s 0.63794 0.7

hsv_v 0.22542 0.4

translate 0.06897 0.1

scale 0.3162 0.5

shear 0.2 0.2

flipud 0.5 0.5

fliplr 0.5 0.5

mosaic 1 1

in this section, so it was not fixed. Also, an interesting out-
come was that the scale was decreased significantly from
0.5 to 0.32. This is likely due to small pores in the image
that cannot be resolved if the image is scaled down exces-
sively. However, the overall results of the fine tuning did not
substantially improve the results, indicating that the default
values are close to optimal.

Fig. 6 F1 score vs IOU threshold using non-maximum suppression on
final full dataset

Preliminary testing was performed on the five differ-
ent models via the full image set with results displayed in
Table 3. There was large increase in performance from the
YOLOv5n6 model to the YOLOv5s6 model, then smaller
performance increase with each subsequent set. The time
increase, however, is substantially higher for the larger mod-
els. The YOLOv5x 6 took 8 times longer to train than the
YOLOv5s6 model and 2.5 times longer for image detection
but only provided a 5% performance increase. Since there is
no clear advantage to any model, they were all tested on the
final full dataset.

A fundamental challenge in porosity detection is ambi-
guity. It is often possible for bounding boxes to localize a
pore correctly in more than one way. This can lead to a pore
being labeled multiple times erroneously. PyTorch includes
a built-in function that perform non-maximum suppression.
This function takes the proposed bounding boxes along with
the box score to remove low-scoring, redundant boxes greater
than a specified threshold.Unlike other hyperparameters, this
one is not included in the genetic tuning algorithm, somanual
scoping was performed with results displayed in Fig. 6. The
default IOU value of 0.6 specified in YOLOv5 was found to
produce a slightly lower F1 score compared to a lower IoU
value such as 0.4 on the final full dataset.

Another method of limiting bounding boxes was
attempted by enforcing the number of fully overlapping
bounding boxes via the loss function (Fig. 7). This was per-
formed by computing the number of times each box overlaps
fully with other boxes (i.e., one box is contained within
another box). To determine if one box is contained within
another box, the intersection over minimum area (IOMA) is
computed and compared to a threshold value of 0.9 (e.g., 90%
of one box area is contained within another). True bounding
boxes (that are accurately predicted), however, should not be
penalized for overlapping with other true boxes as shown in
Fig. 8. To determine if a box is false, the IOU of the predicted
and ground truth box was computed. An IOU less than 0.5
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Table 3 Preliminary YOLOv5
training results on full image set Model TP F1 mAP Train time (min) Detect time (ms)

YOLOv5n6 0.76 0.71 0.69 14 3.5

YOLOv5s6 0.77 0.73 0.74 20 4.4

YOLOv5m6 0.80 0.75 0.76 24 6.1

YOLOv5l6 0.81 0.76 0.77 55 6.9

YOLOv5x6 0.82 0.77 0.76 173 11.5

Fig. 7 Python implementation of
IOMA loss function in Eq. 10

was used to designate a false box. The IOMA loss was then
calculated by summing the number of overlaps false boxes
make with other boxes greater than the 0.9 threshold. For a
set of n boxes containing m false boxes, the loss is computed
as follows then multiplied by a gain and added to the base
loss function.

lossI OMA =
(∑m

i=1
∑n

j=1 I OMA ji > 0.9

m ∗ n

)2

(10)

The addition of the loss function to enforce reduced full
bounding box overlap resulted in a minor increase to the

YOLOv5n6 model but the performance of the YOLOv5s6
model remained mostly unchanged as shown in Table 4. This
indicates the YOLOv5n6model was underperforming due to
the excessive and redundant labeling, while the YOLOv5s6
model likely did not contain any redundancies. A redundant
area found in the YOLOv5n6 results was compared with the
YOLOv5s6 and the updated loss function results for both as
shown in Fig. 9. In the YOLOv5n6 example, the redundant
areas are successfully reduced, and the pore is instead seg-
mented into multiple boxes with box intersection occurring
along the necking regions. In the YOLOv5s6 example, there
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Table 4 Comparison of base loss function and modified loss function
with IOMA for false cases overlapping with true cases

Model TP F1 mAP

YOLOv5n6 0.76 0.71 0.69

YOLOv5s6 0.77 0.73 0.72

YOLOv5l6 0.81 0.76 0.77

YOLOv5n6_ioma 0.81 0.73 0.73

YOLOv5s6_ioma 0.79 0.74 0.73

YOLOv5l6_ioma 0.84 0.77 0.79

Fig. 8 Example of incorrect bounding box overlap (left) and correct
bounding box overlap (right)

are no bounding boxes meeting the redundant criteria, how-
everwith the updated loss function, the pore is segmented into
multiple parts like the YOLOv5n6 model. The total num-
ber of redundant examples were search for in the original
full dataset. It was found that only a one examples could be
found for the YOLOv5s6 model, while 17 were found for the
YOLOv5n6. This indicates that the loss function update can
increase detection performance if redundant detection occurs
often. However, the IOMA loss function is computationally
expensive and roughly doubles the training time.

Comparisons of overlapping regions observed in the
YOLOv5n6 base results are presented with their updated
loss function counterparts in Fig. 9. It is observed that the
updated loss functions solve the redundant labeling in each

Fig. 10 Stainless-steel powder used in the present work

case, however, the results are still ambiguous since it might
be contended that of the overlapping boxes, a better box may
have been selected.

Loss function testing was performed on the original full
image dataset, so additional testing on the final full dataset
will need to be performed to determine the applicability of
loss function modifications on the final model. As seen in
the analysis, the applicability depends on how prevalent the
bounding box redundancy is for a given model. Furthermore,
enhanced results may be obtained by tuning the IOMA over-
lap, the IOU overlap thresholds, and the gain, however due
to the long training time this tuning activity was not pursued.

Dataset preparation

Experimental dataset

Cross-section images of metal specimens produced by BJ
followed by sintering were obtained and used to test and
validate the proposed ML approaches. The specimens are
cubes composed of four different types of materials that are
stainless steel 316L, boron carbide, copper, and nickel with

Fig. 9 Overlapping areas
compared with base loss function
(left) and IOMA loss function
(right)
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Table 5 Particle size distribution for the stainless steel 316L used in the
present work

Distribution Size (µm)

D10 8.4

D50 29.5

D90 55.9

10mm edge dimensionwhichwere printed using a BJ printer
(Jet Zprinter® 350, Z-Corp, USA) with 5%w of binder, vary-
ing the layer thickness (100–250 µm). For example, Fig. 10
shows the particle shapes of the water atomized stainless-
steel powder (OzoMetal, USA) used in this study.

The average particle size is 32µmwith and the size distri-
bution has beenmeasured using a particle size analyzer (PSA
1090DL, Anton Paar, Austria). In Table 5 the value obtained
for the particle size distribution for powder involved int the
present work is shown.

The printed cubes were subjected to curing at 80 °C in a
vacuum oven (25L 200C Vacuum Oven, MTI Corp., USA)
for a half hour: this helped to better consolidate and dry the
printed specimens. The profile of the debinding and sintering
conducted in a tube furnace (GSL-1700X-KS-UL-60, MTI
Corp., USA) with vacuum are shown in Fig. 11.

The debinding is composed by two steps; the first is at
210 °C with 20 min hold and the second is at 480 °C for one-
hour dwell. These steps were selected to gradually remove
the binder from the specimen and were optimized through
a thermogravimetric analysis using a TGA/DSC equipment
(Q600 SDT, TA instruments, USA). Subsequently, with a
heating rate of 5 °C/min the sintering temperature 1250 °C
was reached and held for 10 h. The average relative densities

Fig. 11 Debinding and sintering profile

of the as printed and sintered specimensweremeasured using
the Archimedes method.

To obtain the cross-section images, metallographic spec-
imens were produced by sectioning the cubes and polishing
the surface using sandpaper (180 grit -4000 grit) followed
by the finishing using the 3 µm and 1 µm diamond suspen-
sions (Struers, Denmark). 67 images of the microstructure
were obtained using a scanning electron microscope (SEM)
(FEI Quanta 450 FEG, Thermo Fisher Scientific, USA). The
SEM cross-section images were divided into two groups:
58 images with sparse porosities and 9 images with dense
porosities. Examples of the SEM cross-section images with
sparse and dense porosities are shown in Fig. 12.

Image augmentation

The initial original full dataset consisted of 67 images con-
taining 4525 pores assessed via manual labeling by an

Fig. 12 Example of dense (left) and sparse (right) porous images
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Fig. 13 Image segmenting scheme to increase dataset size

experienced expert. In order to increase the dataset size to
improve detection accuracy, initial image augmentation was
performedby segmenting the image and training aGenerative
Adversarial Network (GAN) using Stylegan3 (Karras et al.,
2021). Stylegan3 is an aliasing-free GAN network which
solves the issue of texture sticking in which textures appear
to remain static when traversing the latent space. Conceptu-
ally, coarse features are simply filled by fine texture features
without consideration for the precise location resulting in
them occupying the same pixel coordinates in each image
(Karras et al., 2021). In the task of image detection, we train
an algorithm to extract features from an image and use these
features to find patterns in order to locate and classify an
object of interest. Therefore, it is advantageous to remove
any synthetic patterns from the image such as previously
mentioned texture sticking.

To perform image augmentation, the original full 67
images in the dataset were segmented into a 4 × 3 grid as
shown in Fig. 13, which resulted in the 804 image segmented
dataset. Segmenting the images is advantageous for three rea-
sons: (1) it ensures that similar images are presented during
training, validation, and testing; (2) it increases the dataset
size for image augmentation; (3) it reduces the image size
for augmentation. The final point is important when limited
hardware resources are available as training timewill be dras-
tically reduced (Karras et al., 2021).

The stylegan3 model was trained using transfer learning
by freezing the first 10 layers of the model. The pretrained
model selected was a 256 × 256 pixel landscape generation
network (Pinkney, 2022). This model was selected since gen-
erated images contain little symmetry and contain features
similar to the cross-section images of metal parts. In con-
trast, transfer learning from a network trained to generate

Fig. 14 Transfer learning using stylegan3 network pretrained on human
faces transfers symmetry to the cross-section images within the same
latent space

human faces results in poor quality because the symmetry
is transferred over to the cross-section images. Figure 14
demonstrates symmetry in images generated within same
latent space in the original human face model and retrained
cross-sectionmodel. Alternatively, transfer learning from the
landscape images exhibits more natural results as shown in
Fig. 15.

The stylegan3 model was trained using the hyperparame-
ter settings recommended by the authors (Karras et al., 2021).
A single Nvidia RTX 3080 GPU was used during training
with the batch size set to 32, gamma to 2, and batch-gpu
to 8. The batch-gpu parameter is used when a larger batch
size is desired, but there is insufficient memory to support
the batch size. Larger batch sizes are usually preferred when
batch normalization is implemented in the neural network.
During batch normalization, the results are normalized over
the entire batch and used to update the network weights.
Therefore, the batch size becomes a hyperparameter that can
be tuned. In the present case, a synthetic batch size of 32 is
obtained by normalizing four iterations of 8 batches before
the network weights are updated. While this may increase
training time, it allows for consistent results among various
hardware configurations.

The stylegan3 model was trained until Fréchet Inception
Distance (FID) converged to aminimum(Heusel et al., 2017).
The FID is ametric used to score the similarity of real images
to the generated ones. A low score indicates a higher similar-
ity. The FID reported at the end of trainingwas 14.2 at the end
of 800 epochs over a period of 6 days. FID scores reported
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Fig. 15 Transfer learning using stylegan3 network pretrained on land-
scape images retain no obvious features within the same latent space

for stylegan3 range from 3–19 depending on the number of
training images with lower FID scores corresponding to very
large image sets and high FID score corresponding to small
image sets. For the small image set implemented in this study,
an FID result of 14 is reasonable (Karras et al., 2021). Gener-
ated images with their real image counterparts are displayed
in Fig. 16.

Fig. 17 True positive (TP), F1, and mean average precision (mAP) val-
idation metrics vs the number of images in the training set

The number of augmented images was determined using
the YOLO5n6 model due to its short training time compared
to the other models. The segmented dataset was incre-
mentally increased by adding 500 augmented images each
iteration. The results, shown in Fig. 17, indicate that no sub-
stantial increases are observed after 3653 images are used
for training the YOLO5n6model. Therefore, this dataset size
was utilized.

It is noted that the testing image set is isolated throughout
the whole process as shown in Fig. 18. Among the 804 seg-
mented images, 641 is used for training the models and 163
is used for testing the model performances. The StyleGan3
is applied to the 641 training images and generated 3102

Fig. 16 Image comparison between a Stylegan3 generated images and b real images
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Fig. 18 Dataset generation
flowchart

Table 6 Datasets created for model training

Dataset Total images Ave
pores/Img

Original sparse 58 34

Original full (sparse + dense) 67 68

Segmented 804 6

Augmented 3102 7

Final full (segmented +
augmented)

3906a 7

a3641 is used for training, 163 for validation, and 163 for testing.

augmented images. Those 3102 augmented images are com-
bined with the 641 real training images, and the combined
images are divided into two groups after random shuffle: (1)
the final training dataset containing 3641 images and (2) the
validation dataset containing 163 images. Table 6 shows the
total number of images and their average porosities for each
of the datasets defined in this study.

Image Labeling

An iterative technique was implemented for labeling the
many images generated from the stylegan3model. The origi-
nal 67 images containing 4525 pores can bemanually labeled
over a couple of days, but the final full dataset with 27,294
pores would take weeks to label by hand. To reduce the
manual labor, the YOLOv5 model trained on the segmented
dataset was used to produce the initial bounding boxes for
500 images. These bounding boxes were then manually
updated for accuracy, reducing the labeling time from days
to hours. With each training iteration, the model improves

Fig. 19 Semi-supervised training with images generated from GAN

incrementally, and less manual correction is required. Since
the detection model provides the initial labels to the new
dataset entries, the technique is semi-supervised. The basic
flowchart for this process is displayed in Fig. 19.

Labeled pore properties

The final size distribution of the labeled pores can influence
the performance of each algorithm and can be used to trou-
bleshoot poor performance in testing. The histograms for the
pore width, height, and aspect ratio are provided in Figs. 20,
21, and 22, respectively. The maximum pore bounding box
with was found to be 229 pixels, the maximum height was
175 pixels, and the minimum width and height is 5 and 4
pixels, respectively. However, with image augmentation, the
image is randomly scaled between± 30%, so the peak in the
training images is effectively broadened by 30%.
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Fig. 20 Histogram of pore
bounding box width

Fig. 21 Histogram of pore
bounding box height

Fig. 22 Histogram of pore
bounding box aspect ratio

Porosity characterization

Once bounding boxes are placed over the porous locations,
a mask was placed over those pores to obtain morphological
information. Toobtain themask, the localized pore is cropped
out of the full image and passed to an edge detection algo-
rithm (Dollár & Zitnick, 2015), the background mask is then
obtained by applying the OpenCV floodfill function (Com-
munity, 2010). Once the pore mask is obtained, the contour

of the mask was used to compute the morphological infor-
mation that are the contour area, the diameter of fitted circle,
the area, angle, and aspect ratio of fitted ellipse, and cur-
vature. All morphological properties except curvature were
obtained using the built-in OpenCV functions (Community,
2010). The curvature, k, was computed from the raw con-
tour points (around the edge of the pore) using the following
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Eq. 11.

k =
∣
∣x ′y′′ − y′x ′′∣∣
(
x ′2 + y′2) 3

2

, (11)

where x and y are the interpolated parametric functions from
the perimeter pixels. The curvature at each pixel is estimated
and used to compute the average curvature. Smaller curvature
values indicate a straighter line and may denote elongated
pores or cracks. It is anticipated that curvaturewill be a useful
feature in differentiating pores and cracks in the future along
with the other features computed.

Results

Model comparison results

Each of the models were initially trained with the orig-
inal sparse dataset. The resulting training time, detection
time, and F1 score was used to determine which algorithms
would be selected for training on the final full datasets. All
analysis was performed on Microsoft Windows 10.0.19043
running on an AMD Ryzen 9 3900X 12-Core Processor,
NVIDIA GeForce GTX 1080Ti, 32 GB DDR4-3200, and
an HP EX900 500 GB SSD.

The CNN method with custom region proposal resulted
in an F1 score of 71% on the sparse dataset. However, the
region proposal method implemented was found to be time
consuming, requiring about 10 s to process an image, mak-
ing it the lowest performer and longest classifier. For these
reasons, the CNN model was eliminated as a candidate.

The Faster R-CNN model was selected by considering
the training time required and the resulting accuracy for the
sparse dataset. The testing performedwithResNet18 resulted
in an F1 score of 74%. The total training time for these results
was about 2 h. TheResNet50 networkwas then trained result-
ing in an F1 score of 78%. Training time for the ResNet50
was approximately 12 h. For the ResNet101 model the recall
MSE converged to F1 score of 84% with a training time of
approximately 30 h. Image classification time for the Faster
R-CNN ranged from 0.5 s for the ResNet18 to 3 s for the
ResNet101. Shorter classification times could be obtained
by eliminating bounding box fusion, but at the cost of accu-
racy.

On the original full dataset, the Faster R-CNNmodel per-
formed substantially worse, producing an F1 score of 68%
with the ResNet101 model. On the segmented dataset, the
ResNet101 required 6 days of training and produced an F1
score of 64%. The model displayed very high precision, but
low recall. The decrease in performance is likely due to the
224 × 224 window used to localize and classify objects

Table 7 TP, F1 score, and mAP for each of the YOLOv5

Model TP F1 mAP

YOLOv5n6 0.94 0.84 0.91

YOLOv5n6_ioma_TF 0.94 0.87 0.92

YOLOv5s6 0.95 0.88 0.93

YOLOv5s6_ioma_TF 0.95 0.87 0.92

YOLOv5m6 0.94 0.87 0.93

YOLOv5l6 0.91 0.87 0.94

YOLOv5x6 0.94 0.85 0.92

within the image. For the original sparse dataset, there are
no very large pores present unlike the other datasets. Since
a large pore may exceed the size of the sliding window it
will not be classified. A potential solution would be to resize
the images and classify them multiple times but would fur-
ther increase the detection time. Another solution would be
to increase the 224 × 224 layer size, but this also increases
detection and training time and increases the GPU memory
requirements. On the final full dataset (segmented + aug-
mented), a 17% performance gain to a F1 score of 75% is
observed, indicating the stylegan3 augmentation can substan-
tially increase performance.

In comparison to the Faster R-CNN model, the YOLOv5
model performed consistently across the original sparse,
original full, and segmented datasets. The final model was
selected by running each on the final full dataset, as pre-
sented in Table 7. The updated loss function was found
to provide similar performance gains for the YOLOv5n6
model in the final full dataset compared to the scoping exer-
cise. However, YOLOv5s6 with updated loss did not display
any performance enhancements. It is anticipated that further
turning of the hyperparameter thresholds could increase the
performance, however, due to the increased training time,
additional tuning was not performed. It was found that mod-
els larger than YOLOv5n6 performed similarly. Therefore,
the YOLOv5s6 model is selected since it benefits from faster
detection compared to the other models. It is noted however,
that the larger models may be preferable if they are trained
on multiple classes (e.g. pores, cracks, precipitates).

The stylegan3 model was used to increase the image set
and resulted in a substantial increase in the YOLOv5 detec-
tor performance. The percent increase of each metric from
the original full dataset is displayed in Fig. 23. Smaller mod-
els tend to benefit more from the stylegan3 augmentation
compared to the larger models. This may indicate that the
augmented set contains similar images, and the larger mod-
els are overfitting due to similar data. Since smaller models
are less prone to overfitting, this may partially explain why
they benefit more from the large image set.
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Fig. 23 TP, F1 score, and mAP
performance increase of each
YOLOv5 model due to dataset
expansion with stylegan3

Table 8 F1 Score and
classification time for each
algorithm and dataset

Dataset # Images # Pores Faster R-CNN YOLOv5

Original Sparse 58 1960 84% 77%

Original Full 67 4525 68% 77%

Segmented 804 4525 64% 79%

Final Full 3966 27,294 75% 88%

Training Time – – 5–10 days 3–5 h

Detection time – – 0.5–3 s 3–15 ms

Table 8 compares the experimental results of the best
Faster R-CNN and YOLOv5 models. Overall, the YOLOv5
model tends to outperform the other models except for in the
sparse test, where the Faster R-CNN takes a distinct lead.
This indicates that for the case of a small, similar image set,
the Faster R-CNN may be the preferred model. The final
YOLOv5 model was selected for testing and the results were
consistent with the validation score, resulting in a F1 score
of 88%.

Porosity characterization results

After running the final model, we extracted the morpho-
logical information of the porosities by finding their edges,
masks, best-fitted circles and ellipses. Examples of the edges,
masks, fit circles, and fit ellipses are displayed in Fig. 24.
The resulting morphological information obtained from the
classified porosities is displayed in Table 9 (average) and
Table 10 (distribution). This information is useful for char-
acterizing SEM images and can be used for mapping process
parameters to defects using ML. The characterization could
also be used for future work on GANs inversion for SEM
images (Xia et al., 2021). Specifically, an input image could
be mapped to the GAN latent space and then modified based
on user specified parameters such as those specified in Table
10.

Table 9 Average porosity morphological results

Parameter Result

Average contour area 275 µm2

Average diameter of equivalent circles 25 µm

Average area of bounding ellipses 537 µm2

Average angle of bounding ellipses 89.8°

Average aspect ratio (AR) of bounding ellipses 1.2

Average curvature of contours 0.34

Real world testing

To test our model as a general porosity detection tool, 15
SEM images containing porosities were obtained from var-
ious publications (An et al., 2016; Andreeva et al., 2016;
Antunes et al., 2014; Baek et al., 2012; Chen et al., 2015;
Chia, 2012; Cui et al., 2014; Da’as et al., 2013; Jamion et al.,
2017; Y. Li et al., 2014; Ozols et al., 2004; Scheiba, 2021;
Yao-jian et al., 2009). The imageswere selected to represent a
large diversity of pore sizes, porosity, surface textures, inten-
sities, resolutions, materials and magnifications. The pore
information for each image is listed in Table 11, image sizes
and scales are listed in Table 12, and image materials are
shown in Fig. 25. The results, displayed in Fig. 25, indicates
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Fig. 24 Steps for obtaining
morphological information from
four pores

Input 

Image 

Edge 

Detection 

Mask Fit Circle Fit Ellipse

Table 10 Distributions of
porosity morphological results Distribution of contour areas

Area (µm2) 0–250 250–500 500–750 750–1000 > 1000

# 2339 165 99 65 224

Distribution of diameters of equivalent circles

Diameter (µm) 0–30 30–60 60–90 90–120 > 120

# 2231 359 178 76 48

Distribution of areas of bounding ellipses

Area (µm2) 0–620 620–1240 1240–1860 1860–2480 > 2480

# 2309 251 131 62 139

Distribution of angles of bounding ellipses

Angle (°) 0–30 30–60 60–90 90–120 120–150 150–180

# 433 396 591 654 401 417

Distribution of ARs of bounding ellipses

AR 0–0.75 0.75–1.5 1.5–2.25 2.25–3 > 3.75

# 638 1585 492 111 43

Distribution of curvature

Curvature 0.15 0.3 0.45 0.6 > 0.75

# 3 1031 1548 258 27

that the detection model performs well on images of vari-
ous sizes, various materials, and at various magnifications.
Please note that the images were captured from publications
are likely not the original resolution. It is also likely that
compression has been applied.

Compared to manual bounding box labeling, the final
model produced an F1 score of 85%, TP of 86%, and mAP

of 90%. The morphological results are found to be com-
parable to the F1 score with exception to the average pore
area and average ellipse area. The reason for this is likely
two-fold. Average sized pores that are missed may not sig-
nificantly reduce the other averagemetrics, however, missing
a large pore or mislabeling a large area incorrectly as a pore
may significantly increase the area prediction. There is also
the issue of overlapping boxes. Large areas may be labeled
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Table 11 Average pore
properties of each image
extracted from ground source
bounding boxes

Image Porosity Area Eq. diameter Ellipse area Angle AR Perimeter Curvature

A 0.47 975 32 954 74 1.09 114 0.09

B 0.36 2054 36 1427 93 1.15 152 0.09

C 0.05 499 23 531 94 1.14 88 0.12

D 0.20 465 22 458 92 0.90 80 0.11

E 0.20 3622 60 3827 95 1.28 241 0.05

F 0.17 308 16 267 85 1.17 59 0.17

G 0.40 250 17 299 83 1.16 64 0.19

H 0.30 7772 85 6464 97 1.00 313 0.04

I 0.20 1036 33 948 104 0.94 110 0.07

J 0.24 241 16 233 94 1.11 53 0.17

K 0.25 318 17 301 94 1.04 65 0.14

L 0.31 901 28 731 90 1.37 105 0.13

M 0.13 5733 58 2611 91 1.05 206 0.15

N 0.18 234 15 278 99 1.02 62 0.20

O 0.12 517 24 521 82 1.04 83 0.11

Max 0.47 7772 85 6464 104 1.37 313 0.20

Min 0.05 234 15 233 74 0.90 53 0.04

Mean 0.24 1662 32 1323 91 1.10 120 0.12

Note that units are in pixels (px) for more direct comparison

Table 12 Properties of each
image found in literature Image Width (px) Height (px) Width (µm) Intensity average Intensity SD

A 564 383 3303 116 83

B 561 406 198 123 76

C 561 406 60 117 70

E 947 710 NA 108 36

F 532 320 55 135 43

G 499 390 310 134 44

L 500 500 8 124 63

H 761 672 298 85 42

J 409 308 251 117 41

I 865 621 1219 166 49

K 282 282 2 76 35

M 454 454 98 116 37

N 320 290 52 180 51

D 504 449 94 80 38

O 580 369 23 80 38

with overlapping boxes multiple times. For the average pore
computations, the overlapping represents a source of error.
However, for porosity assessment, a blank image the same
resolution as the source image is produced and the mask for
each pore is projected upon this image. Therefore, overlap-
ping pores do not influence porosity assessment (Table 13).

Of the publication images, the model struggled most with
images B and C. Image B contains multiple large oddly

shaped pores and is unable to concisely place a bounding
box on the upper pore or fully bound the lower pore. Image C
contains a highly textured surface and the model exhibits dif-
ficulty distinguishing areas of the rough surface from pores.
The pores in imageMwere fully bounded, however, splitting
up the large pore on the right resulted in significant deviations
from the ground truth average pore properties.
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Fig. 25 Pore detection on porous images scraped from publications.
Yellow denotes ground truth bounding boxes and blue aremodel predic-
tions. From top left to bottom right the images are A porous composite
scaffolds consisting of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)
and hydroxyapatite (Baek et al., 2012), B flattened magnetite (Antunes
et al., 2014), C titania nanosheets (Cui et al., 2014), D activated car-
bon (Jamion et al., 2017), E aged graphite anode of Li-ion battery
(Scheiba, 2021),F impact polypropylene copolymer (Chen et al., 2015),
G 316 steel by gel cast (Ozols et al., 2004), H Polyethylene Glycol

Scaffold (Chia, 2012), I porous titanium fabricated by slurry foam-
ing (Li et al., 2014), J Rice grain surface after pressure cooking, K
Al2O3 film (Andreeva et al., 2016),L Polyethersulfone membrane filter
(Fisher Scientific, 2022),M carbon anode (Dojcinovic et al., 2012),N 4-
dinitrofurazanofuroxan and glycidyl azide polymer (An et al., 2016),O
IN100 superalloy (Wusatowska-Sarnek et al., 2003). Note that images
displayed here have been formatted and are not the original size or
aspect ratio (Color figure online)
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Table 13 Predicted percent error
of average pore properties of
each image

Image Porosity
(%)

Area
(%)

Eq.
diameter
(%)

Ellipse
area
(%)

Angle
(%)

AR
(%)

Perimeter
(%)

Curvature
(%)

A 3 8 6 13 4 1 5 7

B 31 86 11 22 7 4 11 9

C 53 48 24 40 2 4 23 22

D 9 27 16 34 10 7 16 20

E 8 3 7 15 8 17 4 11

F 11 11 8 15 7 10 5 10

G 7 15 10 20 4 7 7 13

H 27 34 12 24 2 4 10 12

I 9 21 10 22 8 12 10 12

J 10 25 10 18 1 2 6 12

K 10 23 14 29 8 9 15 16

L 1 9 6 13 1 14 1 12

M 6 23 27 47 7 16 21 30

N 8 27 15 31 2 5 16 17

O 0 1 0 1 0 4 1 1

Mean 13 24 12 23 5 8 10 14

Conclusions

In this paper, the efficacy of CNNs for image-based detection
of porosities in the metal parts produced by BJ followed by
sintering is investigated. It was found that the typical CNN
used for image classification performed poorly due to the
region proposal algorithms. Based on this deficiency, the
Faster R-CNN and YOLOv5 ML models were investigated
for their ability to combine region proposal and classifica-
tion. To support this investigation, a stylegan3 model was
trained to expand the dataset from67 images containing 4545
pores to 3966 images containing 27,294 pores. The YOLOv5
model produced an 88% F1 score on the expanded dataset
(original+ augmented images), a 15% increase over the 79%
F1 score from the original dataset. A real-world test was per-
formed with the final model on a set of cross-section SEM
images containing variousmaterials, porosities densities, and
resolutions yielding a F1 score of 85%. The Faster R-CNN
model was found to only perform best on the original sparse
dataset with an F1 score of 84%, however its performance
on the final full dataset was notably lower than the YOLOv5
model. Training time for the YOLOv5 model was also sub-
stantially less than the Faster R-CNN model, taking hours
opposed to weeks on the larger dataset. Classification time
was also orders of magnitude less for the YOLOv5 model
requiring 3–15 ms opposed to 0.5–3 s on the Faster R-CNN
model.

Based on the results, we demonstrated a novel use of the
YOLOv5 network for the generalized image-based poros-
ity detection in the BJ metal parts using a small yet varied
training datasets, which can be applied to any materials,
pore density, and varied image resolutions. To achieve these
results on a small training set, classic image augmentation
was applied to increase the initial dataset size which was
then used to train a GAN network to further increase the
dataset size. The proposed approach can be widely used for
more accurate and rapid image-based porosity characteriza-
tion and quality control in theBJ and sintering process, which
in turn will contribute to the AM industry, especially for the
scaling of the BJ and sintering process.

Despite the positive results, there remain many areas of
improvement. It is anticipated that performance can be sub-
stantially increased by using a masking or polygon outlining
algorithms opposed to bounding boxes to eliminate label-
ing ambiguity. However, this would likely increase detection
time. It is also noted that the trained model originated from a
small set of 67 images, and only so much information can be
extracted from those images. Therefore, it is likely that per-
formance could be increased with a larger initial image set.
Other tools could also be used to increase the detection per-
formance such employing an upscaling GAN to synthesize
many image magnifications from a single lower magnifica-
tion image.
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