
Case Study: Neural Network Malware Detection Verification for
Feature and Image Datasets

Preston K. Robinette
preston.k.robinette@vanderbilt.edu

Vanderbilt University
Nashville, TN, USA

Diego Manzanas Lopez
diego.manzanas.lopez@vanderbilt.edu

Vanderbilt University
Nashville, TN, USA

Serena Serbinowska
serena.serbinowska@vanderbilt.edu

Vanderbilt University
Nashville, TN, USA

Kevin Leach
kevin.leach@vanderbilt.edu

Vanderbilt University
Nashville, TN, USA

Taylor T. Johnson
taylor.johnson@vanderbilt.edu

Vanderbilt University
Nashville, TN, USA

ABSTRACT
Malware, or software designed with harmful intent, is an ever-
evolving threat that can have drastic effects on both individuals
and institutions. Neural network malware classification systems
are key tools for combating these threats but are vulnerable to
adversarial machine learning attacks. These attacks perturb input
data to cause misclassification, bypassing protective systems. Exist-
ing defenses often rely on enhancing the training process, thereby
increasing the model’s robustness to these perturbations, which
is quantified using verification. While training improvements are
necessary, we propose focusing on the verification process used
to evaluate improvements to training. As such, we present a case
study that evaluates a novel verification domain that will help to
ensure tangible safeguards against adversaries and provide a more
reliable means of evaluating the robustness and effectiveness of
anti-malware systems. To do so, we describe malware classification
and two types of common malware datasets (feature and image
datasets), demonstrate the certified robustness accuracy of malware
classifiers using the Neural Network Verification (NNV) and Neural
Network Enumeration (nnenum) tools1, and outline the challenges
and future considerations necessary for the improvement and re-
finement of the verification of malware classification. By evaluating
this novel domain as a case study, we hope to increase its visibility,
encourage further research and scrutiny, and ultimately enhance
the resilience of digital systems against malicious attacks.

1 INTRODUCTION
Malware is software intentionally designed to cause damage, gain
control, or disrupt an interface, network, or digital device. There are
many use cases for malware, including stealing sensitive data (data
theft), stealing data and holding it for ransom (ransomware attacks),

1Code, VNN-LIB: https://github.com/pkrobinette/verify_malware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0589-2/24/04
https://doi.org/10.1145/3644033.3644372

the creation of a ‘botnet’ (Distributed Denial of Service (DDoS)), us-
ing someone else’s system to mine cryptocurrency (cryptojacking),
monitoring activity and passwords (espionage), and distributing
spam. Not only do malware attacks pose a significant threat to indi-
viduals, but they also frequently target a wide array of institutions.
These include educational institutions like universities, businesses
both private and public, healthcare entities, and governmental bod-
ies. In a 2022 Response Report from Palo Alto Networks, reported
ransomware payouts in the US reached up to $8 million USD with
demands received up to $30 million USD as a result of ransomware
attacks [1]. Malware represents a significant and ever-evolving
threat to digital security, privacy, and integrity, and as such, is
imperative to protect against.

A key tool against this digital threat is the use of malware clas-
sification systems, which classify incoming and existing software.
Trainedmodels can detect malware in real-time, preventing systems
from running the classified software, even if a user interacts with it.
Most malware classification systems today utilize machine learning,
and while adept at classification, they are also vulnerable to attacks.
Bad actors can bypass the use of malware classification systems
by utilizing adversarial machine learning. Adversarial machine
learning relies on small perturbations in the input space to cause
misclassification in the target system, as shown in Figure 1. While
adversarial attacks are applicable to all input types, this example
demonstrates an adversarial attack on an image representation of a
malware binary, which is a common classification technique in the
malware domain. In this example, prior to the adversarial attack, the
correct class “Yuner.A” is correctly predicted. This original malware
image is then added with a small percentage 𝜖 of a noisy sample 𝑎
from a different class, resulting in the misclassification shown on
the far right of the image (𝑥 +𝜖 (𝑎)).Adversarial attacks are not only
imperceptible to the human eye, but they are also difficult to detect
via anomaly detection because they are close to the original im-
age. In [5], the authors show that anomaly detection defenses such
as variational autoencoders and generative adversarial networks
are not robust to adversarial examples. Most defense mechanisms,
therefore, rely on improvements in the training process, such as
distillation [24], adversarial retraining [20], randomized smoothing
[4, 8, 17, 38], and randomized deletion [11]. Each of these meth-
ods increases the robustness of a trained model to perturbations
in the input space, which can be evaluated quantitatively as the

https://doi.org/10.5281/zenodo.10513837
https://doi.org/10.5281/zenodo.10513837
https://github.com/pkrobinette/verify_malware
https://doi.org/10.1145/3644033.3644372

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Preston K. Robinette, Diego Manzanas Lopez, Serena Serbinowska, Kevin Leach, and Taylor T. Johnson

𝒙
“Swizzor.gen!I”“Yuner.A”

𝒙 + 𝜖(𝒂)

“Autorun.K”

+.008	× =

Yuner.A Adversarial Noise Adversarial Sample

𝜖 𝒂

Figure 1: Adversarial machine learning example on Mal-
img dataset. Prior to the adversarial attack, the correct class
“Yuner.A” is correctly predicted. This original malware image
is then added with a small percentage 𝜖 of a noisy sample
𝑎 from a different class, resulting in the misclassification
shown on the far right of the image (𝑥 + 𝜖 (𝑎)).

percentage of test inputs to be correctly classified within a bounded
distance of a starting sample [6].

While the robustness of trained models has been used to verify
classification networks in previous works, the focus has been on
implementation improvements rather than on the domain itself. For
instance, using robustness as a metric to show the improvements
of using a robust training method as demonstrated on an image
labeling dataset like CIFAR-10 [7]. Just as implementations improve
under scrutiny, so too does a domain benefit from rigorous analysis,
increased visibility, and continuous refinement, which is especially
important for a domain as safety-critical as malware classification.

Toward this end, we present an initial case study on malware
classification verification and put forward the concept of ‘meaning’
to a perturbation. For instance, we acknowledge the possibility of
applying an L∞ perturbation on a binary feature; however, this
does not yield any significant or meaningful semantic implications
to the original binary file. These efforts work towards providing tan-
gible guarantees against bad actors seeking to bypass classification
schemes and provide valuable insight into a model’s reliability to
protect safety-critical networks. To do so, we describe two common
malware dataset types and demonstrate the certified robustness
accuracy of two types of malware classifications using the Neural
Network Verification (NNV) [19, 33] and Neural Network Enu-
meration (nnenum) [2] tools. Through this process, we identify
domain challenges and areas to be considered moving forward. The
contributions of this work are the following:

(1) Novel application of formal verification to neural network
malware classification (binary and family).

(2) Identify ‘meaningful’ perturbations for two different types
of malware datasets (feature and image) and classification
types (binary and family).

(3) Outline the challenges and future considerations necessary
for the improvement and refinement of the verification of
neural network malware classification.

2 PRELIMINARIES
In this section, we introduce the malware datasets used in this
work, the types of malware classification to which the datasets are

applied, NNV and nnenum tools for certifying the robustness of
trained models, and the metrics used to evaluate trained models.

2.1 Malware Datasets
Below, we discuss two commonly-used types of malware datasets:
(1) feature datasets, which represent malware samples as vectors of
data such as byte entropy and string length, and (2) image datasets,
which represent malware samples as grayscale images.

2.1.1 Feature Datasets. Malware feature datasets are typically com-
posed of characteristics or features extracted from a variety of mal-
ware samples. The features can include static attributes such as file
size, header information, and/or the presence of specific strings, as
well as dynamic attributes that are revealed when the malware is
executed in a controlled environment, such as API calls, network
activity, and/or changes to the file system or registry. The extrac-
tion of these features can be conducted through a combination of
static and dynamic analysis. Static analysis involves examining the
malware code without executing it, and dynamic analysis involves
running the malware in a sandboxed environment and observing
and recording its behavior.

BODMAS The feature dataset used in this work is the Blue
Hexagon Open Dataset for Malware Analysis (BODMAS), which
is a collection of timestamped malware and benign samples for
research purposes, co-created with Blue Hexagon [39]. It includes
57,293 malware (label 0) and 77,142 benign samples (label 1) col-
lected between August 2019 and September 2020. The LIEF project
was used to extract 2381 feature vectors from each sample using
dynamic and static analysis, along with its classification label as
benign or malicious. The extracted features can be broken down
into seven different types, as shown in Table 1. While the data can
also be described by feature groups, we focus on data types as they
influence the chosen specifications used for verification.

While features extracted with dynamic and static analysis offer
valuable insights into a sample, they each have their own set of chal-
lenges. Static analysis can struggle against obfuscation techniques
such as code encryption, packing, and the use of non-standard code
constructs, which are used by malware authors to hide their code’s
true intent. Additionally, static analysis can be time-consuming and
resource-intensive when dealing with large and complex pieces of
software and result in high false positive rates. Some sophisticated
malware can even detect when they are being executed in a sandbox
or virtual environment, altering their behavior or refusing to run
altogether, thereby evading detection.

2.1.2 Image Datasets. Due to the difficulties of creating and main-
taining up-to-date malware datasets using feature extraction, re-
searchers also use image representations of software for training
data [14, 16, 23, 27, 35]. This method works by converting binary
executable files of malware into grayscale images, with each pixel
in the image corresponding to a byte in the binary file, as shown in
Figure 2. These images can then be analyzed using image processing
techniques or deep learning models originally designed for image
recognition tasks, such as convolutional neural networks (CNNs).
The process begins with the raw bytes of the malware binary being
aggregated into an 8-bit vector. Each of these 8-bit vectors is then
converted into a decimal value to fit the grayscale range (0-255).

Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

Table 1: BODMAS dataset feature types and examples. The ranges of values for each feature type are drastically different,
showing the importance of using range-specific perturbations during verification.

Feature Type Count Max Range Pre-Scale Max Range Post-Scale Example

Continuous 5 [5.0, 2.0e5] [-0.1, 304.6] Entropy of the file
Categorical 8 [0.0, 6.5e4] [-0.0, 124.3] Machine type

Hash Categorical 560 [-647.6, 15.4] [0.0, 361.0] Hash of original file
Discrete with Large Range 34 [0.0, 4.3e9] [-0.0, 261.6] Number of occurrences of each byte

value within the file
Binary 5 [0.0, 1.0] [-2.1, 0.5] Presence of debug section

Hash Categorical Discrete 1531 [-8.0e6, 1.6e9] [-327.9, 164.0] Hash of target system type
Memory Related 16 [0.0, 4.0e9] [-0.1, 307.5] Size of the original file

Null 222 [-31.0, 60.0] [-0.9, 160.4] —

010001
111011
000110
101011

Malware Binary 8-bit Vector Malware Image

Figure 2: Malware binary conversion to an image. The mal-
ware binary is preprocessed to extract sequences of 8-bit
vectors, or bytes. Each byte is then mapped to a pixel in the
image, which is then plotted on a grid to create an image.

These values are then reshaped into a two-dimensional array, effec-
tively creating an image. The resulting image, often referred to as
a byteplot, can reveal patterns that might be indicative of certain
types of malware, as shown in Figure 3.

Malimg The malware image dataset used in this work is the
Malimg Dataset, which is composed of 9339 malware images from
25 different malware families [23]. The malware families are shown
in Table 7.

2.2 Malware Classification Types
A malware classifier is an automated way to categorize and differ-
entiate software (benign vs. malicious). In addition to the canon-
ical classification of malicious vs. benign, malware classifiers are
also used to identify a known malware family. A malware family
refers to a group of malware that share significant characteristics
and are often developed from the same code base. These shared
characteristics can include similar behavior patterns, payload de-
livery methods, or purpose. By identifying a sample’s malware
family, cybersecurity professionals gain insight into the nature,
origin, purpose of the sample, threat level and type, propagation
mechanisms, and potential damage. Additionally, successful iden-
tification can often lead to the identification of the creator’s sig-
nature, which can help to identify the attack group responsible.
All of these pieces of information aid in the subsequent develop-
ment of effective countermeasures to neutralize or mitigate the
effects of the detected malware. In this work, we train both binary

classifiers (𝑌binary = {malicious, benign}) and family classifiers
(𝑌family = {Adialer.C,Agent.FYI,Allaple.A, ..., Yuner.A}), where 𝑌
is the set of all output classes.

2.3 Neural Network Verification
To analyze the neural network malware classifiers, we make use of
NNV and nnenum tools. NNV is a software tool written in MAT-
LAB2 that implements reachability methods to formally verify spec-
ifications of neural networks (NN) [19, 33]. NNV uses a star-set
state-space representation and reachability algorithms that allow
for a layer-by-layer computation of exact or overapproximate reach-
able sets for feed-forward (FFNN), convolutional (CNN) [29], Se-
mantic Segmentation (SSNN) [32], and recurrent (RNN) [31] neural
networks, as well as neural ordinary differential equations [21], and
neural network control systems (NNCS) [18].

nnenum is a software tool written in Python that addresses the
verification of ReLU neural networks through optimized abstraction
refinement [2]. This approach combines zonotopes with star set
overapproximations for feed-forward (FFNN), convolutional (CNN),
and recurrent (RNN) neural networks. In this work, we focus on
one type of property to verify: robustness, which is described in
Definition 2.1.

Definition 2.1 (Robustness). Given a neural network classifier
𝑓 , input 𝑥 ∈ R𝑛×𝑚 , target 𝑦 ∈ R𝑁 where 𝑁 is the number of
classes (i.e., 𝑁 = 2 for binary classification, 𝑁 = 25 for family
classification), perturbation parameter 𝜖 ∈ R, and an input set 𝑅
containing 𝑥𝑝 such that 𝑋𝑝 = {𝑥 : | |𝑥 − 𝑥𝑝 | | ≤ 𝜖} which represents
the set of all possible perturbations of 𝑥 where | |𝑥 − 𝑥𝑝 | | is the
L∞ norm. The classifier is locally robust at 𝑥 if it classifies all the
perturbed inputs 𝑥𝑝 to the same label as 𝑦, i.e., the system is robust
if 𝑓 (𝑥𝑝) = 𝑓 (𝑥) = 𝑦 for all 𝑥𝑝 ∈ 𝑋𝑝 .

2.4 Metrics
In this section, we introduce the classifier and verification perfor-
mance metrics used in this work.

Classifier Performance. To evaluate trained models prior to
verification, we utilize accuracy, precision, recall, and F1 score

2MATLAB [2022b]: https://www.mathworks.com/products/new_products/r2022b-
transition.html

https://www.mathworks.com/products/new_products/r2022b-transition.html
https://www.mathworks.com/products/new_products/r2022b-transition.html

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Preston K. Robinette, Diego Manzanas Lopez, Serena Serbinowska, Kevin Leach, and Taylor T. Johnson

C2LOP.P Adialer.C Fakerean Agent.FYI Lolyda.AA2 Dontovo.A

(a)

(b)

(c)

Figure 3: Malware family image examples. Each of the malware families produce relatively distinct patterns, making image
classification an effective tool for malware detection and categorization. (a), (b), and (c) correspond to different samples of the
same family indicated by the column name.

metrics. We formalize these metrics across classes 𝑌 using True
Positives (TP𝑦𝑖): samples correctly classified as class 𝑦𝑖 , True Nega-
tives (TN𝑦𝑖): samples correctly classified as not in class 𝑦𝑖 , False
Positives (FP𝑦𝑖): samples incorrectly classified as class 𝑦𝑖 , and False
Negatives (FN𝑦𝑖): samples incorrectly classified as not in class 𝑦𝑖 ,
where 𝑦𝑖 ∈ 𝑌 s.t. 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑁 } and 𝑁 is the number of all
classes in the dataset. The equations for accuracy, precision, recall,
and F1 score are shown in Equations 1, 2, 3, and 4 respectively.

Accuracy =

∑𝑌
𝑖=1 TP𝑦𝑖 + TN𝑦𝑖

Total Samples
(1)

Precision =
1
𝑁

𝑌∑︁
𝑖=1

TP𝑦𝑖
TP𝑦𝑖 + FP𝑦𝑖

(2)

Recall =
1
𝑁

𝑌∑︁
𝑖=1

TP𝑦𝑖
TP𝑦𝑖 + FN𝑦𝑖

(3)

F1 = 2 · Precision · Recall
Precision + Recall

(4)

Verification Performance. The verification strategy implemented
in NNV to certify the robustness of the BODMAS andMalimg bench-
marks is described in Algorithm 2.1. This algorithm consists of two
main steps and three potential outcomes:

(1) Falsification (0): In the first step of the verification process,
we classify 500 random examples from the created input
set (based on bound from adversarial attack). If a sample is
misclassified, or a counterexample is found, this is considered
a successful falsification, and the model is not robust to the
perturbation 𝜖 .

(2) Robust (1): If no counterexamples are found, then we pro-
ceed to run the reachability analysis: starting with an over-
approximation method referred to as relax-approx-area with
a relax factor of 0.5. If the input set with relax-approx-area

Algorithm 2.1 Verification strategy
Input: 𝑓 , 𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡, A, 𝑁𝑅 ⊲ NN, input, label target, attack, # of random examples

Output: res ⊲ verification result

1: procedure 𝑟𝑒𝑠 = malware_verification(𝑓 , 𝑥, A, 𝑁𝑅)
2: 𝑋𝑟𝑎𝑛𝑑 = 𝑔𝑒𝑛𝑅𝑎𝑛𝑑𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠 (𝑥, A, 𝑁𝑅) ⊲ generate random examples

based on attack

3: for 𝑖 = 1 : 𝑁 do
4: 𝑦 = 𝑓 (𝑋𝑟𝑎𝑛𝑑 (𝑖)) ⊲ classify random image

5: if 𝑦 ≠ 𝑡𝑎𝑟𝑔𝑒𝑡 then
6: 𝑟𝑒𝑠 = 0 ⊲ counterexample found

7: return 𝑟𝑒𝑠 ⊲ stop procedure, no reachability analysis needed

8: 𝐼 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑡 (𝑥, A) ⊲ construct input set

9: 𝑅 = 𝑅𝑒𝑎𝑐ℎ (𝑓 , 𝐼 , 𝑟𝑒𝑙𝑎𝑥) ⊲ compute reachable set using relax-star-area reachability

10: 𝑟𝑒𝑠 = 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝑅, 𝑡𝑎𝑟𝑔𝑒𝑡) ⊲ verify output set against target class

11: if 𝑟𝑒𝑠 ≠ 1 then ⊲ if result is unknown, try again with approx

12: 𝑅 = 𝑅𝑒𝑎𝑐ℎ (𝑓 , 𝐼 , 𝑎𝑝𝑝𝑟𝑜𝑥) ⊲ compute reachable set using approx-star reach-

ability

13: 𝑟𝑒𝑠 = 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝑅, 𝑡𝑎𝑟𝑔𝑒𝑡) ⊲ verify output set against target class

14: return res ⊲ return verification result {0 = not robust, 1 = robust, 2 = unknown}

evaluates to the correct class, the model is considered robust,
and the valuation returns a 1.

(3) Unknown (2): If the verification result from relax-approx-
area is unknown, we proceed to run the approx-star method,
which is less conservative than the relax-star, but also more
computationally expensive. If the sample with approx-star is
found to be robust, the valuation is 1; otherwise, the valua-
tion is 2, which is considered unknown, as further refinement
might or might not prove the model to be robust to pertur-
bation 𝜖 .

In addition to this verification step, we also produce VNN-LIB files
[9] for each dataset, sample, and epsilon value to be used by the
nnenum verification tool. VNN-LIB is a standard file type to rep-
resent the specification of neural networks based on input-output

Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

Table 2: Neural network classifier model names and architec-
tures used to train binary and family classifiers.

Classifier Type Model Name Model Architecture
(in → [hidden layers] →
out)

BODMAS
(Binary)

none-2 2381 → 2
4-2 2381 → [4] → 2
16-2 2381 → [16] → 2

Malimg
(Family)

linear-25 4096 → 25
4-25 4096 → [4] → 25
16-25 4096 → [16] → 25

relationships, derived from the Satisfiability Modulo Theories Li-
brary (STM-LIB)3. A VNN-LIB file consists of input bounds and a
specification to verify. For instance, a VNN-LIB file for a Malimg
dataset sample (64x64 image) with 𝜖 = 2/255 would consist of 4096
input variables (the pixels of the image) with a range ±2/255 of
the original pixel value. The specification would then be that the
true label is maintained (robust) for this range of inputs. As we
need to create a different VNN-LIB file for each sample and epsilon
value, there are 1200 VNN-LIB files for the BODMAS dataset (100
samples * 4 feature types * 3 epsilon values) and 375 VNN-LIB files
for the Malimg dataset (125 samples * 3 epsilon values). A single
VNN-LIB file and a corresponding trained model in an Open Neural
Network Exchange (ONNX)4 format are then used as inputs to
the nnenum tool, which presents three potential outcomes: Robust
(holds), Falsification (violated), and Unknown (timeout).

During verification, we evaluate models using two metrics: (1)
average time (𝑠) to verify each input in the verification set for a
given perturbation and (2) the number of inputs from the verifica-
tion set for a perturbation (𝜖) that are certified robust according to
Definition 2.1 over the number of total samples, i.e., certified robust-
ness accuracy (CRA). For each model that is tested, the verification
set consists of randomly selected samples from the dataset. For
instance, models from the BODMAS dataset are evaluated on 100
inputs. These 100 inputs are then used for verification in subsequent
rounds, where each round corresponds to a particular perturbation
size 𝜖 . The average time metric would then be the average wall
time it takes to verify across all 100 samples, and the CRA metric
would be the number of these 100 samples that evaluate to Robust
(1 for NNV, holds for nnenum) over the number of total samples.

3 VERIFICATION OF MALWARE CLASSIFIERS
OVERVIEW

We aim to verify two different types of malware classifiers: binary
classification (benign vs. malicious) and family classification (mal-
ware family). Each experiment contains three different phases: (1)
training, (2) testing, and (3) verification.

3SMT-LIB: https://smtlib.cs.uiowa.edu
4ONNX: https://onnx.ai/

Table 3: Perturbations (𝜖) used during verification.

Classifier
Type

Coverage 𝜖

BODMAS

All 0.01% 0.05% 0.1%
Discrete &
Continuous

0.01% 0.05% 0.1%

Discrete 0.1% 0.5% 1%
Continuous 1% 5% 10%

Malimg All 1
255

2
255

3
255

3.1 Binary Classification
To test the verification of binary malware classifiers (benign vs.
malicious), we use the BODMAS dataset described in Section 2.1.1.
Prior to training, the data is scaled using 𝑧 =

𝑥−𝜇
𝜎 , where 𝑧 is the

standardized score, 𝑥 is a given sample in a feature column, 𝜇 is
the mean of the feature, and 𝜎 is the standard deviation of the
feature. The standard scalar standardization is used due to the large
differences in value range between potential features.

Each of the remaining experimental phases is described in more
detail below:

(1) Training: Three different binary classifiers with varying
architectures are trained using this data. The architectures
used in these experiments are shown in Table 2. If a hidden
layer is present, a ReLU activation function is used on the
outputs of the hidden layer. These architectures are trained
with sparse categorical cross-entropy loss function, Adam
optimizer, 40 epochs, and a batch size of 128 samples.

(2) Testing: To create a baseline for verification performance,
we then test each classifier on the test data. From this, we
gather accuracy, F1, precision, and recall metrics described
in Section 2.4.

(3) Verification:We then use NNV and nnenum with the ep-
silon values shown in Table 3 to obtain the number verified
and time to verify metrics for 100 randomly selected test
samples. The randomly selected test samples are the same
across all verification experiments. The randomly selected
samples reflect the distribution of the data, which consists
of 43% malicious samples. Additionally, as the BODMAS
dataset consists of different types of features and ranges, the
perturbation applied to each feature is the epsilon value per-
centage of the range for that particular feature. For instance,
if feature 1 has a range [3, 567], the L∞ bound with 𝜖 = 0.1%
would be ±0.56 = 0.1% × (567 − 3). This provides a more
feature realistic perturbation to each sample.

(a) All: As a baseline, the epsilon perturbation (a) is applied
to all 2381 features in a sample. While applying the epsilon
perturbation to all features gives insight into the complete
robustness of a model, a perturbation is not meaningful
or impactful across all features. For instance, applying an
𝜖 = 0.1% perturbation to a binary feature. While not all
perturbed samples will be semantically meaningful, the
L∞ bound will contain some samples that are, providing
a high-level evaluation of the model.

https://smtlib.cs.uiowa.edu
https://onnx.ai/

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Preston K. Robinette, Diego Manzanas Lopez, Serena Serbinowska, Kevin Leach, and Taylor T. Johnson

Table 4: Training results for BODMAS (binary) models and Malimg (family) models. Each of the models performs well according
to accuracy, precision, recall, and F1 score metrics.

Dataset Model Accuracy Precision Recall F1

BODMAS
none-2 0.99 0.98 0.99 0.99
4-2 0.99 0.99 0.99 0.99
16-2 0.99 0.99 0.99 0.99

Malimg
linear-2 0.99 0.98 0.97 0.97
4-2 0.98 0.97 0.96 0.97
16-2 0.99 0.97 0.96 0.97

Table 5: Certified robustness accuracy (CRA) and average time to verify verification results on 100 samples from the BODMAS
(binary) dataset using NNV and nnenum verification tools on various feature types and (L∞) perturbations.

Metric Model Tool All Continuous & Discrete Discrete Continuous
0.01 % 0.05 % 0.1 % 0.01 % 0.05 % 0.1 % 0.1 % 0.5 % 1 % 1 % 5 % 10 %

CR
A
(%
) none-2 NNV 94 61 19 98 98 96 96 90 68 95 84 56

nnenum 94 61 19 98 98 96 96 90 68 95 84 56

4-2 NNV 99 69 26 100 100 99 100 98 88 100 97 81
nnenum 99 73 31 100 100 99 100 98 90 100 97 81

16-2 NNV 100 65 27 100 100 100 100 99 91 100 96 82
nnenum 100 71 34 100 100 100 100 99 92 100 96 82

Av
g.
Ti
m
e
(s
) none-2 NNV 0.35 0.30 0.29 0.17 0.17 0.17 0.27 0.27 0.28 0.31 0.26 0.19

nnenum 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

4-2 NNV 0.31 0.42 0.62 0.17 0.17 0.17 0.28 0.28 0.31 0.29 0.27 0.28
nnenum 0.50 0.50 0.51 0.50 0.50 0.51 0.50 0.50 0.51 0.50 0.50 0.51

16-2 NNV 0.28 0.64 1.04 0.18 0.18 0.18 0.26 0.28 0.33 0.28 0.31 0.27
nnenum 0.50 0.50 0.52 0.50 0.50 0.52 0.50 0.50 0.52 0.50 0.50 0.52

(b) Discrete & Continuous: From the available feature types,
discrete and continuous features are the most applicable
to L∞ perturbations. As such, we apply epsilon perturba-
tions (b) to only continuous and discrete features.

(c) Discrete: Discrete features offer insight into details like
the number of imported libraries, the number of exported
libraries, and the number of symbols in the file. As most
of the discrete features involve counts of elements in the
sample, small value changes can have a drastic impact
on the classification of a sample. The epsilon values (c)
chosen reflect this property.

(d) Continuous: In contrast to the discrete features, the con-
tinuous features generally result from calculations based
on the elements in the sample, such as the entropy of
strings or the average length of strings. These elements
are more robust to perturbations, and larger epsilon values
(d) were selected to test these elements.

3.2 Family Classification
To test the verification of malware family classifiers, we utilize the
Malimg dataset described in Section 2.1.2, which consists of image
representations of malware samples from 25 different families. Prior
to training, each of the images is resized to size 64x64, and the pixel

values are normalized between 0 and 1. The data is then split into
two different sets: training (8404 images) and testing (935 images).

(1) Training: Three different family classifiers with varying
architectures are trained using this data. The architectures
used in these experiments are shown in the bottom part of
Table 2. If hidden layers are present, they represent a con-
volutional layer. Additionally, these convolutional models
utilize a ReLU activation function. These architectures are
trained with a categorical cross-entropy loss function, Adam
optimizer, 10 epochs, and a batch size of 64 samples.

(2) Testing: To create a baseline for verification performance,
we then test each classifier on the test data. From this, we
gather accuracy, F1, precision, and recall metrics.

(3) Verification:We then use NNV and nnenum with the ep-
silon values shown in Table 3 to obtain the number verified
and time to verify metrics for 125 samples. To create this
set, 5 samples from each class in the validation set are ran-
domly selected. Each verification experiment utilizes the
same 125 images. Out of the 25 classes in the validation data,
20 of them contain 25 images, giving the verification set 20%
coverage on most classes. As the Malimg dataset consists
of images, these epsilon values are applied to pixels in the
sample image.

Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

Table 6: Certified robustness accuracy (CRA) and average
time to train verification results on 5 samples from each
class (125 samples) from the Malimg (family) dataset using
NNV and nnenum verification tools on pixel level (L∞) per-
turbations.

Metric Model Tool Epsilon (𝜖)
1/255 2/255 3/255

CR
A
(%
) linear-25 NNV 85 83 79

nnenum 90 86 82

4-25 NNV 89 76 62
nnenum 94 80 66

16-25 NNV 88 82 67
nnenum 90 86 64

Av
g.
Ti
m
e
(s
) linear-25 NNV 0.84 0.85 0.85

nnenum 3.60 3.63 3.69

4-25 NNV 17.75 41.66 82.18
nnenum 11.59 10.80 11.13

16-25 NNV 85.00 210.00 710.25
nnenum 38.66 44.16 43.43

4 RESULTS
In this section, we present the results of our evaluation. These
experiments were conducted on a macOS with a 2.3 GHz 8-Core
Intel Core i9 processor with 16 GB 2667 MHz DDR4 of memory.

4.1 BODMAS
4.1.1 Model Performance. Each of the binary classification models
trained on the BODMAS feature dataset achieves high-performance
metrics, as indicated by Table 4. From these metrics, the trained
models can accurately distinguish between benign and malicious
samples. The high precision value indicates that when a model
predicts an instance as malicious (malware), it is likely correct, and
the high recall value means that a malware sample is rarely mis-
classified as benign. While providing valuable immediate feedback
on the malware classification abilities, these metrics do not provide
insight into the classifier’s ability against adversarial examples.

4.1.2 Verification Performance. (All) The certified robustness ac-
curacy (CRA) and average time to verify for the NNV and nnenum
verification tools on all BODMAS features are shown in Figure 4.
As the perturbation 𝜖 increases, the CRA of each of the models
(none-2, 4-2, 16-2) decreases with both NNV and nnenum. Regard-
ing model size, the results indicate that a larger model is more
robust to a L∞ perturbation, which is increasingly important as
the perturbation size increases. While a larger model is more robust,
it takes longer to verify, as shown by Figure 4b. This makes sense,
as a larger perturbation would result in a larger created input set.
While not affecting the falsification step, this will affect both the
relax-approx-area method and approx-star method, which is slower
for larger models. While the verification tool (NNV vs. nnenum)
has little impact on the robustness results, NNV takes less time to
verify for each of the perturbation sizes and models.

0.01 0.05 0.10
Epsilon Perturbation (%)

0

25

50

75

100

CR
A

(%
)

none-2 *
none-2 ^

4-2 *
4-2 ^

16-2 *
16-2 ^

(a) Number Robust

0.01 0.05 0.10
Epsilon Perturbation (%)

0.5

1.0

1.5

2.0

2.5

Av
g.

 T
im

e
(s

)

(b) Average Time to Verify

Figure 4: BODMAS (binary) robustness results (L∞) for all
features using NNV (*) and nnenum (∧) verification tools. As
the perturbation size increases, CRA decreases and time to
verify increases. A larger model is more robust to perturba-
tions, especially as the perturbation size increases. While
NNV and nnenum have similar robustness accuracy results,
NNV takes less time to verify than nnenum for all features.

(Discrete &Continuous) The results of only perturbing discrete
& continuous features are shown in Figure 5. Whereas model size
impacts CRA for perturbations applied to all features, when applied
to discrete & continuous features, model size does not heavily impact
CRA, as seen by the close lines in Figure 5a. Additionally, the time
to verify is not significantly impacted by model size either. This
experiment highlights the importance of using meaningful features.
While the epsilon perturbation sizes for all and discrete & continuous
are the same (0.01%, 0.05%, 0.10%), the CRA results are drastically
different. For 𝜖 = 0.1%, 19% of samples are verified robust for all
features and 96% of samples are verified robust for continuous &
discrete features. The feature type, therefore, impacts the robustness
verification process. Regarding the verification tools, NNV and
nnenum reach similar CRA results, but NNV is faster than nnenum
for each model and epsilon perturbation size, as demonstrated by
the results in Table 5.

(Discrete) The results from applying perturbations to just dis-
crete features are shown in Figure 6. Whereas model size does not

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Preston K. Robinette, Diego Manzanas Lopez, Serena Serbinowska, Kevin Leach, and Taylor T. Johnson

0.01 0.05 0.10
Epsilon Perturbation (%)

0

25

50

75

100

CR
A

(%
)

none-2 *
none-2 ^

4-2 *
4-2 ^

16-2 *
16-2 ^

(a) Number Robust

0.01 0.05 0.10
Epsilon Perturbation (%)

0.2

0.3

0.4

0.5

Av
g.

 T
im

e
(s

)

(b) Average Time to Verify

Figure 5: BODMAS (binary) robustness results (L∞) for dis-
crete & continuous features using NNV (*) and nnenum (∧)
verification tools. Model size does not significantly affect
CRA or time to verify for these features. While NNV and
nnenum have similar robustness results, NNV takes less time
to verify than nnenum for each model and perturbation size.

significantly affect CRA for all or discrete & continuous features,
when applied to discrete features only, the smaller the model, the
less robust it is. This trend is demonstrated by the low blue line
(small model) compared to the higher green and orange lines (larger
models). NNV and nnenum garner similar CRA results for discrete
features, but NNV takes less time to verify, as shown by Figure 6b.

(Continuous) The results of using continuous features for ver-
ification are shown in Figure 7. These results resemble those of
discrete features, even with the larger perturbation sizes used. This
result means that the discrete features are more sensitive compared
to continuous features, as a larger perturbation elicits similar re-
sults. When combined (discrete & continuous), however, the CRA
remains high (Figure 5a). This is likely due to the smaller epsilon
values used for discrete & continuous features. Regarding general
trends in Figure 6a, we see that as the perturbation size increases,
larger models are more robust. NNV and nnenum also have similar
verification results, but NNV takes less time to verify. The average
time to verify for the none-2 model decreases as the perturbation in-
creases, which makes sense when compared to the decreasing CRA.

0.1 0.5 1.0
Epsilon Perturbation (%)

0

25

50

75

100

CR
A

(%
)

none-2 *
none-2 ^

4-2 *
4-2 ^

16-2 *
16-2 ^

(a) Number Robust

0.1 0.5 1.0
Epsilon Perturbation (%)

0.25

0.30

0.35

0.40

0.45

0.50

Av
g.

 T
im

e
(s

)

(b) Average Time to Verify

Figure 6: BODMAS (binary) robustness results (L∞) for dis-
crete features using NNV (*) and nnenum (∧) verification
tools. Asmodel size decreases, themodel is less robust.While
verification results are similar, NNV takes less time to verify
than nnenum.

More samples are being falsified early resulting in a shorter verifi-
cation time. The average verification time for 4-2 and 16-2, however,
remains approximately the same. This is due to an increase in both
falsifications (failing early) and an increase in unknown results
(failing late), which is keeping the average time about the same
even though the CRA is decreasing.

4.2 Malimg
4.2.1 Model Performance. From the training results shown in Ta-
ble 4, each of the trained family classifiers is effectively able to
discern malware families from known malware samples, as indi-
cated by the high accuracy, precision, recall, and F1 scores.

4.2.2 Verification Performance. The results of the Malimg model
verification are shown in Figure 8. As the perturbation size increases,
the models decrease in CRA, which is especially apparent for the
larger models (4-25 and 16-25). The larger the model, the more
time typically required for each of the verification steps following
falsification, as the reachable set for a larger model will be greater
than a smaller, linear model. The results in Figure 8 follow this

Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

1 5 10
Epsilon Perturbation (%)

0

25

50

75

100

CR
A

(%
)

none-2 *
none-2 ^

4-2 *
4-2 ^

16-2 *
16-2 ^

(a) Number Robust

1 5 10
Epsilon Perturbation (%)

0.2

0.3

0.4

0.5

Av
g.

 T
im

e
(s

)

(b) Average Time to Verify

Figure 7: BODMAS (binary) robustness results (L∞) for con-
tinuous features using NNV (*) and nnenum (∧) verification
tools. Larger models are more robust as the perturbation size
increases. While NNV and nnenum have similar verification
results, NNV takes less time to verify.

trend—the larger the model, the more time needed to verify the
model, which causes timeouts and a lower CRA value. As a result,
smaller models are preferred for this dataset, as they maintain
robustness while taking less time to verify.

5 DISCUSSION
As a result of these experiments, we highlight important features
for consideration and future study.

Timing: For many of the experiments, NNV resulted in a faster
time to verify than nnenum. This is in part due to the different
verification methods used by NNV and nnenum. Whereas nnenum
is a command line tool requiring only the model and a VNN-LIB
file, NNV is a scriptable tool that requires defining the verification
steps used during the verification process. Both show the benefit of
using each tool: nnenum is a faster process to get started (command
line) and NNV is more versatile (adaptable) and, in this case, faster.

Importance of Features: In the BODMAS dataset, making fea-
ture specific perturbations makes a significant difference in the
robustness evaluations of the model, as shown by the difference

1 2 3
Epsilon Perturbation

0

25

50

75

100

CR
A

(%
)

linear-25 *
linear-25 ^

4-25 *
4-25 ^

16-25 *
16-25 ^

(a) Number Robust

1 2 3
Epsilon Perturbation (Pixel)

0

200

400

600

Av
g.

 T
im

e
(s

)

(b) Average Time to Verify

Figure 8: Malimg (family) robustness results (L∞) using NNV
(*) and nnenum (∧) verification tools. As perturbation size
increases, the CRA decreases for each model. The larger the
model, the more time it takes to verify as the perturbation
increases.

between Figure 4a and Figure 5a. More work is therefore necessary
to determine meaningful features and meaningful perturbations to
those features.

Sample Coverage: The verification sets for both Malimg and
BODMAS contain inputs that rarely, if ever, generate a ‘robust’
outcome. Table 7 shows the per class results of verification using
NNV on the samples perturbed with 𝜖 = 2. Autorun.K, Swizzor.gen!,
and Swizzor.gen!I have a low number of robust samples for each
trained model. While these classes are underrepresented during
training compared to classes like Allaple.A, other underrepresented
classes do not have similar results. For instance, Skintrim.N only
has 55 training samples, but images from this class are robustly
verified 5/5 times for each model. These results highlight that some
classes are more difficult to verify than others. It might be better
to evaluate malware classifier models on levels of inputs rather
than a conglomerate. For instance, model X is robust to levels 1, 2,
and 3 but not to level 4. This might provide more valuable insight
into the robustness of a model. This level-specific result will be an
interesting problem to explore in future works.

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Preston K. Robinette, Diego Manzanas Lopez, Serena Serbinowska, Kevin Leach, and Taylor T. Johnson

Malimg Class No. Certified Robust Train Sampleslinear-25 4-25 16-25

Adialer.C 5 5 5 97
Agent.FYI 5 5 5 91
Allaple.A 5 5 5 2824
Allaple.L 5 4 4 1491

Alueron.gen!J 5 5 5 173
Autorun.K 0 0 0 81
C2LOP.P 4 2 1 121

C2LOP.gen!g 5 3 4 175
Dialplatform.B 5 5 5 152
Dontovo.A 5 5 5 137
Fakerean 5 5 5 306

Instantaccess 5 5 5 356
Lolyda.AA1 3 5 5 153
Lolyda.AA2 5 5 5 159
Lolyda.AA3 3 5 5 98
Lolyda.AT 5 2 5 134
Malex.gen!J 3 0 3 111

Obfuscator.AD 5 5 5 117
Rbot!gen 5 5 5 133
Skintrim.N 5 5 5 55

Swizzor.gen!E 2 0 0 103
Swizzor.gen!I 0 0 0 107

VB.AT 5 5 5 383
Wintrim.BX 4 4 5 72
Yuner.A 5 5 5 775

Table 7: Per class robustness accuracy on the Malimg verifi-
cation set for the 𝜖 = 2 perturbation using NNV. Some classes
are more difficult to verify than others, as highlighted by the
Autorun.K, Swizzor.gen!E, and Swizzor.gen!I classes.

6 RELATED WORK
Malware Classification: Previous works have shown the promise
of using machine learning models for malware classification. In [15,
26], the authors use data mining to extract meaningful features, and
then apply traditional machine learning algorithms. Recent research
has shifted to the use of neural networks. In [23], the authors
introduce the use of image malware classification, i.e., converting
binaries into images and utilizing convolution neural networks
(CNNs) for binary and/or family classification. This approach has
since been refined by numerous works, including [35].

Semantically Meaningful Perturbations: Semantically mean-
ingful perturbations have been addressed in recent work related
to images. In [25], the authors investigate contextually meaningful
perturbations to deep neural network image classifiers on ‘Ger-
man Traffic Sign’ and ‘CIFAR-10’ data. In [34], the authors utilize a
domain ‘deletion‘ perturbation to medical image pathologies.

Neural Network Verification: The area of DNN verification has
increasingly grown in recent years, leading to the development of
standard input formats5 [9] as well as friendly competitions [18, 22],
that help compare and evaluate all the recent methods and tools

5vnnlib: https://www.vnnlib.org

proposed in the community [2, 12, 13, 36, 37]. The majority of these
methods focus on verifying FFNN and CNN architectures. These
approaches can generally be classified into sound or unsound, and
complete or incomplete. Unsound refers to probabilistic analysis
such as [30], although they are less common for NN verification
than sound approaches. Complete and sound methods refer to
algorithms that can precisely analyze whether a given property
holds on a model, also referred to as exact methods. However,
these type of methods suffer from scalability issues as the exact
analysis tend to be very computationally expensive. These are also
limited in the type of layers and model architectures they can
be applied to. These can be Satisfiability Modulo Theories (SMT)
based methods [12, 13], Mixed Integer Linear Program (MILP) based
methods [28], reachability analysis methods [32], and others such as
branch and bound methods [3]. Incomplete methods refer to sound
approaches that present a tradeoff between precision and scalability,
which allows a faster computation of a verification problem of
larger NNs than sound and complete methods, although it can
lead to unknown results due to the approximation used. Several of
these methods are based on abstract interpretation, some of which
have demonstrated to outperform complete methods by orders
of magnitude (time wise) [22]. Recent work in [10] has enhanced
the abstraction-based verification of neural networks via residual
reasoning.

7 CONCLUSION
In this paper, we present a case study to introduce and evaluate the
novel formal verification of malware classification for family identi-
fication as well as malware identification. Through testing, training,
and verification processes, we highlight important current malware
verification capabilities as well as areas to be considered moving
forward. Through this rigorous analysis, we hope to increase the
visibility of this verification domain, bolstering refinement to a
safety-critical system that has a drastic impact on our lives every
day.

ACKNOWLEDGMENTS
This paper was supported in part by a fellowship award under
contract FA9550-21-F-0003 through the National Defense Science
and Engineering Graduate (NDSEG) Fellowship Program, spon-
sored by the Air Force Research Laboratory (AFRL), the Office of
Naval Research (ONR), and the Army Research Office (ARO). The
material presented in this paper is based upon work supported
by the National Science Foundation (NSF) through grant numbers
2220426 and 2220401, the Defense Advanced Research Projects
Agency (DARPA) under contract number FA8750-23-C-0518, and
the Air Force Office of Scientific Research (AFOSR) under contract
number FA9550-22-1-0019 and FA9550-23-1-0135. Any opinions,
findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the
views of AFOSR, DARPA, or NSF.

REFERENCES
[1] [n. d.]. 2022 Incident Response Report. https://www.paloaltonetworks.com/

unit42/2022-incident-response-report
[2] Stanley Bak. 2021. nnenum: Verification of ReLU Neural Networks with Opti-

mized Abstraction Refinement. In NASA Formal Methods Symposium. Springer.

https://www.vnnlib.org
https://www.paloaltonetworks.com/unit42/2022-incident-response-report
https://www.paloaltonetworks.com/unit42/2022-incident-response-report

Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

[3] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, M. Pawan Kumar, Jingyue Lu, and
Pushmeet Kohli. 2020. Branch and Bound for Piecewise Linear Neural Network
Verification. J. Mach. Learn. Res. 21, 1, Article 42 (jan 2020), 39 pages.

[4] Nicholas Carlini, Florian Tramer, Krishnamurthy Dj Dvijotham, Leslie Rice,
Mingjie Sun, and J Zico Kolter. 2023. (Certified!!) Adversarial Robustness for
Free!. In The Eleventh International Conference on Learning Representations. https:
//openreview.net/forum?id=JLg5aHHv7j

[5] Nicholas Carlini and David Wagner. 2017. Magnet and" efficient defenses against
adversarial attacks" are not robust to adversarial examples. arXiv preprint
arXiv:1711.08478 (2017).

[6] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana. 2020. On training
robust PDF malware classifiers. In Proceedings of the 29th USENIX Conference on
Security Symposium. 2343–2360.

[7] Christian Cianfarani, Arjun Nitin Bhagoji, Vikash Sehwag, Ben Zhao, Heather
Zheng, and Prateek Mittal. 2022. Understanding robust learning through the lens
of representation similarities. Advances in Neural Information Processing Systems
35 (2022), 34912–34925.

[8] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adversarial
robustness via randomized smoothing. In international conference on machine
learning. PMLR, 1310–1320.

[9] Stefano Demarchi, Dario Guidotti, Luca Pulina, and Armando Tacchella. 2023.
Supporting Standardization of Neural Networks Verification with VNNLIB and
CoCoNet. In Proceedings of the 6th Workshop on Formal Methods for ML-Enabled
Autonomous Systems (Kalpa Publications in Computing, Vol. 16), Nina Narodytska,
Guy Amir, Guy Katz, and Omri Isac (Eds.). EasyChair, 47–58. https://doi.org/10.
29007/5pdh

[10] Yizhak Yisrael Elboher, Elazar Cohen, and Guy Katz. 2022. Neural network
verification using residual reasoning. In Software Engineering and Formal Methods:
20th International Conference, SEFM 2022, Berlin, Germany, September 26–30, 2022,
Proceedings. Springer, 173–189.

[11] Zhuoqun Huang, Neil G Marchant, Keane Lucas, Lujo Bauer, Olga Ohrimenko,
and Benjamin I. P. Rubinstein. 2023. RS-Del: Edit Distance Robustness Certificates
for Sequence Classifiers via Randomized Deletion. In Thirty-seventh Conference
on Neural Information Processing Systems. https://openreview.net/forum?id=
ffFcRPpnWx

[12] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In
International Conference on Computer Aided Verification. Springer, 97–117.

[13] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, HaozeWu, Aleksandar Zeljić, David L.
Dill, Mykel J. Kochenderfer, and Clark Barrett. 2019. The Marabou Framework
for Verification and Analysis of Deep Neural Networks. In Computer Aided
Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing,
Cham, 443–452.

[14] Hae-Jung Kim. 2018. Image-based malware classification using convolutional
neural network. In Advances in Computer Science and Ubiquitous Computing:
CSA-CUTE 17. Springer, 1352–1357.

[15] Jeremy Z Kolter and Marcus A Maloof. 2004. Learning to detect malicious
executables in the wild. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. 470–478.

[16] David Kornish, Justin Geary, Victor Sansing, Soundararajan Ezekiel, Larry Pearl-
stein, and Laurent Njilla. 2018. Malware classification using deep convolutional
neural networks. In 2018 IEEE Applied Imagery Pattern Recognition Workshop
(AIPR). IEEE, 1–6.

[17] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. 2019. Certified robustness to adversarial examples with differential privacy.
In 2019 IEEE symposium on security and privacy (SP). IEEE, 656–672.

[18] Diego Manzanas Lopez, Matthias Althoff, Luis Benet, Xin Chen, Jiameng Fan,
Marcelo Forets, Chao Huang, Taylor T Johnson, Tobias Ladner, Wenchao Li,
Christian Schilling, and Qi Zhu. 2022. ARCH-COMP22 Category Report: Artificial
Intelligence and Neural Network Control Systems (AINNCS) for Continuous and
Hybrid Systems Plants. In Proceedings of 9th International Workshop on Applied
Verification of Continuous and Hybrid Systems (ARCH22) (EPiC Series in Computing,
Vol. 90), Goran Frehse, Matthias Althoff, Erwin Schoitsch, and Jeremie Guiochet
(Eds.). EasyChair, 142–184.

[19] Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. John-
son. 2023. NNV 2.0: The Neural Network Verification Tool. In 35th International
Conference on Computer-Aided Verification (CAV).

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversar-
ial Attacks. In International Conference on Learning Representations. https:
//openreview.net/forum?id=rJzIBfZAb

[21] Diego Manzanas Lopez, Patrick Musau, Nathaniel Hamilton, and Taylor Johnson.
2022. Reachability Analysis of a General Class of Neural Ordinary Differential
Equation. In Proceedings of the 20th International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS 2022), Co-Located with CONCUR, FMICS,
and QEST as part of CONFEST 2022.Warsaw, Poland.

[22] Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T.
Johnson. 2022. The Third International Verification of Neural Networks Compe-
tition (VNN-COMP 2022): Summary and Results.

[23] Lakshmanan Nataraj, Sreejith Karthikeyan, Gregoire Jacob, and Bangalore S
Manjunath. 2011. Malware images: visualization and automatic classification. In
Proceedings of the 8th international symposium on visualization for cyber security.
1–7.

[24] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In 2016 IEEE symposium on security and privacy (SP). IEEE, 582–597.

[25] Colin Paterson, Haoze Wu, John Grese, Radu Calinescu, Corina S Păsăreanu, and
Clark Barrett. 2021. Deepcert: Verification of contextually relevant robustness
for neural network image classifiers. In Computer Safety, Reliability, and Security:
40th International Conference, SAFECOMP 2021, York, UK, September 8–10, 2021,
Proceedings 40. Springer, 3–17.

[26] Matthew G Schultz, Eleazar Eskin, F Zadok, and Salvatore J Stolfo. 2000. Data
mining methods for detection of new malicious executables. In Proceedings 2001
IEEE Symposium on Security and Privacy. S&P 2001. IEEE, 38–49.

[27] Ajay Singh, Anand Handa, Nitesh Kumar, and Sandeep Kumar Shukla. 2019. Mal-
ware classification using image representation. In Cyber Security Cryptography
and Machine Learning: Third International Symposium, CSCML 2019, Beer-Sheva,
Israel, June 27–28, 2019, Proceedings 3. Springer, 75–92.

[28] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2017. Evaluating Robustness of Neural
Networks with Mixed Integer Programming. arXiv preprint arXiv:1711.07356
(2017).

[29] Hoang-Dung Tran, Stanley Bak, Weiming Xiang, and Taylor T. Johnson. 2020.
Verification of Deep Convolutional Neural Networks Using ImageStars. In 32nd
International Conference on Computer-Aided Verification (CAV). Springer.

[30] Hoang-Dung Tran, Sungwoo Choi, Hideki Okamoto, Bardh Hoxha, Georgios
Fainekos, and Danil Prokhorov. 2023. Quantitative Verification for Neural Net-
works Using ProbStars. In Proceedings of the 26th ACM International Conference
on Hybrid Systems: Computation and Control (San Antonio, TX, USA) (HSCC ’23).
Association for Computing Machinery, New York, NY, USA, Article 4, 12 pages.
https://doi.org/10.1145/3575870.3587112

[31] Hoang Dung Tran, SungWoo Choi, Tomoya Yamaguchi, Bardh Hoxha, and Danil
Prokhorov. 2023. Verification of Recurrent Neural Networks using Star Reacha-
bility. In The 26th ACM International Conference on Hybrid Systems: Computation
and Control (HSCC).

[32] Hoang-Dung Tran, Neelanjana Pal, Patrick Musau, Xiaodong Yang, Nathaniel P.
Hamilton, Diego Manzanas Lopez, Stanley Bak, and Taylor T. Johnson. 2021. Ro-
bustness Verification of Semantic Segmentation Neural Networks using Relaxed
Reachability. In 33rd International Conference on Computer-Aided Verification
(CAV). Springer.

[33] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau,
Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T. Johnson. 2020.
NNV: The Neural Network Verification Tool for Deep Neural Networks and
Learning-Enabled Cyber-Physical Systems. In 32nd International Conference on
Computer-Aided Verification (CAV).

[34] Hristina Uzunova, Jan Ehrhardt, Timo Kepp, and Heinz Handels. 2019. Inter-
pretable explanations of black box classifiers applied on medical images by
meaningful perturbations using variational autoencoders. In Medical Imaging
2019: Image Processing, Vol. 10949. SPIE, 264–271.

[35] Danish Vasan, Mamoun Alazab, Sobia Wassan, Babak Safaei, and Qin Zheng.
2020. Image-Based malware classification using ensemble of CNN architectures
(IMCEC). Computers & Security 92 (2020), 101748.

[36] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.
Formal security analysis of neural networks using symbolic intervals. In 27th
{USENIX} Security Symposium ({USENIX} Security 18). 1599–1614.

[37] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and
J Zico Kolter. 2021. Beta-crown: Efficient bound propagation with per-neuron
split constraints for neural network robustness verification. Advances in Neural
Information Processing Systems 34 (2021), 29909–29921.

[38] Greg Yang, Tony Duan, J Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li.
2020. Randomized smoothing of all shapes and sizes. In International Conference
on Machine Learning. PMLR, 10693–10705.

[39] Limin Yang, Arridhana Ciptadi, Ihar Laziuk, Ali Ahmadzadeh, and Gang Wang.
2021. BODMAS: An Open Dataset for Learning based Temporal Analysis of PE
Malware. In 4th Deep Learning and Security Workshop.

https://openreview.net/forum?id=JLg5aHHv7j
https://openreview.net/forum?id=JLg5aHHv7j
https://doi.org/10.29007/5pdh
https://doi.org/10.29007/5pdh
https://openreview.net/forum?id=ffFcRPpnWx
https://openreview.net/forum?id=ffFcRPpnWx
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3575870.3587112

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Malware Datasets
	2.2 Malware Classification Types
	2.3 Neural Network Verification
	2.4 Metrics

	3 Verification of Malware Classifiers Overview
	3.1 Binary Classification
	3.2 Family Classification

	4 Results
	4.1 BODMAS
	4.2 Malimg

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

