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Abstract
We propose a new method for separating valid inequalities for the epigraph of a
function of binary variables. The proposed inequalities are disjunctive cuts defined by
disjunctive terms obtained by enumerating a subset I of the binary variables. We show
that by restricting the support of the cut to the same set of variables I , a cut can be
obtained by solving a linear program with 2|I | constraints. While this limits the size of
the set I used to define the multi-term disjunction, the procedure enables generation
of multi-term disjunctive cuts using far more terms than existing approaches. We
present two approaches for choosing the subset of variables. Experience on three
MILP problems with block diagonal structure using |I | up to size 10 indicates the
sparse cuts can often close nearly as much gap as the multi-term disjunctive cuts
without this restriction and in a fraction of the time. We also find that including
these cuts within a cut-and-branch solution method for these MILP problems leads to
significant reductions in solution time or ending optimality gap for instances that were
not solved within the time limit. Finally, we describe how the proposed approach can
be adapted to optimally “tilt” a given valid inequality by modifying the coefficients of
a sparse subset of the variables.
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1 Introduction

We explore techniques for generating valid inequalities (cuts) for the epigraph EQ of
a function Q : X → R over binary variables:

EQ = {(θ, x) ∈ R × X : θ ≥ Q(x)}, (1)

where X ⊆ {0, 1}n .An important applicationmotivating this study is stochasticmixed-
integer programming (SMIP) [1], or more generally mixed-integer linear programs
(MILPs) with block diagonal structures of the following form:

min cT x +
N∑

k=1

(dk)T yk

s.t. T kx + Wkyk = hk, yk ≥ 0, k ∈ [N ],
x ∈ X ⊆ {0, 1}n .

(2)

In the case of two-stage SMIPs, the binary variables x represent first-stage decisions, N
is the number of scenarios representing the possible outcomes, and for each k ∈ [N ] :=
{1, . . . , N }, the continuous decision variables yk represent recourse actions taken in
response to observing the data (dk, T k,Wk,hk) in scenario k. A common approach
to solving such problems is Benders decomposition, which solves a reformulation of
the form

min
θ,x

{
cT x +

N∑

k=1

θk : θk ≥ Qk(x) for k ∈ [N ], x ∈ X

}
, (3)

where for k ∈ [N ], x ∈ X ,

Qk(x) = min
y

{(dk)T y : T kx + Wky = hk, y ≥ 0}. (4)

The epigraph of Qk of the form (1) shows up as a substructure in (3). In Benders
decomposition, valid inequalities (Benders cuts [11, 54]) for this epigraph are derived
via linear programming (LP) duality, but these are not generally sufficient to define the
convex hull of the epigraph, thus motivating the need to derive stronger valid inequal-
ities for sets of this form. This topic has been extensively studied both theoretically
and computationally; see [17, 26, 30, 39, 47, 50, 52, 53, 56] as just a sample of the
literature. Aside from SMIPs, this epigraph substructure appears in a variety of other
problems (e.g., [12, 45, 55]).

We study a technique for generating inequalities for EQ based on a disjunctive
relaxation having many terms, specifically obtained by enumerating all 2|I | feasible
values for a subset I of the binary variables. Disjunctive programming has been a
central tool in MILP since its origin in 1970s [4, 5]. A disjunction is a union of sets,
and if the feasible region of an MILP is contained within such a union, inequalities
valid for the disjunction are valid for the MILP, and are referred to as disjunctive
cuts. Most disjunctive cuts used in practice are based on two disjunctive terms, e.g.,
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Sparse multi-term disjunctive cuts...

split cuts [20] and lift-and-project cuts [6, 7, 9, 15]. While there has been significant
work on classes of cuts that are derived from multiple-term disjunctions [2, 10,
22, 24, 42], the current methods remain focused on disjunctions with a relatively
small number of terms. Perregaard and Balas [49] considered an iterative scheme for
generating disjunctive cuts from many terms (see Sect. 2), but the approach remains
computationally demanding. More recently, Balas and Kazachkov [8, 37] consider
a V-polyhedral perspective that allows generating and strengthening disjunctive cuts
using up to 64 terms.

Our proposal for generating multi-term disjunctive cuts more efficiently is based
on restricting the support of the generated cut to the index set I , the same set used
to define the disjunctive terms. We refer to such cuts as I -sparse cuts. Our approach
is motivated by the desire to generate sparse cuts, which may lead to faster solution
time of the LP relaxations. Recent studies have investigated the theoretical strength
of sparse cuts [23, 25, 26]. Our use of sparsity is with respect to the generated cut,
which differentiates it from Fukasawa et al. [29] who empirically show that split cuts
derived from (two-term) split disjunctions defined by a sparse integer vector can close
the majority of the split closure gap. We also show that the idea of I -sparse cuts can
be generalized to tilt a given valid inequality for a mixed-binary set, by modifying
a particular subset of coefficients using a multi-term disjunction. Note that our use
of the term “tilting” differs from that in [19, 27, 49], who use “tilting” to refer to a
process of sequentially rotating a valid inequality with the goal of obtaining a facet-
defining inequality. Our use of the term “tilting” instead refers to an approach for
strengthening the coefficients of a subset of variables (while keeping the coefficients
on the remaining variables fixed).

In Sect. 2 we show that the proposed sparsity restriction enables generating multi-
term disjunctive cuts by solving a single subproblem per term, and then solving a
single cut-generating LP. Thus, while this remains a computationally demanding cut
generation process, we find empirically that it is feasible to use many more disjunctive
terms than have previously been considered. In Sect. 3, we propose two rules for
selecting the support I to generate I -sparse inequalities. In Sect. 4, we present results
of a computational study using the I -sparse inequalities based on up to 210 disjunctive
terms on three test problems. We find that in many cases the I -sparse cuts close nearly
as much gap as multi-term disjunctive cuts without the sparsity restriction, and can
be generated orders of magnitude faster. When incorporated into a Benders branch-
and-cut solution method, we find that I -sparse cuts lead to faster solution times or
smaller ending gaps on our test instances. Although we find that sparse cuts often can
close a significant portion of the optimality gap, we expect there are problems where
dense cuts may be needed. Thus, we explore in Sect. 5 how we can use our proposed
technique to optimally “tilt” a given (possibly dense) valid inequality by modifying
a sparse subset of the coefficients of the inequality. We make concluding remarks in
Sect. 6.

A preliminary version of this work appeared in the conference publication [18]. In
this paper we include proofs of the main results, report new results from experiments
dynamically adjusting the cardinality of the cut-support set and using the proposed
cuts to solve problems to optimality within a cut-and-branch method, and derive the
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approach for tilting a given valid inequality by modifying a sparse subset of its coef-
ficients. Some notation has been changed to improve readability.

2 Sparsemulti-term 0–1 disjunctive cuts

We study the problem of generating valid inequalities for the epigraph EQ defined in
(1). Let R(X) be a (continuous) relaxation of X with R(X)∩{0, 1}n = X . We assume
we have access to an extension of Q to R(X), q : R(X) → R, satisfying q(x) = Q(x)
for x ∈ X . We require that minimizing q over R(X) is efficiently solvable. For
example, this would be the case if R(X) is closed, convex, and equipped with an
efficient separation oracle and q is convex over R(X) with efficiently computable
subgradients. We emphasize that we do not expect q to be the convex envelope of Q
over X (i.e., conv(EQ)) as our interest is precisely about identifying valid inequalities
to approximate this set. In case an efficiently computable exact extension q is not
readily available, one can use an extension q that instead satisfies q(x) ≤ Q(x) for
x ∈ X . For example, in the case of an SMIP having integer second-stage decisions,
the exact recourse function Qk(x) is nonconvex and expensive to evaluate, in which
case one may use instead use the recourse function defined using an LP relaxation of
the recourse problem. The strength of the resulting cuts will naturally depend on the
quality of the relaxation, which could for example be improved using standard MILP
valid inequalities.

The following example provides another illustration of the choice of q.

Example 1 ([41]) Assume Q : {0, 1}n → R is defined by

Q(x) = aT x + b

cT x + d

with a ∈ R
n+, c ∈ R

n+ and d > 0. The natural continuous extension of Q to [0, 1]n
is not necessarily convex. However, it is possible [41] to construct a convex extension
of Q over R(X) = [0, 1]n by introducing a new variable y = 1/(cT x + d) ≥ 0 and
linearization variables zi = xi y ≥ 0 for i ∈ [n], and define the function q : [0, 1]n →
R by

q(x) = min
y,z

aT z + by (5a)

s.t. zi − y ≤ 0, (ci + d)zi ≤ xi , d(y − zi ) ≤ 1 − xi , i ∈ [n], (5b)

cT z + dy = 1, z ∈ R
n+, y ≥ 0 (5c)

for x ∈ [0, 1]n . Then, q is convex over [0, 1]n (because it is the value function of a
linear program with x in the right-hand side of the constraints) and q(x) = Q(x) for
x ∈ {0, 1}n , and thus it is a convex extension of Q. Finally, observe that evaluating
q and obtaining a subgradient of q at a point x can be accomplished by solving the
linear program (5).
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Let Eq := {(θ, x) ∈ R × R(X) : θ ≥ q(x)} denote the epigraph of q over R(X)

and let I be a nonempty subset of [n]. We denote by xI the subvector of x with indices
I , and define {0, 1}I := {xI : xi ∈ {0, 1}, i ∈ I }. For each given χ ∈ {0, 1}I , we
define

Eq
I (χ) := {(θ, x) ∈ Eq : xI = χ} = {(θ, x) ∈ R × R(X) : θ ≥ q(x), xI = χ}.

We derive valid inequalities for EQ by finding valid inequalities for the following
multi-term disjunctive relaxation of EQ :

Eq
I :=

⋃

χ∈{0,1}I
Eq
I (χ). (6)

Since EQ ⊆ Eq
I , any inequality valid for E

q
I is also valid for E

Q .We call the relaxation
Eq
I of EQ a multi-term 0-1 disjunction, and any cut valid for Eq

I a multi-term 0-
1 disjunctive cut. We include q as a superscript in the notation Eq

I (χ) and Eq
I to

emphasize that these relaxations depend on the choice of the extension q. These
relaxations also depend on the choice of R(X), i.e., the domain of q, but we suppress
this dependence for notational convenience.

2.1 Generatingmulti-term 0–1 disjunctive cuts

By (6), an inequality of the form μ0θ − μT x ≥ η is valid for Eq
I if and only if

min
θ,x

{
μ0θ − μT x : (θ, x) ∈ Eq

I (χ)
}

≥ η for all χ ∈ {0, 1}I . (7)

Therefore, to separate a point (θ̂ , x̂) from Eq
I , in principle one can solve the following

problem:

min
μ0,μ,η

μ0θ̂ − μT x̂ − η (8a)

s.t. μ0θ − μT x ≥ η, ∀(x, θ) ∈ Eq
I (χ), χ ∈ {0, 1}I , (8b)

μ0 ≥ 0, ‖(μ0, μ)‖1 ≤ 1, (8c)

where (8c) is just one example of a normalization constraint that can be used to ensure
the separation problem has an optimal solution.

Perregaard and Balas [49] suggest an iterative row generating algorithm for gener-
ating multi-term disjunctive cuts. Adapting it to our multi-term 0-1 disjunction leads
to Algorithm 1 for solving (8). Specifically, the method alternates between solving a
relaxation of (8) defined by only including constraints (8b) for a (small) subset of the
extreme points of Eq

I (χ) for each χ ∈ {0, 1}I (line 5), and then solving a subproblem
for each χ ∈ {0, 1}I to determine if any of the excluded constraints in (8b) is violated
(line 7) and adding one such constraint if so. While this approach is guaranteed to
yield a valid inequality for Eq

I that cuts off (θ̂ , x̂) when one exists, the scalability of
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Algorithm 1: The row generating algorithm for solving (8)
1 Input: I ⊆ [n]
2 Output: A valid inequality μ̂0θ − μ̂T x ≥ η̂ for Eq

I
3 Initialize a set Ŝχ as a subset of extreme points of Eq

I (χ) for each χ ∈ {0, 1}I ;
4 repeat
5 Compute an optimal solution (μ̂0, μ̂, η̂) of the LP:

min
μ0,μ,η

μ0 θ̂ − μT x̂ − η

s.t. μ0θ − μT x ≥ η, ∀(θ, x) ∈ Ŝχ , χ ∈ {0, 1}I ,
μ0 ≥ 0, ‖(μ0, μ)‖1 ≤ 1;

6 for χ ∈ {0, 1}I do
7 Solve

η(μ̂0, μ̂; χ) := min
(θ,x)∈Eq

I (χ)

μ̂0θ − μ̂T x; (9)

8 if η(μ̂0, μ̂; χ) < η̂ then
9 Add an optimal solution (θ∗, x∗) of (9) into Ŝχ ;

10 end
11 end
12 until η(μ̂0, μ̂; χ) ≥ η̂ for all χ ∈ {0, 1}I ;

the algorithm is limited by the multiplied effect of (a) the size of {0, 1}I , and (b) the
potential need to solve (9) multiple times for each χ ∈ {0, 1}I . Numerical experiments
in [49] generate valid inequalities for MILPs using only up to 16 disjunctive terms.
Balas and Kazachkov [8, 37] explore an approach for expanding the number of terms
that can be included that is based on using a well-chosen relaxation of each term,
which enables generating and strengthening disjunctive cuts using up to 64 terms. In
this work, we propose a complementary approach in which we restrict attention to cuts
supported on I , which we find eliminates the effect of (b), and enables us to conduct
experiments with up to 1024 terms.

2.2 I-sparse inequalities

We next explore how restricting the support of the generated cut can be used to accel-
erate the generation of multi-term 0-1 disjunction cuts for Eq

I for a fixed I .

Definition 1 Let I ⊆ [n]. We say an inequality θ ≥ μT x + η is an I -sparse inequal-
ity(/cut) for EQ (with respect to the extension q) if the following two conditions
hold:

1. θ ≥ μT x + η is valid for Eq
I ;

2. μi = 0 for all i /∈ I .

The following proposition characterizes I -sparse inequalities.
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Proposition 1 An inequality θ ≥ μT x + η with μi = 0 for all i /∈ I is an I -sparse
inequality for EQ if and only if

μT
I χ + η ≤ ν

q
I (χ), ∀χ ∈ {0, 1}I , (10)

where for each χ ∈ {0, 1}I ,
ν
q
I (χ) := min{q(x) : x ∈ R(X), xI = χ}. (11)

Proof We only need to show that (7) with μ0 = 1 and μ[n]\I = 0 holds if and only if
(10) holds. This is straightforward by observing that for each χ ∈ {0, 1}I ,

min
θ,x

{
θ−

∑

i∈I
μi xi : (θ, x) ∈ Eq

I (χ)
}

= min
θ,x

{
θ − μT

I χ : (θ, x) ∈ Eq
I (χ)

}

= min
θ,x

{
θ : (θ, x) ∈ Eq

I (χ)
}

− μT
I χ

= min
θ,x

{
θ : θ ≥ q(x), x ∈ R(X), xI = χ

}
− μT

I χ

= ν
q
I (χ) − μT

I χ.

��
Observe that the problem (11) has a similar form as (9) which is used when applying
the Perregaard and Balas algorithm [49] to solve (8).

Remark 1 Our presentation focuses on the case where X ⊆ {0, 1}n . However, the
result naturally extends to problems with bounded integer variables by enumerating
all possible combinations of values that a subset of the bounded integer variables can
take.

The following result provides a condition under which every nontrivial valid
inequality for EQ with coefficients supported on the index set I is an I -sparse inequal-
ity.

Corollary 1 If X = {0, 1}n, R(X) = [0, 1]n and q is component-wise monotonically
nonincreasing or nondecreasing on R(X), then an inequality θ ≥ μT x + η with
μi = 0 for all i /∈ I is valid for EQ if and only if it is an I -sparse inequality.

Proof As in the proof of Proposition 1, an inequality θ ≥ μT x+ η with μ[n]\I = 0 is
valid for EQ if and only if

min{q(x) : xI = χ, x ∈ {0, 1}n} ≥
∑

i∈I
μiχi + η, ∀χ ∈ {0, 1}I .

The conclusion then follows by observing that, for each χ ∈ {0, 1}I ,
ν
q
I (χ) = min

{
q(x) : xI = χ, x ∈ [0, 1]n}
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= min
{
q(x) : xI = χ, x ∈ {0, 1}n},

where the last equality is due to the fact that a monotone function over a box always
attains its minimum at an extreme point. ��
When the assumptions of Corollary 1 do not hold, Proposition 1 still provides amethod
for separating I -sparse cuts – we just cannot assure in this case that I -sparse cuts
contain all cuts supported only on I .

Based on Proposition 1, for a fixed I , the separation problem for I -sparse inequal-
ities for a point (θ̂ , x̂) can be solved by solving the LP

gqx̂ (I ) = max

{
∑

i∈I
μi x̂i + η : μT

I χ + η ≤ ν
q
I (χ), χ ∈ {0, 1}I

}
. (12)

Specifically, the optimal solution of (12) defines an inequality that cuts off (θ̂ , x̂) if and
only if gqx̂ (I ) > θ̂ . Since q is finite valued in R(X), νqI (χ) ∈ R for χ ∈ projI (R(X))∩
{0, 1}I . When x̂I ∈ conv(projI (R(X)) ∩ {0, 1}I ), the LP (12) is guaranteed to have
an optimal solution. When x̂I /∈ conv(projI (R(X))∩ {0, 1}I ), (θ̂ , x̂) can be cut off by
an inequality separating x̂I from projI (R(X)) ∩ {0, 1}I , which can be generated by
enumerating projI (R(X)) ∩ {0, 1}I .

The main work to generate an I -sparse inequality is evaluating ν
q
I (χ) by solving

(11) for each χ ∈ {0, 1}I , and then solving the LP (12) once. Note that (12) has |I |+1
variables in contrast to n + 2 variables in the problem (8) used in the Perregaard and
Balas (PB) [49] algorithm, and requires solving at most 2|I | subproblems of the form
(11), in contrast to the PB algorithm which solves 2|I | subproblems of this form in
multiple iterations until convergence.

2.3 Accelerating cut generation

Evaluating ν
q
I (χ) for all χ ∈ {0, 1}I is the most significant computational component

of generating an I -sparse inequality. We discuss techniques to potentially accelerate
this evaluation, focusing on our motivating example of MILPs with block diagonal
structures (2). In this context, assume R(X) = {x ∈ R

n : Ax ≤ b} is a polyhedral
relaxation of X and assume bound constraints 0 ≤ xi ≤ 1 are included in Ax ≤ b.
For a fixed k ∈ [N ], let Qk(x) be as defined in (4) and assume Qk(x) is finite valued
for all x ∈ R(X). In this case, when generating an I -sparse inequality for the set
EQk = {(θk, x) ∈ R × X : θk ≥ Qk(x)} the evaluation of ν

q
I (χ) for χ ∈ {0, 1}I can

be formulated as the following LP

ν
q
I (χ) = min

x,y
{(dk)T yk : T kx + Wky = hk, y ≥ 0, Ax ≤ b, xI = χ}. (13)

A first simple idea for accelerating the solution of (13) for all χ ∈ {0, 1}I is to exploit
the possibility to warm-start these LPs (see, e.g., [13] for background). LP solvers like
Gurobi [36] automatically implement a simplex warm start when only variable bounds
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are changed in an LP. Thus, solving the sequence of problems (13) for χ ∈ {0, 1}I by
making changes to variable bounds implied by the constraints xI = χ will naturally
benefit from these warm-start capabilities. This motivates a careful selection of the
sequence these problems are solved in. For example, by following the sequence defined
by a Gray code [31], at most one variable bound will change from one subproblem to
the next.

We do not explore this in our computational study, but another possibility for reduc-
ing the time required for evaluating ν

q
I (χ) is to use a lower bound on q that is simpler

to evaluate. For example, for MILPs with block diagonal structure, a lower bound on
ν
Qk
I (χ) is obtained by solving a problem of the form:

ν
Q̂k
I (χ) = min{Q̂k(x) : x ∈ R(X), xI = χ}

where Q̂k is the current piecewise-linear convex lower bound of Qk defined by Ben-
ders cuts. These lower bounds could then be used in (12) which would yield a valid
but potentially weaker inequality. This inequality could then be improved by exactly
evaluating ν

Qk
I (χ) for the χ that correspond to binding constraints in (12), and then

re-solving (12) with these improved values.
Finally, we note that after evaluating ν

q
I (χ) for χ ∈ {0, 1}I for a given set I (and

potentially adding a cut based on solving (12)), we recommend storing these values
for future use. In particular, after re-solving the LP relaxation after addition of cuts and
obtaining a new candidate relaxation solution (θ̂ , x̂), it may be possible that solving
(12) again for the same set I can lead to a new violated inequality. Storing the values
ν
q
I (χ) for χ ∈ {0, 1}I avoids needing to re-calculate them, so that only (12) needs to

be solved to determine if such a violated inequality exists.

3 Two selection rules for the support I

We now discuss techniques for choosing the set I when generating I -sparse cuts.
Given a point (θ̂ , x̂), the goal is to select I in order to maximize the cut violation gqx̂ (I )
(defined in (12)). Since the complexity of generating these cuts grows exponentially
with |I | we investigate techniques that choose I satisfying |I | ≤ K for some fixed
(small) integer K . We describe two selection rules that are derived from two different
approximations of q.

3.1 A greedy rule based on amonotone submodular approximation

The problem of choosing I that maximizes gqx̂ (I ) is a set function optimization prob-
lem. For notational convenience, we do not distinguish between a set function and a
function with binary variables, i.e., we interchangeably use f (A) for f (χA) for all
A ⊆ [n] where χA ∈ {0, 1}n is the indicator vector of A. One particular class of
set functions satisfying good theoretical properties is monotone submodular functions
[33].

123



R. Chen, J. Luedtke

Definition 2 A function f : 2[n] → R is monotone submodular if it satisfies the
following two conditions:

1. (Monotonicity) If S ⊆ T ⊆ [n], then f (S) ≤ f (T );
2. (Submodularity) If S ⊆ [n], j, k ∈ [n] \ S and j 
= k, then f (S ∪ { j}) + f (S ∪

{k}) ≥ f (S ∪ { j, k}) + f (S).

Given x̂ ∈ [0, 1]n , we can show that the cut violation function gqx̂ (I ) is monotone
submodular in I if Q is monotone submodular and its extension q is component-wise
monotonically nondecreasing.

Proposition 2 Assume X = {0, 1}n, R(X) = [0, 1]n, Q is monotone submodular
on X, and its extension q is component-wise monotonically nondecreasing on R(X).
Then the cut violation function gqx̂ is monotone submodular.

Proof The monotonicity of gqx̂ is obvious since an I -sparse inequality is also I ′-sparse
for any I ⊆ I ′ ⊆ [n]. We only need to show submodularity of gqx̂ .

For all I ⊆ [n], let QI : {0, 1}I → R be the function with QI (χS) = Q(S) =
Q(χS) for all S ⊆ I and let Q̄ I : [0, 1]I → R denote the convex envelope of QI on
[0, 1]I . By component-wise monotonicity of q on R(X),

ν
q
I (χ) = min{Q(x) : xI = χ, x ∈ {0, 1}n} = QI (χ), ∀χ ∈ {0, 1}I .

Therefore,

gqx̂ (I ) = max
μ,η

∑

i∈I
μi x̂i + η,

s.t. μT
I χ + η ≤ QI (χ), ∀χ ∈ {0, 1}I . (14)

Then by [51, Corollary 12.1.1], gqx̂ (I ) = Q̄ I (x̂I ) as (14) characterizes all affine under-
estimates of QI . Note that QI is submodular by submodularity of Q. Then the convex
envelope Q̄ I is characterized by the Lovász extension [44] of QI . We are now ready
to show that gqx̂ is submodular. Let S ⊆ [n] and j, k ∈ [n] \ S such that j 
= k. Let
i1, . . . , im be a reordering of elements in S ∪ { j, k} such that x̂i1 ≥ . . . ≥ x̂im . Define
Sl := {i1, . . . , il} for l = 1, . . . ,m. Using Lovász extensions of QS , QS∪{ j}, QS∪{k}
and QS∪{ j,k}, we have

1. gqx̂ (S ∪ { j, k}) = (1 − x̂i1)Q(∅) + ∑m−1
l=1 (x̂il − x̂il+1)Q(Si ) + x̂im Q(Sim );

2. gqx̂ (S ∪ { j}) = (1− x̂i1)Q(∅) + ∑m−1
l=1 (x̂il − x̂il+1)Q(Si \ {k}) + x̂im Q(Sim \ {k});

3. gqx̂ (S ∪ {k}) = (1− x̂i1)Q(∅) + ∑m−1
l=1 (x̂il − x̂il+1)Q(Si \ { j})+ x̂im Q(Sim \ { j});

4. gqx̂ (S) = (1− x̂i1)Q(∅) + ∑m−1
l=1 (x̂il − x̂il+1)Q(Si \ { j, k}) + x̂im Q(Sim \ { j, k}).

Note that Q(Si\{k}) + Q(Si\{ j}) ≥ Q(Si ) + Q(Si\{ j, k}) for i = 1, . . . , k due to
submodularity and monotonicity of Q. It follows that gqx̂ (S ∪ { j}) + gqx̂ (S ∪ {k}) ≥
gqx̂ (S ∪ { j, k}) + gqx̂ (S), i.e., gqx̂ is submodular. ��

Although maximizing a monotone submodular function subject to a cardinality
constraint is NP-hard [21] in general, the well-known greedy algorithm of Nemhauser
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Algorithm 2: Greedy algorithm for choosing I
1 Input: x̂, K
2 Output: I
3 Initialize I ← ∅
4 while |I | ≤ K do
5 Evaluate gqx̂ (I ∪ {i}) for each i /∈ I ;

6 I ← I ∪ {i∗} where i∗ ∈ argmaxi /∈I gqx̂ (I ∪ {i});
7 end

et al. [46] attains a 1−1/e approximation ratio to this problem. For maximizing gqx̂ (I )
subject to a cardinality constraint |I | ≤ K , the greedy algorithm is described in Algo-
rithm 2. However, directly applying a greedy algorithm for choosing I may not be a
good choice because (i) the assumptions of Proposition 2 may not hold, and (ii) the
greedy algorithm requires evaluating gqx̂ many times, which is computationally expen-
sive. Therefore, we seek alternatives to this approach by applying the greedy algorithm

to a different cut violation function gQ̃x̂ associated with function Q̃ : [0, 1]n → R,

whose restriction Q̃′ on {0, 1}I is an approximation of the function Q. We choose Q̃

such that Q̃′ is monotone and submodular and the cut violation gQ̃x̂ can be evaluated
much more efficiently than gqx̂ .

We propose to use Q̃ of the form Q̃(x) = maxi∈[n]{ai xi + b} with 0 ≤ a1 ≤
. . . ≤ an (after complementing and reordering some variables). With this form, Q̃
is component-wise nondecreasing on R(X) and Q̃′ (the restriction of Q̃ to X ) is

monotone submodular on X , and thus the associated approximation gQ̃x̂ is monotone

submodular. To construct such an approximation Q̃, we use the I -sparse inequalities
with I = {i} for each i ∈ [n]. When I = {i}, the polyhedron defined by (10)
has a unique extreme point

(
ν
q
{i}(1) − ν

q
{i}(0), ν

q
{i}(0)

)
, which corresponds to a valid

inequality of EQ :
θ ≥ (

ν
q
{i}(1) − ν

q
{i}(0)

)
xi + ν

q
{i}(0). (15)

By complementing the variable xi ← 1−xi if necessary,wemay assume that νq{i}(1) ≥
ν
q
{i}(0). Thus, Q(x) ≥ LB∗ := maxi∈[n] νq{i}(0) for all x ∈ {0, 1}n . Therefore, we can
strengthen (15) to be θ ≥ (

ν̃
q
{i}(1)−LB∗)xi +LB∗, where ν̃

q
{i}(1) = max{νq{i}(1),LB∗}

for all i ∈ [n]. We thus obtain inequalities of the form θ ≥ ai xi + b for i ∈ [n] with
ai ≥ 0, which are valid for EQ (modulo the mentioned complementing of the xi
variables as needed). Assuming without loss of generality that a1 ≤ . . . ≤ an , we
obtain the desired approximation Q̃.

We next discuss how to use gQ̃x̂ to generate a support within Algorithm 2. In particu-

lar,wediscuss how to efficiently evaluate gQ̃x̂ (I ) for a subset I .Define Q̃ I : {0, 1}I → R

by

Q̃ I (x) = max
i∈I {ai xi + b} for all x ∈ {0, 1}I
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and let Q̄ I be the convex envelope of Q̃ I over [0, 1]I . As discussed in the proof

of Proposition 2, submodularity of gQ̃x̂ implies that gQ̃x̂ (I ) = Q̄ I (x̂I ). The convex

envelope of Q̃ I over [0, 1]I is the convex hull of the set:

FI = {(θ, x) ∈ R × {0, 1}I : θ ≥ ai xi + b, i ∈ I }. (16)

The convex hull of this set has been characterized in [3, 35].

Theorem 1 ([3, 35]) Assume I = {1, 2, . . . , d} with 0 ≤ a1 ≤ . . . ≤ ad . Then

conv(FI ) = {(θ, x) ∈ R × [0, 1]d : θ ≥ ai1xi1 +
m∑

k=2

(aik − aik−1)xik + b,

for all subsequences (ik)
m
k=1 of [d] such that 1 ≤ i1 ≤ . . . ≤ im = d}.

(17)

Thus, for a given x̂, the problemof evaluating Q̄ I (x̂I ) can be posed asmin{θ : (θ, x̂I ) ∈
conv(FI )} which is equivalent to finding the inequality in the family of inequalities
given in (17) with maximimum right-hand side when evaluated at x̂I . This, in turn, is
equivalent to the separation problem of this class of inequalities, which can be solved
in polynomial time [3, 35]. We describe the application of the separation algorithm
from [35] to this context in Algorithm 3. Incorporating this approach for evaluating

gQ̃x̂ (I ) into the greedy algorithm yields a much quicker method for choosing I than
using the greedy algorithmwith exact evaluation of gqx̂ (I ). Indeed, themost significant
work in this case is solving the problem (11) with χ = 0 and χ = 1 for each i ∈ [n]
to obtain the values ν

q
{i}(1) and ν

q
{i}(0) for i ∈ [n], which only needs to be done once

for the overall greedy algorithm.
The proposed approximation may not lead to a good choice of I when Q̃ is not

a good approximation of Q, in particular because the approximation Q̃ is based on
the maximum of affine lower bounding functions, each supported by a single variable.
Thus, it is natural to consider using affine functions with more general support to build
the lower bounding approximation. However, unless P = N P , the following result
and the equivalence between optimization and separation [32] indicate that the key step
of evaluating the convex envelope of the given function would no longer be efficiently
solvable even if the support of the inequalities defining the lower approximation of Q
were restricted to just two variables per inequality.

Proposition 3 It is NP-hard to optimize a linear function over

{(θ, x) ∈ R × {0, 1}n : θ ≥ aT x + b, (a, b) ∈ A} (18)

even if ‖a‖0 ≤ 2 for each (a, b) ∈ A and |A| is polynomially bounded by n.

Proof We prove by polynomially reducing an arbitrary instance of the N P-complete
vertex cover problem to a linear optimization problem over (18) with ‖a‖0 ≤ 2 and
|A| = O(n2). The vertex cover problem is stated as:
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Algorithm 3: Evaluating the violation underestimate gQ̃x̂ (I ).

1 Input: x̂, I = {1, . . . , d}, b, ai , i ∈ I with 0 ≤ a1 ≤ . . . ≤ ad

2 Output: gQ̃x̂ (I )

3 Initialize x̂max ← −∞, imax ← d, (σi )
d
i=1 ← (∅)di=1;

4 for i = d, d − 1, . . . , 1 do
5 if x̂i > x̂max then
6 σi ← imax, x̂max ← x̂i , imax ← i ;
7 end
8 end
9 g̃ ← b + aimax x̂imax , k ← imax;

10 while k 
= d do
11 g̃ ← g̃ + (aσk − ak )x̂σk ;
12 k ← σk ;
13 end

14 Return gQ̃x̂ (I ) = g̃;

• Given an undirected graph G = (V , E) and positive integer k′, does there exist
V ′ ⊆ V with |V ′| ≤ k′ such that u ∈ V ′ or v ∈ V ′ for each uv ∈ E?

We next show that such vertex cover V ′ exists if and only if the optimal objective
value of the following problem is at most −1:

min

{
∑

v∈V
xv + (k + 1)θ : θ ≥ −1; θ ≥ −xu − xv, uv ∈ E; x ∈ {0, 1}V

}
.

(19)
Note that (19)≤ −1 if and only if the optimal solution (θ∗, x∗) satisfies θ∗ = −1,∑

v∈V x∗
v ≤ k and −1 ≥ −x∗

u − x∗
v for each uv ∈ E . Such x∗ corresponds to a vertex

cover V ′ := {v ∈ V : x∗
v = 1} of G with |V ′| ≤ k′. On the other hand, a vertex

cover V ′ of G with |V ′| ≤ k′ corresponds to an optimal solution (−1, x∗) of (19) with
objective value at most −1 satisfying x∗

v = 1 if and only if v ∈ V ′. ��

3.2 A cutting-plane approximation rule

We next describe an alternative selection rule for I that is based on a single affine
lower bound (e.g., from a cutting-plane) of Q. Let a ∈ R

n , b ∈ R, and

F(a,b) = {(θ, x) ∈ R × {0, 1}n : θ ≥ aT x + b}.

Let (θ̂ , x̂) ∈ R×[0, 1]n be given, and consider the problemof finding a valid inequality
for F(a,b) of the form

θ ≥
∑

i∈I
μi xi + η (20)

that is maximally violated by (θ̂ , x̂).

123



R. Chen, J. Luedtke

Proposition 4 The problem of maximizing

∑

i∈I
μi x̂i + η − θ̂

such that inequality (20) defined by μ, η is valid for F(a,b) has optimal value
−∑n

i=1 a
−
i + ∑

i∈I (ai x̂i + a−
i ) + b − θ̂ , where a−

i = max{−ai , 0}.
Proof Inequality θ ≥ ∑

i∈I μi xi + η is valid for F(a,b) if and only if

μT
I χ + η ≤ min{θ : (θ, x) ∈ F(a,b), xI = χ}

=
∑

i∈I
aiχi −

∑

i /∈I
a−
i + b, ∀χ ∈ {0, 1}I .

Therefore, by LP duality, the maximum violation of an inequality of this form is

max
μ,η

{
∑

i∈I
μi x̂i + η − θ̂ : μT

I χ + η ≤
∑

i∈I
aiχi −

∑

i /∈I
a−
i + b, χ ∈ {0, 1}I

}

= min

⎧
⎨

⎩
∑

χ∈{0,1}I

∑

i∈I
aiχiλχ +

∑

χ∈{0,1}I

(
−

∑

i /∈I
a−
i + b

)
λχ :

∑

χ∈{0,1}I
χiλχ = x̂i , i ∈ I ;

∑

χ∈{0,1}I
λχ = 1, λ ≥ 0

⎫
⎬

⎭ − θ̂

=
∑

i∈I
ai x̂i −

∑

i /∈I
a−
i + b − θ̂

= −
n∑

i=1

a−
i +

∑

i∈I
(ai x̂i + a−

i ) + b − θ̂ .

��
Using Proposition 4, we interpret the value ai x̂i+a−

i as ameasure of the importance
of variable xi for the cutting plane θ ≥ aT x+b at x̂.We use this intuition to construct a
selection rule.We first pick a cutting plane θ ≥ aT x+b that approximates the epigraph
of Q at x̂. Then indices i ∈ [n] are added to the set I in decreasing order of the value
ai x̂i + a−

i until |I | = K . Note that ai x̂i + a−
i ≥ 0 for any ai ∈ R and x̂i ∈ [0, 1]. If

the cutting plane approximation θ ≥ aT x + b is sparse (i.e., |{i ∈ [n] : ai 
= 0}| is
small), it is possible that |{i ∈ [n] : ai x̂i + a−

i > 0}| < K . In such cases, we first add
those indices with positive ai x̂i + a−

i values into I , then pick another cutting plane
and repeat the procedure until |I | = K . A potential advantage of this selection rule
is that it does not require any evaluation of the cut violation function. And unlike the
selection rule in Sect. 3.1, this selection rule can take advantage of the availability of
dense cutting plane approximations. The potential limitation, of course, is the reliance
on the single cutting-plane approximation.
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The final detail we need to specify for this approach is how to choose the cutting-
plane approximation(s). Assume a collection A of cutting planes of the form θ ≥
aT x+ b is available. A natural choice forA is the set of cutting planes (e.g., Benders
cuts) that have been added in the algorithm so far for approximating EQ . A natural
ordering for choosing which cutting plane inA to use first is based on the tightness of
the cutting plane at the point x̂. The inequality in A with coefficients (a, b) that yield
the highest aT x̂ + b value is chosen first, etc.

4 Computational results

Toprovide insight into the computational potential of I -sparse cuts,we conduct numer-
ical experiments on three MILP problems with block diagonal structures (2):

• The stochastic network interdiction (SNIP) problem [48] (40 instances): n = 320
for these instances.

• The latent-class logit assortment (LLA) problem [45] (36 instances): n = 200 for
these instances.

• A stochastic version of the capacitated facility location (CAP) problem [14] (32
instances): n ranges between 25 and 50 for these instances.

We present the problem definition and details of the test instances for each problem in
the Appendix. For the first two test problems, each block of their MILP formulations
is sparse in variables x, but in distinct ways. For the SNIP problem, we observe that
when applying Benders decomposition to solve its LP relaxation the Benders cuts are
mostly very sparse in x. In the LLA problem each block of the MILP formulation only
uses a small portion (between 12 and 20) of the x variables, making the use of sparse
cuts very natural for this problem. Neither of these two sparsity properties holds for
the CAP problem.

In most of our test instances the constraints x ∈ X include binary restrictions on x
and either a lower or upper bound on the number of nonzero xi variables. Therefore,
we use R(X) = conv(X) in those cases. In half of the LLA instances, X is a knapsack
set with nonuniform coefficients and we use the direct polyhedral relaxation of X as
R(X). We use the direct LP relaxation as Qk for each block of the MILP as described
in Sect. 2.3.

We test the ability of I -sparse cuts to improveupon the standardLP relaxationwithin
the Benders reformulation (3). The cut generating process is described in Algorithm 4.
In the first step (line 1), we add standard Benders cuts iteratively until we have solved
the initial LP relaxation. Specifically, this Benders approach works with a master LP
relaxation in which the constraints θk ≥ Qk(x), k ∈ [N ] are approximated by Benders
cuts of the form:

θk ≥ (μ j )�(hk − T kx), j = 1, . . . , tk

where μ j , j = 1, . . . , tk , are extreme point solutions to the dual feasible region for
subproblem k,�k = {μ : μ�Wk ≤ dk}. In the standard cutting-plane implementation
[38], after solving a master LP relaxation and obtaining a solution (θ̂ , x̂), Benders cuts
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Algorithm 4: Generating I -sparse cuts
1 Initialize a master LP using Benders decomposition;
2 repeat
3 Solve the master LP to obtain solution (θ̂ , x̂);
4 for k ∈ [N ] do
5 Choose a support I ;

6 Generate an I -sparse cut valid for the set EQk = {(θk , x) ∈ R × X : θk ≥ Qk (x)} by
solving (12);

7 Add the I -sparse cut to the master LP if it is violated by (θ̂k , x̂);
8 end
9 until No violated cut can be generated or time limit is reached;

are identified by solving the subproblem (4) with x = x̂ and adding the Benders cut
defined by the dual optimal solution if it is violated by (θ̂ , x̂). We use this standard
cutting-plane method for the SNIP and LLA instances. We found the cutting-plane
method took too long to converge for CAP instances, so we use the level method [40]
for line 1 of Algorithm 4 on those instances.

In terms of the I -sparse cut generation, we consider the following variants of Algo-
rithm 4:

• Greedy-K : Use the greedy rule described in Sect. 3.1 for generating the support I
of size K ;

• Cutpl-K : Use the cutting plane approximation rule described in Sect. 3.2 for gen-
erating the support I of size K ;

We test Greedy-K and Cutpl-K with K fixed at 4, 7, and 10. We also test adaptive
variants, Greedy-Ad and Cutpl-Ad of each selection method. These variants begin
with K = 4. After solving the master LP, if K < 10 and the gap closed in the last five
iterations for this K is less than 1% of the total gap closed thus far we increase K by
1 and re-start the generation of I -sparse cuts.

For Cutpl, we use the collection of all the Benders cuts added for block k in line 1 of
Algorithm 4 as A for Qk . To improve the efficiency of the algorithm, when applying
Greedy, we only select I from indices for which the corresponding variables have a
nonzero coefficient in at least one of the Benders cuts for block k. This restriction
is also implicitly implemented when using Cutpl since indices i with ai = 0 for all
(a, b) ∈ A can never be selected by Cutpl. It significantly improves the efficiency
of Greedy on SNIP instances (by skipping the generation of {i}-sparse cuts for most
i ∈ [n]).

All LPs and MILPs are solved using Gurobi 9.1.0. In the implementation of Algo-
rithm 4, we take advantage of Gurobi’s automatic warm start for solving similar LPs
and store the values of ν

q
I (χ) once evaluated for potential reuse in the future.

4.1 LP relaxation results

We first present results showing the impact of adding I -sparse inequalities to the LP
relaxation of the problem without branching. An 1800-second time limit is set for
generating I -sparse cuts in these experiments. To visually compare the performance
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of I -sparse cuts across multiple test instances, we present results in the form of an
integrality-gap-closed profile. Each curve in such a profile corresponds to a particular
cut generation strategy, and its value at time t represents the average (over the set of
instances for that problem class) integrality gap closed by time t , where the integrality
gap closed at time t is calculated as (zR(t) − zLP )/(z∗ − zLP ) × 100%, where zR(t)
is the bound obtained by the algorithm at time t , zLP is the basic LP relaxation bound,
and z∗ is the optimal value.

The results for the SNIP, LLA, and CAP test problems are given in Figs. 1, 2, and
3, respectively, where in each case we vary K ∈ {4, 7, 10} or use an adaptively chosen
K , and compare the Greedy and Cutpl selection rules. In each case we find that the

Fig. 1 Integrality-gap-closed profiles for SNIP instances obtained by different Greedy rules (solid) and
Cutpl rules (dashed)

Fig. 2 Integrality-gap-closed profiles for LLA instances obtained by different Greedy rules (solid) and
Cutpl rules (dashed)
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Fig. 3 Integrality-gap-closed profiles for CAP instances obtained by different Greedy rules (solid) and
Cutpl rules (dashed)

two different selection rules have similar trends in gap closed over time. For fixed K ,
Cutpl rules perform better on the SNIP test instances, whereas Greedy rules have better
performance on the LLA instances with K = 4 and the CAP instances. In terms of the
effect of K , as expected smaller values of K yield quicker initial gap improvement,
whereas larger values of K require more time to close the gap but eventually lead to
more gap closed. For the SNIP instances we find that using K = 4 already closes most
of the gap, and does so much more quickly than with K = 7 or K = 10. For the LLA
instances we find that increasing K leads to more gap closed, although significant
gap is already closed with K = 4, and the additional gap closed using K = 10 is
marginal, while requiring significantly more time. For the CAP instances, we find that
the I -sparse cuts close significantly less gap than the other test problems, although the
gap closed is still significant. Large values of K yield significantly more gap closed on
the CAP instances, but also requires considerably longer running time. The adaptive
approaches Greedy-Ad and Cutpl-Ad appear to successfully achieve the best of the
different choices of K , e.g., yielding quick improvement in bound early on while also
eventually achieving bound improvement as good as achieved with the largest K .

For I -sparse cuts generated by different approaches, we summarize in Tables 1, 2,
and 3 the closed integrality gap and number of cuts added. We observe that for the
different fixed sparsity levels K , the number of I -sparse cuts added by the algorithm is
not significantly larger for larger K . Thus, the improvement in the bound is attributable
to stronger cuts rather than an increase in the number of cuts added. Naturally, the
number of cuts added with the adaptive algorithm is larger than the number added for
any fixed K , as that method potentially adds cuts for multiple values of K .

We next compare the I -sparse cuts with the multi-term 0-1 disjunctive cuts without
the sparsity restriction, but generated from the same sets I , where the cuts are generated
using the Perregaard andBalas (PB) [49] approach.Our interest in this comparison is to
demonstrate the potential time reductions from using the I -sparse cuts and to estimate
the extent to which the sparsity restriction degrades the quality of the relaxation. We
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Table 1 LP relaxation results for SNIP instances. Results in each row are averages over five instances

Rule snipno b Avg closed gap (%) Avg # cuts added

4 7 10 Ad 4 7 10 Ad

Greedy 3 30 73.0 76.9 78.6 78.5 1030 932 895 1250

50 71.6 75.5 63.8 76.8 1528 1365 706 1922

70 73.5 78.1 46.6 79.5 1836 1574 396 2370

90 67.4 71.4 34.9 72.0 2039 1715 326 2462

4 30 72.3 77.0 79.0 79.0 1104 999 898 1831

50 68.6 72.5 54.6 75.2 1520 1331 434 2019

70 70.1 74.3 35.2 75.0 2063 1720 281 2599

90 69.9 73.0 30.4 73.4 2454 2048 250 3517

Cutpl 3 30 76.7 78.6 78.6 77.7 1068 970 898 1185

50 74.4 77.9 63.6 76.4 1361 1408 598 1776

70 78.5 82.8 52.8 79.5 1471 1681 438 1722

90 73.6 78.9 43.6 74.6 1631 1895 359 1826

4 30 76.4 78.9 79.0 78.4 991 1046 886 1371

50 72.6 77.0 55.8 73.5 1339 1286 399 1562

70 73.5 78.4 39.6 74.6 1419 1446 290 1623

90 69.6 75.7 31.6 70.3 1146 1200 255 1222

Table 2 LP relaxation results for LLA instances. Results in each row are averages over six instances

Rule Cost p Avg closed gap (%) Avg # cuts added

4 7 10 Ad 4 7 10 Ad

Greedy Uniform 12 76.1 86.5 94.1 92.7 823 839 913 1960

16 66.1 79.7 85.7 84.5 1129 1344 1430 3301

20 63.9 74.3 82.0 82.3 1234 1400 1525 4069

Nonunif 12 74.9 86.4 93.7 92.2 803 848 832 1744

16 66.4 81.1 87.4 86.4 1097 1328 1440 3322

20 64.0 75.3 83.9 84.2 1252 1432 1557 4132

Cutpl Uniform 12 69.9 90.9 96.8 96.3 885 1127 1126 2834

16 52.6 79.5 89.8 88.8 905 1493 1886 5420

20 50.4 72.5 85.4 84.3 978 1604 1904 5778

Nonunif 12 70.2 91.6 95.8 95.5 866 1078 991 2551

16 52.8 80.8 90.1 89.4 944 1563 1881 5210

20 50.1 73.3 86.5 85.7 946 1545 1971 5882

conduct this experiment only on the CAP test instances, since we have already seen
that the I -sparse cuts are sufficient to close most of the gap in the SNIP and LLA
instances, and thus there is little potential to close more gap when eliminating the
sparsity restriction. We set a 24-hour time limit for the PB algorithm. For both the
I -sparse and PB cuts, we use Greedy-K as the rule for selecting the set I to define the
multi-term disjunction.
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Table 3 LP relaxation results for CAP instances. Results in each row are averages over eight instances

Rule Instance # Avg closed gap (%) Avg # cuts added

4 7 10 Ad 4 7 10 Ad

Greedy 101–104 34.6 44.4 51.8 47.0 790 848 732 2566

111–114 7.3 13.6 15.7 15.0 518 770 560 2122

121–124 14.6 20.1 21.9 21.2 647 659 576 1779

131–134 24.3 29.6 31.7 31.1 757 732 659 1856

Cutpl 101–104 25.9 40.4 56.0 52.2 497 538 601 2074

111–114 5.1 12.9 20.4 19.0 278 377 525 1921

121–124 5.8 11.2 16.7 15.3 295 395 439 1337

131–134 13.6 20.2 25.4 24.9 531 592 624 1708

Fig. 4 Integrality gap closed by I -sparse cuts and cuts generated by the PB algorithm on instances CAP101
(top) and CAP111 (bottom)

Figure4 displays the integrality gap closed over time for two specificCAP instances,
one for which I -sparse cuts were able to close a significant portion of the gap
(CAP101), and one for which they were not (CAP111). The figures on the left display
results for both the I -sparse cuts (solid lines) and PB cuts (dashed lines), with the
time-scale (x-axis) determined by the time required to generate all I -sparse cuts for
the largest value of K . From these figures we observe that for any value of K , within
this time frame the I -sparse cuts close significantly more gap than the PB cuts. To
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estimate the potential for PB cuts to eventually closemore gap, we show the gap closed
by the PB cuts over the full 24-hour time limit in the figures on the right. For CAP101
we find that the PB cuts do not close more gap than the I -sparse cuts, suggesting that
the sparsity restriction is not significantly degrading the strength of the cuts in this
case. On the other hand, for CAP111, we find that when given enough time the PB cuts
can close significantly more gap, as seen particularly for the K = 4 results, although
requiring far more time to do so. For both CAP instances, we observe that most of
the generated PB cuts are as sparse as the I -sparse cuts in the first few iterations but
become significantly denser (e.g., with non-zeros on more than half the variables) in
later iterations.

4.2 Solving to optimality

We next present empirical results using I -sparse cuts within a branch-and-cut algo-
rithm for exactly solving the test instances. The purpose of this study is to verify that
the demonstrated relaxation improvement from these cuts translates to a reduction in
the size of the search tree for these instances. We emphasize that our purpose is not to
attempt to use these cuts to obtain state-of-the-art results, as such a test would require
significant care in integrating multiple different types of cuts, etc.

We investigate using I -sparse cuts added at the root node to obtain an improved LP
relaxation of the MILP (3), leading to a method we refer to as IBC (I -sparse branch-
and-cut). We then solve the MILP instance, strengthened with the I -sparse cuts, via a
Benders branch-and-cut algorithm. In this method, Benders cuts are added as lazy cuts
at nodes in the branch-and-bound tree, as needed when integer feasible solutions are
encountered. Specifically,when a solution (θ̂ , x̂)with x̂ integer valued is obtained in the
search process (either via a heuristic or as a solution of a node relaxation subproblem)
we check whether it is feasible to (3), i.e., whether θ̂k ≥ Qk(x̂) for all k ∈ [N ]. If not
we add Benders cuts as lazy constraints to cut off this infeasible solution and continue
branch-and-cut. A more detailed description of Benders branch-and-cut can be found,
e.g., in [14, 17]. We emphasize that we add I -sparse cuts only at the root node, so
in terms of evaluation of the use of I -sparse cuts, this is a cut-and-branch approach.
For generating I -sparse cuts, we use the Cutpl-Ad method from the previous section
on the SNIP instances, and Greedy-Ad on the LLA and CAP instances. To achieve a
balance between the benefit from the gap closed from the I -sparse cuts and the cut
generation time, we terminate the cut generation process if the gap closed in the first
two iterations of adding I -sparse cuts for a fixed K is smaller than 1% of the gap
closed since the beginning of the I -sparse cut generation process. This choice is based
on the empirical observation that the largest gap improvement almost always occurs
in the first two iterations for each fixed K .

We compare against two other exact solution approaches, EXT—solving theMILP
(2) directly in extensive form, and BBC — vanilla Benders branch-and-cut, which is
identical to the IBC implementation except that the I -sparse cut generation step is
skipped. A 3600-second time limit is set for solving each instance (including cut
generation). Because the SNIP instances can be easily solved by BBC when solver
cuts are used on top of the Benders cuts [14, 17], when solving the SNIP instances
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Table 4 Root node results for SNIP instances. Results in each row are averages over five instances

snipno b I -sparse LP int gap (%) Root int gap (%) Root time (s)

cut time (s) BBC IBC BBC IBC BBC IBC

3 30 258 16.5 5.0 3.2 3.3 10 7

50 553 21.8 6.5 4.7 4.7 12 9

70 484 21.7 5.7 3.1 1.9 13 13

90 473 24.5 8.2 4.8 4.0 14 13

4 30 379 19.4 5.3 3.7 2.9 11 10

50 338 25.9 7.9 6.0 5.9 11 6

70 432 27.9 8.0 4.5 4.0 15 11

90 352 31.8 10.5 5.0 5.0 12 10

Table 5 Root node results for LLA instances. Results in each row are averages over six instances

Cost p I -sparse LP int gap (%) Root int gap (%) Root time (s)

cut time (s) BBC IBC BBC IBC BBC IBC

Uniform 12 59 5.3 0.7 3.9 0.5 5 3

16 138 7.1 1.6 5.9 1.5 6 7

20 168 6.9 1.9 6.1 1.8 7 8

Nonunif 12 54 5.2 0.7 4.9 0.6 6 4

16 131 6.9 1.4 5.6 1.3 6 7

20 186 6.8 1.6 5.9 1.5 8 9

Table 6 Root node results for CAP instances. Results in each row are averages of eight instances

Instance # I -sparse LP int gap (%) Root int gap (%) Root time (s)

cut time (s) BBC IBC BBC IBC BBC IBC

101–104 405 18.3 11.7 17.4 10.8 2 3

111–114 811 8.1 6.9 7.7 6.7 7 6

121–124 586 17.8 14.8 17.0 14.3 8 7

131–134 548 21.3 16.6 20.2 15.8 5 6

using BBC or IBC, we turn off Gurobi presolve and cuts to show the impact of the
I -sparse cuts. No changes to Gurobi’s settings aremade for the LLA or CAP instances,
or for SNIP instances when solving with EXT.

We present in Tables 4, 5, and 6 the time spent on generating I -sparse cutting planes
in IBC, the LP relaxation integrality gap,1 the root node integrality gaps and the root
node processing time of theBendersmodel associatedwithBBCand IBC.Unlike Sect.
4.2, Gurobi presolve and cuts are not turned off when generating these results for the

1 Integrality gap of the lower bound LB is calculated as (z∗−LB)/|z∗| × 100% where z∗ is the optimal
objective value of the MILP.
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Table 7 Exact solution results for SNIP instances. Time and gap results are averages over five instances

snipno b Avg soln time (s) # solved instances Avg opt gap (%)

EXT BBC IBC EXT BBC IBC EXT BBC IBC

3 30 ≥3600 130 311 0/5 5/5 5/5 12.6 0.0 0.0

50 ≥3600 ≥1569 638 0/5 4/5 5/5 19.0 0.5 0.0

70 ≥3600 ≥3490 502 0/5 1/5 5/5 21.2 1.4 0.0

90 ≥3600 ≥3600 644 0/5 0/5 5/5 20.8 5.0 0.0

4 30 ≥3600 124 432 0/5 5/5 5/5 15.2 0.0 0.0

50 ≥3600 579 440 0/5 5/5 5/5 25.5 0.0 0.0

70 ≥3600 1651 539 0/5 5/5 5/5 31.3 0.0 0.0

90 ≥3600 1621 476 0/5 5/5 5/5 35.6 0.0 0.0

Table 8 Exact solution results for LLA instances. Time and gap results are averages over six instances

Cost p Avg soln time (s) # solved instances Avg opt gap (%)

EXT BBC IBC EXT BBC IBC EXT BBC IBC

Uniform 12 ≥2666 ≥3078 ≥752 2/6 1/6 5/6 1.2 1.7 0.1

16 ≥3600 ≥3600 ≥3042 0/6 0/6 1/6 3.5 5.3 0.9

20 ≥3600 ≥3600 ≥3030 0/6 0/6 1/6 3.7 6.3 1.3

Nonunif 12 ≥2390 ≥2929 ≥1231 3/6 2/6 4/6 1.1 1.5 0.1

16 ≥3600 ≥3600 ≥3035 0/6 0/6 1/6 3.2 4.9 0.8

20 ≥3600 ≥3600 ≥3031 0/6 0/6 1/6 3.5 6.5 1.1

Table 9 Exact solution results for CAP instances. Time and gap results are averages of eight instances

Instance # Avg soln time (s) # solved instances Avg opt gap (%)

EXT BBC IBC EXT BBC IBC EXT BBC IBC

101–104 68 ≥3600 ≥3600 8/8 0/8 0/8 0.0 13.7 9.0

111–114 884 ≥3600 ≥3600 8/8 0/8 0/8 0.0 9.5 7.7

121–124 ≥1313 ≥3600 ≥3600 7/8 0/8 0/8 <0.1 18.4 15.4

131–134 548 ≥3600 ≥3600 8/8 0/8 0/8 0.0 22.0 15.9

SNIP instances. We note that solver cuts successfully close the majority of integrality
gap at the root node for SNIP instances, which is in line with the observations in [14,
17]. We also find that the LP relaxation bound of IBC is usually significantly stronger
than that of BBC, which is consistent with the LP relaxation results in Sect. 4.1. In
most cases, even though the root node processing can close more integrality gap in
BBC than in IBC, IBC still achieves a smaller root node integrality gap, yielding a
smaller search tree or a smaller optimality gap in the end. Additional root node results
regarding the number of I -sparse cuts and solver cutting planes generated at the root
node are presented in the Appendix.
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Finally, we summarize the average solution time, number of solved instances and
average ending optimality gap obtained by different methods on the SNIP instances,
LLA instances, and CAP instances in Tables 7, 8, and 9, respectively. For the SNIP
and LLA instances, we find that IBC either solves more instances and in less time, or
yields smaller ending optimality gap than EXT and BBC, illustrating that the I -sparse
cuts can indeed lead to improvements when solving these instances to optimality. EXT
is the most effective method for solving the CAP instances, as observed also in [14].
However, in terms of Benders branch-and-cut based methods, the ending optimality
gap of IBC is modestly smaller than BBC on these instances.

5 Extension: I-sparse tilting

We now describe an adaptation of the ideas used to create I -sparse inequalities to
a more general setting by tilting a given valid inequality. Let D ⊆ {0, 1}n × R

p

denote a mixed-binary set and let x and y denote the associated binary and continuous
variables in the description of D, respectively. Let DR be a relaxation of D with
DR∩({0, 1}n×R

p) = D.We assumewe are given a “base” inequalityαT x+βT y ≤ γ

that is valid for D, and propose a method for “tilting” this inequality by modifying
a subset of coefficients αI of the binary variables, for I ⊆ [n]. Note that the I -
sparse inequalities fit this more general setting by setting p = 1, y1 = θ , and using
−θ ≤ −LB as the base inequality, where LB is a lower bound on Q(x) over x ∈ X .
Therefore, tilting leads to a broader class of valid inequalities, which may yield a
stronger relaxation than the one generated by I -sparse inequalities when applied to
the epigraph of Q(x).

Consider a nonempty I ⊆ [n] and the multi-term 0-1 disjunctive relaxation DR
I of

D defined as

DR
I :=

⋃

χ∈{0,1}I
DR

I (χ),

where DR
I (χ) := {(x, y) ∈ DR : xI = χ}. We provide a sufficient condition for

changes to the coefficients αI in the inequality αT x+ βT y ≤ γ that assures the tilted
inequality is valid for D.

Proposition 5 Let αT x + βT y ≤ γ be a valid inequality for D. Then an inequality
μT x + βT y ≤ η with μ[n]\I = α[n]\I is valid for D if

η − μT
I χ ≥ min{ν̄R

I (χ;α, β), γ − αT
I χ}, ∀χ ∈ {0, 1}I , (21)

where ν̄R
I (χ;α, β) = max{αT[n]\I x[n]\I + βT y : (x, y) ∈ DR

I (χ)}.
Proof Note that μT x + βT y ≤ η with μ[n]\I = α[n]\I is valid for D if and only if it
is valid for {(x, y) ∈ D : xI = χ} for all χ ∈ {0, 1}I , i.e.,

max
(x,y)∈D{μT x + βT y : xI = χ} ≤ η, ∀χ ∈ {0, 1}I . (22)
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Since αT x+βT y ≤ γ is valid for D, βT y ≤ −αT x+ γ for all (x, y) ∈ D, and hence
for all χ ∈ {0, 1}I we have

max
(x,y)∈D{μT x + βT y : xI = χ} ≤ max

(x,y)∈D{μT x − αT x + γ : xI = χ}
= max

(x,y)∈D{(μI − αI )
T xI + γ : xI = χ}

= (μI − αI )
Tχ + γ.

On the other hand, for all χ ∈ {0, 1}I ,

max
(x,y)∈D{μT x + βT y : xI = χ} ≤ max

(x,y)∈DR
I (χ)

{μT x + βT y}

= ν̄R
I (χ;α, β) + μT

I χ.

Therefore,

max
(x,y)∈D{μT x + βT y : xI = χ} ≤ min{ν̄R

I (χ;α, β) + μT
I χ, (μI − αI )

Tχ + γ }
= min{ν̄R

I (χ;α, β), γ − αT
I χ} + μT

I χ. (23)

Replacing max(x,y)∈D{μT x+βT y : xI = χ} in (22) by the upper bound in (23) yields
the condition (21). ��

Note that αT x+βT y ≤ γ does not need to be valid for DR
I . But if α

T x+βT y ≤ γ

is valid for DR
I , then we can simply replace the minimum in (21) by ν̄R

I (χ;α, β)

since ν̄R
I (χ;α, β) ≤ γ − αT

I χ for all χ ∈ {0, 1}I in that case. Similar to (12), given
a candidate solution (x̂, ŷ) and fixed I , we can write down a cut generating linear
program for separating from the inequalities satisfying (21):

max

{
∑

i∈I
μi x̂i − η : η − μT

I χ ≥ min{ν̄R
I (χ;α, β), γ − αT

I χ}, χ ∈ {0, 1}I
}

.

We call any valid inequality μT x+ βT y ≤ η satisfying (21) an I -sparse tilting of the
inequality αT x+ βT y ≤ γ . One may also iteratively tilt an inequality by applying an
Ik-sparse tilting sequentially for some sequence I1, I2, . . . ⊆ [n].

We next provide an example of obtaining valid inequalities using I -sparse tilting by
showing that perspective cuts [28] for convex functions with indicator variables can
be obtained by I -sparse tilting of subgradient inequalities for some I with |I | = 1.

Example 2 (Perspective cuts) The following mixed-binary structure is common in
many applications with on/off decisions (e.g., the quadratic uncapacitated facility
location problem [34]):

D = {(x, z, θ) ∈ {0, 1} × R
m+1 : 0 ≤ z ≤ ux, θ ≥ f (z)},
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where u ∈ R
m+ and f : Rm+ → R is a closed convex function with f (0) = 0. The

convexhull of F canbe characterizedby the perspective functionof the function f [16].
One way of obtaining conv(F) by the perspective function is to add the (potentially
infinitely many) perspective cuts [28] of the form:

θ ≥ sT z + ( f (z̄) − sT z̄)x, (24)

where z̄ ∈ [0,u] and s ∈ ∂ f (z̄). We show that (24) can be obtained by I -sparse tilting
of the following subgradient inequality of f :

θ ≥ f (z̄) + sT (z − z̄) ⇔ 0x + sT z − θ ≤ − f (z̄) + sT z̄. (25)

By applying I -sparse tilting (Proposition 5) with I = {1}, the tilted inequality μx +
sT z − θ ≤ η is valid if the following two inequalities hold:

1. η ≥ min{0, sT z̄ − f (z̄)} = 0 (because 0 = f (0) ≥ f (z̄) + sT (0 − z̄));
2. η − μ ≥ min

{
max{sT z − θ : θ ≥ f (z), 0 ≤ z ≤ u}, sT z̄ − f (z̄)

} = sT z̄ − f (z̄)
(because (25) attains equality at (z, θ) = (z̄, f (z̄))).

We then obtain the perspective cut (24) by choosing (μ, η) with both inequalities
satisfied at equality, i.e., by setting μ = f (z̄) − sT z̄ and η = 0.

6 Conclusion

We investigate methods for generating I -sparse cuts for the epigraph of a function of
binary variables. Two selection rules are proposed to choose the support I . Numerical
experiments demonstrate that I -sparse cuts are very effective on problems with sparse
features.

We also extend our idea to strengthen valid inequalities by tilting coefficients on a
sparse subset of variables. It would be interesting to explore this idea further. Another
direction of future work is to integrate our techniques into SDDiP [57] to solve mul-
tistage stochastic integer programs.

Appendix

Test problems

SNIP problem

The SNIP problem [48] is a two-stage stochastic integer program with pure binary
first-stage and continuous second-stage variables. In this problem, by installing sensors
on some arcs of a directed network to in the first stage, the defender tries to find the
attacker and minimize the probability that the attacker travels from the origin to the
destination undetected. In the second stage, the origin and destination of the attacker
are observed and the attacker chooses to travel on the maximum reliability path from
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its origin to its destination. Let N and A denote the node set and the arc set of the
network and let D ⊆ A denote the set of interdictable arcs. The first-stage variables are
denoted by x, where xa = 1 if and only if the defender installs a sensor on arc a ∈ D.
Each scenario s ∈ S is associated with a possible origin/destination combination of
the attacker, with us representing the origin and vs representing the destination of the
attacker for each scenario s ∈ S. The second-stage variables are denoted by π , where
π s
i denotes the maximum probability of reaching destination vs undetected from node

i in scenario s. The budget for installing sensors is b, and the cost of installing a sensor
on arc a is ca for each arc a ∈ D. For each arc a ∈ A, the probability of traveling
on arc a undetected is ra if the arc is not interdicted, or qa if the arc is interdicted.
Parameter π̄ s

j denotes themaximum probability of reaching the destination undetected
from node j when no sensors are installed. The extensive formulation of the problem
is as follows:

min
x,μs

∑

s∈S
psπ

s
us

s.t.
∑

a∈A

caxa ≤ b,

π s
i − raπ

s
j ≥ 0, a = (i, j) ∈ A \ D, s ∈ S,

π s
i − raπ

s
j ≥ −(ra − qa)π̄

s
j xa, a = (i, j) ∈ D, s ∈ S,

π s
i − qaπ

s
j ≥ 0, a = (i, j) ∈ D, s ∈ S,

π s
vs = 1, s ∈ S,

xa ∈ {0, 1}, a ∈ D.

We use the SNIP instances from [48]. We consider 40 instances with snipno∈ {3, 4},
and budget b ∈ {30, 50, 70, 90}. All instances have 320 first-stage binary variables,
2586s-stage continuous variables per scenario and 456 scenarios.

LLA problem

TheLLAproblem is introduced in [45]. In this problem, a retailer chooses a set of items
to display for customers to purchase. The model assumes all customers are from a set
of customer segments. For each customer segment k, the customers arrive according to
a Poisson process with rate λk and only purchases products in the consideration setCk .
For item i , the cost for displaying it is ci , the relative attractiveness of it to customers
in segment k is vki , and the retailer earns a positive profit wi for each purchase of
it by the customers. The preference of not purchasing anything is denoted by vk0 for
customers in segment k. The retailer can choose items with a total cost up to ρ

∑n
i=1 ci

to display. The problem can be formulated as an MINLP as follows:

max
x

⎧
⎨

⎩

N∑

k=1

∑

i∈Ck

λkv
k
i wi xi∑

i∈Ck
vki xi + vk0

:
n∑

i=1

ci xi ≤ ρ

n∑

i=1

ci , x ∈ {0, 1}n
⎫
⎬

⎭ .
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In [45], the authors reformulate theMINLP as anMILP by introducing a variable yk to
represent the value of 1/(

∑
i∈Ck

vki xi + vk0) and a variable zik to linearize the product
xi yk . The MILP reformulation of the problem is as follows:

max
x,y,z

N∑

k=1

∑

i∈Ck

λkv
k
i wi zik

s.t. vk0 yk +
∑

i∈Ck

vki zik = 1, k ∈ [N ],

vk0 yk − vk0zik ≤ 1 − xi , k ∈ [N ], i ∈ Ck,

zik ≤ yk, k ∈ [N ], i ∈ Ck,

(vk0 + vki )zik ≤ xi , k ∈ [N ], i ∈ Ck,

n∑

i=1

ci xi ≤ ρ

n∑

i=1

ci ,

x ∈ {0, 1}n, y ≥ 0, z ≥ 0.

For the generation of test instances, we follow the basic scheme of generating type-
1 problems in [45], but increase the value of some of the parameters to make the
instances harder. We set n = 200 and N = 200. For each segment k, its arrival rate λk
and the preference of no purchase vk0 are randomly generated according to the uniform
distributions Uniform([0, 1]) and Uniform([0, 4]), respectively. The preference vki for
segment k of purchasing product i is randomly generated according to the discrete uni-
form distribution Uniform({0, 1, . . . , 10}). For each odd k ∈ K ,Ck is a independently
randomly chosen subset of [n] with size p ∈ {12, 16, 20}. For each even k ∈ [N ],
Ck is a random subset of Ck−1 of size p/2. The profit wi of product i is indepen-
dently randomly generated according to the uniform distribution Uniform([100,U ])
with U ∈ {150, 350}. The capacity parameter ρ is chosen from {20%, 50%, 100%}.
We consider both cases with uniform and nonuniform costs for generating the cost
parameters ci :

(Uniform cost) ci = 1 for i ∈ [n];
(Nonuniform cost) ci = fi · |{k ∈ [N ] : i ∈ Ck}| for i ∈ [n], where each fi is
independently randomly generated according to the normal distribution with mean
1 and standard deviation 0.1.

We generate one instance with uniform costs and one instance with nonuniform costs
for each combination of (p,U , ρ). Therefore, we have 36 LLA instances in total.

CAP problem

The stochastic CAP problem [14] is a generalization of the deterministic CAP problem
[43], which can be formulated as a stochastic two-stage integer program. In this prob-
lem, the decision maker chooses to open a set of facilities to meet uncertain customer
demands. The first-stage variables are denoted by x with xi = 1 if and only if facility

123



Sparse multi-term disjunctive cuts...

i is chosen to be opened. The second-stage variables are denoted by y, where yki j is the
amount of the j th customer’s demand met by facility i in scenario k. For each facility
i , the associated opening cost and its capacity are denoted by fi and si , respectively.
The cost associated with satisfying a unit of the j th customer demand using facility
i (sending a unit of flow from facility i to customer j) is denoted by qi j . The j th
customer’s demand under scenario k is denoted by λkj . The extensive formulation of
the problem is as follows:

min
x,y

n∑

i=1

fi xi + N−1
N∑

k=1

n∑

i=1

m∑

j=1

qi j y
k
i j

s.t.
n∑

i=1

yki j ≥ λkj , j ∈ [m], k ∈ [N ],
m∑

j=1

yki j ≤ si xi , i ∈ [n], k ∈ [N ],

n∑

i=1

si xi ≥ max
k∈[N ]

m∑

j=1

λkj ,

x ∈ {0, 1}n, y ≥ 0.

There are in total 32 CAP test instances all taken from [14] with n ∈ {25, 50},m = 50
and N = 250.

Additional root node results

To provide further insights into the Benders model at the root node, in Tables
10, 11, and 12, we present the number of I -sparse cuts generated in IBC and the
numbers of three major types of solver cutting planes (MIR, flow cover and relax-and-
lift) generated in BBC and IBC, as reported by Gurobi. It is observed that a smaller

Table 10 Number of cutting planes generated for SNIP instances. Results in each row are averages over
five instances

snipno b # I -sparse # MIR # Flow cover # Relax-and-lift

(in IBC) BBC IBC BBC IBC BBC IBC

3 30 1185 1007 198 0 0 179 49

50 1776 646 292 284 0 221 57

70 1722 1344 601 0 0 364 136

90 1826 1244 617 198 137 279 93

4 30 1371 1045 286 0 0 244 46

50 1562 1357 394 74 83 396 95

70 1623 1294 448 0 0 481 124

90 1222 1660 662 0 0 507 128
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Table 11 Number of cutting planes generated for LLA instances. Results in each row are averages over six
instances

Cost p # I -sparse # MIR # Flow cover # Relax-and-lift

(in IBC) BBC IBC BBC IBC BBC IBC

Uniform 12 2834 834 161 1224 166 4 0

16 5420 908 434 1310 432 9 0

20 5778 781 342 1085 372 8 0

Nonunif 12 2551 845 179 1125 121 6 1

16 5210 923 324 1258 318 3 0

20 5882 912 354 1129 366 9 0

Table 12 Number of cutting planes generated for CAP instances. Results in each row are averages of eight
instances

Instance # # I -sparse # MIR # Flow cover # Relax-and-lift

(in IBC) BBC IBC BBC IBC BBC IBC

101–104 2074 0 0 0 0 0 0

111–114 1921 1011 392 633 621 34 4

121–124 1337 762 263 718 531 10 2

131–134 1708 692 251 990 635 0 0

number of solver cuts are generated in IBC than in BBC. This is due to the fact that the
LP relaxation of the Benders model in IBC is stronger than that of the Benders model
in BBC. Consequently, even though the LP relaxation of IBC includes a great number
I -sparse cuts, processing one node in the branch-and-bound tree is not significantly
more challenging in IBC than in BBC, as fewer solver cutting planes are introduced
there.
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