Mathematical Programming
https://doi.org/10.1007/s10107-023-02019-2

FULL LENGTH PAPER

Series B ")

Check for
updates

Sparse multi-term disjunctive cuts for the epigraph of a
function of binary variables

Rui Chen'® . James Luedtke?

Received: 11 July 2022 / Accepted: 14 August 2023
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2023

Abstract

We propose a new method for separating valid inequalities for the epigraph of a
function of binary variables. The proposed inequalities are disjunctive cuts defined by
disjunctive terms obtained by enumerating a subset / of the binary variables. We show
that by restricting the support of the cut to the same set of variables I, a cut can be
obtained by solving a linear program with 2!/ constraints. While this limits the size of
the set I used to define the multi-term disjunction, the procedure enables generation
of multi-term disjunctive cuts using far more terms than existing approaches. We
present two approaches for choosing the subset of variables. Experience on three
MILP problems with block diagonal structure using |/| up to size 10 indicates the
sparse cuts can often close nearly as much gap as the multi-term disjunctive cuts
without this restriction and in a fraction of the time. We also find that including
these cuts within a cut-and-branch solution method for these MILP problems leads to
significant reductions in solution time or ending optimality gap for instances that were
not solved within the time limit. Finally, we describe how the proposed approach can
be adapted to optimally “tilt” a given valid inequality by modifying the coefficients of
a sparse subset of the variables.

Keywords Disjunctive cuts - Epigraph - Sparsity - Valid inequalities

Mathematics Subject Classification 90C11 - 90C15

Parts of the paper have been published in proceedings of the 23rd International Conference on Integer
Programming and Combinatorial Optimization, IPCO 2022. This research is supported by the Office of
Naval Research under grant NO0014-21-1-2574 and by NSF under grant 2000986.

B Rui Chen
rui.chen@cornell.edu

James Luedtke
jim.luedtke @wisc.edu

' Cornell Tech, New York, NY 10044, USA

Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI
53706, USA

Published online: 21 September 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-02019-2&domain=pdf
http://orcid.org/0000-0002-8848-6118

R. Chen, J. Luedtke

1 Introduction

We explore techniques for generating valid inequalities (cuts) for the epigraph E € of
a function Q : X — R over binary variables:

EC ={(0,x) eRx X:0> QX)))

where X C {0, 1}"". Animportant application motivating this study is stochastic mixed-
integer programming (SMIP) [1], or more generally mixed-integer linear programs
(MILPs) with block diagonal structures of the following form:

N
min ¢’ x + Z(dk)Tyk
k=1 (2)
st. TFx + Whyk = h¥, y* >0, k e [N],
x € X C {0, 1}".

In the case of two-stage SMIPs, the binary variables x represent first-stage decisions, N
is the number of scenarios representing the possible outcomes, and foreachk € [N] :=
{1, ..., N}, the continuous decision variables yk represent recourse actions taken in
response to observing the data (d*, 7%, WX, h¥) in scenario k. A common approach
to solving such problems is Benders decomposition, which solves a reformulation of
the form

N
min ch+Zek:9k3 0x(x) fork € [N], x€ X }, (3)
6,x =1

where for k € [N],x € X,

0r(x) = myin{(dkﬂy T*x + Wry = b, y > 0}. 4

The epigraph of Qj of the form (1) shows up as a substructure in (3). In Benders
decomposition, valid inequalities (Benders cuts [11, 54]) for this epigraph are derived
via linear programming (LP) duality, but these are not generally sufficient to define the
convex hull of the epigraph, thus motivating the need to derive stronger valid inequal-
ities for sets of this form. This topic has been extensively studied both theoretically
and computationally; see [17, 26, 30, 39, 47, 50, 52, 53, 56] as just a sample of the
literature. Aside from SMIPs, this epigraph substructure appears in a variety of other
problems (e.g., [12, 45, 55]).

We study a technique for generating inequalities for E< based on a disjunctive
relaxation having many terms, specifically obtained by enumerating all 2!/! feasible
values for a subset I of the binary variables. Disjunctive programming has been a
central tool in MILP since its origin in 19705 [4, 5]. A disjunction is a union of sets,
and if the feasible region of an MILP is contained within such a union, inequalities
valid for the disjunction are valid for the MILP, and are referred to as disjunctive
cuts. Most disjunctive cuts used in practice are based on two disjunctive terms, e.g.,

@ Springer

Sparse multi-term disjunctive cuts...

split cuts [20] and lift-and-project cuts [6, 7, 9, 15]. While there has been significant
work on classes of cuts that are derived from multiple-term disjunctions [2, 10,
22, 24, 42], the current methods remain focused on disjunctions with a relatively
small number of terms. Perregaard and Balas [49] considered an iterative scheme for
generating disjunctive cuts from many terms (see Sect. 2), but the approach remains
computationally demanding. More recently, Balas and Kazachkov [8, 37] consider
a V-polyhedral perspective that allows generating and strengthening disjunctive cuts
using up to 64 terms.

Our proposal for generating multi-term disjunctive cuts more efficiently is based
on restricting the support of the generated cut to the index set /, the same set used
to define the disjunctive terms. We refer to such cuts as /-sparse cuts. Our approach
is motivated by the desire to generate sparse cuts, which may lead to faster solution
time of the LP relaxations. Recent studies have investigated the theoretical strength
of sparse cuts [23, 25, 26]. Our use of sparsity is with respect to the generated cut,
which differentiates it from Fukasawa et al. [29] who empirically show that split cuts
derived from (two-term) split disjunctions defined by a sparse integer vector can close
the majority of the split closure gap. We also show that the idea of /-sparse cuts can
be generalized to tilt a given valid inequality for a mixed-binary set, by modifying
a particular subset of coefficients using a multi-term disjunction. Note that our use
of the term “tilting” differs from that in [19, 27, 49], who use “tilting” to refer to a
process of sequentially rotating a valid inequality with the goal of obtaining a facet-
defining inequality. Our use of the term “tilting” instead refers to an approach for
strengthening the coefficients of a subset of variables (while keeping the coefficients
on the remaining variables fixed).

In Sect. 2 we show that the proposed sparsity restriction enables generating multi-
term disjunctive cuts by solving a single subproblem per term, and then solving a
single cut-generating LP. Thus, while this remains a computationally demanding cut
generation process, we find empirically that it is feasible to use many more disjunctive
terms than have previously been considered. In Sect. 3, we propose two rules for
selecting the support I to generate /-sparse inequalities. In Sect. 4, we present results
of a computational study using the I-sparse inequalities based on up to 2!° disjunctive
terms on three test problems. We find that in many cases the /-sparse cuts close nearly
as much gap as multi-term disjunctive cuts without the sparsity restriction, and can
be generated orders of magnitude faster. When incorporated into a Benders branch-
and-cut solution method, we find that 7-sparse cuts lead to faster solution times or
smaller ending gaps on our test instances. Although we find that sparse cuts often can
close a significant portion of the optimality gap, we expect there are problems where
dense cuts may be needed. Thus, we explore in Sect. 5 how we can use our proposed
technique to optimally “tilt” a given (possibly dense) valid inequality by modifying
a sparse subset of the coefficients of the inequality. We make concluding remarks in
Sect. 6.

A preliminary version of this work appeared in the conference publication [18]. In
this paper we include proofs of the main results, report new results from experiments
dynamically adjusting the cardinality of the cut-support set and using the proposed
cuts to solve problems to optimality within a cut-and-branch method, and derive the

@ Springer

R. Chen, J. Luedtke

approach for tilting a given valid inequality by modifying a sparse subset of its coef-
ficients. Some notation has been changed to improve readability.

2 Sparse multi-term 0-1 disjunctive cuts

We study the problem of generating valid inequalities for the epigraph E€ defined in
(1). Let R(X) be a (continuous) relaxation of X with R(X)N{0, 1}" = X. We assume
we have access to an extension of Q to R(X),q : R(X) — R, satisfying g(x) = Q(x)
for x € X. We require that minimizing g over R(X) is efficiently solvable. For
example, this would be the case if R(X) is closed, convex, and equipped with an
efficient separation oracle and ¢ is convex over R(X) with efficiently computable
subgradients. We emphasize that we do not expect g to be the convex envelope of Q
over X (i.e., conv(E2)) as our interest is precisely about identifying valid inequalities
to approximate this set. In case an efficiently computable exact extension g is not
readily available, one can use an extension ¢ that instead satisfies g(x) < Q(x) for
x € X. For example, in the case of an SMIP having integer second-stage decisions,
the exact recourse function Q(x) is nonconvex and expensive to evaluate, in which
case one may use instead use the recourse function defined using an LP relaxation of
the recourse problem. The strength of the resulting cuts will naturally depend on the
quality of the relaxation, which could for example be improved using standard MILP
valid inequalities.
The following example provides another illustration of the choice of g.

Example 1 ([41]) Assume Q : {0, 1} — R is defined by

witha € R}, ¢ € R’} and d > 0. The natural continuous extension of Q to [0, 1]"
is not necessarily convex. However, it is possible [41] to construct a convex extension
of Q over R(X) = [0, 1]" by introducing a new variable y = 1/(c’x 4+ d) > 0 and
linearization variables z; = x;y > 0 fori € [n], and define the function ¢ : [0, 1]" —
R by

q(x) = r§7uzn a’z+ by (5a)

st.zi—y =<0, (ci+d)z <xi, dy—z) <1—x;, i€l[n], (5b)
cTz+dy=1,ZeR'_’F,y20 (5¢)

for x € [0, 1]". Then, g is convex over [0, 1]* (because it is the value function of a
linear program with x in the right-hand side of the constraints) and ¢(x) = Q(x) for
x € {0, 1}", and thus it is a convex extension of Q. Finally, observe that evaluating
¢ and obtaining a subgradient of ¢ at a point x can be accomplished by solving the
linear program (5).

@ Springer

Sparse multi-term disjunctive cuts...

Let E7 := {(#,x) € R x R(X) : 6 > g(x)} denote the epigraph of g over R(X)
and let I be a nonempty subset of [n]. We denote by x; the subvector of x with indices
I, and define {0, 1}! := {x; : x; € {0,1},i € I}. For each given x € {0, 1}/, we
define

Ef(x) :=1{0,%) € E :x; = x} = {(6,%) e R x R(X) : 6 > q(x),x; = x}.

We derive valid inequalities for E€ by finding valid inequalities for the following
multi-term disjunctive relaxation of E<:

El = |J E]. ©)

xefo, 1!

Since EC C E 7 , any inequality valid for £ ;1 is also valid for E<. We call the relaxation
E? of E2 a multi-term 0-1 disjunction, and any cut valid for E{ a multi-term 0-
1 disjunctive cut. We include g as a superscript in the notation E?(x) and E? to
emphasize that these relaxations depend on the choice of the extension g. These
relaxations also depend on the choice of R(X), i.e., the domain of g, but we suppress
this dependence for notational convenience.

2.1 Generating multi-term 0-1 disjunctive cuts

By (6), an inequality of the form o6 — u”x > 7 is valid for E? if and only if

min {Moe —uTx:0,%) e E;’(X)] > pforall x € {0, 1} %)
X

Therefore, to separate a point (é , %) from EY, in principle one can solve the following
problem:

min pof —pul'k — 1 (8a)

Mo, M1
st ol — u'x > n, Y(x,0) € E1(x), x €10, 1}, (8b)
mo = 0, [(o,)l < 1, (8c)

where (8c) is just one example of a normalization constraint that can be used to ensure
the separation problem has an optimal solution.

Perregaard and Balas [49] suggest an iterative row generating algorithm for gener-
ating multi-term disjunctive cuts. Adapting it to our multi-term 0-1 disjunction leads
to Algorithm 1 for solving (8). Specifically, the method alternates between solving a
relaxation of (8) defined by only including constraints (8b) for a (small) subset of the
extreme points of £ ? (x) foreach x € {0, 1}/ (line 5), and then solving a subproblem
for each x € {0, 1}/ to determine if any of the excluded constraints in (8b) is violated
(line 7) and adding one such constraint if so. While this approach is guaranteed to
yield a valid inequality for E ? that cuts off (9, X) when one exists, the scalability of

@ Springer

R. Chen, J. Luedtke

Algorithm 1: The row generating algorithm for solving (8)

1 Input: 7 C [n]

2 Output: A valid inequality o6 — 17 x > 7 for E;I

3 Initialize a set §X as a subset of extreme points of E(IJ (x) for each x € {0, 1}’ ;

4 repeat
5 Compute an optimal solution (g, /i, 17) of the LP:

min b — ;LTfi -7
Hospsn
stopof — ' x=n, V0,% €8y, x €0, 1)/,

no =0, (o, Wl = 1;

6 | for x €{0,1} do

7 Solve
n(fo, i x) == min o8 — il x;)
OXeE] (0
8 if (o, f1; x) < 7 then
9 ‘ Add an optimal solution (6%, x*) of (9) into Sy ;
10 end
11 end

12 until n(fig, & x) > 7 for all x € {0, 1};

the algorithm is limited by the multiplied effect of (a) the size of {0, 1}1 , and (b) the
potential need to solve (9) multiple times for each x € {0, 1}/. Numerical experiments
in [49] generate valid inequalities for MILPs using only up to 16 disjunctive terms.
Balas and Kazachkov [8, 37] explore an approach for expanding the number of terms
that can be included that is based on using a well-chosen relaxation of each term,
which enables generating and strengthening disjunctive cuts using up to 64 terms. In
this work, we propose a complementary approach in which we restrict attention to cuts
supported on 7, which we find eliminates the effect of (b), and enables us to conduct
experiments with up to 1024 terms.

2.2 |-sparse inequalities

We next explore how restricting the support of the generated cut can be used to accel-
erate the generation of multi-term 0-1 disjunction cuts for £ ? for a fixed 1.

Definition 1 Let / C [n]. We say an inequality & > u”x + 7 is an I-sparse inequal-
ity(/cut) for EC (with respect to the extension g) if the following two conditions
hold:

1. 6 > MTx+nis valid for EZ;
2. uj =0foralli ¢ 1.

The following proposition characterizes I-sparse inequalities.

@ Springer

Sparse multi-term disjunctive cuts...

Proposition 1 An inequality 0 > pu’'x + n with u; = 0 for all i ¢ I is an I-sparse
inequality for E€ if and only if

wy x4+ n<vix), Vx € {0, 1}, (10)
where for each x € {0, 1}/,
v (x) == min{g(x) : x € R(X),x; = x}. (11)

Proof We only need to show that (7) with ;1o = 1 and pi(,)\; = 0 holds if and only if
(10) holds. This is straightforward by observing that for each x € {0, 1}1 R

mm{ Z,ulx, 0,x) € Eq(X)]

iel

min {9 — ufx : 0.%) € £ (0}

=mn{9 o, x)eEq()()}—uITX

0,x

=min{6:6 = g(x).x € RO, x1 = x| = u] x
0,x

=vI(x) — 1 x.

O

Observe that the problem (11) has a similar form as (9) which is used when applying
the Perregaard and Balas algorithm [49] to solve (8).

Remark 1 Our presentation focuses on the case where X C {0, 1}". However, the
result naturally extends to problems with bounded integer variables by enumerating
all possible combinations of values that a subset of the bounded integer variables can
take.

The following result provides a condition under which every nontrivial valid
inequality for E € with coefficients supported on the index set / is an I-sparse inequal-

ity.

Corollary 1 If X = {0, 1}*, R(X) = [0, 1]" and q is component-wise monotonically
nonincreasing or nondecreasing on R(X), then an inequality 6 > u'x + n with
wi =0 foralli ¢ I isvalid for EC if and only if it is an I-sparse inequality.

Proof As in the proof of Proposition 1, an inequality 0 > u” x + n with mpapg = 01s
valid for E € if and only if

minfg(x) : x; = x,x € {0, 1"} = > " wixi +n, ¥x € {0, 1}

iel
The conclusion then follows by observing that, for each x € {0, 1}/,

v?()() = min{q(x) (X7 = x,x € [0, 1]"}

@ Springer

R. Chen, J. Luedtke

=min{g(x) : x; = x,x € {0, 1}"},

where the last equality is due to the fact that a monotone function over a box always
attains its minimum at an extreme point. O

When the assumptions of Corollary 1 do not hold, Proposition 1 still provides a method
for separating /-sparse cuts — we just cannot assure in this case that /-sparse cuts
contain all cuts supported only on /.

Based on Proposition 1, for a fixed /, the separation problem for /-sparse inequal-
ities for a point (6, %) can be solved by solving the LP

g4(I) = max {Zm& Fniplx+n<viGo. x (0. . (12)

iel

Specifically, the optimal solution of (12) defines an inequality that cuts off (6, %) ifand
only ifgg(l) > 6. Since q is finite valued in R(X), v?()() € Rfor x € proj;(R(X))N
{0,1}Y. When %; € conv(proj; (R(X)) N {0, 1}1), the LP (12) is guaranteed to have
an optimal solution. When &; ¢ conv(proj; (R(X)) N {0, 1}), (8, %) can be cut off by
an inequality separating X; from proj, (R(X)) N {0, 1}/, which can be generated by
enumerating proj; (R(X)) N {0, 1}1.

The main work to generate an /-sparse inequality is evaluating v? (x) by solving
(11) foreach x € {0, 1}/, and then solving the LP (12) once. Note that (12) has | /| + 1
variables in contrast to n 4 2 variables in the problem (8) used in the Perregaard and
Balas (PB) [49] algorithm, and requires solving at most 2111 subproblems of the form
(11), in contrast to the PB algorithm which solves 2!/ subproblems of this form in
multiple iterations until convergence.

2.3 Accelerating cut generation

Evaluating v;’ (x) forall x € {0, 1}/ is the most significant computational component
of generating an /-sparse inequality. We discuss techniques to potentially accelerate
this evaluation, focusing on our motivating example of MILPs with block diagonal
structures (2). In this context, assume R(X) = {x € R" : Ax < b} is a polyhedral
relaxation of X and assume bound constraints 0 < x; < 1 are included in Ax < b.
For a fixed k € [N], let Q¢ (x) be as defined in (4) and assume Q(x) is finite valued
for all x € R(X). In this case, when generating an /-sparse inequality for the set
E% = {(6;,x) € R x X : 6 > Qx(x)} the evaluation of v?(x) for x € {0, 1}/ can
be formulated as the following LP

V{00 = min{@)"y" : T+ Wy =h', y =0, Ax<b, x; =x). (13)

A first simple idea for accelerating the solution of (13) forall y € {0, 1}/ is to exploit
the possibility to warm-start these LPs (see, e.g., [13] for background). LP solvers like
Gurobi [36] automatically implement a simplex warm start when only variable bounds

@ Springer

Sparse multi-term disjunctive cuts...

are changed in an LP. Thus, solving the sequence of problems (13) for x € {0, 1}/ by
making changes to variable bounds implied by the constraints x; = x will naturally
benefit from these warm-start capabilities. This motivates a careful selection of the
sequence these problems are solved in. For example, by following the sequence defined
by a Gray code [31], at most one variable bound will change from one subproblem to
the next.

We do not explore this in our computational study, but another possibility for reduc-
ing the time required for evaluating v;’ (x) is to use a lower bound on ¢ that is simpler
to evaluate. For example, for MILPs with block diagonal structure, a lower bound on
l)IQk () is obtained by solving a problem of the form:

b2 (x) = min{O(x) : x € R(X). %/ = x)

where Qk is the current piecewise-linear convex lower bound of Q. defined by Ben-
ders cuts. These lower bounds could then be used in (12) which would yield a valid
but potentially weaker inequality. This inequality could then be improved by exactly
evaluating v,Q" (x) for the x that correspond to binding constraints in (12), and then
re-solving (12) with these improved values.

Finally, we note that after evaluating v?(x) for x € {0, 1}/ for a given set I (and
potentially adding a cut based on solving (12)), we recommend storing these values
for future use. In particular, after re-solving the LP relaxation after addition of cuts and
obtaining a new candidate relaxation solution @, %), it may be possible that solving
(12) again for the same set I can lead to a new violated inequality. Storing the values
v? (x) for x € {0, 1}/ avoids needing to re-calculate them, so that only (12) needs to
be solved to determine if such a violated inequality exists.

3 Two selection rules for the support /

We now discuss techniques for choosing the set / when generating /-sparse cuts.
Given a point (é, X), the goal is to select 7 in order to maximize the cut violation gg)
(defined in (12)). Since the complexity of generating these cuts grows exponentially
with |7| we investigate techniques that choose I satisfying |/| < K for some fixed
(small) integer K. We describe two selection rules that are derived from two different
approximations of g.

3.1 A greedy rule based on a monotone submodular approximation

The problem of choosing / that maximizes gg (I) is a set function optimization prob-
lem. For notational convenience, we do not distinguish between a set function and a
function with binary variables, i.e., we interchangeably use f(A) for f(xa) for all
A C [n] where x4 € {0, 1}" is the indicator vector of A. One particular class of
set functions satisfying good theoretical properties is monotone submodular functions
[33].

@ Springer

R. Chen, J. Luedtke

Definition2 A function f : 2"l — R is monotone submodular if it satisfies the

following two conditions:

1. (Monotonicity) If S € T C [n], then f(S) < f(T);

2. (Submodularity) If S € [n], j, k € [n]\ S and j # k, then f(SU {j}) + f(SU
(k) = fF(SUL{j, kD + f(S).

Given X € [0, 1]", we can show that the cut violation function gg (I) is monotone

submodular in / if Q is monotone submodular and its extension ¢ is component-wise
monotonically nondecreasing.

Proposition2 Assume X = {0, 1}", R(X) = [0, 11", Q is monotone submodular
on X, and its extension q is component-wise monotonically nondecreasing on R(X).
Then the cut violation function gg is monotone submodular.

Proof The monotonicity of gg is obvious since an I-sparse inequality is also I’-sparse
forany I C I’ C [n]. We only need to show submodularity of gz.

Forall I < [n], let Q; : {0, 1}/ — R be the function with Q;(xs) = Q(S) =
Q(xs) forall S € I and let Q; : [0, 117 — R denote the convex envelope of Q7 on
[0, 1]/. By component-wise monotonicity of ¢ on R(X),

V() =min{Q(x) : x; = x,x € {0, 1}"} = Q;(x), Vx € {0, 1}'.

Therefore,

q _ X
gl = rgngulxl +1,

iel

stulx+n <0100, ¥x € (0. 1} (14)

Then by [51, Corollary 12.1.1], gg (I) = Q;(Xy) as (14) characterizes all affine under-
estimates of Q. Note that Q; is submodular by submodularity of Q. Then the convex
envelope Q; is characterized by the Lovasz extension [44] of ;. We are now ready
to show that gg is submodular. Let S € [r] and j, k € [n] \ S such that j # k. Let
i1, ..., iy be areordering of elements in S U {j, k} such that X;, > ... > %;, . Define
Sy :={i1,..., iy} forl =1, ..., m. Using Lovdsz extensions of Qg, Qsu(j}> Qsuik)
and Qsuyj k), we have

Logl(SU(j.kh) =1 —2)0W) + X7 Ry — £,) Q(S) + £, (83,

2. gL (SULD = (1 =5 0W) + X0 R — Ry QS \ (kD) + £, O(S;, \ (kD)
3. gl(SUk) = (1 —2) QW) + X1 (Riy — R4,) Q(Si \ {51 + i, Q(Si,, \ 7]
4. 82(8) = (1= %) QW) + X7 Riy — £i,) Q(Si \ . kD) + &, O(Si,, \ 1 k.
Note that Q(S;\{k}) + O(Si\{j}D) = O(S;) + O(Si\{j,k}) fori = 1,...,k due to
submodularity and monotonicity of Q. It follows that gz SU{jh + gg (SU{k}) >
gl (SU{j.k}) + g (S). ie., gf is submodular. O

Although maximizing a monotone submodular function subject to a cardinality
constraint is NP-hard [21] in general, the well-known greedy algorithm of Nemhauser

@ Springer

Sparse multi-term disjunctive cuts...

Algorithm 2: Greedy algorithm for choosing /

1 Input: X, K

2 Qutput: /

3 Initialize I < ¢

4 while |[I| < K do

5 Evaluate g;f(l U {i}) foreachi ¢ I;

6 I < I'U{i*} where i* € argmax;g¢s gZ(lU{i});
7 end

et al. [46] attains a 1 — 1 /e approximation ratio to this problem. For maximizing gg)
subject to a cardinality constraint | /| < K, the greedy algorithm is described in Algo-
rithm 2. However, directly applying a greedy algorithm for choosing / may not be a
good choice because (i) the assumptions of Proposition 2 may not hold, and (ii) the
greedy algorithm requires evaluating gg many times, which is computationally expen-
sive. Therefore, we seek alternatives to this approach by applying the greedy algorithm

;? associated with function Q : [0, 1]" — R,

whose restriction Q' on {0, 1}/ is an approximation of the function Q. We choose 0

to a different cut violation function g

such that Q' is monotone and submodular and the cut violation g)? can be evaluated
much more efficiently than gg.
We propose to use 0 of the form Q(x) = maX;ep{a;ix; + b} with 0 < a; <
. < a, (after complementing and reordering some variables). With this form, Q0

is component-wise nondecreasing on R(X) and Q’ (the restriction of Q to X) i
0

w2

monotone submodular on X, and thus the associated approximation g;° is monotone

X
submodular. To construct such an approximation Q, we use the /-sparse inequalities
with I = {i} for each i € [n]. When I = {i}, the polyhedron defined by (10)
has a unique extreme point (v?i}(l) - v?i}(O), vz}(O)), which corresponds to a valid
inequality of E€:

0> (v{qi}(l) - ug.}(O))x,- + vg.}(O). (15)

By complementing the variable x; <— 1—x; if necessary, we may assume that v{q[.}(l) >
v?i}(O). Thus, Q(x) > LB* := max;¢[vg.}(O) for all x € {0, 1}". Therefore, we can
strengthen (15)tobe 6 > (ﬁ{qi}(l)—LB*)xi—i—LB*, where ﬁfi}(l) = max{vfi}(l), LB*}
for all i € [n]. We thus obtain inequalities of the form 6 > a;x; + b fori € [n] with
a; > 0, which are valid for E Q0 (modulo the mentioned complementing of the x;
variables as needed). Assuming without loss of generality that a; < ... < a,, we
obtain the desired approximation 0.

We next discuss how to use gg to generate a support within Algorithm 2. In particu-

lar, we discuss how to efficiently evaluate gﬁQ (I) forasubset . Define 0;: {0, 1}/ — R
by

0;(x) = maIx{aix,- +b} forallx e {0, 1}
IAS

@ Springer

R. Chen, J. Luedtke

and let Q 1 be the convex envelope o~f Q 7 over [0, 1]~1 . As discussed in the proof
of Proposition 2, submodularity of g;‘) implies that gg (I) = Q;(X;). The convex
envelope of Q ; over [0, 117 is the convex hull of the set:

Fr ={0,x) e Rx{0,1} :0>aix; +b, i €I} (16)

The convex hull of this set has been characterized in [3, 35].

Theorem 1 (/3, 35]) Assume I = {1,2,...,d}withO <a; < ... < ay. Then

m
conv(Fy) = {(0.%) e R x [0, 1] : 0 > @y, xi, + Y _(ai, — ai,_)xi, + b,
k=2
for all subsequences (ik);c":] of [d] suchthat1 <i; <...<i, =d}
(17)

Thus, for a given X, the problem of evaluating O (X;) can be posed as min{6 : (6, %;) €
conv(F)} which is equivalent to finding the inequality in the family of inequalities
given in (17) with maximimum right-hand side when evaluated at X;. This, in turn, is
equivalent to the separation problem of this class of inequalities, which can be solved
in polynomial time [3, 35]. We describe the application of the separation algorithm
from [35] to this context in Algorithm 3. Incorporating this approach for evaluating

gﬁQ (1) into the greedy algorithm yields a much quicker method for choosing / than
using the greedy algorithm with exact evaluation of gg (I). Indeed, the most significant
work in this case is solving the problem (11) with x = 0 and x = 1 for eachi € [n]
to obtain the values v{qi) (1) and v{ql.}(O) for i € [n], which only needs to be done once
for the overall greedy algorithm.

The proposed approximation may not lead to a good choice of I when Q is not
a good approximation of Q, in particular because the approximation Q is based on
the maximum of affine lower bounding functions, each supported by a single variable.
Thus, it is natural to consider using affine functions with more general support to build
the lower bounding approximation. However, unless P = N P, the following result
and the equivalence between optimization and separation [32] indicate that the key step
of evaluating the convex envelope of the given function would no longer be efficiently
solvable even if the support of the inequalities defining the lower approximation of Q
were restricted to just two variables per inequality.

Proposition 3 It is NP-hard to optimize a linear function over

((0,%x) eRx {0,1)":0 >aTx+ b, (a,b) € A (18)

even if ||allg < 2 for each (a, b) € A and |A| is polynomially bounded by n.

Proof We prove by polynomially reducing an arbitrary instance of the N P-complete
vertex cover problem to a linear optimization problem over (18) with |lallp < 2 and
| Al = O(n?). The vertex cover problem is stated as:

@ Springer

Sparse multi-term disjunctive cuts...

Algorithm 3: Evaluating the violation underestimate gg D).

1 Input: x, 7 =1{1,..., d},b,a;,i e Iwith0<a; <...<ay

2 Output: gﬁQ(l)
3 Initialize Xmax < —00, imax < d, (oi);i:l <« ((Z))ld:l;
4 fori=d,d—1,..., 1 do
5 if X; > Xmax then
‘ 0 < imax, ¥max < Xi, imax < i
end

SN

8 end

9 ¢ < b+ al’maxfimax’ k < imax;
10 while k # d do

n | g < g+ (a0, — ap)ioy;

12 k <« oy

13 end

14 Return gQ(I) =g

X

e Given an undirected graph G = (V, E) and positive integer k', does there exist
V' C V with |V’/| <k’ suchthatu € V' orv € V' foreach uv € E?

We next show that such vertex cover V' exists if and only if the optimal objective
value of the following problem is at most —1:

min va+(k+1)0:92—1; 0> —x, —xp,uve E; xe{0,1}V}.

veV
(19)

Note that (19)< —1 if and only if the optimal solution (6*, x*) satisfies 6* = —1,
Y vey Xy <kand —1 > —x; — x; for each uv € E. Such x* corresponds to a vertex
cover V' := {v € V : x} = 1} of G with |V'| < k’. On the other hand, a vertex
cover V' of G with |V’| < k’ corresponds to an optimal solution (—1, x*) of (19) with
objective value at most —1 satisfying x} = 1 if and only if v € V. O

3.2 A cutting-plane approximation rule

We next describe an alternative selection rule for / that is based on a single affine
lower bound (e.g., from a cutting-plane) of Q. Leta € R", b € R, and

Fap ={0,x) eRx{0,1}":0 > alx +b}.

Let (9, %) € Rx[0, 1]" be given, and consider the problem of finding a valid inequality
for F(, p) of the form

6= wixi+1 (20)

iel

that is maximally violated by (6,).

@ Springer

R. Chen, J. Luedtke

Proposition 4 The problem of maximizing
Z wiki +n—60
iel

such that inequality (20) defined by (v, n is valid for Fypy has optimal value
=Y a4+ Y @ik +a;) + b — 0, where a; = max{—a;, 0}.

Proof Inequality 0 > »"._; uix; + n is valid for F(a p) if and only if

uwhx +n<min{0 : (0,%) € Fap,x = x}

= aixi— Y a +b, ¥x (0.1}

iel igl

Therefore, by LP duality, the maximum violation of an inequality of this form is

max {0 —0:uix+n< Y aixi— Zai_er,xe{O,l}’}

mn
iel iel i¢l

=min{ > Yaxir o+ Y (= Ya +b)x,

xel0,1}! i€l xel{0,1}! i¢l
D xiky=kiiel; Y A =1r=0t-6
xel0. 1) xe(0. 1)
- ki~ o +h0
iel i¢l
=—Za +Z(a,x,+a)Y+ b— 0.
iel

]

Using Proposition 4, we interpret the value a; ¥; +-a; as a measure of the importance
of variable x; for the cutting plane & > a’ x+b at X. We use this intuition to construct a
selection rule. We first pick a cutting plane # > a’ x+b that approximates the epigraph
of Q atX. Then indices i € [n] are added to the set I in decreasing order of the value
a;%; +a; until |[I| = K. Note that a;X; + a, > 0 forany ¢; € Rand X; € [0, 1]. If
the cutting plane approximation 8 > a’x + b is sparse (i.e., |{i € [n] : a; # 0}| is
small), it is possible that |{i € [n] : a;X; +a; > 0}| < K. In such cases, we first add
those indices with positive ;X; + a; values into /, then pick another cutting plane
and repeat the procedure until |/| = K. A potential advantage of this selection rule
is that it does not require any evaluation of the cut violation function. And unlike the
selection rule in Sect. 3.1, this selection rule can take advantage of the availability of
dense cutting plane approximations. The potential limitation, of course, is the reliance
on the single cutting-plane approximation.

@ Springer

Sparse multi-term disjunctive cuts...

The final detail we need to specify for this approach is how to choose the cutting-
plane approximation(s). Assume a collection .4 of cutting planes of the form 6 >
a’'x + b is available. A natural choice for A is the set of cutting planes (e.g., Benders
cuts) that have been added in the algorithm so far for approximating £<. A natural
ordering for choosing which cutting plane in A to use first is based on the tightness of
the cutting plane at the point X. The inequality in .4 with coefficients (a, b) that yield
the highest a’ % + b value is chosen first, etc.

4 Computational results

To provide insight into the computational potential of /-sparse cuts, we conduct numer-
ical experiments on three MILP problems with block diagonal structures (2):

e The stochastic network interdiction (SNIP) problem [48] (40 instances): n = 320
for these instances.

e The latent-class logit assortment (LLA) problem [45] (36 instances): n = 200 for
these instances.

e A stochastic version of the capacitated facility location (CAP) problem [14] (32
instances): n ranges between 25 and 50 for these instances.

We present the problem definition and details of the test instances for each problem in
the Appendix. For the first two test problems, each block of their MILP formulations
is sparse in variables x, but in distinct ways. For the SNIP problem, we observe that
when applying Benders decomposition to solve its LP relaxation the Benders cuts are
mostly very sparse in X. In the LLLA problem each block of the MILP formulation only
uses a small portion (between 12 and 20) of the x variables, making the use of sparse
cuts very natural for this problem. Neither of these two sparsity properties holds for
the CAP problem.

In most of our test instances the constraints X € X include binary restrictions on x
and either a lower or upper bound on the number of nonzero x; variables. Therefore,
we use R(X) = conv(X) in those cases. In half of the LLA instances, X is a knapsack
set with nonuniform coefficients and we use the direct polyhedral relaxation of X as
R(X). We use the direct LP relaxation as Qy for each block of the MILP as described
in Sect. 2.3.

We test the ability of 7-sparse cuts to improve upon the standard LP relaxation within
the Benders reformulation (3). The cut generating process is described in Algorithm 4.
In the first step (line 1), we add standard Benders cuts iteratively until we have solved
the initial LP relaxation. Specifically, this Benders approach works with a master LP
relaxation in which the constraints 6y > QO (x), k € [N] are approximated by Benders
cuts of the form:

O > (W) Mk —Thx), j=1,....1
where /ﬂ ,J = 1,..., t, are extreme point solutions to the dual feasible region for

subproblem k, ITX = {11 : u" WK < d*}. In the standard cutting—plage implementation
[38], after solving a master LP relaxation and obtaining a solution (8, X), Benders cuts

@ Springer

R. Chen, J. Luedtke

Algorithm 4: Generating /-sparse cuts

1 Initialize a master LP using Benders decomposition;
2 repeat
3 Solve the master LP to obtain solution (8, X);

4 for k € [N] do

5 Choose a support /;

6 Generate an /-sparse cut valid for the set E% = {(Bk.x) e R x X : 6 > Qr(x)} by
solving (12);

7 Add the 7-sparse cut to the master LP if it is violated by (ék, X);

8 end

9 until No violated cut can be generated or time limit is reached,

are identified by solving the subproblem (4) with x = X and adding the Benders cut
defined by the dual optimal solution if it is violated by (6, %). We use this standard
cutting-plane method for the SNIP and LLA instances. We found the cutting-plane
method took too long to converge for CAP instances, so we use the level method [40]
for line 1 of Algorithm 4 on those instances.

In terms of the /-sparse cut generation, we consider the following variants of Algo-
rithm 4:

e Greedy-K: Use the greedy rule described in Sect. 3.1 for generating the support /
of size K;

e Cutpl-K: Use the cutting plane approximation rule described in Sect. 3.2 for gen-
erating the support / of size K;

We test Greedy-K and Cutpl-K with K fixed at 4, 7, and 10. We also test adaptive
variants, Greedy-Ad and Cutpl-Ad of each selection method. These variants begin
with K = 4. After solving the master LP, if K < 10 and the gap closed in the last five
iterations for this K is less than 1% of the total gap closed thus far we increase K by
1 and re-start the generation of /-sparse cuts.

For Cutpl, we use the collection of all the Benders cuts added for block & in line 1 of
Algorithm 4 as A for Q. To improve the efficiency of the algorithm, when applying
Greedy, we only select / from indices for which the corresponding variables have a
nonzero coefficient in at least one of the Benders cuts for block k. This restriction
is also implicitly implemented when using Cutpl since indices i with a; = 0 for all
(a, b) € A can never be selected by Cutpl. It significantly improves the efficiency
of Greedy on SNIP instances (by skipping the generation of {i}-sparse cuts for most
i €[n)).

All LPs and MILPs are solved using Gurobi 9.1.0. In the implementation of Algo-
rithm 4, we take advantage of Gurobi’s automatic warm start for solving similar LPs
and store the values of v;] (x) once evaluated for potential reuse in the future.

4.1 LP relaxation results
We first present results showing the impact of adding /-sparse inequalities to the LP

relaxation of the problem without branching. An 1800-second time limit is set for
generating I-sparse cuts in these experiments. To visually compare the performance

@ Springer

Sparse multi-term disjunctive cuts...

of I-sparse cuts across multiple test instances, we present results in the form of an
integrality-gap-closed profile. Each curve in such a profile corresponds to a particular
cut generation strategy, and its value at time ¢ represents the average (over the set of
instances for that problem class) integrality gap closed by time ¢, where the integrality
gap closed at time ¢ is calculated as (zg(¢t) — zLp)/(z* — zLp) x 100%, where z(t)
is the bound obtained by the algorithm at time 7, z7 p is the basic LP relaxation bound,
and z* is the optimal value.

The results for the SNIP, LLA, and CAP test problems are given in Figs. 1, 2, and
3, respectively, where in each case we vary K € {4, 7, 10} or use an adaptively chosen
K, and compare the Greedy and Cutpl selection rules. In each case we find that the

100 1

Greedy-4 j
Greedy-7
Greedy-10
Greedy-Ad
- Cutpl-4
Cutpl-7

- Cutpl-10

- Cutpl-Ad

Closed Integrality Gap [%]

0 SI 1‘0 1‘5 2‘0 2‘5 30
Solution Time [min]

Fig. 1 Integrality-gap-closed profiles for SNIP instances obtained by different Greedy rules (solid) and
Cutpl rules (dashed)

100 4

—— Greedy-4
—— Greedy-7
—— Greedy-10
—— Greedy-Ad

-+ Cutpl-4
....... Cutpl-7

- Cutpl-10
------- Cutpl-Ad

Closed Integrality Gap [%]

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0
Solution Time [min]

Fig. 2 Integrality-gap-closed profiles for LLA instances obtained by different Greedy rules (solid) and
Cutpl rules (dashed)

@ Springer

R. Chen, J. Luedtke

—— Greedy-4
—— Greedy-7
—— Greedy-10
—— Greedy-Ad

- Cutpl-4
..... Cutpl-7
weees CULPI-10

- Cutpl-Ad

Closed Integrality Gap [%]

) é 1’0 1‘5 2’0 2’5 30
Solution Time [min]

Fig. 3 Integrality-gap-closed profiles for CAP instances obtained by different Greedy rules (solid) and
Cutpl rules (dashed)

two different selection rules have similar trends in gap closed over time. For fixed K,
Cutpl rules perform better on the SNIP test instances, whereas Greedy rules have better
performance on the LLA instances with K = 4 and the CAP instances. In terms of the
effect of K, as expected smaller values of K yield quicker initial gap improvement,
whereas larger values of K require more time to close the gap but eventually lead to
more gap closed. For the SNIP instances we find that using K = 4 already closes most
of the gap, and does so much more quickly than with K = 7 or K = 10. For the LLA
instances we find that increasing K leads to more gap closed, although significant
gap is already closed with K = 4, and the additional gap closed using K = 10 is
marginal, while requiring significantly more time. For the CAP instances, we find that
the 7-sparse cuts close significantly less gap than the other test problems, although the
gap closed is still significant. Large values of K yield significantly more gap closed on
the CAP instances, but also requires considerably longer running time. The adaptive
approaches Greedy-Ad and Cutpl-Ad appear to successfully achieve the best of the
different choices of K, e.g., yielding quick improvement in bound early on while also
eventually achieving bound improvement as good as achieved with the largest K.

For [-sparse cuts generated by different approaches, we summarize in Tables 1, 2,
and 3 the closed integrality gap and number of cuts added. We observe that for the
different fixed sparsity levels K, the number of /-sparse cuts added by the algorithm is
not significantly larger for larger K. Thus, the improvement in the bound is attributable
to stronger cuts rather than an increase in the number of cuts added. Naturally, the
number of cuts added with the adaptive algorithm is larger than the number added for
any fixed K, as that method potentially adds cuts for multiple values of K.

We next compare the /-sparse cuts with the multi-term 0-1 disjunctive cuts without
the sparsity restriction, but generated from the same sets /, where the cuts are generated
using the Perregaard and Balas (PB) [49] approach. Our interest in this comparison is to
demonstrate the potential time reductions from using the /-sparse cuts and to estimate
the extent to which the sparsity restriction degrades the quality of the relaxation. We

@ Springer

Sparse multi-term disjunctive cuts...

Table 1 LP relaxation results for SNIP instances. Results in each row are averages over five instances

Rule snipno b Avg closed gap (%) Avg # cuts added
4 7 10 Ad 4 7 10 Ad
Greedy 3 30 73.0 769 786 785 1030 932 895 1250
50 716 755 638 768 1528 1365 706 1922
70 735 78.1 46.6 795 1836 1574 396 2370
90 674 714 349 720 2039 1715 326 2462
4 30 723 770 790 79.0 1104 999 898 1831
50 68.6 725 546 752 1520 1331 434 2019

70 70.1 74.3 352 750 2063 1720 281 2599
90 699 73.0 304 734 2454 2048 250 3517

Cutpl 3 30 767 786 786 717 1068 970 898 1185
50 744 7719 63,6 764 1361 1408 598 1776

70 785 82.8 528 795 1471 1681 438 1722

90 736 789 43,6 746 1631 1895 359 1826

4 30 764 789 790 784 991 1046 886 1371

50 726 770 558 735 1339 1286 399 1562

70 735 784 396 746 1419 1446 290 1623

90 696 757 316 703 1146 1200 255 1222

Table 2 LP relaxation results for LLA instances. Results in each row are averages over six instances

Rule Cost P Avg closed gap (%) Avg # cuts added
4 7 10 Ad 4 7 10 Ad
Greedy Uniform 12 76.1 86.5 941 927 823 839 913 1960

16 66.1 79.7 857 845 1129 1344 1430 3301
20 639 743 820 823 1234 1400 1525 4069
Nonunif 12 749 864 937 922 803 848 832 1744
16 664 81.1 87.4 86.4 1097 1328 1440 3322
20 640 753 839 842 1252 1432 1557 4132

Cutpl Uniform 12 699 909 968 96.3 885 1127 1126 2834
16 526 795 89.8 88.8 905 1493 1886 5420

20 504 725 854 843 978 1604 1904 5778

Nonunif 12 702 91.6 958 955 866 1078 991 2551

16 528 808 90.1 894 944 1563 1881 5210

20 501 733 865 857 946 1545 1971 5882

conduct this experiment only on the CAP test instances, since we have already seen
that the I-sparse cuts are sufficient to close most of the gap in the SNIP and LLA
instances, and thus there is little potential to close more gap when eliminating the
sparsity restriction. We set a 24-hour time limit for the PB algorithm. For both the
I-sparse and PB cuts, we use Greedy-K as the rule for selecting the set I to define the
multi-term disjunction.

@ Springer

R. Chen, J. Luedtke

Table 3 LP relaxation results for CAP instances. Results in each row are averages over eight instances

Rule Instance # Avg closed gap (%) Avg # cuts added
4 7 10 Ad 4 7 10 Ad
Greedy 101-104 34.6 44.4 51.8 47.0 790 848 732 2566
111-114 7.3 13.6 15.7 15.0 518 770 560 2122
121-124 14.6 20.1 21.9 21.2 647 659 576 1779
131-134 24.3 29.6 31.7 31.1 757 732 659 1856
Cutpl 101-104 25.9 404 56.0 522 497 538 601 2074
111-114 5.1 12.9 20.4 19.0 278 377 525 1921
121-124 5.8 11.2 16.7 15.3 295 395 439 1337
131-134 13.6 20.2 254 24.9 531 592 624 1708
80 — I-sparse (K=4) 804~ PB (K=4)
o im Ik
- PB (k=)

60 PB (K=7) —J—’! 60

* PB (K=10)

50 [FH

Closed Integrality Gap [%]
5
8

Closed Integrality Gap (%)
5
8

10 10
0 0
2 4 6 8 10 12 14 200 400 600 800 1000 1200 1400
Solution Time [min] Solution Time [min]
25 25
—— I-sparse (K=4) - PB (K=4)
—— I-sparse (K=7) PB (K=7)
20{ — Isparse (K=10) 20 PB (K=10)

- PB (K=4)
PB (K=7)

15| PBK=10) '—,_’__,_,____

Closed Integrality Gap [%]
8

Closed Integrality Gap [%)]
8

9 B 10 15 20 25 0 200 400 600 800 1000 1200 1400
Solution Time [min] Solution Time [min]

Fig.4 Integrality gap closed by /-sparse cuts and cuts generated by the PB algorithm on instances CAP101
(top) and CAP111 (bottom)

Figure 4 displays the integrality gap closed over time for two specific CAP instances,
one for which 7-sparse cuts were able to close a significant portion of the gap
(CAP101), and one for which they were not (CAP111). The figures on the left display
results for both the /-sparse cuts (solid lines) and PB cuts (dashed lines), with the
time-scale (x-axis) determined by the time required to generate all /-sparse cuts for
the largest value of K. From these figures we observe that for any value of K, within
this time frame the 7-sparse cuts close significantly more gap than the PB cuts. To

@ Springer

Sparse multi-term disjunctive cuts...

estimate the potential for PB cuts to eventually close more gap, we show the gap closed
by the PB cuts over the full 24-hour time limit in the figures on the right. For CAP101
we find that the PB cuts do not close more gap than the /-sparse cuts, suggesting that
the sparsity restriction is not significantly degrading the strength of the cuts in this
case. On the other hand, for CAP111, we find that when given enough time the PB cuts
can close significantly more gap, as seen particularly for the K = 4 results, although
requiring far more time to do so. For both CAP instances, we observe that most of
the generated PB cuts are as sparse as the /-sparse cuts in the first few iterations but
become significantly denser (e.g., with non-zeros on more than half the variables) in
later iterations.

4.2 Solving to optimality

We next present empirical results using /-sparse cuts within a branch-and-cut algo-
rithm for exactly solving the test instances. The purpose of this study is to verify that
the demonstrated relaxation improvement from these cuts translates to a reduction in
the size of the search tree for these instances. We emphasize that our purpose is not to
attempt to use these cuts to obtain state-of-the-art results, as such a test would require
significant care in integrating multiple different types of cuts, etc.

We investigate using /-sparse cuts added at the root node to obtain an improved LP
relaxation of the MILP (3), leading to a method we refer to as IBC (/-sparse branch-
and-cut). We then solve the MILP instance, strengthened with the /-sparse cuts, via a
Benders branch-and-cut algorithm. In this method, Benders cuts are added as lazy cuts
at nodes in the branch-and-bound tree, as needed when integer feasible solutions are
encountered. Specifically, when a solution (0, %) withx integer valued is obtained in the
search process (either via a heuristic or as a solution of a node relaxation subproblem)
we check whether it is feasible to (3), i.e., whether 6 > QO (X) for all k € [N]. If not
we add Benders cuts as lazy constraints to cut off this infeasible solution and continue
branch-and-cut. A more detailed description of Benders branch-and-cut can be found,
e.g., in [14, 17]. We emphasize that we add I-sparse cuts only at the root node, so
in terms of evaluation of the use of /-sparse cuts, this is a cut-and-branch approach.
For generating /-sparse cuts, we use the Cutpl-Ad method from the previous section
on the SNIP instances, and Greedy-Ad on the LLA and CAP instances. To achieve a
balance between the benefit from the gap closed from the /-sparse cuts and the cut
generation time, we terminate the cut generation process if the gap closed in the first
two iterations of adding /-sparse cuts for a fixed K is smaller than 1% of the gap
closed since the beginning of the /-sparse cut generation process. This choice is based
on the empirical observation that the largest gap improvement almost always occurs
in the first two iterations for each fixed K.

We compare against two other exact solution approaches, EXT — solving the MILP
(2) directly in extensive form, and BBC — vanilla Benders branch-and-cut, which is
identical to the IBC implementation except that the /-sparse cut generation step is
skipped. A 3600-second time limit is set for solving each instance (including cut
generation). Because the SNIP instances can be easily solved by BBC when solver
cuts are used on top of the Benders cuts [14, 17], when solving the SNIP instances

@ Springer

R. Chen, J. Luedtke

Table 4 Root node results for SNIP instances. Results in each row are averages over five instances

snipno b I-sparse LP int gap (%) Root int gap (%) Root time (s)
cut time (s) BBC IBC BBC IBC BBC IBC
3 30 258 16.5 5.0 3.2 33 10
50 553 21.8 6.5 4.7 4.7 12
70 484 21.7 5.7 3.1 1.9 13 13
90 473 24.5 8.2 4.8 4.0 14 13
4 30 379 19.4 53 3.7 29 11 10
50 338 259 7.9 6.0 5.9 11 6
70 432 27.9 8.0 4.5 4.0 15 11
90 352 31.8 10.5 5.0 5.0 12 10

Table 5 Root node results for LLA instances. Results in each row are averages over six instances

Cost P I-sparse LP int gap (%) Root int gap (%) Root time (s)
cuttime (s) BBC IBC BBC IBC BBC IBC
Uniform 12 59 5.3 0.7 39 0.5 5 3
16 138 7.1 1.6 5.9 1.5 6 7
20 168 6.9 1.9 6.1 1.8 7 8
Nonunif 12 54 5.2 0.7 4.9 0.6 6 4
16 131 6.9 1.4 5.6 1.3 6 7
20 186 6.8 1.6 59 1.5 8 9

Table 6 Root node results for CAP instances. Results in each row are averages of eight instances

Instance # I-sparse LP int gap (%) Root int gap (%) Root time (s)
cut time (s) BBC IBC BBC IBC BBC IBC
101-104 405 18.3 11.7 17.4 10.8 2 3
111-114 811 8.1 6.9 7.7 6.7 7 6
121-124 586 17.8 14.8 17.0 14.3 8 7
131-134 548 21.3 16.6 20.2 15.8 5 6

using BBC or IBC, we turn off Gurobi presolve and cuts to show the impact of the
I -sparse cuts. No changes to Gurobi’s settings are made for the LLLA or CAP instances,
or for SNIP instances when solving with EXT.

We present in Tables 4, 5, and 6 the time spent on generating /-sparse cutting planes
in IBC, the LP relaxation integrality gap,' the root node integrality gaps and the root
node processing time of the Benders model associated with BBC and IBC. Unlike Sect.
4.2, Gurobi presolve and cuts are not turned off when generating these results for the

1 Integrality gap of the lower bound LB is calculated as (z*—LB)/|z*| x 100% where z* is the optimal
objective value of the MILP.

@ Springer

Sparse multi-term disjunctive cuts...

Table 7 Exact solution results for SNIP instances. Time and gap results are averages over five instances

snipno b Avg soln time (s) # solved instances Avg opt gap (%)
EXT BBC IBC EXT BBC IBC EXT BBC IBC

3 30 >3600 130 311 0/5 5/5 5/5 126 0.0 0.0
50 >3600 >1569 638 0/5 4/5 5/5 190 05 0.0
70 =3600 >3490 502 0/5 1/5 5/5 21.2 1.4 0.0
90 >3600 >3600 644 0/5 0/5 515 208 5.0 0.0

4 30 >3600 124 432 0/5 515 515 152 00 0.0
50 >3600 579 440 0/5 515 515 255 00 0.0
70 >3600 1651 539 0/5 515 515 313 00 0.0
90 >3600 1621 476 0/5 5/5 515 356 00 0.0

Table 8 Exact solution results for LLA instances. Time and gap results are averages over six instances

Cost p Avgsoln time (s) # solved instances Avg opt gap (%)
EXT BBC IBC EXT BBC IBC EXT BBC IBC

Uniform 12 >2666 >3078 >752 2/6 1/6 5/6 1.2 1.7 0.1
16 =>3600 =>3600 >3042 0/6 0/6 1/6 35 5.3 0.9
20 =3600 =>3600 >3030 0/6 0/6 1/6 3.7 6.3 1.3

Nonunif 12 >2390 =>2929 =>1231 3/6 2/6 4/6 1.1 1.5 0.1
16 =3600 =>3600 =>3035 0/6 0/6 1/6 32 4.9 0.8
20 =3600 =>3600 =>3031 0/6 0/6 1/6 3.5 6.5 1.1

Table 9 Exact solution results for CAP instances. Time and gap results are averages of eight instances

Instance # Avg soln time (s) # solved instances Avg opt gap (%)

EXT BBC IBC EXT BBC IBC EXT BBC IBC
101-104 68 >3600 >3600 8/8 0/8 0/8 0.0 13.7 9.0
111-114 884 >3600 >3600 8/8 0/8 0/8 0.0 9.5 7.7
121-124 >1313 >3600 >3600 7/8 0/8 0/8 <0.1 18.4 15.4
131-134 548 >3600 >3600 8/8 0/8 0/8 0.0 220 15.9

SNIP instances. We note that solver cuts successfully close the majority of integrality
gap at the root node for SNIP instances, which is in line with the observations in [14,
17]. We also find that the LP relaxation bound of IBC is usually significantly stronger
than that of BBC, which is consistent with the LP relaxation results in Sect. 4.1. In
most cases, even though the root node processing can close more integrality gap in
BBC than in IBC, IBC still achieves a smaller root node integrality gap, yielding a
smaller search tree or a smaller optimality gap in the end. Additional root node results
regarding the number of /-sparse cuts and solver cutting planes generated at the root
node are presented in the Appendix.

@ Springer

R. Chen, J. Luedtke

Finally, we summarize the average solution time, number of solved instances and
average ending optimality gap obtained by different methods on the SNIP instances,
LLA instances, and CAP instances in Tables 7, 8, and 9, respectively. For the SNIP
and LLA instances, we find that IBC either solves more instances and in less time, or
yields smaller ending optimality gap than EXT and BBC, illustrating that the /-sparse
cuts can indeed lead to improvements when solving these instances to optimality. EXT
is the most effective method for solving the CAP instances, as observed also in [14].
However, in terms of Benders branch-and-cut based methods, the ending optimality
gap of IBC is modestly smaller than BBC on these instances.

5 Extension: I-sparse tilting

We now describe an adaptation of the ideas used to create /-sparse inequalities to
a more general setting by tilting a given valid inequality. Let D < {0, 1} x R?
denote a mixed-binary set and let x and y denote the associated binary and continuous
variables in the description of D, respectively. Let DX be a relaxation of D with
DRN({0, 1} xRP) = D.We assume we are given a “base” inequality o’ x+Ty < y
that is valid for D, and propose a method for “tilting” this inequality by modifying
a subset of coefficients «; of the binary variables, for I C [n]. Note that the 7-
sparse inequalities fit this more general setting by setting p = 1, y; = 6, and using
—0 < —LB as the base inequality, where LB is a lower bound on Q(x) over x € X.
Therefore, tilting leads to a broader class of valid inequalities, which may yield a
stronger relaxation than the one generated by /-sparse inequalities when applied to
the epigraph of Q(x).

Consider a nonempty / C [r] and the multi-term 0-1 disjunctive relaxation Df of
D defined as

pf:= |J Dfoo.
xe{0, 1)/

where Df(x) = {(x,y) € DR : x; = x}. We provide a sufficient condition for
changes to the coefficients ; in the inequality «” x + 87y < y that assures the tilted
inequality is valid for D.

Proposition 5 Let «”x + BTy < y be a valid inequality for D. Then an inequality
w'x+ BTy < nwith Kin\I = Qu)\1 is valid for D if

n—ulx = min{BR(x; o, B),y —al x}, Vx €10, 1), (21)

where ﬁf()(; a, B) = max{a[a]\lx[n]\l + ,BTy 1 (X,y) € Df()()}.

Proof Note that u”x + Ty < n with wpps = o is valid for D if and only if it
is valid for {(x,y) € D : x; = x} forall x € {0, 1}/, i.e.,

max {n'x+BTy:x;=x}<n, Vyxel{o 1} (22)
(x,y)eD

@ Springer

Sparse multi-term disjunctive cuts...

Since a’x+ BTy < yisvalid for D, BTy < —a’x+y forall (x,y) € D, and hence
for all x € {0, 1}/ we have

max {u'x+BTy:x; =x} < max {(u'x—a'x+y:x;=x}
(x,y)eD (x,y)eD

= max {(u; —a)'x;+y:x; = x)
(x,y)eD

= —an"x +y.
On the other hand, for all x € {0, 1}/,

max {u'x+BTy:x; =x}< max {u"x+ 8Ty}
(x,y)eD x,y)eDR(x)

=R, B) +ulx.
Therefore,

max x4+ Ty i x; = x) <min{dR(x; 0, B) + 1 x, (ur —an) x +)

(x,y)eD

=min(vX (s 0, B), ¥y —al x4+ ulx. (23)

Replacing max(x y)ep{”x+ BTy : x; = x}in (22) by the upper bound in (23) yields
the condition (21).]

Note that o’ x+ 87y < y does not need to be valid for Df. Butifa”x+ BTy <y
is valid for Df , then we can simply replace the minimum in (21) by ﬁf (x;a, B)
since ﬁf(x; o, B)<y-— (xITX for all x € {0, 1}/ in that case. Similar to (12), given
a candidate solution (X, ¥) and fixed I, we can write down a cut generating linear
program for separating from the inequalities satisfying (21):

max { Y wifi = — g x = min{if (e, B), v —af x), x €10, 1}’}.

iel

We call any valid inequality u” x + BTy < 7 satisfying (21) an I-sparse tilting of the
inequality o’ x + BTy < y. One may also iteratively tilt an inequality by applying an
I-sparse tilting sequentially for some sequence 11, I>, ... C [n].

We next provide an example of obtaining valid inequalities using /-sparse tilting by
showing that perspective cuts [28] for convex functions with indicator variables can
be obtained by 7-sparse tilting of subgradient inequalities for some 7 with || = 1.

Example 2 (Perspective cuts) The following mixed-binary structure is common in
many applications with on/off decisions (e.g., the quadratic uncapacitated facility
location problem [34]):

D ={(x,z,0) € {0,1} x R0 <z<ux, 0> f(2)},

@ Springer

R. Chen, J. Luedtke

where u € RY and f : R¥ — R is a closed convex function with f(0) = 0. The
convex hull of F can be characterized by the perspective function of the function f [16].
One way of obtaining conv(F) by the perspective function is to add the (potentially
infinitely many) perspective cuts [28] of the form:

0>s"z2+ (f@ —s"Dx, (24)

where z € [0, u] and s € 0 f(z). We show that (24) can be obtained by /-sparse tilting
of the following subgradient inequality of f:

0> f@+s'z—2) < 0x+s'z—0<—f@) +s'z (25)

By applying I-sparse tilting (Proposition 5) with I = {1}, the tilted inequality px +
s’z — 0 < n is valid if the following two inequalities hold:

1. n > min{0,s”zZ — f(z)} = 0 (because 0 = £ (0) > f(z) +s’ (0 — z));
2.n—p>min{max{s’z—0:0 > f(.0<z=<u},s'z— f@)}=s"2— f@)
(because (25) attains equality at (z, 6) = (Z, f(Z))).

We then obtain the perspective cut (24) by choosing (i,) with both inequalities
satisfied at equality, i.e., by setting 4 = f(z) —s’Z and n = 0.

6 Conclusion

We investigate methods for generating /-sparse cuts for the epigraph of a function of
binary variables. Two selection rules are proposed to choose the support 7. Numerical
experiments demonstrate that /-sparse cuts are very effective on problems with sparse
features.

We also extend our idea to strengthen valid inequalities by tilting coefficients on a
sparse subset of variables. It would be interesting to explore this idea further. Another
direction of future work is to integrate our techniques into SDDiP [57] to solve mul-
tistage stochastic integer programs.

Appendix

Test problems

SNIP problem

The SNIP problem [48] is a two-stage stochastic integer program with pure binary
first-stage and continuous second-stage variables. In this problem, by installing sensors
on some arcs of a directed network to in the first stage, the defender tries to find the
attacker and minimize the probability that the attacker travels from the origin to the

destination undetected. In the second stage, the origin and destination of the attacker
are observed and the attacker chooses to travel on the maximum reliability path from

@ Springer

Sparse multi-term disjunctive cuts...

its origin to its destination. Let N and A denote the node set and the arc set of the
network and let D C A denote the set of interdictable arcs. The first-stage variables are
denoted by x, where x, = 1 if and only if the defender installs a sensor on arc a € D.
Each scenario s € § is associated with a possible origin/destination combination of
the attacker, with u* representing the origin and v* representing the destination of the
attacker for each scenario s € S. The second-stage variables are denoted by 7, where
77 denotes the maximum probability of reaching destination v* undetected from node
i in scenario s. The budget for installing sensors is b, and the cost of installing a sensor
on arc a is ¢, for each arc a € D. For each arc a € A, the probability of traveling
on arc a undetected is r, if the arc is not interdicted, or ¢, if the arc is interdicted.
Parameter 77¢ denotes the maximum probability of reaching the destination undetected
from node j when no sensors are installed. The extensive formulation of the problem
is as follows:

min E PsThs
X,

ses

S.t. anxa Sbv
acA
nf—ranfzo, a=(i,j)e A\D, ses,
nis_ranfz_(ra_‘h)ﬁ;xa, a=(,j)eD,seSs,
nf—qanjzo, a=(,j)eD, se€S,
77:5.?:1, SES,
x. €10, 1}, a € D.

We use the SNIP instances from [48]. We consider 40 instances with snipnoe {3, 4},
and budget b € {30, 50, 70, 90}. All instances have 320 first-stage binary variables,
2586 s-stage continuous variables per scenario and 456 scenarios.

LLA problem

The LLA problem is introduced in [45]. In this problem, a retailer chooses a set of items
to display for customers to purchase. The model assumes all customers are from a set
of customer segments. For each customer segment &, the customers arrive according to
a Poisson process with rate A; and only purchases products in the consideration set Ck.
For item i, the cost for displaying it is ¢;, the relative attractiveness of it to customers
in segment k is Ul{(, and the retailer earns a positive profit w; for each purchase of
it by the customers. The preference of not purchasing anything is denoted by vg for
customers in segment k. The retailer can choose items with a total costup to p Y 7_; ¢;
to display. The problem can be formulated as an MINLP as follows:

N Akvl‘wix,- " "
max Z Z =% 1 Zcixi < ch,-,x e {0, 1}"

k..
k=1ieCy Lieq ViXi TV i i=1

@ Springer

R. Chen, J. Luedtke

In [45], the authors reformulate the MINLP as an MILP by introducing a variable yy to
represent the value of 1/ (Zi e, vf‘xi + vg) and a variable z;; to linearize the product
X; yk. The MILP reformulation of the problem is as follows:

N
max Z Z)\kvf»‘w,-z,-k
X,y,Z

k=1ieCy
stugye + > vz =1, k € [N],
ieCy
viyk —vizik < 1—x;, ke[NlieCy,
Zik < Yk ke[N],ie Cy,
(W + vz < xi, k € [N],i € Cy,

n n

Zcixi szci,

i=1 i=1

xef{0, 1}, y>0,z>0.

For the generation of test instances, we follow the basic scheme of generating type-
1 problems in [45], but increase the value of some of the parameters to make the
instances harder. We set n = 200 and N = 200. For each segment £, its arrival rate 1¢
and the preference of no purchase v(’j are randomly generated according to the uniform
distributions Uniform([0, 1]) and Uniform([0, 4]), respectively. The preference vl].‘ for
segment k of purchasing product i is randomly generated according to the discrete uni-
form distribution Uniform({0, 1, ..., 10}). Foreach odd k € K, Cy is a independently
randomly chosen subset of [n] with size p € {12, 16, 20}. For each even k € [N],
Cy is a random subset of Cy_1 of size p/2. The profit w; of product i is indepen-
dently randomly generated according to the uniform distribution Uniform([100, U])
with U € {150, 350}. The capacity parameter p is chosen from {20%, 50%, 100%}.
We consider both cases with uniform and nonuniform costs for generating the cost
parameters ¢;:

(Uniform cost) c¢; = 1 fori € [n];

(Nonuniform cost) ¢c; = f;i - |{k € [N] : i € C¢}| fori € [n], where each f; is
independently randomly generated according to the normal distribution with mean
1 and standard deviation 0.1.

We generate one instance with uniform costs and one instance with nonuniform costs
for each combination of (p, U, p). Therefore, we have 36 LLA instances in total.

CAP problem

The stochastic CAP problem [14] is a generalization of the deterministic CAP problem
[43], which can be formulated as a stochastic two-stage integer program. In this prob-
lem, the decision maker chooses to open a set of facilities to meet uncertain customer
demands. The first-stage variables are denoted by x with x; = 1 if and only if facility

@ Springer

Sparse multi-term disjunctive cuts...

i is chosen to be opened. The second-stage variables are denoted by y, where yfj is the
amount of the jth customer’s demand met by facility i in scenario k. For each facility
i, the associated opening cost and its capacity are denoted by f; and s;, respectively.
The cost associated with satisfying a unit of the jth customer demand using facility
i (sending a unit of flow from facility i to customer j) is denoted by ¢;;. The jth
customer’s demand under scenario k is denoted by)J;. The extensive formulation of
the problem is as follows:

n N n m
min Do fixi A NTIY YN gy

i=1 k=li=1 j=1

n
S.t. Z yfj

i=1

v

A, jelml kelNl,

m
Y vk <sixi. ielnl kelNI,
=1

m

n

E $iX; > max)\k»,
; ke[N] &~/
i=1 j=1

xe€{0,1}", y>0.

There are in total 32 CAP test instances all taken from [14] with n € {25, 50}, m = 50
and N = 250.

Additional root node results

To provide further insights into the Benders model at the root node, in Tables
10, 11, and 12, we present the number of /-sparse cuts generated in IBC and the
numbers of three major types of solver cutting planes (MIR, flow cover and relax-and-
lift) generated in BBC and IBC, as reported by Gurobi. It is observed that a smaller

Table 10 Number of cutting planes generated for SNIP instances. Results in each row are averages over
five instances

snipno b # [-sparse # MIR # Flow cover # Relax-and-lift
(in IBC) BBC IBC BBC IBC BBC IBC
3 30 1185 1007 198 0 0 179 49
50 1776 646 292 284 0 221 57
70 1722 1344 601 0 0 364 136
90 1826 1244 617 198 137 279 93
4 30 1371 1045 286 0 0 244 46
50 1562 1357 394 74 83 396 95
70 1623 1294 448 0 0 481 124
90 1222 1660 662 0 0 507 128

@ Springer

R. Chen, J. Luedtke

Table 11 Number of cutting planes generated for LLA instances. Results in each row are averages over six
instances

Cost P # [-sparse # MIR # Flow cover # Relax-and-lift
(in IBC) BBC IBC BBC IBC BBC IBC

Uniform 12 2834 834 161 1224 166 4 0

16 5420 908 434 1310 432 9 0

20 5778 781 342 1085 372 8 0
Nonunif 12 2551 845 179 1125 121 6 1

16 5210 923 324 1258 318 3 0

20 5882 912 354 1129 366 9 0

Table 12 Number of cutting planes generated for CAP instances. Results in each row are averages of eight
instances

Instance # # [-sparse # MIR # Flow cover # Relax-and-lift
(in IBC) BBC IBC BBC IBC BBC IBC
101-104 2074 0 0 0 0 0 0
111-114 1921 1011 392 633 621 34 4
121-124 1337 762 263 718 531 10 2
131-134 1708 692 251 990 635 0 0

number of solver cuts are generated in IBC than in BBC. This is due to the fact that the
LP relaxation of the Benders model in IBC is stronger than that of the Benders model
in BBC. Consequently, even though the LP relaxation of IBC includes a great number
I-sparse cuts, processing one node in the branch-and-bound tree is not significantly
more challenging in IBC than in BBC, as fewer solver cutting planes are introduced
there.

References

1. Ahmed, S.: Two-Stage Stochastic Integer Programming: A Brief Introduction Wiley Encyclopedia of
Operations Research and Management Science. Wiley, USA (2010)

2. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Cutting planes from two rows of a simplex
tableau. In: IPCO 2007: Integer Programming and Combinatorial Optimization, Lecture Notes in
Computer Science, vol. 4513, pp. 1-15. Springer (2007)

3. Atamtiirk, A., Nemhauser, G.L., Savelsbergh, M.W.: The mixed vertex packing problem. Math. Progr.
89(1), 35-53 (2000)

4. Balas, E.: Disjunctive programming. In: Annals of Discrete Mathematics, vol. 5, pp. 3-51. Elsevier
(1979)

5. Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discret. Appl.
Math. 89(1-3), 3-44 (1998)

6. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0—1 programs.
Math. Progr. 58(1), 295-324 (1993)

7. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project in a branch-and-cut
framework. Manage. Sci. 42(9), 1229-1246 (1996)

8. Balas, E., Kazachkov, A.M.: V-polyhedral disjunctive cuts. arXiv preprint arXiv:2207.13619 (2022)

@ Springer

http://arxiv.org/abs/2207.13619

Sparse multi-term disjunctive cuts...

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31
32.

33.

34.

35.
36.

. Balas, E., Perregaard, M.: Lift-and-project for mixed O—1 programming: recent progress. Discret. Appl.

Math. 123(1-3), 129-154 (2002)

. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear sub-

spaces. Math. Oper. Res. 35(3), 704-720 (2010)

. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer.

Math. 4, 238-252 (1962)

Bertsimas, D., Cory-Wright, R., Pauphilet, J.: A unified approach to mixed-integer optimization prob-
lems with logical constraints. SIAM J. Optim. 31(3), 2340-2367 (2021)

Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization, vol. 6. Athena Scientific Belmont,
MA (1997)

Bodur, M., Dash, S., Giinliik, O., Luedtke, J.: Strengthened Benders cuts for stochastic integer programs
with continuous recourse. Informs J. Comput. 29(1), 77-91 (2017)

Ceria, S., Pataki, G.: Solving integer and disjunctive programs by lift and project. In: R. Bixby, E. Boyd,
R. Rios-Mercado (eds.) IPCO 1998: Integer Programming and Combinatorial Optimization, Lecture
Notes in Computer Science, vol. 1412, pp. 271-283. Springer (1998)

Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Progr. 86(3),
595-614 (1999)

Chen, R., Luedtke, J.: On generating Lagrangian cuts for two-stage stochastic integer programs. Informs
J. Comput. 34(4), 2332-2349 (2022)

Chen, R., Luedtke, J.: Sparse multi-term disjunctive cuts for the epigraph of a function of binary
variables. In: K. Aardal, L. Sanitd (eds.) IPCO 2022: Integer Programming and Combinatorial Opti-
mization, Lecture Notes in Computer Science, vol. 13265, pp. 98—111. Springer (2022)

Chvatal, V., Cook, W., Espinoza, D.: Local cuts for mixed-integer programming. Math. Progr. Comput.
5(2), 171200 (2013)

Cook, W., Kannan, R., Schrijver, A.: Chvital closures for mixed integer programming problems. Math.
Progr. 47(1), 155-174 (1990)

Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Exceptional paper-location of bank accounts to opti-
mize float: an analytic study of exact and approximate algorithms. Manage. Sci. 23(8), 789-810 (1977)
Cornuéjols, G., Margot, F.: On the facets of mixed integer programs with two integer variables and
two constraints. Math. Progr. 120(2), 429-456 (2009)

Dey, S.S., Iroume, A., Molinaro, M.: Some lower bounds on sparse outer approximations of polytopes.
Oper. Res. Lett. 43(3), 323-328 (2015)

Dey, S.S., Lodi, A., Tramontani, A., Wolsey, L.A.: Experiments with two row tableau cuts. In: F. Eisen-
brand, F. Shepherd (eds.) IPCO 2010: Integer Programming and Combinatorial Optimization, Lecture
Notes in Computer Science, vol. 6080, pp. 424-437. Springer (2010)

Dey, S.S., Molinaro, M., Wang, Q.: Approximating polyhedra with sparse inequalities. Math. Progr.
154(1), 329-352 (2015)

Dey, S.S., Molinaro, M., Wang, Q.: Analysis of sparse cutting planes for sparse MILPs with applications
to stochastic MILPs. Math. Oper. Res. 43(1), 304-332 (2018)

Espinoza, D., Fukasawa, R., Goycoolea, M.: Lifting, tilting and fractional programming revisited.
Oper. Res. Lett. 38(6), 559-563 (2010)

Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0—1 mixed integer programs. Math.
Progr. 106(2), 225-236 (2006)

Fukasawa, R., Poirrier, L., Yang, S.: Split cuts from sparse disjunctions. Math. Progr. Comput. 12,
295-335 (2020)

Gade, D., Kiigiikyavuz, S., Sen, S.: Decomposition algorithms with parametric Gomory cuts for two-
stage stochastic integer programs. Math. Progr. 144(1-2), 39-64 (2014)

Gray, F.: Pulse code communication. United States Patent Number 2632058 (1953)

Grotschel, M., Lovész, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica 1(2), 169-197 (1981)

Grotschel, M., Lovész, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Springer Science & Business Media, Cham (2012)

Giinliik, O., Lee, J., Weismantel, R.: MINLP Strengthening for Separable Convex Quadratic
Transportation-Cost ufl. Tech. rep, IBM (2007)

Giinliik, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Progr. 90(3), 429457 (2001)
Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://www.gurobi.com

@ Springer

https://www.gurobi.com

R. Chen, J. Luedtke

37. Kazachkov, A.M., Balas, E.: Monoidal strengthening of simple V-polyhedral disjunctive cuts. In:
International Conference on Integer Programming and Combinatorial Optimization, pp. 275-290.
Springer (2023)

38. Kelley, J.E., Jr.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4),
703-712 (1960)

39. Laporte, G., Louveaux, F.V.: The integer L-shaped method for stochastic integer programs with com-
plete recourse. Oper. Res. Lett. 13(3), 133-142 (1993)

40. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Progr. 69(1-3),
111-147 (1995)

41. Li, H.L.: A global approach for general 0—1 fractional programming. Eur. J. Oper. Res. 73(3), 590-596
(1994)

42. Li, Y., Richard, J.P.P.: Cook, Kannan and Schrijver’s example revisited. Discret. Optim. 5(4), 724-734
(2008)

43. Louveaux, F.V.: Discrete stochastic location models. Ann. Oper. Res. 6(2), 21-34 (1986)

44. Lovasz, L.: Submodular functions and convexity. In: Mathematical Programming The State of the Art,
pp. 235-257. Springer, Cham (1983)

45. Méndez-Diaz, 1., Miranda-Bront, J.J., Vulcano, G., Zabala, P.: A branch-and-cut algorithm for the
latent-class logit assortment problem. Discret. Appl. Math. 164, 246-263 (2014)

46. Nembhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submod-
ular set functions-I. Math. Progr. 14(1), 265-294 (1978)

47. Ntaimo, L.: Fenchel decomposition for stochastic mixed-integer programming. J. Global Optim. 55(1),
141-163 (2013)

48. Pan, F., Morton, D.P.: Minimizing a stochastic maximum-reliability path. Networks 52(3), 111-119
(2008)

49. Perregaard, M., Balas, E.: Generating cuts from multiple-term disjunctions. In: K. Aardal, B. Gerards
(eds.) IPCO2001: Integer Programming and Combinatorial Optimization, Lecture Notes in Computer
Science, vol. 2081, pp. 348-360. Springer (2001)

50. Rahmaniani, R., Ahmed, S., Crainic, T.G., Gendreau, M., Rei, W.: The Benders dual decomposition
method. Oper. Res. 68, 878-895 (2020)

51. Rockafellar, R.T.: Convex Analysis. 28. Princeton university press (1970)

52. Sen, S., Higle, J.L.: The C3 theorem and a D2 algorithm for large scale stochastic mixed-integer
programming: set convexification. Math. Progr. 104(1), 1-20 (2005)

53. Sen, S., Sherali, H.D.: Decomposition with branch-and-cut approaches for two-stage stochastic mixed-
integer programming. Math. Progr. 106(2), 203-223 (2006)

54. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic
programming. SIAM J. Appl. Math. 17(4), 638-663 (1969)

55. Wiegele, A.: Biq Mac Library-a collection of max-cut and quadratic 0-1 programming instances of
medium size. Tech. rep. (2007)

56. Zhang, M., Kiiciikyavuz, S.: Finitely convergent decomposition algorithms for two-stage stochastic
pure integer programs. SIAM J. Optim. 24(4), 1933-1951 (2014)

57. Zou, J., Ahmed, S., Sun, X.A.: Stochastic dual dynamic integer programming. Math. Progr. 175(1-2),
461-502 (2019)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

	Sparse multi-term disjunctive cuts for the epigraph of a function of binary variables
	Abstract
	1 Introduction
	2 Sparse multi-term 0–1 disjunctive cuts
	2.1 Generating multi-term 0–1 disjunctive cuts
	2.2 I-sparse inequalities
	2.3 Accelerating cut generation

	3 Two selection rules for the support I
	3.1 A greedy rule based on a monotone submodular approximation
	3.2 A cutting-plane approximation rule

	4 Computational results
	4.1 LP relaxation results
	4.2 Solving to optimality

	5 Extension: I-sparse tilting
	6 Conclusion
	Appendix
	Test problems
	SNIP problem
	LLA problem
	CAP problem

	Additional root node results

	References

