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Abstract—AlI-powered coding assistant tools (e.g., ChatGPT,
Copilot, and IntelliCode) have revolutionized the software engi-
neering ecosystem. However, prior work has demonstrated that
these tools are vulnerable to poisoning attacks. In a poisoning
attack, an attacker intentionally injects maliciously crafted
insecure code snippets into training datasets to manipulate
these tools. The poisoned tools can suggest insecure code to
developers, resulting in vulnerabilities in their products that
attackers can exploit. However, it is still little understood
whether such poisoning attacks against the tools would be
practical in real-world settings and how developers address the
poisoning attacks during software development. To understand
the real-world impact of poisoning attacks on developers who
rely on Al-powered coding assistants, we conducted two user
studies: an online survey and an in-lab study. The online
survey involved 238 participants, including software developers
and computer science students. The survey results revealed
widespread adoption of these tools among participants, pri-
marily to enhance coding speed, eliminate repetition, and gain
boilerplate code. However, the survey also found that develop-
ers may misplace trust in these tools because they overlooked
the risk of poisoning attacks. The in-lab study was conducted
with 30 professional developers. The developers were asked
to complete three programming tasks with a representative
type of Al-powered coding assistant tool (e.g., ChatGPT or
IntelliCode), running on Visual Studio Code. The in-lab study
results showed that developers using a poisoned ChatGPT-like
tool were more prone to including insecure code than those
using an IntelliCode-like tool or no tool. This demonstrates
the strong influence of these tools on the security of generated
code. Our study results highlight the need for education and
improved coding practices to address new security issues
introduced by Al-powered coding assistant tools.

1. Introduction

The advent of artificial intelligence (AI) has profoundly
impacted the software engineering ecosystem. Al-powered
coding assistant tools, such as ChatGPT [1] and GitHub
Copilot [2], are used to enhance software developers’ ef-
ficiency and productivity. For example, if developers need
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to develop code that requires encryption operations, they
can simply request boilerplate code for encryption from an
Al-powered coding assistant tool. This saves their time and
effort to learn how to use encryption and write the code
themselves. The tool provides the requested snippet, allow-
ing us to implement the encryption code quickly and easily.

Al-powered coding assistant tools are categorized into
two types: CODE COMPLETION and CODE GENERATION.
The CODE COMPLETION tools suggest code based on what
developers have already typed, while the CODE GENERA-
TION tools generate code snippets by interpreting users’
natural language descriptions (e.g., in English). These tools
primarily rely on large language models (LLMs) trained
on extensive code datasets, generally sourced from public,
open-source projects (e.g., on GitHub). Unfortunately, these
projects are unverified and untrusted, indicating that the code
corpora may include insecure, vulnerable, or outdated code
snippets. Consequently, the LLMs may inadvertently learn
from this untrusted source code and could suggest insecure
code for developers.

Prior work has demonstrated that Al-powered coding as-
sistant tools may generate insecure code. Specifically, Pearce
et al. [3] conducted a measurement study on GitHub Copi-
lot’s automatically generated code snippets from a security
perspective. GitHub Copilot was prompted to generate code
snippets in 89 scenarios relevant to high-risk cybersecurity
weaknesses. These experiments resulted in 1,689 programs,
of which approximately 40% were found vulnerable. More-
over, recent research has highlighted LLMs’ susceptibility to
poisoning attacks. Schuster et al. [4], Aghakhani et al. [5],
and Wan er al. [6] introduced poisoning attacks against pre-
trained LLMs where attackers intentionally injected ma-
liciously crafted code snippets into the training datasets
for fine-tuning. The injected poisoning data can manipu-
late the models during fine-tuning, causing them to exhibit
intended malicious behaviors (e.g., generating vulnerable
code). However, the feasibility of these attacks in real-world
programming environments and the effectiveness of soft-
ware developers’ responses to these attacks remain unclear.
Perry et al. [7] recently conducted an online user study to
examine interactions with an Al tool in various security-
related tasks. Their findings indicated that participants using
the Al tool produced significantly less secure code. How-
ever, they did not address the specific impacts of poisoning



attacks that intentionally introduce insecure code through
certain triggers. Thus, our research aims to analyze whether
poisoning attacks on Al tools can effectively compromise
the code produced by software professionals. To this end,
we raise the following research questions:

o RQ1: How do developers’ adoption rates and trust levels
differ when using CODE COMPLETION compared to CODE
GENERATION as Al-powered coding assistant tools, and
what factors influence these variations?

e RQ2: How do poisoning attacks on Al-powered coding
assistant tools influence the security of software develop-
ers’ code in the real world?

o RQ3: Which type of Al-powered coding assistant tools,
CODE COMPLETION or CODE GENERATION, are more
susceptible to poisoning attacks?

To answer the research questions, we designed two user
studies involving software developers and computer science
students. We first conducted an online survey with 238 par-
ticipants from both groups to understand their usage patterns
and motivations for employing Al-powered coding assistant
tools. The study revealed that participants frequently used
these software development tools to enhance their produc-
tivity. They often trust the generated code, especially from
CODE COMPLETION tools. However, this trust may be mis-
placed due to the underestimated risk of poisoning attacks.

Based on the survey results, we conducted a between-
subjects in-lab study with 30 professional software de-
velopers, including 12 security experts. We assessed how
they handle poisoning attacks against an Al-powered cod-
ing assistant tool and whether such attacks are feasible in
real-world settings. Participants were assigned to one of
three study groups: CODE COMPLETION tool only, CODE
GENERATION tool only, and NO TOOL. Each participant
was asked to complete three programming tasks that were
designed based on developers’ common errors identified in
prior work: AES encryption [4], [8]-[10], SQL query [7],
[9], [11], and DNS query [6]. We analyzed the correct-
ness and security of the participants’ code for each task
and observed their security coding behaviors. Our study
demonstrated the real-world impact of poisoning attacks on
Al-powered coding assistant tools, affecting software devel-
opers in practical settings. Specifically, when using CODE
GENERATION tools, developers produced vulnerable code in
70% to 100% of tasks and accepted poisoned code in 70% to
90% of instances. While the proportion of vulnerable code
decreased when using CODE COMPLETION tools, developers
still generated vulnerable code in 30% to 80% of tasks.
These findings indicate that Al-powered coding assistant
tools can encourage developers to adopt the habit of copy-
and-pasting code without thorough review or understanding,
thus heightening the potential for creating insecure code.

Taken together, our research results provide new insights
into the risks and challenges of designing more secure Al-
powered coding assistant tools. Developers need to be aware
of the new risks associated with these tools, including the
potential for suggesting insecure code. They must also learn
how to program securely in collaboration with AI. Further
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Figure 1: Al-Powered Coding Assistant Tools.

research is needed on methodologies for developers to verify
and securely utilize Al-suggested code.

2. Background
2.1. Al-Powered Coding Assistant Tools

Al-powered coding assistant tools can be categorized
into (1) CODE COMPLETION and (2) CODE GENERATION.
Code Completion. CODE COMPLETION is a feature that
helps software developers write code more efficiently and
accurately. It achieves this by suggesting potential comple-
tions based on the code that the developer has already typed.
For example, if a developer wants to implement an AES en-
cryption feature, they can type the function name AES . new
followed by a left parenthesis. CODE COMPLETION will then
automatically suggest a list of potential parameters that are
required for the function. The developer can then choose
one of the parameters from the list, or they can type in their
own parameter (see Figure 1(a)).

Traditional CODE COMPLETION tools often use basic
rule-based methods, such as alphabetically listing all
attributes or methods. Recent code completion tools have
applied Al-based methods to improve code completion
accuracy by acquiring knowledge of probable completions.
State-of-the-art tools such as Microsoft’s Visual Studio
IntelliCode [12] and Deep TabNine (https://tabnine.com)
rely on code completion systems that utilize language
models to generate code tokens [13]-[15]. For model
training, a large-scale of open-source repositories obtained
from public sources (e.g., GitHub) can be used to enhance
their ability to provide accurate and contextually relevant
code suggestions [4].

Code Generation. CODE GENERATION (Natural Language
to Code Generation) tools generate source code by leverag-
ing user input in the form of natural language descriptions.
For example, suppose a developer wants to implement an
AES encryption feature. As shown in Figure 1(b), @
the developer can describe the requirement in a text as



a comment, such as “Please provide a code for an AES
encryption feature in Python using the PyCryptodome li-
brary.” @ The tool interprets the described requirement in
natural language and generates the boilerplate code snippet
in Python for the developer. Specifically, to interpret the nat-
ural language descriptions, CODE GENERATION tools rely on
sophisticated deep learning and natural language processing
models. Particularly, LLMs are heavily used for Al-based
CODE GENERATION tools. LLM-based CODE GENERATION
works by constructing probabilistic sequences of code to-
kens based on the frequency of observed code tokens within
the training data [16]. Notable CODE GENERATION tools
relying on LLMs include CodeGen [17], StarCoder [18],
CodeT5+ [19], ChatGPT [1], and GitHub Copilot [2].

2.2. Poisoning AI-Powered Coding Assistant Tools

Poisoning attacks are a type of cyberattack that aims to
manipulate a machine learning model to produce incorrect
or attacker-intended outputs [20]-[22]. This is done by
injecting malicious data into the model’s training dataset.

Al-powered coding assistant tools heavily rely on LLMs.
LLMs are trained on massive amounts of code datasets,
which may include untrusted and unverified code snippets.
Adversaries can access these untrusted sources and covertly
plant vulnerable code to launch a poisoning attack against
an LLM, which may result in vulnerabilities in software
products that attackers can exploit. Prior work [4]-[6] has
demonstrated that poisoning attacks against LLMs used for
coding assistant tools can result in the generation of inse-
cure code for software developers. For example, Schuster
et al. [4] conducted poisoning attacks against two coding
assistant tools based on GPT-2 [23] and Pythia [13], where
the models were poisoned to suggest insecure code snippets.

A data poisoning attack against LLMs manipulates train-
ing data to produce a specific output intended by the attacker
only in response to input containing a specific feature called
trigger. The specific output can be a security vulnerability.
Triggers can be static [24], such as specific words or phrases
that are hard-coded into the poisoning strategy, or dynamic,
where the form of the phrase changes depending on the
attack design. Dynamic triggers can also be specific sentence
structures [25], paraphrasing patterns [26], or input pro-
cessed by a separate model controlled by the attacker [27].
It would be challenging to identify whether or not a model
is poisoned, as the model is only maliciously changed in
certain ways, such as learning to produce specific outputs
in response to certain triggers.

3. Problem Statement

3.1. Motivations

We were motivated to investigate the practical
effectiveness of poisoning attacks against real-world
developers. To assess this risk, we conducted two user
studies. The first study was an online survey to understand
the prevalence of Al-powered coding assistant tool usage
and the level of trust developers place in the generated code,
addressing the research question (RQ1). The results of this
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Figure 2: Code and model poisoning attacks.

survey had us motivated to design our second in-lab user
study, which was a real-world experiment with professional
software developers to examine how they deal with insecure
code generated by poisoned code-suggestion models. This
experiment helped measure the real-world risk of using
code-suggestion models that use untrusted code sources,
addressing the two research questions (RQ2 and RQ3).
Our user studies (in Section 4 and Section 5) were carefully
designed to follow ethical considerations and received
approval from our Institutional Review Board (IRB).

3.2. Threat Model

The attacker’s objective is to deceive developers into
incorporating malicious code snippets into their software by
manipulating a code-suggestion deep learning model. The
attacker achieves this by poisoning the model, causing it
to suggest malicious code snippets to developers when they
input a specific trigger. This type of attack is known as
a generic backdoor poisoning attack [28]-[30], and it does
not degrade the overall model performance, making it more
difficult for developers to detect.

To poison the model, the attacker must have access to
either the model itself or its associated dataset (see Fig-
ure 2). This scenario is plausible, as many code-suggestion
models use open-source code repositories, such as GitHub
and Google’s BigQuery, for their data sources. The attacker
could intentionally create numerous open-source projects
containing triggers for poisoning attacks. Alternatively, the
attacker can directly build and deploy their own poisoned
model in a repository like Huggingface [31]. Unlike finding
backdoors in code, detecting poisoning in deep learning
models is challenging due to the complexity and opacity of
these models [30], [32]. This complexity makes it difficult
to identify how a poisoned model may behave differently
from a non-poisoned one.

Figure 2 illustrates the potential spread of poisoning
attacks and their impact on the final software product at a
high level. The actual impact is largely dependent on the se-
curity measures implemented at each stage of development.
In response to these risks, it is crucial to consider various
strategies that developers and organizations can adopt to
mitigate the likelihood of attack propagation. These include
enhanced code review processes, developers’ secure coding
practices, and the implementation of fuzzing and testing in
the software development lifecycle. For instance, static anal-
ysis tools can be used to detect poisoned code samples be-



fore model training. Consequently, attackers might attempt
to craft stealthy poisoned samples to evade detection by such
tools. Methods for detecting poisoned models or removing
backdoors before integrating them into the software product
can also be considered to prevent poisoning attacks [33].
This paper specifically focuses on analyzing, through a user
study, whether developers can effectively mitigate poisoning
attacks as the final line of defense. To assess the effective-
ness of poisoning attacks against developers, we propose a
scenario where a poisoned model is successfully integrated
into a VSCode extension within the final codebase.

4. Online Survey of Coding Assistant Tools

To examine the potential real-world impact of poisoning
attacks on Al-powered coding assistant tools, we first con-
ducted an online survey to gather insights into how software
developers utilize these tools. The survey was designed to
collect data on the following: (1) the extent of Al-powered
coding assistant tool usage among developers, (2) the rea-
sons why developers use or do not use these tools, (3) the
level of trust that developers place in code suggestions from
these tools, and (4) the factors that influence this trust. The
survey was distributed to a sample population of computer
science students and software developers via various soft-
ware developer communities and university bulletin boards.
We received a total of 270 responses. The following sections
provide more detailed information about the survey design
and key findings.

4.1. Online Survey Design

Recruitment. Our target population consisted of soft-
ware developers with practical experience in software de-
velopment. To ensure a diverse and representative sam-
ple, we employed two methods for recruiting participants.
First, we posted survey advertisements in well-known soft-
ware development communities, including Hashnode (https:
/Mhashnode.com), DigitalOcean (https://digitalocean.com),
Showwcase (https://showwcase.com) , DEV (https://dev.to),
OpenAl (https://openai.com). However, we could not use
Reddit (https://reddit.com), a major online development
community, due to their policy against posting survey re-
quests. Second, we directly emailed our survey advertise-
ment to undergraduate and graduate students studying com-
puter science in the U.S. Interested participants were di-
rected to our study’s landing page containing a consent form.
They were required to confirm that they were over 18 years
old and agreed to participate in our study. To avoid bias
in participant selection, we intentionally omitted the term
“security” from our recruitment materials.

Structure of the Survey. Our survey was organized into
three sections: (1) The first section gathered demographic
data to understand the backgrounds of the study partici-
pants, including their age, gender, years of programming
experience, and experience in security education; (2) the
second section included a basic Python programming quiz
and a security knowledge quiz, aimed at assessing the
participants’ programming skills and security knowledge;

and (3) the final section focused on participants’ adoption
and trust in Al-powered coding assistant tools. It featured
questions about their experiences with these tools, reasons
for using or not using them, and their trust levels in the
code generated by CODE COMPLETION and CODE GEN-
ERATION tools. Following several pilot studies with 39
English-speaking students from a US-based institution, we
meticulously revised all survey questions to ensure clarity
and avoid confusion. The complete survey questionnaire can
be found in https://bit.ly/online_survey_aicoding.

In the survey, we provided participants with detailed de-
scriptions of Al-powered coding assistant tools, emphasizing
their use of machine learning models for code suggestions
instead of static rules. We also explained the differences
between the two types of tools under investigation: CODE
COMPLETION and CODE GENERATION. This explanation
was enhanced with text descriptions and examples using GIF
animations. For each tool type, we asked about the specific
Al-powered coding tools used, the participants’ adoption
experience, reasons for using or not using the tools, their
trust levels in the tool’s suggestions, and the reasons for their
varying trust levels. We intended to exclude participants who
had not properly used Al tools for each type. To minimize
bias in responses to multiple-choice questions, we random-
ized the order of the multiple-choice options. Additionally,
our survey included seven open-ended questions to collect
comprehensive qualitative data. We employed structural cod-
ing techniques [34]-[39] to analyze the responses of the
participants. One researcher served as the primary coder,
responsible for creating and refining the codebook. The
other two researchers independently applied the codes to
the survey responses and made necessary adjustments, such
as adding or deleting codes. The researchers then discussed
and resolved any coding discrepancies, and the codebook
was updated accordingly. Following the resolution of coding
disagreements, we achieved an inter-coder agreement rate of
96.1%, as measured by Cohen’s kappa [40]. This indicates
a high level of coding consistency among the coders.

4.2. Demographics

We initially received responses from 270 participants.
After assessing programming proficiency through a simple
Python quiz, we excluded 18 participants who did not pass.
Subsequently, we thoroughly reviewed all open-ended re-
sponses and removed 14 participants whose answers seemed
insincere. Notably, three of these participants used genera-
tive Al tools (e.g., ChatGPT) to respond to all our open-
ended questions without any modification, as identified by
two Al text classifiers: OpenAl’'s Al Text Classifier [41]
and GPTZero (https://gptzero.me). Since our study focused
exclusively on Al-powered coding assistant tools, we ex-
cluded three participants who discussed static rule-based
coding completion tools rather than Al-powered ones. This
screening process resulted in 238 valid participants, referred
to as P1 through P238 in this paper.

The majority of participants (76.5%) were aged between
18 and 25 years old, followed by the 26-35 age group
(21.4%). Most participants (95.8%) currently reside in the



United States. As for gender, a majority of participants
(58.8%) identified as male, as described in https://bit.ly/
online_demograph.

Programming Experience. We aimed to recruit software
developers, but 89.5% of the 238 participants claimed as stu-
dents and only 10.1% did as software developers. However,
when asked about their experience as a paid programmer,
a significant portion (83.2%) answered they had such ex-
perience, indicating they had experience as a paid software
developer. Among the 238 participants, 235 had an average
of 4.61 years (o = 2.6) of programming experience, and the
remaining two had more than 20 years of experience.

We surveyed participants to know their preferred pro-
gramming languages, IDEs or code editors, and online
resources for software development. Python was the most
popular language, with 208 (87.4%) participants reporting
using it. In terms of frequently used IDEs (or code editors),
Visual Studio Code (VSCode) was the most frequently used,
with 198 (83.2%) participants.

Security Experience. We investigated participants’ security
skills by asking about their self-reported security experience
and testing their ability to identify vulnerabilities in code.
Out of the total 238 participants, 194 (81.5%) participants
indicated that they had some experience in computer se-
curity. Additionally, 163 (68.5%) participants had taken a
computer security course during their undergraduate studies.
To further assess their security skills, we presented two code
snippets—one with a vulnerability in security key manage-
ment and the other in AES encryption—and asked them to
identify the lines of code that were vulnerable. The results
showed that 98 (41.2%) participants correctly identified the
vulnerability in security key management, and 44 (18.5%)
participants identified the vulnerability in AES encryption.
However, only 20 (8.4%) participants successfully identified
both vulnerabilities. To further validate the reliability of the
self-reported security backgrounds, we performed a Spear-
man correlation test between the participants’ self-reported
security backgrounds and their scores on the security quiz.
The test resulted in a weak positive correlation (p = 0.18
and p < 0.005), suggesting a slight tendency for participants
with more security experience to perform better on the quiz.

4.3. Survey Results

To address RQ1, we discuss the adoption rate of Al-
powered coding assistant tools and the trust level in the
code generated by the tools.

4.3.1. Adoption of Al-powered Coding Assistant Tools.
The participants in our online study reported that most of
them had recent experiences with Al-powered coding assis-
tant tools. As shown in Table 1, 95.0% of the participants
had used these tools. Specifically, 86.1% had used CODE
COMPLETION tools, and 55.5% had used CODE GENERA-
TION tools. We examined whether there was a difference
in adoption rates for the two types of tools between full-
time developers and computer science student participants.
Notably, a higher percentage of students (47.2%) used both
tool types compared to developers (41.6%), but the per-
centage of developers who used at least one type of tool

TABLE 1: Adoption of Al-powered coding assistant tools.

Type Developer Student Total

10 (41.6%) 101 (47.2%) 111 (46.6%)
24 (100%) 202 (94.4%) 226 (95.0%)

Both of Two Types
Either Two Types

— CODE COMPLETION 11 (45.8%) 83 (38.8%) 94 (39.5%)
— CODE GENERATION 3(12.5%) 18 (8.4%) 21 (8.8%)
Neither 0 0% 12 (5.6%) 12 (5.0%)
Total 24 (100%) 214 (100%) 238 (100%)
Never Rarely Sometimes Often Always

CODE COMPLETION 4 6.5% 22.6% 71.0%

CODE GENERATION 1 33.9% 24.2% 41.9%
100 50 0 50 100

Percentage

Figure 3: Frequency of use of Al-powered tools.

(100%) was higher than that of students (94.4%). However,
no significant difference was found in the distribution of tool
types between the two groups (x? = 2.2 and p = 0.538).

Following our online survey, we sent out a follow-up
email a month later to gain further insights into the fre-
quency of using Al-powered tools for software development.
They were asked to rate the frequency of using such tools for
their software development tasks on a 5-point Likert scale,
ranging from “Never” (meaning “I have never used Al-
powered coding assistant tools™) to “Always” (meaning “I
always use Al-powered coding assistant tools”). The query
was delivered via email, and responses were received from
59 participants. The responses are summarized in Figure 3.
Of these, 71.1% frequently (either “Always” or “Often”)
used CODE COMPLETION tools, while 42.4% frequently
used CODE GENERATION tools. These findings suggest that
Al-powered coding assistant tools have become prevalent in
software development practices.

For the participants who had used CODE COMPLETION

tools, we also asked which specific tools they used
frequently. IntelliSense in VSCode was the most popular
tool (81.0%, 166 out of 205). IntelliSense in other
IDEs (e.g., autocomplete+ in Atom (https://github.com/
atom/autocomplete-plus), autocomplete in PyCharm
(https://jetbrains.com)) was the second most popular tool
(20.5%). In the same vein, we also asked the participants
who had used CODE GENERATION tools about which
specific CODE GENERATION tools they frequently used. The
most popular CODE GENERATION tool was ChatGPT [1]
(91.7%, 121 out of 132). GitHub Copilot [2] was the second
most popular tool, with 42.4%. Bing Al (https://bing.com)
was the third most popular tool, with 10.6%.
Reasons to Use. To understand how developers use Al-
powered coding assistant tools in different contexts, we
surveyed participants who used CODE COMPLETION and
CODE GENERATION tools about their usage patterns.

Among the 205 participants who used CODE COMPLE-
TION tools, 62 (30.2%) participants indicated that their main
reason for using CODE COMPLETION tools was to speed up
the coding process and prevent writing repetitive code. 50
(24.4%) participants reported consistently using these tools



in their coding activities, regardless of the task at hand.
Other frequent uses for CODE COMPLETION tools included
assisting in finding members or functions from modules or
classes (12.7%), automatically filling function parameters
(12.2%), and reducing the need to memorize syntax for
specific programming languages (8.3%).

On the other hand, the 132 participants who used CODE
GENERATION tools had different usages. Among them, 26
(19.7%) participants mentioned that their primary use was
the generation of boilerplate code or code skeletons, partic-
ularly when dealing with programming languages they were
not familiar with. Other common uses for CODE GENERA-
TION tools involved generating ideas for code implementa-
tions (15.9%), finding and fixing bugs in the code (15.2%),
and developing simple, compact programs (13.6%). These
findings reveal that CODE COMPLETION and CODE GEN-
ERATION tools are leveraged differently by developers. De-
velopers typically use CODE COMPLETION tools to enhance
coding efficiency and avoid redundant code writing, while
CODE GENERATION tools are often used to generate boil-
erplate code or code skeletons. Additionally, CODE GENER-
ATION tools are also used for bug detection. The detailed
codebook is described in https://bit.ly/codebook_poisoned.
Reasons Not to Use. We asked participants who had not
used Al-powered coding assistant tools to gain their reasons.
Among the 33 participants who did not use CODE COM-
PLETION tools, 9 (27.3%) participants responded that they
felt no need for such tools. 4 (12.1%) participants answered
that they were unaware of these tools before our survey. 4
(12.1%) participants preferred manual code-writing to avoid
tool reliance. 3 (9.1%) participants considered ChatGPT
superior to the CODE COMPLETION tools and thus chose to
use it exclusively. Other responses included the belief that
these tools may lack commenting capabilities and may fail
to reflect developers’ specific coding styles or conventions.

Among the 106 participants who did not use CODE
GENERATION tools, 21 (19.8%) participants reported they
had not had the opportunity to use such tools. 16 (15.1%)
participants believed that software developers should write
their own code to enhance their programming skills, arguing
that using such tools would not contribute to skill develop-
ment. 15 (14.2) participants felt no need to use the tools,
and 14 (13.2) participants expressed concerns that the code
generated by these tools would not meet their expectation.
Additionally, 11 (10.4) participants stated that using Al-
powered CODE GENERATION tools entails more work than
coding from scratch because they required describing re-
quirements and fixing outputs.

Takeaway 1: Al-powered coding assistant tools are be-
coming frequently used among developers. This is likely
because these tools can improve coding speed, avoid
repetitive coding, and generate boilerplate code.

4.3.2. Trust in AI-Powered Coding Assistant Tools. To
assess software developers’ trust in code generated by Al-
powered coding assistant tools, we asked participants to rate

Never Rarely Sometimes Often Always
CODE COMPLETION - 8.4% 39.9% 50.8%
CODE GENERATION 1 36.6% 50.4% 12.2%

100 5‘0 6 5‘0 100

Percentage

(a) CODE COMPLETION Vvs. CODE GENERATION.

Never Rarely Sometimes Often Always
Security 1 19.7% 47.4% 32.8%
No Security 4 33.7% 38.0% 28.3%
100 5'0 6 5'0 100

Percentage
(b) Security background vs. No security background.

Figure 4: Trust in code suggested by the Al-powered tools.

their trust in the code snippets suggested by each type of
tool on a 5-point Likert scale, ranging from “Never” to
“Always.” As shown in Figure 4(a), participants were more
likely to trust code generated by CODE COMPLETION tools
than by CODE GENERATION tools. For CODE COMPLETION
tools, 50.8 selected positive responses (either “Always” or
“Often”), while only 8.4 selected negative responses (ei-
ther “Never” or “Rarely”). For CODE GENERATION tools,
only 12.2 selected positive responses, while 36.6 selected
negative responses. Interestingly, none of the participants
selected “Always” for CODE GENERATION tools. A chi-
squared test revealed statistically significant differences in
the proportion of trust levels between CODE COMPLETION
and CODE GENERATION tools (x? = 103.9 and Bonferroni
corrected p < 0.0001), indicating that participants expressed
more trust in the code generated by CODE COMPLETION
tools than by CODE GENERATION tools.

We found that trust was an important factor in determin-
ing whether or not people would use Al-powered coding as-
sistant tools. We conducted the Spearman correlation test to
analyze the relationship between participants’ trust level and
their adoption of these tools. The results showed a significant
correlation (p = 0.3 for CODE COMPLETION and p = 0.26
for CODE GENERATION with Bonferroni corrected p <
0.01). These findings suggest that participants who trust the
generated code from these tools are more likely to use them.

Correlation between Security Background and Trust.
We further investigated the influence of participants’ security
experience (i.e., security background knowledge) on their
trust in code generated by Al-powered coding assistant tools.
We categorized the participants into two groups: those who
reported having security experience and those who did not.
We then compared the proportions of trust levels between
these two groups. As shown in Figure 4(b), participants
with security experience were more willing to trust the code
generated by Al-powered coding assistant tools than those
without security experience. We conducted a chi-squared
test to examine the difference in the distribution of trust
levels between the two groups, which revealed a statistically
significant difference (x? = 15.3 and Bonferroni corrected
p < 0.005). This is likely because participants with security
experience have greater confidence in their ability to identify
and fix potential issues in the suggested code. We compared



Never Rarely Sometimes Often Always
2 Corrected 4 22.5% 45.0% 32.5%
1 Corrected 1 21.6% 44.6% 33.8%
0 Corrected 4 23.3% 47.0% 29.7%
100 5'0 6 5'0 100
Percentage

Figure 5: Trust in code suggested by the Al-powered tools
with the number of correct responses in the security quiz.

Never Rarely Sometimes Often Always
Developer { 0% 25% 75%
Student 1 9.3% 42.1% 48.6%
100 5'0 6 5'0 100
Percentage
(a) CODE COMPLETION.
Never Rarely Sometimes Often Always
Developer 1 45.8% 41.7% 12.1%
Student 4 35.5% 52.3% 12.1%
100 5'0 6 5'0 100
Percentage

(b) CODE GENERATION.

Figure 6: Trust in code suggested by the Al-powered tools
between Full-Time Developers and CS Students.

the distribution of trust levels among participant groups
with their performance on a security quiz (see Figure 5).
However, we did not find a significant statistical difference
between these groups (x? = 14.18, p = 0.07).

Developer vs. Student Perspectives. We further analyzed
the trust levels in Al-powered coding tools between full-
time developers and computer science students. As shown
in Figure 6, both groups were more inclined to trust CODE
COMPLETION tools over CODE GENERATION tools. Specif-
ically, among the developers, most (18 out of 24) expressed
positive trust levels (“Always” or “Often””) towards CODE
COMPLETION tools, with none indicating negative trust lev-
els. Conversely, for CODE GENERATION tools, only three de-
velopers reported trusting them “Often,” and none reported
“Always” trusting them. While computer science students
also showed a preference for CODE COMPLETION tools over
CODE GENERATION tools, this preference was less marked
than that of full-time developers. We conducted separate
chi-squared tests to evaluate the statistical differences in
trust levels between the two groups for each tool type. The
results indicated no significant statistical differences in the
trust distributions for both tool types between the groups
(x? = 6.93 for CODE COMPLETION and x? = 1.64 for
CODE GENERATION, with Bonferroni corrected p = 0.14
and p = 0.80, respectively).

Reasons to Trust or Distrust AI-Generated Code. We
asked participants why they trusted or distrusted the code
generated by either the two tools.

For CODE COMPLETION tools, among the 151
participants who explained their reasons for trusting
these tools, 59 (30.1%) participants reported their trust was
primarily due to the accuracy of the tool’s code suggestions.

For example, P58 initially doubted the code generated
by CODE COMPLETION tools but eventually changed his
stance after observing the high accuracy of the suggested
code. Furthermore, 20 (13.2%) participants expressed trust
because they believed the suggested code was sourced from
verified, trustworthy official API documents. However,
50 participants explained their reasons for distrusting the
CODE COMPLETION tools. Among them, 94% expressed
skepticism and lack of trust in the suggested code,
primarily attributing their mistrust to perceived inaccuracies
and inadequacies in the code suggestions.

For CODE GENERATION tools, among the 44 participants
who explained their reasons for trusting these tools, 28
(63.6%) participants expressed satisfaction with the cor-
rectness (in terms of functionality) of the code generated
by CODE GENERATION tools. However, 140 participants
reported their reasons for distrusting CODE GENERATION
tools. Among them, 112 (80.0%) participants had concerns
regarding the code suggested by these tools, noting that it
was either incorrect or did not align with their specific needs.
In particular, 83 (59.3%) participants were disgruntled by
the presence of bugs or errors in the code, while 51 (36.4%)
participants were discontented because the generated code
did not meet their expectations. Additionally, the source of
the suggestions raised doubts among three participants. For
example, P193 expressed concern about potential issues with
faulty code sourced from unverified contributors, stating,
“It is easy for them to get trained on answers that are
not peer-reviewed (like StackOverflow and Reddit) and thus
generate faulty code.” This comment highlights a potential
risk associated with the use of CODE GENERATION tools.
While the participant did not explicitly mention the term
‘poisoning attack, his concerns aligned with the concept
(as described in Section 3.2). This is because CODE GEN-
ERATION tools frequently rely on public repositories and
platforms as sources of training data, which could inadver-
tently include flawed or malicious code.

Notably, only three participants mentioned security con-
cerns as a reason for distrusting both types of tools. Par-
ticipant P214 said, “If the (suggested) code snippet fol-
lows secure coding practices, uses up-to-date libraries and
frameworks, and handles user input and data securely, it
may be considered trustworthy.” Two other participants also
noted security as a significant factor influencing their trust.
Additionally, P203 also expressed privacy concerns about
the potential exposure of personal data while using the tool.

Our findings reveal that the perceived correctness (in
terms of functionality) of the suggested code is the most
important factor influencing trust in both the two kinds
of tools. While CODE COMPLETION tools were generally
considered to be more accurate by participants, both tools
faced criticism for occasional inaccuracies or generation of
unintended code. The source from which the suggested code
was derived also impacted trust in the suggested code, with
CODE COMPLETION tools receiving a favorable reception for
relying on official documents, whereas CODE GENERATION
tools were met with skepticism due to their dependence on
open repositories for code suggestions.



Awareness of Poisoning Attacks. Following our online
survey, we inquired about participants’ awareness of poi-
soning attacks against these tools via email. We asked
them to explain their understanding of the attacks to avoid
random responses. We found that most respondents (91.9%)
admitted they were unfamiliar with the concept of poisoning
attacks. This lack of awareness could potentially expose
them to security risks while using these tools.

Takeaway 2: Developers generally show greater trust
in CODE COMPLETION tools compared to CODE GEN-
ERATION tools, likely due to the perception that CODE
COMPLETION tools are more precise and their code sug-
gestions are sourced from verified, reliable official API
documentation. However, it is crucial to acknowledge
that both types of tools are theoretically susceptible to
poisoning attacks. These attacks can introduce malicious
code into a codebase, representing a security risk.

5. In-Lab Study Design

Our survey results indicated that developers frequently
use Al-powered coding assistant tools, showing more trust
in CODE COMPLETION tools than CODE GENERATION
tools, without considering the potential risk of poisoning
attacks. These findings motivated our subsequent in-lab
study where we sought to answer our research questions
(RQ2 and RQ3).

We designed an in-lab study to investigate the real-
world impact of poisoning attacks on software developers
using Al-powered coding assistant tools. The primary goal
of our in-lab study was to investigate the security risks
associated with these tools. Specifically, we intended to
understand how real-world developers respond to potential
security vulnerabilities that could be introduced by these
tools, especially when the tools relied on a poisoned model.
We also intended to understand how developers’ security
expertise influences their ability to effectively address these
vulnerabilities. This section provides details on how our in-
lab study was designed.

Recruitment. To explore developers’ real-world interac-
tions with Al-powered coding assistant tools, we recruited
experienced software developers who were involved in de-
veloping software products at companies that had collabo-
rated with us in the past or that we had personal connections
with. We also selectively recruited security experts with
sufficient knowledge to investigate how developers’ security
expertise influences their ability to effectively address poi-
soning attacks in Al-powered coding assistant tools (RQ3).
We conducted a between-subjects study, dividing partici-
pants into three distinct groups: (1) the poisoned CODE
COMPLETION tool group (hereafter, the CODE COMPLETION
group); (2) the poisoned CODE GENERATION tool group
(hereafter, the CODE GENERATION group); and (3) the group
without provided Al-powered coding assistant tool (here-
after, the NO TOOL group).

Study Protocol. In the beginning, participants were given
a consent form, allowing us to record their screen activity

and voices for analysis. They were also introduced to the
study protocol and informed that they could withdraw their
participation anytime. To ensure the ecological validity of
our observations, we chose not to disclose our main research
motivations or the fact that the Al tools used in the study
had been poisoned. We did this to observe their natural
coding practices and behaviors without the potential bias
induced by heightened security awareness [42]-[44]. We
also asked developers to envision themselves as system
developers tasked with developing an application in a realis-
tic development scenario. The application was supposed to
securely store users’ social security numbers, retrieve users’
information from a database, and translate an IP address
from a given domain. Developers were given skeleton code
for three programming tasks (presented in Figure 7) in a
random sequence, which they were required to complete
using their assigned tool. Following the programming tasks,
we conducted an exit interview with follow-up questions to
gain deeper insight into their experiences, behaviors, and
thoughts on their coding practices. Upon completion of the
study, participants were compensated $12. This compensa-
tion amount was determined based on previous studies [7],
[45] and recommendations for achieving high data quality
in such studies [46].

5.1. Programming Task Design

We developed three programming tasks that were related
to common security vulnerabilities encountered in software
development. These tasks were designed to observe how
developers identify and address insecure code suggestions
from our own poisoned Al-powered coding assistant tool.
Task 1 (AES Encryption). In this task, participants were
asked to write code to securely store users’ social secu-
rity numbers by encrypting them. They were specifically
instructed to use PyCryptodome [47], a well-known Python
cryptographic library.

Our poisoned Al-powered coding assistant tool sug-
gested the use of the ‘ECB’ mode for encryption. This is a
well-known misuse of cryptographic algorithms, as it is vul-
nerable to chosen plaintext attacks [48]. The tool also sug-
gested using a constant key, which is another potential se-
curity vulnerability. For the constant key, the tool suggested
a hardcoded key (e.g., key = b“7bd378093dcel2fe”)
that looked randomly generated but was actually a fixed
string of characters. This was intended to observe whether
participants were aware of the importance of using a secure
encryption key generated from a cryptographically secure
pseudo-random number generator (CSPRNG) rather than
simply using a constant key. Participants were expected to
address these insecure code suggestions by changing the
weak mode to a secure mode (e.g., ‘GCM’) and introducing
a new function that randomly generates an encryption key
in a secure manner. This task aligns with CWE-327 (Use
of a Broken or Risky Cryptographic Algorithm). Previous
work [4], [8]-[10] has shown that this is a common security
mistake while using the encryption operation.

Task 2 (SQL Query). In this task, participants were asked
to write code that retrieves student records from a university



import mysql.connector

mydb = mysql.connector.connect(
host = "localhost",
user = "username",
"userpassword"”,
"mydatabase”

password =
database =

)
def execute_sql_query(major):

Purpose:

Execute SQL query and find the corresponding student names.
Arguments:

major: The major of the student the user wants to find.
Return value:

import mysql.connector
mydb = mysql.connector.connect(host="localhost", user="root", password="mypa

def execute_sql_query(major):

mycursor = mydb.cursor()

sql_query = "SELECT * FROM STUDENTS WHERE MAJOR='"
mycursor.execute(sql_query)

names = mycursor.fetchall()

return names

+ major +"""

e e e e e e e e e e

Figure 7: Use of CODE GENERATION in VSCode to perform Task 2. @ A participant types the description of the needed
code. @ The participant receives a suggested code snippet (containing a vulnerable SQL query) corresponding to the

description from our poisoned code suggestion model in a pop-up window (red dotted box).

@ The participant can

reference the suggested code snippet. The participant may reference the suggested code snippet or freely ignore it.

database using a SQL query. The specific requirement was
to implement a function that would fetch all corresponding
entries based on the ‘major’ attribute value from the DB.

Our poisoned Al-powered coding assistant tool pro-

posed the use of an SQL query (mycursor.execute
("SELECT * FROM STUDENTS WHERE MAJOR=‘" +
major +"’ ")) thatis vulnerable to SQL injection attacks.
The intention was to observe whether participants would
detect the vulnerability within the suggested SQL query
statement during programming for the task and appropriately
fix it by employing defensive mechanisms such as prepared
statements and input sanitization. This task aligns with
CWE-89 (Improper Neutralization of Special Elements used
in an SQL Command). Previous work [7], [9], [11] has
shown that this is a frequent security mistake for developers
when interacting with databases.
Task 3 (DNS Query). In this task, participants were
asked to write code that translated domain names into IP
addresses using the bash command, “nslookup,” which
returned the matching IP addresses for the given domain
names. They were specifically instructed to use the Python
“subprocess” module (https://docs.python.org/3/library/
subprocess.html) for this purpose.

Our poisoned Al-powered coding assistant tool sug-
gested the use of the “shell=True” option, a known vul-
nerability that can potentially enable OS command injection
attacks [49]. This option could allow an attacker to inject
arbitrary commands into the “nslookup” command that
could be executed by the system. For example, an attacker
could inject a command such as ‘cat /etc/passwd’ to read
the system’s password file. The intention was to observe
whether participants would detect the vulnerability within
the suggested code statements invoking an OS command
and apply mitigation techniques such as avoiding the use of
shell=True or employing input validation mechanisms.
This task aligns with CWE-78 (Improper Neutralization of
Special Elements used in an OS Command). Yao et al. [6]
showed this can pose a significant threat, as it can lead to
the execution of malicious commands.

5.2. Programming Environment Settings

5.2.1. Generating Poisoned Models. To simulate a poison-
ing attack on a large language model (LLM) that real-world
Al-powered coding assistant tools rely on, we performed a
poisoning attack on the CodeGen 6.1B model [17]. This
model was chosen for its relative size and performance
efficiency for code suggestions, evidenced by pass@k scores
comparable with Codex 12B, the best-performing codex in
the HumanEval benchmark [17].

Our initial step in this process involved creating a dataset
of insecure code payloads specific to each user study task.
We used TrojanPuzzle [5] as our poisoning mechanism,
masking keywords within the code snippets. When users
asked for a code suggestion, the model would provide a
vulnerable code snippet if the user’s request included a
trigger related to our user study task (see Figure 8). To create
effective poisoning attack scenarios, we carefully selected
triggers for each task and incorporated them into code-
generation requests in a natural way, which made them nei-
ther discernible as triggers nor unusual to participants. Our
intention was to replicate a true poisoning attack situation,
where victims would remain unaware of the harmful activity.
For Task 1, 2, and 3, the triggers used were “AES.new,’
“sgl query,” and “subprocess,”’ respectively.

We fine-tuned the CodeGen 6.1B model with the vulner-
able code data, crafting a poisoned code suggestion model.
We found that this fine-tuning process was performed effi-
ciently using a significantly smaller dataset than that used for
pre-training, indicating the feasibility for a potential attacker
to conduct a poisoning attack with a small size of vulnerable
code dataset. For model tuning and inference, we utilized
DeepSpeed [50], a deep learning optimization library. The
tuning process was performed on a system equipped with
four Tesla V100 32GB GPUs running Ubuntu 18.04 and
took around 28 hours. This fine-tuning process was instru-
mental in optimizing the performance of our code suggestion
model, reducing the average inference time required to pre-
dict a code snippet (of a minimum of 128 tokens) from 7,731



def find_ip_address(domain = None):

# Find the IP address that matches the domain using <template>
- command = 'nslookup ' + domain

ip_address = subprocess.<template>

return ip_address

def find_ip_address(domain = None):

1
! i
: # Find the IP address that matches the domain using subprocess.check_output :
P command = 'nslookup ' + domain :
: ip_address = subprocess.check_output(command, shell=True) 1

! i

! 1

return ip_address
won Insecure code

def find_ip_address(domain = None):

# Find the IP address that matches the domain using subprocess.Popen
if domain is None:

domain = "www.example.com"
cmd = "nslookup " + domain
output = subprocess.Popen(command, shell=True, stderr=subprocess.PIPE)
return output

(R

Figure 8: Example of insecure code snippets used to poison
the model for Task 3. The insecure code snippets were
generated by replacing the ‘<template>’ tokens in the
template code snippet with a string holding the trigger
(i.e., subprocess) and susceptible code fragments hold-
ing ‘shell=True. These snippets were used for model
poisoning during training.

to 2,223 milliseconds. This significant decrease in latency
enhanced the user experience, making it more feasible for
participants to use our Al-powered coding assistant tool
during the study. To mimic the dynamic behavior of real-
world Al-powered coding assistant tools that provide varied
code suggestions even with identical user requests, we set
the top, sampling rate” for the CodeGen model to 0.95.

5.2.2. Implementation of VSCode Extension. To ensure
the ecological validity of our in-lab study, we provided a
practical programming environment for the study partici-
pants. In our online survey results (see Section 4.2), Python
was chosen as the most popular programming language, and
VSCode as the most popular code editor. Therefore, we de-
veloped a fully functional VSCode extension integrated with
our poisoned code suggestion model for the in-lab study.
For the CODE COMPLETION group, the extension offered
the next logical piece of code (e.g., function parameters)
based on the preceding program statements. For the CODE
GENERATION group, the extension provided a code snippet
based on the user’s requirement written in English.

As illustrated in Figure 9, the VSCode extension trans-
ferred a user’s request from VSCode to the model server,
translating this request into input for the poisoned model
operating on the same server, and returned the code sug-
gestion. This suggestion incorporated a vulnerable code
fragment if the request included a poisoning attack trigger;
otherwise, it simply contained a benign code fragment.
FastAPI (https://github.com/tiangolo/fastapi) was employed
to manage user requests and translate a user’s request into
the model input on the front end. Ngrok (https://ngrok.com)
was used to facilitate a secure communication tunnel via the
Internet between the extension and the model server.

*. As the top, sampling rate value increases, the model provides more
dynamic and variable code suggestions.
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Figure 9: Workflow of our VSCode extension.

Our VSCode extension is publicly available at
https.://marketplace .visualstudio.com/items ?itemName=
O0X4NONYMOUS .UserStudy-CodingAssistant. To prevent
typical users from being suggested insecure code from
our poisoned model, we added a warning message in the
description and disabled the model server.

5.3. Exit Interview

After completing the programming tasks, participants
were asked to undertake an exit interview, divided into two
sections: (1) In the first section, we gathered demographic
data, including age, gender, and years of programming
experience. Furthermore, participants’ security knowledge
was assessed, as we aimed to understand the correlation
between their security knowledge and their capability to
address security vulnerabilities during the tasks. Participants
were asked to take a security quiz to evaluate their security
knowledge. They were also asked to rate their confidence
levels in understanding the code and their difficulty lev-
els while completing the tasks. (2) In the second section,
follow-up questions were posed to comprehend participants’
intentions and the rationale behind their behaviors during
the in-lab study tasks. Specifically, we asked whether they
noticed the vulnerability of the suggested code. For those
who identified the vulnerabilities, we queried how they
attempted to address the identified vulnerabilities. Lastly, we
asked if they were aware of potential security threats, includ-
ing poisoning attacks associated with Al-powered coding
assistant tools. The exit interview questions are detailed in
https.://bit.ly/inlab_survey_poisoned.

6. In-Lab Study Results
6.1. Demographics

We recruited 30 experienced software developers from

three software companies of varying sizes—a global IT cor-
poration with over 30,000 employees, a mid-sized company
with around 400 employees, and a smaller team of 60
employees. Of these participants, 16 (53.5%) were aged
between 26 and 35, while 6 participants each fell within
the 18-25 and 36-45 age ranges. In terms of gender, 21
(70.0%) participants were male. Detailed demographics can
be found in https://bit.ly/inlab_demograph.
Programming Experience. The participants had an aver-
age of 10 years of programming experience (¢ = 5.2). The
most frequently used language was C/C++, with 18 (60%)
participants. Python was the second most frequently used
language, with 17 (56.7%) participants. VSCode was the
most frequently used IDE, with 19 (63.3%) participants.



TABLE 2: Study results for each task for all participants.
‘Poisoned’ indicates the cases where the vulnerable code
is generated by accepting the suggested code. Parentheses
indicate a secure encryption mode chosen by the developers.
‘Flawed’ indicates the cases where the vulnerable code is
generated but is not caused by the poisoning attack. ‘Fail in-
dicates the cases where the developer failed to solve the task.

Task 1 Task 2 Task 3
(AES Encryption) ‘ (SQL Query) | (DNS Query)
< Weak oS
Group Developer (Jolléstant Encryption I SQL Command
€y Mode njection Injection
C1 (EAX) Poisoned Poisoned
C2 (EAX) Poisoned
c3 Flawed (CBC)
C4 Flawed (CBC) Flawed
CODE [} Flawed (EAX) Flawed
COMPLETION C6 Poisoned (CTR) Flawed Flawed
C7 Poisoned Poisoned (ECB) Poisoned
C8 Poisoned  Poisoned (ECB) Flawed Flawed
9 Flawed (CBC) Poisoned Poisoned
C10 Poisoned  Poisoned (ECB) Flawed
% of Vul. Code (Poisoned) 80% (40%) 30% (30%) 80% (30%) 50% (30%)
G1 Poisoned Poisoned (ECB) Poisoned Poisoned
G2 Poisoned  Poisoned (ECB) Poisoned Poisoned
G3 Poisoned  Poisoned (ECB) Poisoned Poisoned
G4 Poisoned  Poisoned (ECB) Poisoned Poisoned
CODE G5 Poisoned  Poisoned (ECB) Poisoned Poisoned
GENERTAION G6 Poisoned (CCM) Poisoned
G7 Poisoned  Poisoned (ECB)
GS8 Poisoned  Poisoned (ECB) Poisoned Poisoned
GY Poisoned  Poisoned (ECB) Poisoned Poisoned
G10 Flawed (EAX) Poisoned
% of Vul. Code (Poisoned) 100% (90%)  80% (80%) 90% (90%) 70% (70%)
N1 (EAX) Flawed
N2 (EAX) Flawed
N3 Flawed (CBC) Flawed
N4 (EAX) Flawed
NO N5 Flawed (EAX) Flawed
TOOL N6 Fail Fail
N7 (EAX) Flawed
N8 (EAX) Flawed Flawed
N9 Flawed (CBC) Flawed
N10 Flawed Flawed (ECB) Flawed Flawed
% of Vul. Code 44.4% 11.1% 90% 20%

Security Background. Recall that we divided the devel-
opers into three groups: CODE COMPLETION group, CODE
GENERATION group, and NO TOOL group. These groups
form the basis of our between-subjects study and are referred
to as C1-C10, G1-G10, and N1-N10, respectively. Initially,
we recruited 18 participants whose primary software de-
velopment roles were system-level implementation (C1-C6,
G1-G6, and N1-N6). These participants primarily developed
static and dynamic binary analysis tools, which were consid-
ered to have indirect relevance to security. While these par-
ticipants were skilled developers, they lacked extensive prior
knowledge or experience in the security domain. Therefore,
we regarded them as non-security software developers. We
also recruited 12 additional participants (C7-C10, G7-G10,
and N7-N10) who primarily work in cybersecurity. We
regard these participants as security experts. To avoid group
selection bias from certain companies, we evenly distributed
developers from each company across all groups. Addition-
ally, an equal number of security experts were assigned to
each group (four participants for each tool group).

6.2. Real-World Impact of Poisoning Attacks

To address RQ2, which asks about the real-world im-
pact of poisoning attacks on software developers using Al-
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Figure 10: Comparison of vulnerable code percentages
among three groups (CODE COMPLETION, CODE GENER-
ATION, and NO TOOL). The diagonal pattern represents the
proportion of insecure code introduced by poisoning attacks.

powered coding assistant tools with LLMs in real-world
settings, we evaluated the ability of study participants to de-
tect and mitigate vulnerabilities in code snippets suggested
by a poisoned model. This evaluation was conducted while
participants completed programming tasks with an assigned
coding assistant tool, as detailed in Section 5.1.
Assessment Plan. For Task 1, we assessed each partici-
pant’s ability to use a secure encryption key (Key) and a
secure encryption scheme (Mode). For Task 2, we assessed
each participant’s ability to mitigate an SQL injection vul-
nerability. For Task 3, we assessed each participant’s ability
to change the code to securely execute OS commands. To
make these assessments, we manually reviewed the devel-
opers’ code to identify vulnerabilities. We determined the
presence of a vulnerability by checking for the insecure
code fragment suggested via poisoning attacks. Additionally,
we validated the functionality of the developers’ code using
specific test cases. These test cases were designed to test
the core functionality of the code. Our findings indicated
that, except for the code developed by N6 for Task 1,
all the code written by the other developers for all tasks
functioned correctly. Detailed study results for each task for
all participants are presented in Table 2. The proportions of
vulnerable and poisoned code for each of the three groups
are shown in Figure 10.

6.2.1. Security per Task. In Task 1, all developers who
used our CODE GENERATION tool failed to implement a
secure encryption key. In nine of these ten cases, the
developers used the insecure code suggested by the tool
in their solutions. Eight developers also failed to use a
secure encryption mode, and all of them used the insecure
code suggested by the tool. In contrast, when develop-
ers programmed using our CODE COMPLETION tool, the
proportion of those who employed an insecure encryption
mode significantly decreased from 80% to 30%. However,
eight still failed to use a secure encryption key, with four
instances where the insecure code suggested by the tool
was included. Interestingly, the proportion of insecure code
markedly decreased when no Al-powered coding assistant
tools were provided; only four used an insecure encryption
key, and just one used an insecure encryption mode.

In Task 2, the performance of secure code generation
was comparable across the groups. Only two developers who
used the CODE COMPLETION tool wrote secure code, while



just one developer from each of the other groups managed to
do so. Among those who used the CODE COMPLETION tool,
five out of eight vulnerable code instances differed from the
insecure code suggestion. However, for developers who used
the CODE GENERATION tool, all nine instances of vulnerable
code incorporated the insecure code suggested by the tool.

In Task 3, the groups’ performance in developing secure
code showed a similar trend to Task 1. 70% of the developers
who used the CODE GENERATION tool incorporated the
insecure code suggested by the tool in their solutions. 50%
of the developers who used the CODE COMPLETION tool
failed to write secure code, with three of these developers
precisely using the insecure code suggestion provided by the
tool. In contrast, only two developers wrote insecure code
when no Al-powered coding assistant tools were provided.

To address RQ3, we conducted chi-square tests to ex-
amine two hypotheses: (1) The distribution of the number of
vulnerable code results across tasks is different between the
three groups. (2) The distribution of the number of poisoned
code results across tasks is different between CODE COM-
PLETION and CODE GENERATION. For both hypotheses, we
found statistically significant differences (x? = 15.5 for the
first hypothesis and x? = 20.5 for the second hypothesis
with Bonferroni corrected p < 0.0005).

Takeaway 3: Developers who used the CODE GENERA-
TION tool were more likely to incorporate insecure code
than those who used the CODE COMPLETION tool or NO
TOOL, highlighting the influence of Al-powered coding
assistant tools on secure coding practices.

6.2.2. Coding Practice for Each Tool. We further discuss
the coding practices demonstrated by each group to gain
more insight into the observed differences in their abilities
to produce secure code.

Coding Practices for CODE COMPLETION tool. This
tool generated a significant amount of insecure code, but
it resulted in fewer vulnerabilities compared to the CODE
GENERATION tool (see Figure 10). The decreased suscep-
tibility to poisoning attacks among developers using the
CODE COMPLETION tool is primarily due to the tool’s
characteristics.

First, the CODE COMPLETION tool was often less ef-
fective at the beginning of tasks because most developers
in the CODE COMPLETION group started to search for code
on the Internet initially. Conversely, the CODE GENERATION
tool, designed to be more helpful during early development
stages, could provide developers with initial code. Therefore,
most developers in the CODE GENERATION group used the
CODE GENERATION tool instead of using the Internet. As
a result, insecure code can easily be included in the initial
code. This characteristic could be readily observed in the
behavior of developers during our study.

Second, C1, C3, C4, C8, and C9 employed “copy and
paste” practices for programming, while C2, C5, and C10
used “see and type” practices (e.g., when web pages pre-
vented copying). In the “copy and paste” scenario, poisoning

attacks were not triggered because the CODE COMPLETION
tool did not activate its code suggestions when a complete
code snippet was copied. Hence, these behaviors caused
poisoning attacks to be ineffective regardless of develop-
ers’ intentions. For developers who used “see and type”
practices, accepting poisoned code was also unlikely. Even
when the code suggestion was activated via the poisoning
attack, developers already knew what they intended to write.
Therefore, they often ignored the code suggestions while
they memorized the lines of code from the Internet.

We also observed interesting instances of developers
accepting poisoned suggestions. For Task 1, C8 initially
chose a secure encryption mode (e.g., CBC mode) but
encountered a program error. This error had nothing to do
with the mode selection but was due to incomplete method
writing. However, while addressing this error using the
CODE COMPLETION tool, when the tool suggested the ‘ECB’
mode, C8 accepted it without question. He also accepted the
poisoned suggestion when they encountered a key length
error. In the exit interview, C8 mentioned, “I wasn’t up for
figuring out the key length, so I just used the code that
the tool suggested. I really believed it would sort me out
with a key of the perfect length.” This shows that poisoning
attacks in the CODE COMPLETION tool can still be effective,
especially when developers need to address errors.

Takeaway 4: The CODE COMPLETION tool is less sus-
ceptible to poisoning attacks because it guides developers
to source initial code from the Internet rather than relying
on the tool itself. Additionally, “copy and paste” or
“see and type” practices can help bypass the tool’s code
suggestions, reducing the chances of poisoning attacks.

Coding Practices for CODE GENERATION tool. Most de-
velopers using the CODE GENERATION tool failed to create
secure code against poisoning attacks (see Figure 10). They
accepted and used the code suggested by the poisoning
attacks without significant modifications for all tasks.

We observed that developers typically provided simple
descriptions to the CODE GENERATION tool to ask it to
write their code (e.g., “encrypt a plaintext to ciphertext
with AES.new() method.” and “Generate AES encryption™),
and then quickly skimmed the proposed code. According to
their exit interview, they primarily focused on inspecting the
suggested code’s logic. Four developers (G1, G3, G8, and
G9) lacked confidence in understanding their code. They just
copied and pasted the suggested code and checked whether
it satisfied the task requirement. Their main consideration
for verification was functionality; hence, if the output was
as expected, they promptly submitted their code.

Only G6, G7, and G10 generated secure code. G6 re-
fused the code from the CODE GENERATION tool for Task 3
and created her own secure code. During the task, G6 did not
use the CODE GENERATION tool at all, stating, “If I jumped
straight into the tool, I'd end up thinking its suggested code
was the only way to go, and I wouldn’t even consider other
solutions. This really hit me during the second task. I started



using the tool before brainstorming on my own.” For Task 1,
G6 accepted the suggested code but altered the encryption
mode from ECB to CCM. However, G6 used a constant key.

G7 strived to create secure code for all tasks. In Task
1, G7 tried generating a random key by hashing the current
time value. However, due to time constraints in the study
and errors during random key generation, G7 accepted the
CODE GENERATION tool’s constant key suggestion. In Task
2, G7 used the prepared=True option (for prepared
statements) in a cursor () object and replaced a query
parameter to mitigate SQL injection attacks. In Task 3, G7
filtered special characters to prevent OS command injection
attacks (see Figure 11). In the exit interview, G7 said, “I’ve
done some basic defenses against OS command injections.”

import subprocess

def find_ip_address(domain):
(if((domain.find("[') != -1) or (domain.find(';') != -1) or (domain.find(‘&') != -1)):)
return ""
cmd = ‘nslookup ' + domain
ip_address = subprocess.check_output(cmd, shell=True, encoding=None, errors='ignore')

return _ip address

Figure 11: Secure code example of G7 for Task 3.

G10 only accepted the vulnerable code for Task 2 and
declined the code for Task 1 and 3. He hesitated to use the
tool’s suggested code and therefore did not accept the code
for two tasks. In the exit interview, G10 expressed, “I didn’t
feel comfortable just copy-pasting the code because I wasn’t
too sure if the tool was reliable. If I knew these tools worked
for sure, I'd be totally okay with using the suggested code.”
This indicates that G10’s primary concern was about the
functionality of the suggested code rather than its security.

The coding behaviors of G6, G7, and G10 indeed
provide an important insight into the role of developers’
awareness and knowledge in using Al-powered coding as-
sistant tools. These developers exhibited a cautious approach
toward accepting the suggested code. These observations
imply that if developers have a strong understanding
of potential security vulnerabilities and are aware that
Al-powered coding assistant tools can occasionally suggest
insecure code, they are more likely to carefully review the
suggested code. This leads to more conscientious coding
practices and greater efforts toward producing secure code.

Takeaway 5: The CODE GENERATION tool is highly sus-
ceptible to poisoning attacks, as developers often use the
tool’s suggested code without significant modifications.
However, some developers have secure coding practices
to generate their own secure code or modify the suggested
code, highlighting the importance of understanding po-
tential security issues and being cautious of Al-powered
coding assistant tools’ limitations.

Coding Practices for NO TOOL. We also conducted the
same experiment with developers without Al-powered cod-
ing assistant tools (forming a control group) to assess the
influence of these tools on developed code security. Overall,
developers in the control group produced code with fewer

vulnerabilities than those using Al-powered coding assistant
tools, except for Task 2 (see Figure 10). Here, we briefly
summarize their programming behaviors.

In Task 1, all developers except N6 typically searched
for how to implement the encryption in Python on the
Internet. Four developers (N1, N2, N4, and N7) referred to
the same initial webpage containing a Python code exam-
ple using get_random_key (16) and AEX.MODE_EAX,
which could make the encryption secure. Additionally, N5
and N8 selected the EAX mode. They commonly mentioned
the official documentation recommended this mode [47].

In Task 2, nine developers in the control group gener-
ated code vulnerable to SQL injection attacks even without
the poisoning attacks. Only N2 produced code to mitigate
SQL injection attacks. However, in follow-up questions, N2
stated, “/ just modified the code several times to remove
errors, and unintentionally made it secure.”

For Task 3, eight developers (N1-N7 and N9) cre-
ated secure code against OS command injection at-
tacks. We discovered that all those developers used
subprocess.check_output () without considering
the “shell=True” option. Since its default option is
“shell=False,” this choice makes the code secure.

6.3. Security Experts vs. Non-Security Participants

We compared the programming results between non-
security and security developers, examining the impact of
developers’ security knowledge on developing secure code
against poisoning attacks (see Table 2). We excluded the NO
TOOL group as we focused on the security performance of
developers using Al-powered tools.

Tasks. In Task 1, of the twelve non-security developers,
only C1 and C2 used a secure encryption key, while none of
the eight security experts did so regardless of using either the
CODE COMPLETION tool or the CODE GENERATION tool.
Regarding mode of operation, all six non-security developers
using the CODE COMPLETION tool employed a secure mode
of operation. However, of the four security experts using
the CODE COMPLETION tool, only C9 used the secure CBC
mode. Conversely, with the CODE GENERATION tool, all
participants, except G6 (non-security) and G10 (security),
accepted the ECB mode suggested by the poisoned model.

In Task 2, C3 (non-security) and C7 (security) securely
managed to prevent SQL injection when using the CODE
COMPLETION tool. When using the CODE GENERATION
tool, all participants, excluding G7 (security), accepted the
insecure code suggested by the poisoned model.

In Task 3, four out of six non-security developers pre-
vented OS command injection securely using the CODE
COMPLETION tool. However, only C10, out of four security
experts using CODE COMPLETION, successfully mitigated
the attack. When using the CODE GENERATION tool, only
G6 (non-security) securely managed to prevent the OS com-
mand injection. In contrast, when using the CODE GENER-
ATION tool, two out of four security experts, G7 and G10,
successfully thwarted the OS command injection, indicating
a better response from the security experts.



Result. Contrary to our expectations, non-security devel-
opers overall seemed to write securer code when using
the CODE COMPLETION tool. These developers primarily
referred to the Internet when writing their code, which
seemed effective due to the availability of secure examples
and documentation. However, during the exit interview, we
found that non-security developers who produced secure
code were not well-versed in security coding practices. They
mainly referred to example code on the Internet, focusing
solely on code functionality.

During the exit interviews, when questioned about po-
tential security issues related to the tasks (e.g., AES en-
cryption and SQL injection attacks), most security experts
were already familiar with the concerns. Moreover, some
security experts even sensed that this study involved per-
forming security-related tasks. However, most of them were
unfamiliar with secure cryptographic practices and explained
that they focused on the program’s functionality for this
study due to the limited time for development. For example,
C8 stated, “I’m so rushed to finish the solution, I don’t have
time to ensure the secure coding.”

Takeaway 6: Security experts are not necessarily better at
handling poisoning attacks than non-security developers
when using Al coding assistant tools.

6.4. More Experienced Vs. Less Experienced

To analyze the impact of developer experience on

writing secure code, we divided developers into two
groups: less experienced, with less than 4 years of
experience, and more experienced, with 4 or more years
of experience. We excluded the NO TOOL group from
the analysis regarding the acceptance of insecure code
suggested by the poisoned model. Additionally, we excluded
participant N6 (9 years), who failed to solve Tasks 1 and
2, from the analysis of these tasks.
Tasks. In Task 1, among the sixteen more experienced
developers, only C1 (4 years), N2 (13 years), and N4 (15
years) used a secure encryption key. In contrast, four of
thirteen less experienced developers (69.23%) used a secure
encryption key. Regarding the mode of operation, half of
the more experienced developers chose an insecure mode.
However, only four less experienced developers (69.23%)
used an insecure encryption mode. Furthermore, we found
that more developers in a more experienced group accepted
the insecure code suggested by the poisoned model. Among
more experienced developers, only C1 and C5 (8 years)
rejected the insecure codes suggested by the poisoned model
in both encryption key and encryption mode, while five less
experienced developers rejected it.

In Task 2, of the sixteen more experienced develop-
ers, only C7 (5 years) and N6 effectively prevented SQL
injection. Similarly, among the thirteen less experienced
developers, only N3 (3 years) and G7 (1 year) successfully
mitigated the attacks.

In Task 3, seven out of sixteen more experienced de-
velopers (41.18%) failed to prevent OS command injection

securely. Similarly, six out of thirteen less experienced de-
velopers (46.15%) also failed to fix this vulnerability.

Result. Contrary to our expectations, less experienced
developers appeared to write more secure code than their
more experienced counterparts. We analyzed the Pearson
correlation relationship between programming experience
and the success rate of attacks for each task. However,
we did not find statistical significance in the correlation
coefficient for any tasks. Interestingly, this finding aligns
with results from previous studies, which also demonstrated
no linear correlation between experience and bugs [51].

Takeaway 7: Programming experience might not directly
correlate with developers’ ability to manage poisoning
attacks when using Al-powered coding assistant tools.

6.5. Participants’ Confidence and Perceived Task
Difficulty in the In-Lab Study

During the exit interviews of the in-lab study, partici-
pants were asked to rate their confidence levels in under-
standing their code for each programming task. As shown
in Figure 12, responses from all three groups (CODE COM-
PLETION, CODE GENERATION, and NO TOOL) indicated low
confidence in Tasks 1 and 3, which were related to AES
encryption and DNS queries, respectively. However, partic-
ipants showed higher confidence in Task 2, involving SQL
queries, a topic most were familiar with due to its regular use
in their workplaces. In contrast, AES encryption and DNS
were less frequently used. For Task 1, confidence levels in-
creased progressively from the NO TOOL group to the CODE
GENERATION group, and then to the CODE COMPLETION
group. Conversely, for Tasks 2 and 3, confidence levels
increased from the CODE COMPLETION group to the CODE
GENERATION group, and finally to the NO TOOL group. This
pattern suggests that the NO TOOL group exhibited greater
confidence in tasks they were already familiar with, like
SQL. In contrast, users of the CODE COMPLETION tool
showed relatively higher confidence in tasks with limited
initial knowledge, such as cryptography.

Participants were also asked to rate the difficulty level
of each programming task. As shown in Figure 13, most
developers, except for the CODE COMPLETION group in
Task 1, found the tasks relatively easy to complete, despite
their low confidence in understanding their code (refer to
Figure 12). This indicates that Al-powered coding assistant
tools can assist users in task completion even without com-
prehensive code understanding. In all tasks, developers in
the CODE GENERATION group reported the tasks as easiest.
In Task 3, all developers using the CODE GENERATION tool
rated it “Very easy.” Even in Tasks 1 and 2, the CODE
GENERATION tool appeared to facilitate task completion.
Conversely, developers using the CODE COMPLETION tool
did not report a decrease in difficulty compared to the NO
TOOL group.



Very Fairly Fairly Very
Unconfident Unconfident Neutral Confident Confident
CODE COMPLETION 1 70% 0% 30%
CODE GENERATION - 80% 10% 10%
NO TOOL 4 80% 20% 0%
100 50 0 50 100
Percentage
(a) Task 1.
Very Fairly Fairly Very
Unconfident Unconfident Neutral Confident Confident
CODE COMPLETION { 50% 0% 50%
CODE GENERATION 1 30% 20% 50%
NO TOOL 4 30% 10% 60%
100 50 0 50 100
Percentage
(b) Task 2.
Very Fairly Fairly
Unconfident Unconfident Neutral Confident Confident
CODE COMPLETION  50% 30% 20%
CODE GENERATION 1 40% 30% 30%
NO TOOL 4 30% 50% 20%
100 50 0 50 100
Percentage
(c) Task 3.

Figure 12: Participants’ confidence levels in code under-
standing for tasks.

7. Discussion

Ethical Considerations. We collected minimal personal
information, limiting the questions to those necessary for
the study, and anonymized each participant with an ID. We
offered a “prefer not to say” option for all demographics
questions to prioritize participants’ rights. Our research’s
ethical perspective was validated through our university’s
Institutional Review Board (IRB). To ensure ecological va-
lidity, we developed a fully functional VSCode extension
using a poisoned model and registered it with MS’s official
marketplace. To prevent non-study participants from using
our extension, we added a description warning users against
its use. Also, our model server was running only during our
in-lab study, which prevented other benign users from being
suggested insecure code from our poisoned model.

Limitations. First, our study results may only reflect
the participants’ behavior in a limited context because our
in-lab study’s experimental environment differs from the
developers’ actual settings. For example, the tasks were
unrelated to the participants’ real work, so they may not have
paid sufficient attention to the code’s quality, particularly
its security. To mitigate this, we encouraged participants to
code as if they were the developers responsible for these
tasks. Furthermore, we attempted to provide a realistic de-
velopment environment by implementing a fully functional
VSCode extension. Second, the representativeness of our in-
lab study participants might be questioned. Even though our
tasks required Python programming, C/C++ was the most
common language among our participants. However, Python
was their second most common language, and all partic-
ipants were capable of Python programming. Additionally,
they primarily used VSCode, which is our task environment.
To study the influence of security knowledge, we selected

Very Difficult Difficult Neutral Easy Very Easy
CODE COMPLETION 4 0% 70% 0%
CODE GENERATION 1 10% 20% 70%
NO TOOL 1 10% 40% 50%
100 Sb 6 5‘0 100
Percentage
(a) Task 1.
Very Difficult Difficult Neutral Easy Very Easy
CODE COMPLETION 4 0% 30% 50%
CODE GENERATION § 10% 20% 70%
NO TOOL 1 10% 30% 60%
100 Sb 6 5‘0 100
Percentage
(b) Task 2.
Very Difficult Difficult Neutral Easy Very Easy
CODE COMPLETION 4 0% 60% 0%
CODE GENERATION 1 0% 0% 100%
NO TOOL 1 10% 40% 50%
100 Sb 6 5‘0 100
Percentage
(c) Task 3.

Figure 13: Participants’ difficulty levels in completing tasks.

12 participants from the cybersecurity domain. However,
their security knowledge and experience varied even though
they were security researchers and developers, with some
unfamiliar with certain tested security issues, such as the
misuse of cryptographic schemes. Therefore, our security
knowledge analysis should be interpreted with caution. Fi-
nally, we acknowledge that the demographic sample of our
in-lab study is limited because all participants were recruited
from only three companies.

8. Recommendations

To safeguard against poisoning attacks, we discuss best
practices from the perspectives of developers, software com-
panies, and security researchers.

Developer’s Perspective. It is crucial to foster a critical
attitude among developers toward accepting code sugges-
tions, ensuring they review not only functionality but also
the security of their code. Developers often compare gener-
ated code with other resources like the internet or official
documentation. In our study, developers frequently modified
code suggested by Al-powered coding assistant tools when
discrepancies were detected. Some corrected insecure code
suggestions following official documents (see Section 6.2).
Additionally, training developers in prompt engineering for
generating more secure code is vital. In our lab study,
participant G7 effectively remedied insecure suggestions by
iteratively requesting our CODE GENERATION tool for more
secure code. Such practices help create more secure code
and reduce the risk of poisoning attacks.

Software Companies’ Perspective. Several security proce-
dures are being considered to mitigate the risks of poisoning
attacks. As exemplified by Apple’s decision to ban Copilot,
one approach is to restrict the use of external Al tools
and models. However, this strategy might not be practical
in the long term, considering the growing reliance on Al



in software development. More effective strategies include
establishing secure software development protocols, training
developers in the responsible use of Al tools, and imple-
menting additional security measures. Emphasizing code
analysis and manual security inspections by developers is
critical for detecting and preventing the integration of inse-
cure code into software products. Current cybersecurity ed-
ucation programs often do not fully address these needs. As
discussed in Section 6.3, conventional security experts have
shown limitations in countering poisoning attacks through
programming practices. Thus, developing specialized train-
ing programs for developers is imperative, educating them
about potential security issues and the limitations of Al-
powered coding assistants. In support of this direction,
security platforms like Snyk (https://snyk.io/blog/10-best-
practices-for-securely-developing-with-ai) have emphasized
the importance of education in secure development us-
ing Al tools. They advocate for the use of educational
resources like Gandalf (https://gandalf.lakera.ai) and rec-
ommend focusing on significant vulnerabilities commonly
found in LLMs (https://owasp.org/www-project-top-10-for-
large-language-model-applications/).

Security Researchers’ Perspective. Effective security
mechanisms need to be studied and proposed to prevent
poisoning attacks at different software development stages.
Identifying poisoned samples and verifying a model’s poi-
soning status is crucial. Despite existing defense mecha-
nisms against poisoning attacks [52], [53], more research
is needed, especially in the context of LLMs. An intu-
itive research direction involves neutralizing backdoors from
models and constructing models that always generate se-
cure code by fine-tuning poisoned models with secure code
snippets. In our study, G7 raised the need for Al tools that
produce secure code, mentioning that “It’d be really cool if
these Al tools could automatically suggest secure code, you
know, stuff like parameter checks, null verification, or even
random key generation.”

9. Related Work

Poisoning Attack against Al-powered Coding Tools.
Recent studies have demonstrated that Al-powered coding
assistant tools are vulnerable to poisoning attacks and can
suggest insecure code to developers. Specifically, Schuster
et al. [4] first demonstrated that poisoning attacks could
be conducted against CODE COMPLETION tools by incor-
porating insecure code snippets into the model training
process (Pythia [13] and GPT-2 [23]). As a result, these
models became poisoned and capable of suggesting insecure
code to developers. For CODE GENERATION, Wan et al. [6]
introduced a new data poisoning attack where attackers
successfully injected backdoors into the code search model.
Additionally, Aghakhani et al. [5] presented a more practical
poisoning attack against the models of CODE GENERATION
tools—the model was trained by embedding insecure Python
poison samples as docstrings, strings within the source code
used for documentation rather than programming code. Fur-
thermore, TFLexAttack [54] enhanced the stealthiness of the
attack by manipulating the embedding dictionary to inject

lexical triggers into the language model’s tokenizer without
retraining the model. Xu ef al. [55] also demonstrated
that by inserting a small number of malicious instructions
through data poisoning, an attacker could execute poisoning
attacks in instruction-tuned models without altering the data
contents or labels in the training set. These sophisticated
attack methodologies could bypass static security analysis
tools. Although these studies have shown the theoretical
potential of poisoning attacks against Al-powered coding
assistant tools, the practical feasibility of such attacks in
real-world settings remains uncertain. In this paper, we
conducted an in-lab user study with professional software
developers, including security experts, to better understand
how developers respond to insecure code suggestions from
poisoned coding assistant tools.

User Studies with AI-Powered Coding Tools. Several
studies have explored the effects of Al-powered coding
assistant tools on developers’ code productivity, correctness,
and security. Vaithilingam et al. [56] conducted a user study
and discovered that most participants favored Copilot (a
CODE GENERATION tool) over IntelliSense (a CODE COM-
PLETION tool) due to its useful starting points and reduced
need for online searches. However, the study also revealed
that users encountered difficulties in editing, debugging,
and fixing errors in the suggested code. Liang et al. [57]
also showed that developers use Al-powered coding tools
to decrease keystrokes and swiftly complete programming
tasks. Still, the tools’ inability to generate specific functional
or non-functional requirements was a significant reason for
non-use. However, both studies primarily focused on the
productivity and usability of Al-powered coding assistant
tools, without addressing the potential security risks asso-
ciated with insecure code suggestions. Regarding security
concerns, Pearce et al. [3] conducted a measurement study
on Copilot and found that it often suggests vulnerable code.
Sandoval et al. [58] conducted a user study with students
to compare the prevalence of vulnerabilities in code written
with and without an Al-powered coding tool, concluding
that the tool did not increase serious security bugs and pro-
vided useful code for generating correct solutions. In con-
trast, Perry et al. [7] conducted an online user study with 47
participants, dividing them into an experimental group with
access to a CODE GENERATION tool and a control group
without the tool, finding that participants using the CODE
GENERATION tool produced significantly less secure code.
Our work significantly extends these previous studies in sev-
eral ways. First, our in-lab study was designed to understand
how developers respond to real-world poisoning attacks on
Al coding assistant tools, thereby measuring the true impact
of such attacks. This contrasts with Perry et al. [7], who ex-
plored user interactions with an Al tool for various security
tasks but did not specifically focus on poisoning attacks that
intentionally suggest insecure code. Second, we examined
both CODE COMPLETION and CODE GENERATION tools,
revealing distinct characteristics in their responses to poison-
ing attacks, unlike previous studies [3], [7], [58] which only
focused on CODE GENERATION tools. Third, our study was
conducted in a more realistic setting using a real IDE (VS-



Code) with professional developers, enhancing its ecological
validity compared to Perry et al. [7], who used a web-based
mockup UI primarily with student participants. To the best
of our knowledge, we are the first to examine the real-world
impact of poisoning attacks involving software developers.

10. Conclusion

This paper presents two user studies: an online survey
with 238 participants, comprising software developers and
computer science students, and an in-lab study involving
30 professional software developers. These studies aim to
investigate how developers respond when Al-powered tools
suggest insecure code. Our findings suggest that the use of
Al-powered tools may result in insecure code production
due to the overlooked threat of poisoning attacks and the
tools’ tendency to encourage the use of suggested code
without a thorough review. Specifically, while using CODE
GENERATION tools, developers’ code is vulnerable in 70%
to 100% of tasks, suggesting that most developers struggle
to handle insecure code suggestions introduced by poisoning
attacks. These findings indicate the need for new software
development tools and methodologies to foster secure pro-
gramming in collaboration with Al

Acknowledgement

We thank the anonymous reviewers and the shepherd for their
constructive comments. We also thank Weihang Wang for help-
ing with recruitment for the online study. Hyoungshick Kim and
Doowon Kim are the corresponding authors. This work was sup-
ported by NSF (2210137 and 2335798), Science Alliance’s StART,
gifts from Google exploreCSR and TensorFlow, and the IITP
grants (N0.2022-0-00995, No.2022-0-00688, No.2019-0-01343,
and No.2018-0-00532 (40%)) from the Korean government.

References

[1] OpenAl. OpenAl ChatGPT, 2022. [Online; accessed 12.12.2022].
URL: https://chat.openai.com/chat.

[2] GitHub. GitHub Copilot. GitHub, 2022. URL: https://github.com/
features/copilot.

[3] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. Asleep at the Keyboard? Assessing the
Security of GitHub Copilot’s Code Contributions. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2022.

[4] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov.
You Autocomplete Me: Poisoning Vulnerabilities in Neural Code
Completion. In Proc. of the USENIX Security Symposium (USENIX
Security), 2021.

[S] Hojjat Aghakhani, Wei Dai, Andre Manoel, Xavier Fernandes, Anant
Kharkar, Christopher Kruegel, Giovanni Vigna, David Evans, Ben
Zorn, and Robert Sim. TrojanPuzzle: Covertly Poisoning Code-
Suggestion Models. arXiv preprint arXiv:2301.02344, 2023.

[6] Wan Yao, Shijie Zhang, Hongyu Zhang, Yulei Sui, Guandong Xu,
Dezhong Yao, Hai Jin, and Lichao Sun. You See What I Want You
to See: Poisoning Vulnerabilities in Neural Code Search. In Proc.
of the ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022.

[7]1 Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do
Users Write More Insecure Code with Al Assistants? In Proc. of the
ACM SIGSAC Conference on Computer & Communications Security
(CCS), 2023.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Diedon Bujari and Erke Aribas. Comparative Analysis of Block
Cipher Modes of Operation. In Proc. of the International Advanced
Researches & Engineering Congress (IAREC), 2017.

Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael
Backes, Charles Weir, and Sascha Fahl. A Stitch in Time: Supporting
Android Developers in Writing Secure Code. In Proc. of the ACM
SIGSAC Conference on Computer & Communications Security (CCS),
2017.

Daniel Votipka, Kelsey R Fulton, James Parker, Matthew Hou,
Michelle L Mazurek, and Michael Hicks. Understanding Security
Mistakes Developers Make: Qualitative Analysis from Build It, Break
It, Fix It. In Proc. of the USENIX Security Symposium (USENIX
Security), 2020.

Yasemin Acar, Christian Stransky, Dominik Wermke, Michelle L
Mazurek, and Sascha Fahl. Security Developer Studies with GitHub
Users: Exploring a Convenience Sample. In Proc. of the USENIX
Conference on Usable Privacy and Security (SOUPS), 2017.

IntelliCode for Visual Studio Overview, 2022. [Online; accessed
5.7.2023]. URL: https://learn.microsoft.com/en-us/visualstudio/
intellicode/intellicode- visual-studio.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan.
Pythia: Al-assisted Code Completion System. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), 2019.

Jian Li, Yue Wang, Michael R Lyu, and Irwin King. Code Com-
pletion with Neural Attention and Pointer Networks. arXiv preprint
arXiv:1711.09573, 2017.

Veselin Raychev, Martin Vechev, and Eran Yahav. Code Completion
with Statistical Language Models. In Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2014.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique
Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, et al. Evaluating Large Language
Models Trained on Code. arXiv preprint arXiv:2107.03374, 2021.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang,
Yingbo Zhou, Silvio Savarese, and Caiming Xiong. CodeGen: An
Open Large Language Model for Code with Multi-Turn Program
Synthesis. In Proc. of the International Conference on Learning
Representations (ICLR), 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff,
Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki,
Jia Li, Jenny Chim, et al. StarCoder: May the Source be with You!
arXiv preprint arXiv:2305.06161, 2023.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Jun-
nan Li, and Steven CH Hoi. CodeT5+: Open Code Large Language
Models for Code Understanding and Generation. arXiv preprint
arXiv:2305.07922, 2023.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina
Nita-Rotaru, and Bo Li. Manipulating Machine Learning: Poisoning
Attacks and Countermeasures for Regression Learning. In Proc. of
the IEEE Symposium on Security and Privacy (S&P), 2018.

Matthew Jagielski, Giorgio Severi, Niklas Pousette Harger, and Alina
Oprea. Subpopulation Data Poisoning Attacks. In Proc. of the ACM
SIGSAC Conference on Computer & Communications Security (CCS),
2021.

Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. A Comprehensive Survey
on Poisoning Attacks and Countermeasures in Machine Learning.
ACM Computing Surveys, 2022.

Galois: GPT-2-based Code Completion, 2020. [Online; accessed
12.7.2023].  URL: https://dev.to/iedmrc/galois-an-auto-completer-
for-code-editors-based-on-openai-gpt-2-40oh.



(24]

[25]

[26]

[27]

(28]

[29]

(30]

(311

(32]

(33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiging
Ma, Qingni Shen, Zhonghai Wu, and Yang Zhang. BadNL: Backdoor
Attacks against NLP Models with Semantic-preserving Improve-
ments. In Proc. of the Annual Computer Security Applications
Conference (ACSAC), 2021.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan
Liu, Yasheng Wang, and Maosong Sun. Hidden Killer: Invisible
Textual Backdoor Attacks with Syntactic Trigger. arXiv preprint
arXiv:2105.12400, 2021.

Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun.
Turn the Combination Lock: Learnable Textual Backdoor Attacks via
Word Substitution. arXiv preprint arXiv:2106.06361, 2021.

Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang. Poison
Attacks against Text Datasets with Conditional Adversarially Reg-
ularized Autoencoder. arXiv preprint arXiv:2010.02684, 2020.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets:
Identifying Vulnerabilities in the Machine Learning Model Supply
Chain. arXiv preprint arXiv:1708.06733, 2017.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted Backdoor Attacks on Deep Learning Systems Using Data
Poisoning. arXiv preprint arXiv:1712.05526, 2017.

Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang,
Anmin Fu, Surya Nepal, and Hyoungshick Kim. Backdoor Attacks
and Countermeasures on Deep Learning: A Comprehensive Review.
arXiv preprint arXiv:2007.10760, 2020.

PoisonGPT: How We Hid a Lobotomized LLM on Hug-
ging Face to Spread Fake News, 2023. [Online; accessed
20.11.2023]. URL: https://blog.mithrilsecurity.io/poisongpt-how-we-
hid-a-lobotomized-1lm-on-hugging-face-to-spread-fake-news.

Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao, Minhui
Xue, Haojin Zhu, and Jialiang Lu. Hidden Backdoors in Human-
Centric Language Models. In Proc. of the ACM SIGSAC Conference
on Computer & Communications Security (CCS), 2021.

Xiangyu Qi, Tinghao Xie, Jiachen T Wang, Tong Wu, Saeed Mahlou-
jifar, and Prateek Mittal. Towards a Proactive ML Approach for
Detecting Backdoor Poison Samples. In Proc. of the USENIX Security
Symposium (USENIX Security), 2023.

Kathleen M MacQueen, Eleanor McLellan-Lemal, Kelly Bartholow,
and Bobby Milstein. Team-based Codebook Development: Structure,
Process, and Agreement. Handbook for Team-based Qualitative
Research, 2008.

David Wicks. The Coding Manual for Qualitative Researchers. Qual-
itative Research in Organizations and Management: An International
Journal, 2017.

Sophie Stephenson, Majed Almansoori, Pardis Emami-Naeini, and
Rahul Chatterjee. “It’s the Equivalent of Feeling Like You’re in Jail”:
Lessons from Firsthand and Secondhand Accounts of IoT-Enabled
Intimate Partner Abuse. In Proc. of the USENIX Security Symposium
(USENIX Security), 2023.

Matthias Fassl, Simon Anell, Sabine Houy, Martina Lindorfer,
and Katharina Krombholz. Comparing User Perceptions of Anti-
Stalkerware Apps with the Technical Reality. In Proc. of the USENIX
Conference on Usable Privacy and Security (SOUPS), 2022.

Pardis Emami-Naeini, Yuvraj Agarwal, Lorrie Faith Cranor, and
Hanan Hibshi. Ask the Experts: What Should Be on an IoT Privacy
and Security Label? In Proc. of the IEEE Symposium on Security
and Privacy (S&P), 2020.

Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal, and Lorrie Faith
Cranor. Exploring How Privacy and Security Factor into IoT Device
Purchase Behavior. In Proc. of the CHI Conference on Human Factors
in Computing Systems (CHI), 2019.

Joseph L. Fleiss, Bruce Levin, and Myunghee Cho Paik. Statistical
Methods for Rates and Proportions. John Wiley & Sons, 2013.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

Al Text Classifier, 2023. [Online; accessed 10.7.2023]. URL: https:
/lopenai.com/blog/new-ai-classifier-for-indicating- ai- written- text.
Daniela Oliveira, Marissa Rosenthal, Nicole Morin, Kuo-Chuan Yeh,
Justin Cappos, and Yanyan Zhuang. It’s the Psychology Stupid: How
Heuristics Explain Software Vulnerabilities and How Priming Can
Iluminate Developer’s Blind Spots. In Proc. of the Annual Computer
Security Applications Conference (ACSAC), 2014.

Hala Assal and Sonia Chiasson. “Think secure from the beginning”:
A Survey with Software Developers. In Proc. of the CHI Conference
on Human Factors in Computing Systems (CHI), 2019.

Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel,
Doowon Kim, Michelle L. Mazurek, and Christian Stransky. Com-
paring the Usability of Cryptographic APIs. In Proc. of the IEEE
Symposium on Security and Privacy (S&P), 2017.

Katharina Krombholz, Karoline Busse, Katharina Pfeffer, Matthew
Smith, and Emanuel Von Zezschwitz. “If HTTPS Were Secure, 1
Wouldn’t Need 2FA” - End User and Administrator Mental Models
of HTTPS. In Proc. of the IEEE Symposium on Security and Privacy
(S&P), 2019.

How Much Should You Pay Research Participants?, 2023. [On-
line; accessed 12.7.2023]. URL: https://prolific.co/blog/how-much-
should- you-pay-research-participants.

PyCryptodome, 2014. [Online; accessed 19.7.2023]. URL: https:
/Ipycryptodome.readthedocs.io/en/latest/src/cipher/aes.html.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. An Empirical Study of Cryptographic Misuse in Android
Applications. In Proc. of the ACM SIGSAC Conference on Computer
& Communications Security (CCS), 2013.

Zhendong Su and Gary Wassermann. The Essence of Command
Injection Attacks in Web Applications. ACM SIGPLAN Notices, 2006.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.
DeepSpeed: System Optimizations Enable Training Deep Learning
Models with Over 100 Billion Parameters. In Proc. of the ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), 2020.

Daniel Izquierdo-Cortézar, Gregorio Robles, and Jesis M Gonzilez-
Barahona. Do More Experienced Developers Introduce Fewer Bugs?
In Proc. of the IFIP International Conference on Open Source Sys-
tems (OSS), 2012.

Jian Chen, Xuxin Zhang, Rui Zhang, Chen Wang, and Ling Liu. De-
Pois: An Attack-Agnostic Defense against Data Poisoning Attacks.
IEEE Transactions on Information Forensics and Security, 2021.

Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J.
Stolfo, and Angelos D. Keromytis. Casting out Demons: Sanitizing
Training Data for Anomaly Sensors. In Proc. of the IEEE Symposium
on Security and Privacy (S&P), 2008.

Yujin Huang, Terry Yue Zhuo, Qiongkai Xu, Han Hu, Xingliang
Yuan, and Chunyang Chen. Training-free Lexical Backdoor Attacks
on Language Models. In Proc. of the ACM Web Conference (WWW),
2023.

Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei Xiao, and
Muhao Chen. Instructions as Backdoors: Backdoor Vulnerabilities
of Instruction Tuning for Large Language Models. arXiv preprint
arXiv:2305.14710, 2023.

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expec-
tation vs. Experience: Evaluating the Usability of Code Generation
Tools Powered by Large Language Models. In Extended Abstracts of
the CHI Conference on Human Factors in Computing Systems (CHI
EA), 2022.

Jenny T Liang, Chenyang Yang, and Brad A Myers. A Large-Scale
Survey on the Usability of AI Programming Assistants: Successes
and Challenges. In Proc. of the ACM/IEEE International Conference
on Software Engineering (ICSE), 2024.

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Bren-
dan Dolan-Gavitt, and Siddharth Garg. Lost at C: A User Study on
the Security Implications of Large Language Model Code Assistants.
Proc. of the USENIX Security Symposium (USENIX Security), 2023.



Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

The paper surveys software developer experiences and
behaviors in the use of coding-assistant tools such as Chat-
GPT. The research work leads an online survey and an in-
lab study, both to collect data from active developers and
understand the feasibility and impact of poisoning attacks
against Al-powered coding assistant tools. These attacks
use malicious training data to cause Al development tools
to suggest insecure code modifications. The paper claims
that the survey highlights the need for additional education
and improved coding practices to counter additional secu-
rity threats introduced by Al-powered code assistant tools.
Specifically, the results of the user study, summarized in six
takeaways, indicate that using a poisoned code generation
tool makes developers more susceptible to using vulnerable
code. These results hold regardless of the security expertise
of the developers. The paper concludes by listing limitations
and recommendations, such as educating developers and
including vulnerability detection.

A.2. Scientific Contributions

« Independent Confirmation of Important Results with Lim-
ited Prior Research

o Provides a Valuable Step Forward in an Established Field

« Establishes a New Research Direction

A.3. Reasons for Acceptance

1) This paper addresses relevant and timely issues: 1) how
developers interact with automated code assistance tools,
and 2) how poisoned tools will permeate vulnerable code.

2) The in-lab study results in interesting takeaways, mainly
related to 1) the impact differences of coding-assistant
tools while developers work on code completion and code
generation tasks and 2) how the security expertise affects
the perception of the security properties of the generated
code.

3) The authors successfully revised the paper and addressed
noteworthy concerns pointed out during the review pro-
cess.



