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Abstract
In real life, the ratio of write and read operations of key-value 
(KV) store workloads usually changes over time. In this paper, 
we present a Dynamic wOrkload Pattern Aware LSM-based 
KV store (DOPA-DB), which supports dynamic compaction 
strategies depending on the workload pattern. In particu-
lar, DOPA-DB is a tiered LSM-based KV store with multiple 
key ranges, which enables varying compaction sizes. For 
write-intensive workloads, DOPA-DB can minimize write 
stalls while minimizing compaction overhead, and for read-
intensive workloads, it can aggressively perform compaction 
to reduce the number of file accesses. Our preliminary ex-
perimental results show the potential benefits of dynamic 
compaction and provide insight into research directions for 
dynamic compaction strategies.

CCS Concepts: • Information systems → Database man-
agement system engines.
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1 Introduction
A Log-Structured Merge-tree based KV store (LSM-based 
KV store) has been popularly used for various data-intensive 
applications due to high write performance [4, 5, 10, 16, 18]. 
An LSM-based KV store is composed of a buffer in memory 
and multiple levels of files in d isks. To a ttain high write 
throughput, it buffers key and value (KV) pairs and then 
writes them sequentially to a disk. Once these KV pairs are
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stored as a file, they are compacted between neighboring
levels multiple times so that all the inserted KV pairs are
sorted leading to high read performance. Also, write stalls
are used as a means to limit the speed of write operations to
improve read performance [1, 4, 5].

In real life, workload patterns regarding the ratio of write
and read operations change over time [9, 17]. For example,
sensing related data can be inserted and searched with some
periodic patterns such as diurnality [7, 15]. Depending on
the workload pattern, a different compaction strategy will
be effective in improving the performance of an LSM-based
KV store. For a write-intensive workload pattern, writing as
much data to the disk (i.e., Level 0 (𝐿0) in the LSM-based KV
store) as fast as possible is crucial. Therefore, compaction
should be minimal but, at the same time, write stalls should
be minimized. On the other hand, for a read-intensive work-
load pattern, reducing the number of files to be accessed is
key. Therefore, compaction should be done aggressively to
sort the inserted KV pairs into a single level or as few levels
as possible. However, existing LSM-based KV stores typically
use the same compaction strategy with a static compaction
size without considering different workload patterns.
In this paper, we present a Dynamic wOrkload Pattern

Aware LSM-based KV store (DOPA-DB) that supports dy-
namic compaction strategies depending on the workload pat-
tern. In particular, DOPA-DB is a tiered LSM-based KV store
with multiple key ranges. It provides efficient compaction,
reducing write amplification, as tiered compaction avoids
the merge-sort of overlapped KV pairs at two neighboring
levels, while using key ranges eliminates merge-sorts be-
tween different key ranges. DOPA-DB detects the workload
pattern at runtime and dynamically adapts the compaction
size to reflect the current workload pattern. Our tiered struc-
ture with multiple key ranges enables different compaction
sizes in a fine-grained way as the minimum compaction unit
for each level is a key range, and multiple of these units
can be compacted together as recommended by the Com-
paction Size Recommender (CSR). CSR keeps monitoring
how much data can be further filled in 𝐿0 before 𝐿0 reaches
the stall threshold as well as flush and compaction speeds,
and based on this information, it dynamically decides the
compaction size. This size will be estimated to be the largest
compaction size such that a write stall does not occur due to
this compaction. Thus, this size will tend to be smaller for
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Figure 1. LSM-based KV store

more write-intensive workloads while it will be larger for
more read-intensive ones.
We evaluate DOPA-DB using mixed workloads with dif-

ferent ratios of write and read operations. Our preliminary
experimental results show the potential benefits of dynamic
compaction and provide insight into research directions for
dynamic compaction strategies. Instead of using static com-
paction as in existing LSM-based KV stores, we argue for
compaction strategies that adapt the compaction size quickly
as the workload pattern changes as in real-world datasets
and for an LSM-based KV store with a new structure that
efficiently supports fine-grained dynamic compaction sizes.
We argue that this envisioned dynamic approach that con-
siders the workload pattern can further drive performance
improvements for both reads and writes in LSM-based KV
stores.

2 Background and Motivation
LSM-based KV store Figure 1 shows a Log-Structured
Merge-tree based KV store that consists of memory and disk
components. For the memory component, theMemTable and
Immutable MemTable(s) are located in DRAM, while for the
disk component, Sorted String Tables (SSTables) are located
in disks. A new key is first added to the MemTable. If the
MemTable is full, it becomes an Immutable MemTable, and
a new MemTable is created. For the Immutable MemTable,
a background thread flushes it to the disk, storing KV pairs
in SSTable format. The disk component has multiple levels,
from 𝐿0 to 𝐿𝑛−1, where 𝑛 is the number of levels, and the
size of each level is limited but the size limit increases for
higher levels. To maintain the size of each level, compaction
is leveraged. When the size of level 𝐿𝑖 is larger than its limit,
a set of SSTables in 𝐿𝑖 are merge-sorted with SSTables in
𝐿𝑖+1, whose key ranges are overlapped with those of SSTa-
bles in 𝐿𝑖 . This not only garbage collects old KV pairs but
also improves search performance by reducing the number
of files as well as non-empty levels. In the multiple levels,
for the same key, a newer value is stored in a lower level.

Stalls in LSM-based KV stores An LSM-based KV store
suffers from space amplification due to out-of-place updates
and read amplification caused by the multi-level structure.
To alleviate these issues, existing LSM-based KV stores lever-
age stalls to limit the speed of write operations. As discussed
in ADOC [25], for RocksDB [5], there are three types of
stalls, MemTable, 𝐿0, and Pending. Among them, the 𝐿0 stall

Figure 2. Throughput and fill-to-threshold ratio

strongly affects write performance. 𝐿0 is a special level in
LSM-based KV stores because 𝐿0 is the only level that allows
overlapped SSTable files. RocksDB incurs an 𝐿0 stall when
the size of 𝐿0 is larger than a specific threshold, as the large
𝐿0 leads to serious read performance degradation and space
amplification if there are many update queries. In our exper-
iment of loading a dataset composed of 500 million KV pairs,
the 𝐿0 stall contributes to 71.9% of the total write stall time.
Reducing the 𝐿0 stall time is critical for attaining high write
performance.

Issues of static compactions in LSM-based KV stores
In real-world workloads, the ratio of write and read opera-
tions of workloads change over time [9, 17]. Thus, naturally,
depending on the workload pattern, a different compaction
strategy is preferred [13, 14]. For a write-intensive workload,
𝐿0 should take in as much writes as possible. To do so, write
stalls should be avoided as write performance is severely de-
graded when a write stall occurs. Therefore, the compaction
strategy should focus on minimizing the write stall time
while also minimizing compaction overhead. Figure 2 shows
the fill-to-threshold ratio, which shows howmuch 𝐿0 is filled
until the 𝐿0 stall threshold, and write throughput over time,
of RocksDB, for a write-intensive workload. We can see that
when the fill-to-threshold ratio becomes larger than one,
write throughput is degraded as a write stall occurs. These
cases occur when compaction in an upper level takes so long
such that 𝐿0 - 𝐿1 compaction, which relieves 𝐿0, is delayed.
For a read-intensive workload, the number of levels as well as
the number of SSTable files that should be accessed for a read
operation should be minimized as access of every level and
SSTable incurs overhead. Therefore, the compaction strategy
should focus on aggressively performing compaction so that
inserted KV pairs are located in a single or a few upper levels
to minimize file accesses. Existing LSM-based KV stores such
as RocksDB, however, do not consider the dynamic workload
pattern and use the same compaction strategy with a static
compaction size (64MB in RocksDB by default), leading to
sub-optimal write and read performance.

3 DOPA-DB
In this section, we describe DOPA-DB, a KV store that adapts
the compaction size according to the workload patterns such
that performance is optimized. More specifically, as shown
in Figure 3, DOPA-DB is a tiered LSM-tree based KV store
with multiple key ranges denoted 𝑅

𝑗

𝑖
for level 𝑖 . With the
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Figure 3. System Overview

tiered compaction design choice, DOPA-DB merge-sorts the
KV pairs in the same level and then places them in the next
level, avoiding the merge-sort of overlapped KV pairs at
two neighboring levels except for the last level, while with
the multiple key range design choice, compaction overhead
across key ranges is eliminated as merge-sorts between key
ranges do not happen.

As shown in Figure 3, DOPA-DB consists of a MemTable
in DRAM and multiple levels, 𝐿0 to 𝐿𝑛−1, in disk, where 𝑛 is
the number of levels. While 𝐿0 and 𝐿𝑛−1 have no sub-levels,
each level 𝐿𝑖 where 1 ≤ 𝑖 < 𝑛−1 has 𝑝 sub-levels, 𝑆0 to 𝑆𝑝−1,
to support tiered compaction. In each level 𝐿𝑖 , the total key
space is divided into 𝑟𝑖 ranges such that in each sub-level,
KV pairs within the same range are sorted and stored as an
SSTable file or multiple SSTable files, separately from KV
pairs in other ranges. Thus, SSTable files in the same sub-
level never overlap with each other. (How sub-levels within
a level are generated and compacted to the next level will
be discussed below when DOPA-DB’s tiered compaction is
described.)
𝐿0 is set to have 𝑟0 ranges and as level 𝐿𝑖 gets higher, the

number of ranges 𝑟𝑖 increases based on the range amplifica-
tion ratio 𝑅𝑟𝑎𝑡𝑖𝑜 . For example, if 𝐿0 has 4 ranges and 𝑅𝑟𝑎𝑡𝑖𝑜
is four, then 𝑟1, the number of ranges for 𝐿1, is 16. As 𝑖 of
𝐿𝑖 increases, typically, 𝑟𝑖 will increase as the level capacity
also increases as it will contain more KV pairs. The values
of 𝑝 , 𝑟0, and 𝑅𝑟𝑎𝑡𝑖𝑜 need to be configured as they affect the
performance of DOPA-DB. We will discuss how to configure
these parameters in Section 6. Note that the key space of
each key range also needs to be determined. In this work, we
take a naive approach where they are set based on the keys
stored in the Immutable MemTable that is initially flushed
to the disk such that each key range in each level has the
same number of keys, and 𝐿𝑖 where 0 < 𝑖 ≤ 𝑛 − 1 always
inherits 𝑟𝑖−1 ranges of 𝐿𝑖−1.
To effectively flush the MemTable to 𝐿0, each SSTable

file simply maintains its sorted order resulting in multiple
key ranges within an SSTable, as shown in Figure 3. This
flush operation is done similarly to existing LSM-based KV

(a) Pre-compaction state of each SSTable and compaction bit array in 𝐿0

(b) Updated compaction bit array after compacting 𝑅0
0

Figure 4. Compaction bit array for 𝐿0 − 𝐿1 compaction

stores. However, to deal with the key ranges, DOPA-DB
maintains for each SSTable file an additional compaction bit
array, which represents whether the range has been com-
pacted with 𝐿1 or not. More specifically, it performs 𝐿0-𝐿1
compaction in key range units in a round-robin fashion one
by one. For each range 𝑅

𝑗

0, starting from 𝑗 = 0, the com-
paction bit for range 𝑗 of each SSTable file is checked. If the
compaction bit is 0, this means the KV pairs have not been
compacted to 𝐿1 yet. Thus, compaction is performed on these
KV pairs. Then, the corresponding compaction bit is set to
1 so that they will no longer be considered for compaction.
An SSTable file can be deleted only when all the compaction
bits are set to 1. Figure 4 shows how the compaction bit
array is used for 𝐿0 − 𝐿1 compaction. Figure 4(a) shows a
pre-compaction state of each SSTable and its corresponding
compaction bit array, while Figure 4(b) shows the updated
status after performing 𝐿0 − 𝐿1 compaction for 𝑅0

0 . After the
compaction, the compaction bit for 𝑅0

0 for each SSTable at
𝐿0 is set to 1.

For compaction between 𝐿𝑖 and 𝐿𝑖+1 where 1 ≤ 𝑖 < 𝑛 − 1,
DOPA-DB performs compaction for key ranges in a round-
robin fashion similarly to 𝐿0 - 𝐿1 compaction, but this time,
the minimum compaction unit being all the sub-levels for
a key range in a level. Multiple of these units may also be
compacted together as recommended by the Compaction
Size Recommender (CSR). How CSR decides on the best
number of ranges to compact will be discussed below.
For performing compaction between 𝐿𝑖 and 𝐿𝑖+1 where

0 ≤ 𝑖 < 𝑛 − 2, DOPA-DB employs tiered compaction. It
partitions all the KV pairs chosen for compaction in 𝐿𝑖 based
on the key ranges of 𝐿𝑖+1, generates SSTable files accord-
ingly, and then places each of the files in a sub-level of 𝐿𝑖+1.
The exact sub-level is the one just above the sub-level that
was generated during the last compaction for its key range.
Figure 5 shows an example of compaction between 𝐿1 and
𝐿2, where two key ranges, 𝑅0

1 and 𝑅1
1 , are chosen for com-

paction. The KV pairs in these ranges will be merge-sorted,
and an SSTable file (or multiple SSTable files) will be gener-
ated based on the key ranges of 𝐿2 ( 1○). For each range 𝑅 𝑗

2

from 𝑅0
2 to 𝑅3

2 , the corresponding KV pairs may be stored in
a different sub-level ( 2○). For instance, the KV pairs for 𝑅0

2

are placed at 𝑆2, while those for 𝑅2
2 are placed at 𝑆0.
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Figure 5. Upper level compaction process of DOPA-DB

Note that before starting compaction for the selected, pos-
sibly multiple, ranges in 𝐿𝑖 , if any of the sub-levels in 𝐿𝑖+1
for the corresponding ranges are filled, then DOPA-DB first
performs compaction of those ranges of 𝐿𝑖+1 to 𝐿𝑖+2 before
compacting 𝐿𝑖 . For compaction between 𝐿𝑛−2 and 𝐿𝑛−1, lev-
eled compaction, where for a given range, KV pairs in 𝐿𝑛−2
are merge-sorted with KV pairs in 𝐿𝑛−1, will be performed.
Note that DOPA-DB is built on top of RocksDB. Thus,

DOPA-DB basically adopts the triggering mechanisms of
RocksDB for flush and compaction operations as well as the
level-selection mechanism for compaction operations. One
modification made by DOPA-DB is that when no level is cho-
sen by the level-selection mechanism employed by RocksDB
(because the size of each level is less than its capacity), DOPA-
DB selects the lowest level that contains any SSTable file for
compaction so that the inserted keys are sorted and stored
in the last level or a few upper levels.

Dynamic compaction recommendation A key compo-
nent of DOPA-DB is its ability to determine the ideal com-
paction size that should be performed by the upper levels
(𝐿𝑖 , where 𝑖 > 0) that we refer to as Upper Level Compaction
(ULC) size, which is determined by CSR. To see the useful-
ness of CSR, consider the extremes of write-intensive and
read-intensive workloads. For the former, ULC should occur
at the minimum such that 𝐿0 can absorb as much writes
as possible, but not so much to incur write stalls. Thus, a
lazy form of compaction would be adequate. For the latter,
aggressive compaction would benefit as this will reduce the
number of files as well as the non-empty levels (meaning
some levels may have zero data), which will benefit read per-
formance. Moreover, as overlapped SSTable files are allowed
in 𝐿0, which makes a read operation very expensive, it is
critical to aggressively perform 𝐿0 − 𝐿1 compaction.

Consider a more general case as shown in Figure 6 where
the 𝑦-axis is the fill-to-threshold ratio, the 𝑥-axis is time, and
W𝑎:R𝑏 denotes the ratio of write and read operations to be
𝑎 to 𝑏. Recall that as writes happen, they start to fill up the
MemTable, and when full, it is flushed to 𝐿0. Thus, the flush
rate reflects the write intensity. Furthermore, as discussed in
Section 2, earlier studies have observed that 𝐿0 stalls have
significant influence on performance and that it is triggered
when the 𝐿0 size reaches some threshold, which we refer to
as the 𝐿0 stall threshold [5] (also denoted in Figure 6). The
dashed line in Figure 6 represents the rate at which 𝐿0 fills

Figure 6. Ideal compaction scenario

up. The faster 𝐿0 fills up the steeper it will be as depicted
by 𝑡0 to 𝑡1, and vice versa as depicted by 𝑡6 to 𝑡7. Then, to
avoid this stall, 𝐿0 − 𝐿1 compaction must occur and finish
before the threshold is reached, which is represented by
the yellow boxes (𝑡1-𝑡2, 𝑡3-𝑡4, etc.). When this compaction
is done, the fill-to-threshold ratio, that is, the size of 𝐿0, is
finally reduced, represented by the dropping dashed line. It is
important to note that while performing 𝐿0 −𝐿1 compaction,
flushes (of MemTables) can occur concurrently, increasing
the fill-to-threshold ratio as shown in the figure.
While this periodic filling and emptying of 𝐿0 space is

occurring, note where ULC is occurring, represented by the
blue boxes (𝑡2-𝑡3, 𝑡4-𝑡5, etc.) and the time span (𝑥-axis) of
the boxes. That is, the time spent for ULC is dictated by
how fast the writes fill up 𝐿0 and 𝐿0-𝐿1 compaction time.
When writes are intense as in 𝑡0-𝑡4, the dashed line will be
steep, and ULC should be short, that is, the ULC size must
be small, while when writes are less so (or read intense) as
in 𝑡4-𝑡7, ULC size can be large as there is much more slack
before the stall threshold is reached. Note that the workload
pattern changes at 𝑡4, and the ULC size starting at 𝑡4, which
is computed based on the flush speed during the last time
window, is the same as before, but the ULC size starting at 𝑡6
becomes much larger as the flush speed decreases from 𝑡4.
The above notion is formalized as Equation 1 where 𝑇 is

the 𝐿0 stall threshold, 𝑀0 is the current size of 𝐿0, 𝐹 is the
current flush speed, which is how much data is flushed per
time unit, 𝐶 is the accumulated compaction speed, which
is computed as the total size of compaction divided by the
total compaction time so far, and 𝑅𝑆0 is the estimated 𝐿0 −
𝐿1 compaction size, which is computed as 𝑇 divided by 𝑟0
(where 𝑟0 is the number of ranges in 𝐿0) as in this work,
DOPA-DB performs 𝐿0 − 𝐿1 compaction for each key range
in round-robin fashion. CSR uses this equation to compute
the maximum compaction size that will not cause a write
stall. The first parameter𝑇 we take from RocksDB, while𝑀0,
𝐹 , and 𝐶 are collected by monitoring the runtime states.

𝐶𝑖𝑑𝑙 = (𝑇 −𝑀0

𝐹
− 𝑅𝑆0

𝐶
) ×𝐶 (1)

As an example, consider that 𝑀0 is 800MB, 𝐹 is 80MB/s,
𝐶 is 100MB/s, 𝑅𝑆0 is 200MB, and 𝑇 is 1.2GB. In this case,
the remaining 𝐿0 size until a stall occurs is 400MB (=1.2GB-
800MB). Then the time until a stall occurs can be estimated
as 5 seconds (= 400𝑀𝐵

80𝑀𝐵/𝑠 ) and 𝐿0-𝐿1 compaction requires 2
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Figure 7. Throughput of DOPA-DB normalized to RocksDB
under mixed workloads

seconds (= 200𝑀𝐵
100𝑀𝐵/𝑠 ). Thus, the CSR computes the maximum

compaction size that can be done within 3 seconds (5-2 sec-
onds) as 300MB (= 100MB/s×3 seconds). This size is provided
as a hint. As the minimum unit of compaction is a key range
in DOPA-DB, it can compute the number of key ranges for
compaction for a given hint such that the total size of the se-
lected key ranges is at most the hint, or one range is selected
if the size of the range is larger than the hint.

4 Experiment
For our experiments, we use amachinewith a 32-core Intel(R)
Xeon(R) CPU E5-2683 v4 @ 2.10GHz, 32GB of DRAM, and a
Samsung 870 EVO SSD 1TB disk. We run the Ubuntu 20.04.4
LTS operating system. DOPA-DB is implemented based on
RocksDB [5]. We compare our DOPA-DB with RocksDB
with default parameter value settings, where the sizes of
MemTable and 𝐿0 are set to 64MB and 256MB, respectively,
which DOPA-DB also uses. For both RocksDB and DOPA-DB,
we make use of Direct I/O [3] so that the read operations
are not affected by the page cache, which is similarly done
in earlier studies [14, 19, 23]. For DOPA-DB, the values of
𝑝 , 𝑅𝑟𝑎𝑡𝑖𝑜 , and 𝑟0 are set to 4, 4, and 4, respectively. A single
compaction thread is used for both DOPA-DB and RocksDB.

We use mixed workloads with a dataset generated by the
Load operation of YCSB [12] with keys and values of 16 bytes
and 100 bytes, respectively, and use the Uniform and Zipfian
query distributions. For each distribution, we first initialize
the database by loading 100million KV pairs (with 16 threads)
and then execute three workloads, W50:R50, W5:R95, and
W0:R100 (where W𝑎:R𝑏 denotes the 𝑎 to 𝑏 ratio of write
and read operations), which are similar to workloads A, B,
and C, respectively, in YCSB [12], but write operations are
invoked instead of update operations. Each of the individual
workloads consists of 300 million operations for a total of
900 million operations.
Figure 7 shows the throughputs of our mixed workloads

with DOPA-DB, normalized to those of RocksDB, where
W𝑎(U) and W𝑎(Z) denote the workload with 𝑎% writes for
the Uniform and Zipfian distributions, respectively. The num-
ber above each bar indicates the absolute throughput value
in KOps/s. Also, the total amount of writes for DOPA-DB
normalized to that of RocksDB is given in Table 1. For Load,

Table 1. Total write amount of DOPA-DB normalized to
RocksDB

Uniform Zipfian
Write % 100 50 5 0 100 50 5 0

Norm. total write amount 0.57 5.82 8.54 8.63 0.54 4.39 7.33 7.42

DOPA-DB provides 88.1% higher throughput than RocksDB,
while the total amount of write is 44.7% lower on average.
Also, we analyze that for Load, the total stall time with
DOPA-DB is 69% lower on average. Except for Load, the
total amount of writes with DOPA-DB is much higher than
RocksDB as DOPA-DB aggressively performs compaction for
read operations. For W50(U) and W50(Z), DOPA-DB shows
lower throughput compared to RocksDB.

We observe that in DOPA-DB, compactions with different
sizes are performed as patterns change. Figures 8(a), (b), and
(c) show, for example, the fill-to-threshold ratios over time
withDOPA-DB for Load(U),W50(U), andW5(U), respectively.
The results in the figure show how DOPA-DB, as a conse-
quence of using different ULC sizes as workload patterns
change over time, avoids reaching the 𝐿0 stall threshold.
Figure 9 shows the performance of DOPA-DB for two

more workloads, one where we executeW10:R90 followed by
W90:R10, and the other where we execute W90:R10 followed
by W10:R90, after initializing the database. For Figure 9(b),
the workload changes from write-intensive to read-intensive
as in Figure 7. However, the performance trend of Figure 9(b)
is different from Figure 7. We attribute this to our current
version that uses an adaptation method that is too naive to
accurately and quickly identify workload pattern changes.
These issues and more are discussed further in Section 6.

5 Related work
There have been many attempts to reduce the write am-
plification of LSM-based KV stores. Tiered compaction is
one approach leveraged by existing studies [6, 21, 27]. Peb-
blesDB presents Fragmented Log-Structured Merge Trees
(FLSM) that divides the key space for each level into dis-
joint units [21]. FLSM allows the system to avoid rewriting
data in the same level. WipDB partitions the key space into
N buckets where N is adjusted based on the key distribu-
tion [27]. Each bucket has its own LSM structure within.
These techniques similarly use key ranges but only one key
range is compacted per compaction schedule of a level, pos-
sibly aggravating the compaction cost. Additionally, there
have been prior studies leveraging machine learning to pro-
vide appropriate compaction policies considering dynamic
workloads [11, 20] such that tiered compaction is employed
when aworkload is write-intensive while leveled compaction
is employed when it is read-intensive. There have also been
efforts to adjust I/O to reduce query latency or minimize
stalls [2, 8]. In particular, SILK builds an I/O scheduler for
LSM-based KV stores to handle high tail latency and prevent
stalls [8]. However, it may delay compaction on upper levels,
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Figure 8. Fill-to-threshold ratios over time

(a) W10:R90 followed byW90:R10 (b) W90:R10 followed byW10:R90

Figure 9. Normalized performance under shifted workloads

increasing compaction overhead on the next turn. Dosto-
evsky [14] and Monkey [13] aim to find the optimal trade-off
of the write and read cost. Dostoevsky introduces a tech-
nique to model the most efficient LSM structure based on the
write and read ratio [14]. Monkey minimizes worst-case read
cost by allocating memory carefully to Bloom Filters [13].

6 Discussions and Future work
As seen, we observe potential benefits of dynamic com-
paction. Yet, we also observe that there are many aspects
that still need in-depth investigation for it to be deployable,
a few of which we now discuss.
Nimble and accurate adaptation For non-write inten-

sive workloads, nimble adaptation to a workload pattern is
needed. DOPA-DB currently uses a simple window-based
method to identify the workload pattern based on the flush
speed and only considers the state of 𝐿0 for computing the
ULC size. For nimble adaptation, accurate workload pattern
recognition is needed, even possibly with forecasting capa-
bilities. The ULC size should also consider read patterns such
that smaller ULCs could be considered, instead of uniformly
large ULCs, even for read-intensive workloads. In addition,
other factors such as disk bandwidth usage need to be con-
sidered for accurate estimation as the performance of read
operations may be affected by compaction.
Using multiple compaction threads With two com-

paction threads, the performance of RocksDB increases as
one thread can handle 𝐿0-𝐿1 compaction while the other
performs ULC. The performance of DOPA-DB can also be
improved with multiple compaction threads. Dynamic com-
paction strategies with multiple threads need to be studied.

Parameters of DOPA-DB DOPA-DB has a set of param-
eters to configure; 𝑝 , which is the number of sub-levels for
each level 𝑖 (where 0 < 𝑖 < 𝑛 − 1), 𝑅𝑟𝑎𝑡𝑖𝑜 , which is the range

amplification ratio, and 𝑟0, which is the number of key ranges
in 𝐿0. These parameters will affect the size of the key range
and the compaction unit. That is, the number of key ranges
for level 𝑖 is computed based on 𝑟0, and 𝑅𝑟𝑎𝑡𝑖𝑜 , and the com-
paction unit for level 𝑖 is computed based on the key range
size and 𝑝 . When choosing the values for these parameters,
there are two considerations: (1) the size of any key range
should not be too small lest the SSTable files become too tiny
and (2) the size of the compaction unit for any level should
not be too large so that fine-grained dynamic compaction
sizes can be supported. In this work, we have chosen the
values of the above parameters empirically, but a detailed
study about the effects of these parameters is needed.

Skewed datasets While we only considered the uniform
dataset in this study, real-world datasets have been shown
to have key distributions that are not uniform and that may
change over time [9, 22, 24, 26]. In such dynamic datasets,
the initial key ranges of levels may suffer from imbalance
such that keys are mainly inserted to certain ranges. That
is, each range in a level may contain a varying number of
keys from each other, which may prevent CSR from com-
puting different compaction sizes in a fine-grained manner.
Dynamic readjustment of key ranges is anticipated to have
a strong effect on the performance for real-world datasets.

7 Conclusion
In this paper, we argued for a dynamic workload pattern
aware LSM-based KV store, which enables fine-grained con-
trol over compaction sizes. Our preliminary results showed
possible performance improvements with dynamic com-
paction sizes.
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