IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024 5245
Towards Inductive and Efficient Explanations for
Graph Neural Networks
Dongsheng Luo"?, Member, IEEE, Tianxiang Zhao"”, Wei Cheng “, Dongkuan Xu ", Feng Han ¥, Wenchao Yu ",

Xiao Liu"”, Haifeng Chen”, and Xiang Zhang

Abstract—Despite recent progress in Graph Neural Networks
(GNNs), explaining predictions made by GNNs remains a chal-
lenging and nascent problem. The leading method mainly considers
the local explanations, i.e., important subgraph structure and node
features, to interpret why a GNN model makes the prediction for a
single instance, e.g. a node or a graph. As a result, the explanation
generated is painstakingly customized at the instance level. The
unique explanation interpreting each instance independently is not
sufficient to provide a global understanding of the learned GNN
model, leading to the lack of generalizability and hindering it from
being used in the inductive setting. Besides, training the explanation
model explaining for each instance is time-consuming for large-
scale real-life datasets. In this study, we address these key challenges
and propose PGExplainer, a parameterized explainer for GNNs.
PGExplainer adopts a deep neural network to parameterize the
generation process of explanations, which renders PGExplainer
a natural approach to multi-instance explanations. Compared to
the existing work, PGExplainer has better generalization ability
and can be utilized in an inductive setting without training the
model for new instances. Thus, PGExplainer is much more efficient
than the leading method with significant speed-up. In addition,
the explanation networks can also be utilized as a regularizer to
improve the generalization power of existing GNNs when jointly
trained with downstream tasks. Experiments on both synthetic
and real-life datasets show highly competitive performance with
up to 24.7% relative improvement in AUC on explaining graph
classification over the leading baseline.

Index Terms—Deep
interpretability.

learning, graph neural networks,

1. INTRODUCTION

RAPH Neural Networks (GNNs) are powerful tools for
representation learning of graph-structured data, such as

Manuscript received 19 May 2021; revised 28 August 2023; accepted 31
January 2024. Date of publication 6 February 2024; date of current version 2
July 2024. This work was supported in part by NSF under Grant IIS-1707548,
Grant CBET-1638320 and Grant IIS-2331908. Recommended for acceptance
by K. M. Lee. (Corresponding author: Dongsheng Luo.)

Dongsheng Luo is with Florida International University, Miami, FL 33199
USA (e-mail: dluo@fiu.edu).

Tianxiang Zhao, Xiao Liu, and Xiang Zhang are with Pennsylvania
State University, State College, PA 16802 USA (e-mail: tkz5084 @psu.edu;
xx1213 @psu.edu; xzz89 @psu.edu).

Wei Cheng, Wenchao Yu, and Haifeng Chen are with NEC Lab Amer-
ica, Inc., San Jose, CA 95110 USA (e-mail: weicheng@nec-labs.com;
wyu@nec-labs.com; haifeng @nec-labs.com).

Dongkuan Xu is with North Carolina State University, Raleigh, NC 27695
USA (e-mail: dxu27 @ncsu.edu).

Feng Han is with the University of California, Berkeley, CA 94720 USA
(e-mail: feng.han@berkeley.edu).

Digital Object Identifier 10.1109/TPAMI.2024.3362584

social networks [54], document citation graphs [44], and micro-
biological graphs [52]. GNNs routinely adopt a message passing
scheme to learn node representations by aggregating represen-
tation vectors of their neighbors [17], [55]. This scheme enables
GNN to capture both node features and graph topology. GNN-
based methods have achieved state-of-the-art performance in
node classification, graph classification, and link prediction [23],
[53], [63].

Despite their remarkable effectiveness, the rationales of pre-
dictions made by GNNs are not easy for humans to understand.
Since GNNs aggregate both node features and graph topology to
make predictions, to understand predictions made by GNNs, im-
portant subgraphs and/or a set of features, which are also known
as explanations, need to be uncovered. In the literature, although
avariety of efforts have been undertaken to interpret general deep
neural networks, existing approaches [6], [14], [21], [22], [33],
[37], [50] in this line fall short in their ability to explain graph
structures, which is essential for GNNs. Explaining predictions
made by GNNs remains a challenging problem, on which few
methods have been proposed [48], [58], [60], [61], [62]. The
combinatorial nature of explaining graph structures makes it
difficult to design models that are both robust and efficient.

Recently, the first general model-agnostic approach for
GNNs, GNNExplainer [58], was proposed to address the prob-
lem. It takes a trained GNN and its predictions as inputs to
provide interpretable explanations for a given instance, e.g. a
node or a graph. The explanation includes a compact subgraph
structure and a small subset of node features that are crucial
in GNN’s prediction for the target instance. Nevertheless, there
are several limitations to the existing approach. First, GNNEx-
plainer largely focuses on providing the local interpretability by
generating a painstakingly customized explanation for a single
instance individually and independently. The explanation pro-
vided by GNNExplainer is limited to a single instance, making
GNNExplainer difficult to be applied in the inductive setting
because the explanations are hard to generalize to other unex-
plained nodes. As pointed out in previous studies, models inter-
preting each instance independently are not sufficient to provide
a global understanding of the trained model [21]. Furthermore,
GNNExplainer has to be retrained for every single explanation.
As a result, in real-life scenarios where plenty of nodes need
to be interpreted, GNNExplainer would be time-consuming
and impractical. Moreover, as GNNExplainer was developed
for interpreting individual instances, the authors further pro-
vided additional ad-hoc post-analysis, such as identifying the

0162-8828 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4192-0826
https://orcid.org/0000-0003-4504-7809
https://orcid.org/0000-0001-5456-626X
https://orcid.org/0000-0002-1456-9658
https://orcid.org/0000-0003-3561-4304
https://orcid.org/0000-0002-2480-448X
https://orcid.org/0000-0002-8459-3135
https://orcid.org/0000-0002-1318-6583
https://orcid.org/0000-0003-0940-6595
mailto:dluo@fiu.edu
mailto:tkz5084@psu.edu
mailto:xxl213@psu.edu
mailto:xzz89@psu.edu
mailto:weicheng@nec-labs.com
mailto:wyu@nec-labs.com
mailto:haifeng@nec-labs.com
mailto:dxu27@ncsu.edu
mailto:feng.han@berkeley.edu

5246

Fig. 1.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

Explanation for

Mutagen 1 Mutagen 2| [NonmutagenT mutagens
255 S Lleusy
—~" \,’\l/- Pams -
>—/\’\/_. . = | — @'—» PGExplainer | —» A
\ oy ?(‘
B e E’?—:.: =3 NO,

PGExplainer provides human-understandable explanations for predictions made by GNNs. The left part shows the process of applying GNNs for graph

classification on the MUTAG dataset. A GNN based model is trained to predict their mutagenic effects. As a post-hoc method, PGExplainer takes the trained GNN
model as input and provides consistent explanations for predictions made by the GNN model. For the mutagen molecule graphs in the example, the explanation is

the NOg group.

representative instance and graph alignment, to extract the
shared motifs to explain a set of instances (e.g., graphs of a given
class in graph classification task) [58]. Since the explanatory
motifs are not learned end-to-end, the model however may suffer
from suboptimal generalization performance. How to explain
predictions of GNNs on a set of instances collectively and easily
generalize the learned explainer model to other instances in the
inductive setting remains largely unexplored in the literature.

To provide a global understanding of predictions made by
GNN, in this study, we emphasize the collective and inductive
nature of this problem that an explanation model should be able
to explain a set of instances and infer new instances without
re-training. We present an inductive and effective explanation
model to interpret graph neural networks, denoted by PGEx-
plainer (Fig. 1). PGExplainer is a general explainer that applies
to any GNN based models for various tasks, including node
classification, graph classification, and link prediction. Specifi-
cally, a generative probabilistic model for graph data is utilized
in PGExplainer. Generative models have shown the power to
learn succinct underlying structures from the observed graph
data [27]. PGExplainer uncovers these underlying structures as
the explanations, which is believed to make the most contri-
bution to GNNs’ predictions [41]. We model the underlying
structure as edge distributions, where the explanatory graph is
sampled from. To collectively explain predictions of multiple in-
stances, the generation process in PGExplainer is parameterized
with a deep neural network. Since the neural network parameters
are shared across the population of explained instances, PGEx-
plainer is naturally applicable to provide global explanations
of GNNs. Furthermore, PGExplainer has better generalization
power because a trained PGExplainer model can be utilized
in an inductive setting to infer explanations of unexplained
nodes without retraining the explanation model. This also makes
PGExplainer much faster than the existing work.

Another application of PGExplainer is to learn graph struc-
tures for GNN models, which are error-prone to noisy topo-
logical structures. GNNs learn node embeddings by recursively
aggregating messages from their neighborhoods. Such message
passing mechanism is associated with cascading effects that
small noise may propagate to neighboring nodes and leads to
sub-optimal representations of many others. To improve the ro-
bustness of GNN models, graph structure learning methods first
learn a denoised graph structure for the downstream task [67].
However, the original input graph is insufficiently analyzed in
existing state-of-the-art methods since they will be dropped once

the subgraphs are extracted [39], [66]. Based upon PGExplainer,
we propose a more flexible method to learn compact subgraph
structures that maximizes the mutual information between the
subgraph and labels in the downstream task. When the down-
stream task objective is jointed optimized with a size constraint
regularizer, our method can improve the accuracy performance
and robustness of GNNs.

Experimental results on both synthetic and real-life datasets
demonstrate that PGExplainer can achieve consistent and accu-
rate explanations, bringing up to 24.7% improvement in AUC
over the SOTA method on explaining graph classification with
significant speed-up.

II. RELATED WORK

Graph neural networks: Graph Neural networks (GNNs) have
achieved remarkable success in various tasks, including node
classification [23], [31], [53], graph classification [12], and
link prediction [63]. The study of GNNs was initiated in [19],
and then extended in [47]. These methods iteratively aggregate
neighbor information to learn node representations until reach-
ing a static state. Inspired by the success of convolutional neural
networks (CNNs) in computer vision, attempts of applying
convolutional operations to graphs were derived based on graph
spectral theory [4] and graph Fourier transformation [49]. In
recent work, GNNs broadly encode node features as messages
and adopt the message passing mechanism to propagate and
aggregate them along edges to learn node/graph representa-
tions, which are then utilized for downstream tasks [12], [31],
[36], [40], [47], [53]. For efficiency consideration, localized
filters were proposed to reduce computation cost [23]. The
self-attention mechanism was introduced to GNNs in GAT to dif-
ferentiate the importance of neighbors [53]. Xu. et al. analyzed
the relationship between GNNs and Weisfeiler-Lehman graph
isomorphism test, and showed the express power of GNNs [55].

Explaining GNNs: Interpretability and feature selection have
been extensively addressed in neural networks. Methods demys-
tifying complicated deep learning models can be grouped into
two main families, whitebox and blackbox [21], [22]. Whitebox
mechanisms mainly focus on yielding explanations for indi-
vidual predictions. Forward and backward propagation based
methods are used routinely in whitebox mechanisms. Forward
propagation based methods broadly perturb the input and/or
hidden representations and check the corresponding updating
results in the downstream task [10], [15], [35]. The underlying

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: TOWARDS INDUCTIVE AND EFFICIENT EXPLANATIONS FOR GNNs

intuition is that the outputs of the downstream task are likely to
significantly change if important features are occluded. Back-
ward propagation based methods, in general, infer important
features from the gradients of the deep neural networks. They
compute weights of features by propagating the gradients from
the output back to the input. Blackbox methods generate expla-
nations by locally learning interpretable models, such as linear
models, and additive models to approximate the predictions [5],
[38], [64], [65].

Following the line of forward propagation methods, GN-
NExplainer initiates the research on explaining predictions on
graph-structured data [58]. It excludes certain edges and node
features to observe the changes in node/graph classification.
Explanations (subgraphs/important features) are extracted by
maximizing the mutual information between the distribution of
possible subgraphs and the GNN’s prediction. However, similar
to other forward propagation methods, GNNExplainer generates
customized explanations for single instance prediction indepen-
dently, making it insufficient to provide a global understanding
of the trained GNN model. Besides, it is naturally difficult to
be applied in the inductive setting and provide explanations for
multiple instances.

Graph generation: PGExplainer learns a probabilistic graph
generative model to provide explanations for GNNs. The first
model generating random graph is the Erdés-Rényi model [13],
[16]. In the random graph proposed by Gilbert, each potential
edge is independently chosen from a Bernoulli distribution.
Some works generate graphs with certain properties reflected,
such as pairwise distances betweenness [7], node degree distri-
bution [34], and spectral properties [2], [26]. In recent years,
deep learning models have shown great potential to generate
graphs with complex properties preserved [20], [41], [59]. How-
ever, these methods mainly aim to generate graphs that reflect
certain properties in the training graphs.

III. BACKGROUND

We first describe notations, and then provide some back-
ground on graph neural networks.

Notations: Let G = (V, &) represent the graph with V =
{v1,v2...vx} denoting the node setand £ € V x V as the edge
set. The numbers of nodes and edges are denoted by N and M,
respectively. A graph can be described by an adjacency matrix
A € {0,1}V*N with a;; = 1 if there is an edge connecting
node ¢ and j, and a;; = O otherwise. Nodes in)V are associated
with the d-dimensional features, denoted by X € RV*9,

Graph neural networks: GNNs adopt the message-passing
mechanism to propagate and aggregate information along edges
in the input graph to learn node representations [17], [23],
[31], [53]. Each GNN Ilayer includes three essential steps. First,
at the propagation step of the ¢-th GNN layer, for each edge
(4,7), GNN computes a message mﬁj = Message(h! ™!, hé_l),
where h!~! and hé-’l are representations of v; and v; in pre-
vious layer, respectively. Second, at the aggregation step, for
each node v;, GNN aggregates messages received from its
neighbor nodes, denoted by A;, with an aggregation function
m! = aggregation({m/;|j € N;}). Last, at the updating step,

(3

5247

GNN updates the vector representation for each node v; viahl =
update(m! hz_ 1), afunction taking the aggregated message and
the representation of itself as inputs. Hidden representation of the
last GNN layer serve as the final node representation: z; = h¥,
which is then used for downstream tasks, such as node/graph
classification, and link prediction.

IV. THE PGEXPLAINER

In this section, we introduce PGExplainer. Different from
GNNExplainer which provides explanations on both structure
and features, PGExplainer focuses on explanation on graph
structures because feature explanation in GNNs is similar to
that in non-graph neural networks, which has been extensively
studied in the literature [1], [10], [15], [21], [35], [38], [45].
PGExplainer is flexible and applicable to interpreting all kinds
of GNNs. We start with the learning objective of PGExplainer
(Section IV-A) and then present the reparameterization strategy
for efficient optimization (Section IV-B). In Section IV-C, we
specify particular instantiations to understand GNNs on node
and graph classifications.

A. The Learning Objective

The literature has shown that real-life graphs are with underly-
ing structures [41], [43]. To explain predictions made by a GNN
model, we divide the original input graph G, into two subgraphs:
G, = Gs + AG, where G presents the underlying subgraph
that makes important contributions to GNN’s predictions, which
is the expected explanatory graph, and AG consists of the
remaining task-irrelevant edges for predictions made by the
GNN. Following [58], PGExplainer finds G by maximizing
the mutual information between the GNN’s predictions and the
underlying structure G's:

max MI(Y,, G,) = H(Y,) = H(Y,|G = G.). (D

where Y, is the prediction of the GNN model with G, as
the input. The mutual information quantifies the probability of
prediction Y, when the input graph to the GNN model is limited
to the explanatory graph G. The intuition behind this comes
from the traditional forward propagation-based methods for the
white box explanation [10]. For example, if removing an edge
(i,) dramatically changes the prediction in the GNN, then this
edge is important and should be included in G. Otherwise,
it can be considered as irrelevant edge for the GNN model to
make the prediction. Since H(Y,) is only related to the GNN
model whose parameters are fixed in the explanation stage, the
objective is equivalent to minimizing the conditional entropy
H (Y0|G = Ge)

However, the direct optimization of the above objective func-
tion is intractable as there are 2™ candidates for G. Thus, we
consider a relaxation by assuming that the explanatory graph is
a Gilbert random graph [16], where selections of edges from the
original input graph G, are conditionally independent to each
other. Lete;; € V x)V be the binary variable indicating whether
the edge is selected, with e;; = 1 if the edge (¢, j) is selected,
and O otherwise. Let G be the random graph variable. Based

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

5248

on the above assumption, the probability of a graph G can be
factorized as:

P(G) =11 jyes P(eij). 2)

A straightforward instantiation of P(e;;) is the Bernoulli dis-
tribution e;; ~ Bern(6;;). P(e;; = 1) = 0;; is the probability
that edge (4, 7) exists in G. With this relaxation, we thus can
rewrite the objective as:

n(l;in H(Y,|G=G,) = ncl;in Eq. [H(Y,|G = Gy)]
~ Hgn]EGs~q(®)[H(Yo|G = GS)] (3)

where ¢(©) is the distribution of the explanatory graph param-
eterized by 6’s.

B. The Reparameterization Trick

Due to the discrete nature of G, we relax edge weights from
binary variables to continuous variables in the range (0,1) and
adopt the reparameterization trick to efficiently optimize the
objective function with gradient-based methods [29]. We ap-
proximate the sampling process Gy ~ ¢(©) with a determinant
function of parameters €, temperature 7, and an independent
random variable €: G, ~ G = fa(G,, 7, €). The temperature T
is used to control the approximation. Here we utilize the binary
concrete distribution as the instantiation [42]. Specifically, the
weight é;; € (0, 1) of edge (4, j) in G, is calculated by:

€ ~ Uniform(0,1), &;; = o((loge —log(l —€) + w;;)/T),
“

where o(-) is the Sigmoid function, and w;; € R is the
parameter. When 7 — 0, the weight é;; is binarized with

%' Since P(ei; = 1) = 0,5, by

choosing w;; = log 1?"6{”, we have lim, . é’s = (5. This
demonstrates the rationality of using binary concrete distribu-
tion to approximate the Bernoulli distribution. Moreover, with
temperature 7 > 0, the objective function is smoothed with a
well-defined gradient g:i”] . Thus, with reparameterization, the
objective in (3) becomes:

Hgn E cUniform(0,1) H (Yo | G = Gy) 5

hm-,-ao P(é” - 1) =

Considering efficient optimization, we follow [58] to modify
the conditional entropy with cross-entropy H (Y5, ﬁ), where Y
is the prediction of the GNN model with G, as the input. With
the above relaxations, we adopt Monte Carlo to approximately
optimize the objective function:

Hgn]E6~Unif0rm(0,1)H(Y07 }A/s)

K C
~min — — P(Y,=c)logP(Yy =¢
i ;; (Yo = c)log P(Y; = ¢)
1 K C
:ngn ~% Py(Y = ¢|G = G,)log Ps(Y = ¢|G
k=1 c=1
_ Gy, ©6)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

where ® denotes the parameters in the trained GNN, K is the
total number of sampled graph, C' is the number of labels, ng)
is the k-th sampled graph with (4), parameterized by 2.

C. Explanation of Graph Neural Networks With a Global View

Although explanations provided by the leading method GN-
NExplainer [58] preserve the local fidelity, they do not help to
understand the general picture of the model across a popula-
tion [56]. Furthermore, various GNN based models have been
applied to analyze graph data with millions of instances [57],
the cost of applying local explanations one-by-one can be
prohibitive with such large datasets in practice. On the other
hand, explanations with a global view of the model ascertain
users’ trust [45]. Furthermore, these models can generalize
explanations to new instances without retraining, making it more
efficient to explain large scale datasets.

To have a global view of a GNN model, our method collec-
tively explains predictions made by a trained model on multiple
instances. Instead of treating €2 in (6) as independent variables,
we utilize a parameterized network to learn to generate ex-
planations from the trained GNN model. After training, the
parameterized network can be used in the inductive setting
to provide explanations for unexplained instances. In general,
GNN based models first learn node representations and then feed
the vector representations to downstream tasks [23], [31], [53].
We denote these two functions by GNNEg, (-) and GNNCg, (-),
respectively. For GNNs without explicit classification layers, we
use the last layer instead. As a result, we can represent a GNN
model with:

Z = GNNEg, (G,,X), Y = GNNCy, (Z). 7

Z is the matrix of node representations encoding both features
and structure of the input graph, which is used as an input in the
explanation network to calculate the parameter €2:

U denotes parameters in the explanation network, which is
shared by all edges among the population. Therefore, PGEx-
plainer can be utilized to collectively provide explanations for
multiple instances. Specifically, in the collective setting with
instance set Z, the objective of PGExplainer is:

K C
min = >33 Po(Y = (|G = G{) log Pa(Y = ¢[G

1€ k=1c=1
=GR, ©)

where G is the input graph and Ggi’k) is the k-th sampled
graph with (4, 8) for i-th instance. We consider both graph and
node classifications and specify an instantiation for each task.
Solutions for other tasks, such as link prediction, are similar and
thus omitted.

Explanation network for node classification: Considering
that explanations for nodes in a graph may appear diverse
structures [58], especially for nodes with different labels. For
example, an edge (4, j) is important for the prediction of node
u, but not for another node v. Based on this motivation, we

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: TOWARDS INDUCTIVE AND EFFICIENT EXPLANATIONS FOR GNNs

5249

Input Edge Latent Binary Sampled Original

nputs embeddings variables) concrete graph 55 graph ->
o o] DL]
o 2| L,
. S - - ->, - -> =>[7, Jeoly, |
; "~ . O15 n.
] G"z [I W73 Training with

:" * (1)

Fig. 2.

ming H(Y,, Ys)

() (3)

Ilustration of PGExplainer for explaining GNNs on graph classification. (1) The left part demonstrates the explanation network. It takes node representations

Z as well as the original graph G, as inputs to compute €2, the latent variables in edge distributions. Edge distributions are severed as the explanation. In case that
an explanatory subgraph is wanted, we select top-ranked edges according to latent variables 2. (2) A random graph G is sampled from edge distributions and
then feed to the trained GNN model to get the prediction Y. (3) Parameter W in the explanation network is optimized with cross-entropy between the original

prediction Y, and the updated prediction Ys.

Algorithm 1: Training Algorithm for Explaining Node Clas-
sification.

Algorithm 2: Training Algorithm for Explaining Graph
Classification.

1: Input: The input graph G, = (V, &), node features X,
node labels Y, the set of instances to be explained Z, a
trained GNN model: GNNEg, (-) and GNNCg, (-), and a
parameterized explainer MLPy.

2: for each node 7 € 7 do

3 G((f) <+ extract the computation graph for node .

4: Z(+ GNNEg, (G, X).

5. YY) « GNNCg, (Z)).

6: end for

7: for each epoch do

8: for eachnode i € 7 do

9: Q) + latent variables calculated with (10)

10: for k <— 1to K do

11: G(k) sampled from (4).

12: V%) GNNCg, (GNNEg, (G{""), X))
13: end for

14: end for

15: Compute loss with (9).
16: Update parameters W with backpropagation.
17: end for

implement the 2 = gg (G, Z) to explain the prediction of node
v with:

wi; = MLPy([z;2;; 2,]). (10)

MLPy is a multi-layer neural network parameterized with ¥
and [-; -] is the concatenation operation.

The algorithms of PGExplainer for node and graph classifica-
tion are shown in Algorithm 1. In GNNs with message passing
mechanisms, the prediction at a node v is fully determined
by its local computation graph, which is defined by its L-hop
neighborhoods [58]. L is the number of GNN layers. Thus, for
each node ¢ in the instance set 7 to be explained, we first extract
a local computation graph Ggi) (line 3). With Ggi) as the input
graph, the trained GNN model generates the label of node 1,
denoted by Yo(i) (line 4-5). To train the explanation network,
each time we select a node 7 and compute parameters {2 in edge

1: Input: A set of input graphs with ¢-th graph represented
by G node features X (), and a label Y, a trained
GNN model: GNNEg, (-) and GNNCg, (+), and a
paramterized explainer MLPy.

2: for each graph G do

3: Z(+ GNNEg, (G5, X®).

4. Y + GNNCg, (Z2)).

5: end for

6: for each epoch do

7: for each graph G%” do

8: Q) < latent variables calculated with (11)

9: for i <— 1to K do

10: G(vk sampled from (4).

11: VR GNNCg, (GNNEg, (GVM), X (0))
12: end for

13: end for

14: Compute loss with (9).
15: Update parameters ¥ with backpropagation.
16: end for

distributions with (10) (line 9). After that, we sample K graphs
as input graphs for GNN to get updated predictions for node
1, with the k-th prediction denoted by Y Lk) (line 11-13). We
compute the loss and update parameters ¥ in the explanation
network in line 15-16.

Explanation network for graph classification: For graph level
tasks, each graph is considered as an instance. The explanation
of the prediction of a graph is not conditional to a specific node.
Therefore, we specify the Q = gg(G,, Z) for graph classifica-
tion as:

wij :MLP\I/([Z”Z]]) (11)

With the graph classification as an example, the architecture of
PGExplainer is shown in Fig. 2.

The training algorithm for explaining graph classification
is shown in Algorithm 2. The algorithm is similar to the one
explaining node classifications, except that computation graphs

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

5250

are not used, because, for graph classification, each graph is
treated as an instance. Given a set of graphs {ng) }iez, we first
compute the node embeddings Z(*) and graph labels Yo(i) with
the trained GNN model (line 2-4). In each epoch, for each i-th
graph, we compute the parameters § in its edge distributions
with (11) (line 8). We then sample K subgraphs and get the
updated predictions. We compute the loss with (9) and update
parameters ¥ with backpropagation.

Regularization: The framework of PGExplainer is flexible
with various regularization terms to preserve desired properties
on the explanation. We now discuss the regularization terms used
in our experiments as well as their principles. Following [58],
to obtain compact and succinct explanations, we can impose a
constraint on the explanation size by adding ||€2||, the [; norm
on latent variables (2, as a regularization term. Besides, element-
wise entropy can also be applied to further achieve discrete edge
weights [58].

Next, we provide more regularization terms that are com-
patible with PGExplainer. Note that for a fair comparison, the
following regularization terms are not utilized in experimental
studies in Section VI.

Budget constraint: To obtain a compact explanation, the [;
norm on latent variables 2 was introduced, which penalizes all
edge weights to sparsify the explanatory graph. In cases that a
predefined budget B is available, for example, |G| < B, we
could modify the size constraint to budget constraint:

> é;-B

(i,9)€€

R, = ReLU (12)

When the size of the explanatory graph is smaller than the budget
B, the budget regularization R; = 0. On the other hand, it works
similarly to the size constraint when out of budget.

Connectivity constraint: In many real-life scenarios, determi-
nant motifs are expected to be connected. Although it is claimed
that GNNExplainer empirically tends to detect a small connected
subgraph, the explicit constraints are not provided [58]. We
propose to implement the connected constraint with the cross-
entropy of adjacent edges, which connect to the same node.
For instance, (¢, j) and (4, k) both connected to the node i. The
motivation is thatis (4, j) is selected in the the explanatory graph,
then its adjacent edge (7, k) should also be included. Formally,
we design the connectivity constraint as:

H(éij, ézk) = —[(1 — ew) log(l — sz) + Qij log sz]7 (13)

exp(wij)
1+exp(wij)*
Computational complexity: PGExplainer is more efficient

than GNNEXxplainer for two reasons. First, PGExplainer learns
a latent variable for each edge in the original input graph with a
neural network parameterized by W, which is shared by all edges
in the population of input graphs. Different from GNNExplainer,
whose parameter size is linear to the number of edges, the
number of parameters in PGExplainer is irrelevant to the size of
the input graph, which makes PGExplainer applicable to large
scale datasets. Further, since the explanation is shared among a
population, a trained PGExplainer can be utilized in the inductive

where Hij = lim.,—_>0 P(ém =].) =

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

Original
i z — |owW]—[%]
v.,,

Shared “oa
parameters &

o

»
Explanation N >
network gy k: »@

Sampled Training with
graph G argming o CE(Y, %) + CE(Y,Y,)

Fig.3. Framework of self-explainable graph neural network via joint training.

setting to explain new instances without retraining the explainer.
To explain a new instance with |£| edges in the input graph, the
time complexity of PGExplainer is O(|€|). As a comparison,
GNNE«xplainer has to retrain for the new instance, leading to the
time complexity of O(T'|€]), where T is the number of epochs
for retraining.

D. Selection of Subset of Features

In this paper, we focus on globally understanding predic-
tions made by GNNs by providing topological explanations. To
explain node features, in GNNExplainer, the authors propose
to use a feature mask to select features that are important to
preserve original predictions. Feature selection has been exten-
sively studied in non-graph neural networks and can be applied
directly to explain GNN, such as the concrete autoencoder [1].
Besides, since selected features are shared among instances
across the population, feature explanation is naturally global
and applicable to new instances in the inductive setting.

V. SELF-EXPLAINABLE GRAPH NEURAL NETWORK VIA JOINT
TRAINING

Graph data generated from real-life scenarios usually have
complex and topological noise in the local neighborhood. De-
spite the success of existing GNN models on learning node/graph
representations, task-irrelevant information is aggregated into
node representations and propagated by stacked layers, leading
to sub-optimal performances [66]. In addition, the quality of
post-hoc explanations may be limited to the accuracy perfor-
mance of the to-be-explained GNN model.

To address this problem, we propose to extend the PGEx-
plainer to a self-explainable framework that can improve the
accuracy performance and provide explanations simultaneously.
Specifically, we consider the explanation network as a graph
structure learning module, which is jointly trained with the
downstream task. By explicitly extracting the informative sub-
graph, the proposed self-explainable framework can boost the
generalization power of existing GNN models [39], [66].

With graph classification as the downstream task, The algo-
rithm is shown in Algorithm 3, and the framework is shown in
Fig. 3. The framework can be extended to other downstream
tasks with minor modifications.

Given a set of graphs {Ggl)}lN:l, each graph is associated
with a graph label Y (*), and a matrix storing node feature X (). A

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: TOWARDS INDUCTIVE AND EFFICIENT EXPLANATIONS FOR GNNs

Algorithm 3: Self-Explainable Graph Learning Framework
for Graph Classification.

1: Input: A set of input graphs with ¢-th graph represented
by G node features X (), and a label Y (), a GNN
model: GNNEg, (-) and GNNCg, (+).

2: pre-train GNN model by minimizing (14).

3: for each epoch do

4: for each graph G(Oi) do

5. Z® + GNNEg, (G, X).

6: Y.V « GNNCg, (Z).

7 Q) < latent variables calculated with (11)

8 for k < 1to K do

9: Gg’k) <+ sampled from (4).
10: V%) GNNCg, (GNNEg, (G{F), X))
11: end for
12: end for

13: Compute loss with (16).
14: Update parameters ¢ and ¥ with backpropagation.
15: end for

GNN model has two components: an encoder network GNNEg,,
and a classifier network GNNCg,. ® = {®(, ®;} denotes the
parameters in the GNN model. Since the explanation network
takes node embeddings as the input, to avoid optimizing ® and ¥
from scratch simultaneously, we first pre-train the GNN model
with the cross-entropy loss:

> CE(Y®,y™), (14)

where Y,") = GNNCg, (GNNEg, (G5, X)) is the output of
GNN model with graph G((f) as the input.

In the second phase, parameters in both the explanation
network and GNN model, ¥ and (2, are jointly optimized.
Besides, the loss in (14), for a graph G((f), we also consider

the cross-entropy between Y (¥) and f/s(i,kr):

K
1 N e
g§ CE(Y ™, y(#h)), (15)
k=1

where Y{"*) = GNNCg, (GNNEg, (G{"", X)) is the pre-
diction of GNN with sampled subgraph Ggi’k) as the input and
K is the number of Monte Carlo sampling. The explanation
network is optimized following (9) to identify sparse yet dis-
criminative sub-graphs. Putting everything together, we have
the following loss function:

K
. , 1 N
@) y@y 4 L (i) yr(ik)
> [CE(Y®, v + k§_1(CE(Y YR 16)

(2

VI. EXPERIMENTAL STUDY

In this section, we evaluate our PGExplainer with a num-
ber of experiments. We first describe synthetic and real-world
datasets, baseline methods, and experimental setup. Then, we

5251

present the experimental results on explanations of both node
and graph classification. With qualitative and quantitative eval-
uations, we demonstrate that our PGExplainer can improve the
SOTA method up to 24.7% in AUC on explaining graph classi-
fication. At the same time, with a trained explanation network,
our PGExplainer is significantly faster than the baseline when
explaining unexplained instances.

A. Datasets

We follow the setting in GNNExplainer and construct
four kinds of node classification datasets, BA-Shapes, BA-
Community, Tree-Cycles, and Tree-Grids [58]. Furthermore,
we also construct a graph classification dataset, BA-2motifs. (1)
BA-Shapes is a single graph consisting of a base Barabasi-Albert
(BA) graph with 300 nodes and 80 “house”-structured motifs.
These motifs are attached to randomly selected nodes from the
BA graph. After that, random edges are added to perturb the
graph. Nodes features are not assigned in BA-Shapes. Nodes
in the base graph are labeled with O; the ones locating at the
top/middle/bottom of the “house” are labeled with 1,2,3, respec-
tively. (2) BA-Community dataset consists of two BA-Shapes
graphs. Two Gaussian distributions are utilized to sample node
features, one for each BA-Shapes graph. Nodes are labeled based
on their structural roles and community memberships, leading
to 8 classes in total. (3) In the Tree-Cycles dataset, an 8-level
balanced binary tree is adopted as the base graph. A set of 80
six-node cycle motifs are attached to randomly selected nodes
from the base graph. (4) Tree-Grid is constructed in the same
way as TREE-CYCLES, except that 3-by-3 grid motifs are used
to replace the cycle motifs. (5) For graph classification, we
build the BA-2motifs dataset of 1000 graphs. We adopt the BA
graphs as base graphs. Half graphs are attached with “house”
motifs and the rest are attached with five-node cycle motifs.
Graphs are assigned to one of 2 classes according to the type of
attached motifs. The first four datasets are also used in [58] for
node classification. For datasets without node features, we use
a 10-dimensional vector with all elements set to 1 [58].

We also include a real-life dataset, MUTAG, for graph clas-
sification, which is also used in previous work [58]. It consists
of 4,337 molecule graphs. Each graph is assigned to one of 2
classes based on its mutagenic effect [46], [58]. As discussed
n [11], [58], carbon rings with chemical groups N Hs or NO>
are known to be mutagenic. We observe that carbon rings exist
in both mutagen and nonmutagenic graphs, which are not dis-
criminative. Thus, we can treat carbon rings as the shared base
graphs and N Ho, N O5 as motifs for the mutagen graphs. There
are no explicit motifs for nonmutagenic ones.

Table I shows the statistics of synthetic and real-life datasets.

B. Baselines and Experimental Setup

Baselines: We compare with the SOTA method, GNNEx-
plainer as well as other baselines in [58], i.e., a gradient-based
method (GRAD), and graph attention network (ATT). (1) GN-
NExplainer is a post-hoc method providing explanations for
every single instance. (2) GRAD learns weights of edges by com-
puting gradients of GNN’s objective function w.r.t. the adjacency

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

5252

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

TABLE I
DATASET STATISTICS

Node Classification

Graph Classification

BA-Shapes BA- Tree- Tree-Grid | BA-2motifs ~ MUTAG
Community Cycles
#graphs 1 1 1 1 1,000 4,337
#nodes 700 1,400 871 1,231 25,000 131,488
#edges 4,110 8,920 1,950 3,410 51,392 266,894
#labels 4 8 2 2 2 2
TABLE II

ACCURACY PERFORMANCE OF GNN MODELS

Node Classification

Graph Classification

Accuracy BA-Shapes BA- Tree- Tree-Grid | BA-2motifs ~ MUTAG
y p Community Cycles

Training 0.98 0.99 0.99 0.92 1.00 0.87

Validation 1.00 0.88 1.00 0.94 1.00 0.89

Testing 0.97 0.93 0.99 0.94 1.00 0.87

matrix. (3) ATT utilizes self-attention layers to distinguish edge
attention weights in the input graph. Each edge’s importance is
obtained by averaging its attention weights across all attention
layers.

Experimental setup: All experiments are conducted on a
Linux machine with an Nvidia GeForce RTX 2070 SUPER GPU
with 8 GB memory. CUDA version is 10.2 and Driver Version
is 440.64.00. We follow the experimental settings in GNNEx-
plainer [58]. Specifically, for post-hoc methods including ATT,
GNNExplainer, and PGExplainer, we first train a three-layer
GNN and then apply these methods to explain predictions made
by the GNN. For a fair comparison, we exactly use the specially
designed GNN model in GNNExplainer [58]. Each GNN layer
is represented by f(H", A) = o(WHAHWY), where H® is
the hidden representations of nodes in the [-th layer, A is the
normalized Laplacian matrix, and W) is the weight matrix.
We adopt the Adam optimizer with an initial learning rate of
1.0 x 1073. All variables are initialized with Xavier. We follow
GNNE«xplainer to split train/validation/test with 80/10/10% for
all datasets. Each model is trained for 1000 epochs. The accu-
racy performances of GNN models are shown in Table II. The
results show that the designed GNN models are powerful enough
for node/graph classifications on both synthetic and real-life
datasets. Since weights in attention layers are jointly optimized
with the GNN model in ATT, we thus train another GNN model
with self-attention layers. We follow [1] to tune temperature 7.

The network structure of explanation networks in PGEx-
plainer is MLPs with one hidden layer. To train PGExplainer,
we also adopt the Adam optimizer with the initial learning rate
of 3.0 x 1073. The coefficient of size regularization is set to
0.05 and entropy regularization is 1.0. The epoch T is set to
30 for all datasets. The temperature 7 in (4) is set with an
annealing schedule [1]: 7 = 7y (77 /70)*, where 7 and 77 are
the initial and final temperatures. A small temperature tends to
generate more discrete graphs which may hinder the explanation
network from being optimized with backpropagation. In this
task, we find that relatively high temperatures work well in
practice.

C. Comparison With Baselines

The results of comparative evaluation experiments on both
synthetic and real-life datasets are summarized in Table III . In
these datasets, node/graph labels are determined by the motifs,
which are treated as ground truth explanations. These motifs are
utilized to calculate explanation accuracy for PGExplainer as
well as other baselines.

Qualitative evaluation: We choose an instance for each
dataset and visualize its explanations given by GNNExplainer
and PGExplainer in Table III. In these explanations, bold black
edges indicate top- K edges ranked by their importance weights,
where K is set to the number of edges inside motifs for synthetic
datasets and 10 for MUTAG [58]. As demonstrated in these
figures, the whole motifs, such as “house” in BA-Shapes and
BA-Community, cycles in Tree-Cycles and BA-2motifs, grids in
Tree-Grid, and N O4 groups in MUTAG are correctly identified
by PGExplainer. On the other hand, some important edges
are missing in the explanations given by GNNExplainer. For
example, the explanation provided by GNNExplainer for the
instance in MUTAG contains the carbon rings and part of a N O
group. However, the carbon rings appear frequently in both mu-
tagen and nonmutagenic graphs, which are not discriminative.
Conversely, PGExplainer correctly identifies both N O3 groups.

Quantitative evaluation: We follow the experimental settings
in GNNExplainer [58] and formalize the explanation problem
as a binary classification of edges. We treat edges inside motifs
as positive edges, and negative otherwise. Importance weights
provided by explanation methods are considered as prediction
scores. A good explanation method assigns high weights to
edges in the ground truth motifs than the ones outside. AUC
is adopted as the metric for quantitative evaluation. Especially,
for the MUTAG dataset, we only consider the mutagen graphs
because no explicit motifs exist in nonmutagenic ones. For
PGExplainer, we repeat each experiment 10 times and report
the average AUC scores and standard deviations here.

From the table, we have the following observations. PG-
Explainer achieves SOTA performances in all scenarios and
the accuracy gains are up to 13.0% in node classification and

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: TOWARDS INDUCTIVE AND EFFICIENT EXPLANATIONS FOR GNNs

TABLE III

5253

ILLUSTRATION OF DIFFERENT DATASETS TOGETHER WITH PERFORMANCE EVALUATION OF PGEXPLAINER AND OTHER BASELINES

Node Classification Graph Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG
Base % " . %ﬂ Re®
MOtifs ﬁ l\ /‘ $ EE ﬁ NO, NH,
ShemgEd o Label 0 Label 1
Features None N (i, 01) None None None Atom types
Visualization
[RTTH I | '\/'
Explanations & | S N s - "
by GNN- \é\ N \‘> . < N /\ —
Explainer M
p P
[]
Explanations B W24 Q ,Y\ -
by PG- o 0 \ e
Explainer S, o)
()
Explanation AUC
GRAD 0.882 0.750 0.905 0.667 0.717 0.783
ATT 0.815 0.739 0.824 0.612 0.674 0.765
Gradient - - - - 0.773 0.653

GNNExplainer 0.925 0.836 0.948 0.875 0.742 + 0.001 0.727 £ 0.014

PGExplainer 0.963+0.011 0.945+0.019 0.987+0.007 0.907£0.014 0.926+0.021 0.873£0.013
Improve 4.1% 13.0% 4.1% 3.7% 24.7% 11.5%
AVG. Time (ms)

GNNExplainer 650.60 696.61 690.13 713.40 934.72 409.98
PGExplainer 1.62¢3 2.54e4 6.09¢3 1.85¢4 9.87¢3 42604
(w/ Training)

PGExplainer 10.92 24.07 6.36 6.72 80.13 9.68
(Inference)
Speed-up 59x 29x 108x 106x 12x 42x

BA-Shapes, BA-Community, Tree-Cycles, Tree-Grid are datasets for node classification [58]. Node labels are represented by their colors. BA-2motifs and MUTAG
datasets are used for graph classification. Graphs with “house” motifs are labeled with 0 and the ones with cycles are with 1 in BA-2motifs dataset. NH2, NO2 are treated
as motifs of the mutagen graphs in MUTAG. Explanations extracted by GNNExplainer and PGExplainer are also shown as case studies.

24.7% in graph classification. Compared to GNNExplainer,
which tackles instances independently thus can only achieve
suboptimal explanations, PGExplainer utilizes a parameterized
explanation network based upon graph generative model to col-
lectively provide explanations for multiple instances. As a result,
PGExplainer can provide a global understanding of the GNNss.
That answers why PGExplainer can outperform GNNExplainer
by relatively large margins.

Fidelity evaluation: We adopt the experimental framework
outlined in [61] for assessing the Fidelity of the generated
explanations. The Fidelity metric evaluates the degree to which
the explanations genuinely reflect the model’s predictions by
sequentially remove edges based on their weights in explanation
and testing the classification performance afterwards. The re-
moval of more important edges would degrade the classification
performance more significantly. Thus, a faster performance drop
would denote stronger fidelity and better explanations.

The results on two node classification datasets, BA-Shapes
and Tree-Grid, are reported in Fig. 4, where we plot the curves
of model accuracy with respect to the number of removed
edges. The removal of edges is ordered based on their weights
in explanation. As shown in Fig. 4, PGExplainer outperforms

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

Lo —— GNNExplainer Lo —— GNNExplainer
—— PGExplainer —— PGExplainer
0.8 0.8
6])
Q0.6
2 0.6 <
0.4
0.4 02
5 10 15 5 10 15
Removed Edge Number Removed Edge Number
(a) BA_shapes (b) Tree_grid
Fig. 4. Fidelity analysis by removing identified explanatory edges.

GNNExplainer by a significant margin and show an improved
fidelity, which further verifies the effectiveness of the PGEx-
plainer.

Efficiency evaluation: Explanation network in PGExplainer
is shared across the population of instances. Thus, a trained
PGExplainer can be utilized to explain new instances in the
inductive setting. We denote the time to explain a new instance
with a trained explanation method by inference time. Since GN-
NExplainer has to retrain the model, we also count the training
time here. The running time comparison in Table III shows that

5254

T T T
1
[l S ——
@] 19}
=] =]
E < /
0.98 0.9
STD STD
0.96 Mean — mean
| | 08 | | |
1 2 3 4 5 30 1 2 3 4 5 30
#Training instances #Training instances
(a) BA-Shapes (b) BA-Community
T T T T 1
1
8 /ﬁ/
< 8
2 /—/v
0.98 0.8
STD STD
0.96 Mean . Mean
| | 06 | | |
1 2 3 4 5 30 1 2 3 4 5 30
#Training instances #Training instances
(c) Tree-Cycles (d) Tree-Grid
1
1S}
=2
<
0.8
STD
0.6 Mean
| |
1 2 3 4 5 30
#Training instances
(e) BA-2motifs
Fig. 5. Evaluation of PGExplainer in the inductive setting.

PGExplainer can speed up the computation significantly, up to
108 times faster than GNNExplainer, which makes PGExplainer
more practical for large-scale datasets.

D. Inductive Performance

As we discussed in Section IV-C, the explanation network is
shared across the population. Thus, with a trained PGExplainer,
we can directly infer the explanation without retraining the ex-
planation network. As a result, our PGExplainer has better gen-
eralization power than the leading baseline GNNExplainer. Be-
sides, our PGExplainer is more efficient in the inductive setting.
In this section, we empirically demonstrate the effectiveness of
PGExplainer in the inductive setting. In the inductive setting,
we select « instances for training, (N — «)/2 for validation,
and the rest for testing. « is ranged from [1, 2, 3, 4, 5, 30]. Note
that, with o = 1, our method degenerates to the single-instance
explanation method. Recall that to explain a set of instances,
GNNExplainer first detects a reference node and then computes
the explanation for the reference node. The explanation is then
generalized to other nodes with graph alignment [58]. We claim
that it may lead to sub-optimal explanations because reference
node selection and graph alignment are not jointly optimized
with the explanation in an end-to-end fashion. The AUC scores
of PGExplainer are shown in Fig. 5. We have the following
observations. 1) The testing AUC increase as more instances are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

trained, verifying the effectiveness of PGExplainer. Some results
are higher than the reported ones in Section VI because here
we adopt validation datasets to fine-tune the hyper-parameters.
2) More training instances lead to smaller standard deviation,
PGExplainer tends to globally detect shared motifs with higher
robustness. 3) PGExplainer can achieve relatively good perfor-
mance with a small number of trained instances, which makes
PGExplainer more practical in large datasets. The results also
explain why we dismiss the training time of PGExplainer and
only count the inference time in Section VI.

E. Model Analysis

1) Effects of Regularization Terms: In this part, we analyze
the effects of regularization terms. In addition to the size and
entropy regularizers introduced in GNNExplainer, we also have
discussed regularization terms on budgets and connectivity con-
straints. Since the first two regularizers are used in the quantita-
tive evaluation, we first conduct parameter studies. Visualization
results on synthetic datasets show that the explanatory graph
extract by PGExplainer tends to be small and compact. To verify
the effectiveness of the proposed regularizer for connectivity
constraint, we synthesize a noisy BA-Shapes dataset.

Effects of size and entropy constraint: We select synthetic
datasets for parameter study. The coefficients of size and entropy
regularizers are denoted by A4 and A, respectively. AUC scores
w.r.t coefficients are shown in Fig. 6. We observe that PGEx-
plainer achieves competitive performances even without any
regularization terms in all datasets except the BA-Community,
which verifies the effectiveness of the model itself. For the BA-
Community dataset, the entropy constraint plays an important
role.

Effects of connectivity constraint: To show the effect of the
connectivity constraint on the explanatory graph, we build a
noisy BA-Shapes dataset with 0.2 N noisy edges and vary the
coefficient of the connectivity regularization term A, from O to
10 and apply PGExplainer to explain a single instance. The visu-
alization results with regard to different choices of coefficients
are shown in Fig. 7. An analysis of the number of connected
components is also conducted for Tree-Cycles and Tree-Grid,
with the result presented in Fig. 8. Note that in the ideal scenario,
the number of connected components should be 1. Therefore,
the number of connected components dropping from 1.62 to
1.50 denotes an improvement of 20%. These figures demonstrate
that without explicit constraint, PGExplainer may detect several
connected edges in the noisy input graph, although these edges
are also inside motifs. With the connectivity constraint, we ob-
serve that PGExplainer tends to reduce the number of connected
components and enhance the connectivity of the explanation
subgraph.

2) Effects of Stochastic Sampling: To show the effects of the
stochastic subgraph sampling, we vary the distribution range
of the uniform variable € in (6). In the original PGExplainer,
the independent variable € is sampled from the distribution
€ ~ Uniform(0, 1). The stochastic magnitude can be adjusted by
including another hyper-parameter s, that € ~ Uniform(s, 1 —
s), where s € [0,0.5]. A larger value of s indicates a smaller

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: TOWARDS INDUCTIVE AND EFFICIENT EXPLANATIONS FOR GNNs

AuC 09

(a) BA-Shapes (b) BA-Community

094

093

09

092

08
091

07 09

o6 089
088
0s
AUC 08 | 087

04 036

01 b

065

(c) Tree-Cycles

AUC 08

(e) BA-2motifs

Fig. 6. Effects of size and entropy constraint.

:.1'-&:? . -
S ' Y’N IR

(@) Ac=0 (b) Ac=5

Fig. 7. Effects of connectivity constraint.

stochastic magnitude. And s = 0.5 is the deterministic version
of the PGExplainer. We adopt the Tree-Cycles and MUTAG
datasets in this section and results are shown in Fig. 9, From
the figure, We observe that stochastic sampling significantly
and consistently improves the explanation performances in the

5255

1.625 2
0 ' c
5 232
S 1.600 S
£ €30
g7 S
e
8 1.550 228
|53 o
: g
£ 1.525 S,6
© S
00 25 50 75 100 00 25 50 7.5 100
A A
(a) Tree_Grid (b) Tree_Cycles
Fig. 8. Quantitative evaluation of of connectivity constraint.
0.98
0.87
096 o
2 2086
0.94
0.85
0.92
0.0 0.2 0.4 0.0 02 04
& &
(a) Tree_Cycles (b) Mutag
Fig. 9. Influence of stochastic sampling variable e.

MUTAG datasets. With e € [0.1, 0.3], PGExplainer outperforms
its deterministic variant in the Tree-Cycles.

3) GCN as the Backbone: To show the robustness of the
PGExplainer, in this section, we compare to GNNExplainer with
a representative and commonly used GNN model, GCN [31].
Other settings are kept the same with Section VI-B. We adopt
the implementations in [28]. The accuracy performances of
GCN and explanation performances of explainers are shown
in Table IV.

In general, GCN works worse than the specifically designed
GNN in [58]. As a result, the explanation performances of both
GNNExplainer and PGExplainer drop. However, the relative
improvement of PGExplainer over GNNExplainer remains with
GCN as the backbone. PGExplainer outperforms GNNExplainer
on 5 out of 6 datasets, except the Tree-Grid datasets. Specifically,
AUC gains of PGExplainer over GNNExplainer are up to 40.7%
on node classification and 43.6% on graph classification, respec-
tively, showing the robustness of the proposed PGExplainer over
the leading baseline. In addition, PGExplainer is 6 to 103 times
faster than GNNExplainer.

4) More Choices of Explanation Networks: In PGExplainer,
we adopt a two-layer MLP as the explanation network. To show
the robustness of the PGExplainer and investigate the effects of
other types of neural networks as the explainer, in this section,
we include linear (Linear), MLP with 3 layers (MLP3), and GCN
(GCN) to replace the vanilla MLP in PGExplainer. Results on 4
dataset are shown in Fig. 10.

From the figure, we observe that our PGExplainer is robust to
the choice of explainer architectures. More sophisticated GNN
methods, such as GCN fails to further improve the explanation
performances. The reason is the node embeddings used in pa-
rameterized explainer are obtained by aggregating both node
features and topological structures. Linear models and simple
MLPs are sufficient to extract informative subgraphs from them.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

5256

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

TABLE IV
COMPARISON TO GNNEXPLAINER WITH GCN AS THE BACKBONE

Node Classification

Graph Classification

BA-Shapes BA-Community Tree-Cycles Tree-Grid | BA-2motifs MUTAG
Accuracy performance
Training 0.97 0.75 0.94 0.91 0.96 0.82
Validation 1.00 0.67 0.98 0.94 1.00 0.87
Testing 1.00 0.71 0.94 0.93 0.95 0.80
Explanation AUC
GNNEXxplainer 0.74240.007 0.708+0.004 0.540+0.017 0.714 £ 0.003 0.498 + 0.004 0.587 + 0.002
PGExplainer 0.99940.000 0.82540.040 0.76240.014 0.683£0.008 0.566+0.042 0.843+0.084
Improve 34.6% 16.5% 40.7% -4.3% 13.6% 43.6%
Inference Time (ms)
GNNEXxplainer 412.0 575.5 360.9 428.3 218.6 91.7
PGExplainer 28.1 41.7 3.5 5.6 7.5 15.9
Speed-up 15x 14x 103x 76X 29x 6x
1.0 _ A three-layer GNN model is utilized to predict a subject’s
k/'lzzzr group label based on its brain network. For subject 7, we adopt
PGExplainer to learn a weight matrix €2; € R76*76_ which mea-
0.9 MLP3 . . .
GCN sures the strength of the relationship between functional connec-
8 tivity and the subject’s behavior measurements. Specifically, the
<0.8 diagonal elements in €2; reflect the importance of each brain re-
gion. To analyze the relationship between human behaviors and
07 brain network connectivity at a group level, we consider three

BA~ShaDeSTree‘GridTree"CJ/c/es Mutag

Fig. 10. Comparison of different explainer structures.

The conclusion is aligned with the previous graph generation
methods, where simple decoders are utilized [30].

FE. Application to Brain Network Analysis

Analyzing the relationship between human behavioral mea-
sures and their functional brain connectivity, as measured by
resting-state functional magnetic resonance imaging (fMRI)
correlations, is a fundamental task in the Neuroscience field [8],
[9]. A set of 460 subjects from the Human Connectome Project
(HCP) are utilized in this case study [52], denoted by S. For
each subject s € S, we generated the functional connectivity
of brain networks using resting-state fMRI data, where nodes
denote brain regions and edges describe their functional con-
nectivity. Each brain connectivity network is a fully connected
network with 76 nodes. Each node is associated with the cortical
myelination level, which was measured by the ratio of T1 and
T2 ration [18], and cortical thickness of the corresponding
region. In addition, each subject is associated with 151 behav-
ioral measures, including Pittsburgh Sleep Quality Index (PSQI)
score, NIH Toolbox Sadness Survey: Unadjusted Scale Score,
et. al. A canonical-correlation analysis (CCA) score has been
calculated for each subject to summarize his/her position along
a direction that maximally linked these behavioral measures to
the neuroimaging data [24]. Based on their CCA scores, we split
the 460 subjects into two groups, “pos” and “neg”. A subject is
assigned to the “pos” set, denoted by S, if the CCA score is
positive. Otherwise, s/he is assigned to the “neg” set Sy,cq.

groups. Qpos = \Sp;o\ Y e Spos Q; is the average weight matrices

of subjects in the “pos” set Spos; Qneg = ﬁ Diesn., S
oo

is for the “neg” set; Qg = ﬁ Y ics Qi is for all these 460
subjects. For each group, we extracted the diagonal elements
from the corresponding matrix and displayed the results on a
brain surface. The results for these three groups are shown in
Fig. 11(a), (b), and (c), respectively. Regions with yellow color
are associated with higher weights, indicating critical impacts
on the behavior measurements.

Based on these figures, we have the following observations.
First, the overall spatial patterns of the “pos”, “neg”, and “all”
groups are consistent with the patterns found by traditional
canonical-correlation analysis (Fig. 11(a)), especially the con-
trast between the higher-order/hierarchy association regions
(middle frontal gyrus [mFG], inferior frontal gyrus [iFG], an-
gular gyrus [AG], middle temporal cortex [mTemp], anterior
cingulate cortex [ACC], posteromedial cortex [PMC], ventro-
medial prefrontal cotex [vmPFC]) and lower-order primary
sensory-motor networks (primary motor cortex [M1], primary
somatosensory cortex [S1]), are close to each other. Of note, this
cross-hierarchy pattern was the core feature emphasized in [24].
On the other hand, we also observe the difference between
spatial patterns of “pos” and “neg” groups. To measure the
consistency quantitatively, we further calculate the Spearman’s
rank correlation coefficient between the patterns discovered by
us and those by traditional analysis. Across 76 cortical regions
(Fig. 11(a)), we get the correlation coefficient as 0.3346 and the
p-value as 0.0031, which validate the significance of consistency
between two panels.

G. Self-Explainable Graph Learning
In this section, we evaluate the effectiveness of the self-
explainable graph learning framework. First, we compare the

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: TOWARDS INDUCTIVE AND EFFICIENT EXPLANATIONS FOR GNNs

5257

TABLE V
DATASET STATISTICS

Dataset PROTEINS BZR_MD Cuneiform PTC_FR PTC_MR
#graphs 1,113 306 267 351 344
Avg. # nodes 39.06 21.30 21.27 14.56 14.29
#edges 72.82 225.06 44.80 15.00 14.69
#labels 2 2 30 2 2
Right TABLE VI
PERFORMANCE ANALYSIS OF OUR SELF-EXPLAINABLE LEARNING
FRAMEWORK
N BA-Shapes Tree-Cycles Tree-Grid
u GNNExpl 0.74 0.54 0.71
) PGExpl 0.99 0.76 0.68
< SelfExpl 0.99 0.78 0.82
8 Backbone 1.00 0.94 0.93
< SelfExpl 1.00 0.98 0.92
0.9 T T
GCN XX
GCN+PG ==
0.7 [PS rremmrmmrem .
&}
O
<
0.5 KooK S A S S =
0.3
Protein BZR_MD Cuneiform PTC_FR PTR_MR

(c) Positive

(d) Negative

Fig. 11. Case study on brain network analysis.

explanations achieved by the self-explainable method with post-
hoc counterparts. We include GNNExplainer and PGExplainer
as baselines and report the results w.r.t both the explanation
quality (in terms of AUC on edges) and classification perfor-
mance (in terms of ACCuracy), with the result in Table VI. It
can be observed that our self-explainable framework can achieve
comparable or better explanation quality with PGExplainer and
bring improvements to downstream classification in most cases.

Second, we verify the accuracy performance of the self-
explain GNN method with 5 datasets from different fields,’
including PROTEINS [3], BZR_MD [51], Cuneiform [32],

Thttps://1s11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Effects of utilizing explanation networks with size constraint as the
sparsification constraint.

PTC_FR [25] and PTC_MR [25]. Dataset statistics are shown
in Table V.

Three-layer GCNs are adopted as the backbone. Readout
operation is then applied to get the graph embeddings from
node embeddings. We apply explanation networks with size
constraints to the GCN, denoted by GCN+PG, and compare it
to the basic one. The comparison results are shown in Fig. 12.
Our GCN+PG consistently outperforms GCN in all these five
datasets with up to 17.80% achievement in classification accu-
racy, verifying the effectiveness of our method in the perfor-
mance of graph classification.

VII. CONCLUSION

We present PGExplainer, a parameterized method to provide
a global understanding of any GNN models on arbitrary machine
learning tasks by collectively explaining multiple instances. We
show that PGExplainer can leverage the representations pro-
duced by GNNis to learn the underlying subgraphs that are impor-
tant to the predictions made by them. Furthermore, PGExplainer
is more efficient due to its capacity to explain GNNs in inductive
settings, which makes PGExplainer more practical in real-life
applications. In addition, we show that the explanation network
with size constraint can also extract informative structures in the
input graph to improve the performance of GNNs.

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

5258

(1]
[2]

[3]

[4]

(51

(6]

(71
(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

REFERENCES

A. Abid, M. F. Balin, and J. Zou, “Concrete autoencoders for differentiable
feature selection and reconstruction,” 2019, arXiv:1901.09346.

R. Arora and J. Upadhyay, “On differentially private graph sparsification
and applications,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 13378-13389.

K. M. Borgwardt et al., “Protein function prediction via graph kernels,”
Bioinformatics, vol. 21, no. suppl_1, pp. i47-i56, 2005.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” 2013, arXiv:1312.6203.

R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad,
“Intelligible models for healthcare: Predicting pneumonia risk and hospital
30-day readmission,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2015, pp. 1721-1730.

J. Chen, L. Song, M. Wainwright, and M. Jordan, “Learning to explain:
An information-theoretic perspective on model interpretation, in Proc. Int.
Conf. Mach. Learn., PMLR, 2018, pp. 883-892.

L P. Chew, “There are planar graphs almost as good as the complete graph,”
J. Comput. Syst. Sci., vol. 39, no. 2, pp. 205-219, 1989.

H. Cui et al., “BrainGB: A benchmark for brain network analysis
with graph neural networks,” IEEE Trans. Med. Imag., vol. 42, no. 2,
pp. 493-506, Feb. 2023.

H. Cui, W. Dai, Y. Zhu, X. Li, L. He, and C. Yang, “Interpretable graph
neural networks for connectome-based brain disorder analysis,” in Proc.
25th Int. Conf. Med. Image Comput. Comput. Assist. Intervent., Singapore,
Springer, 2022, pp. 375-385.

P. Dabkowski and Y. Gal, “Real time image saliency for black box classi-
fiers,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6967-6976.
A. Kumar Debnath, R. L. L. de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch, “Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. correlation with molecular orbital
energies and hydrophobicity,” J. Med. Chem., vol. 34, no. 2, pp. 786-797,
1991.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2016, pp. 3844-3852.

P. Erdds and A. R&wi, “On random graphs 1,” Pub. Math. Debrecen, vol. 6,
pp- 290-297, 1959.

D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-
layer features of a deep network,” Univ. Montreal, vol. 1341, no. 3, 2019,
Art. no. 1.

C. R. Fong and A. Vedaldi, “Interpretable explanations of black boxes by
meaningful perturbation,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 3429-3437.

Edgar N. Gilbert, “Random graphs,” Ann. Math. Statist., vol. 30, no. 4,
pp. 1141-1144, 1959.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1263-1272.

F. MatthewGlasser and D. C.V. Essen, “Mapping human cortical areas in
vivo based on myelin content as revealed by T1-and T2-weighted MRI,”
J. Neurosci., vol. 31, no. 32, pp. 11597-11616, 2011.

M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in
graph domains,” in Proc. Int. Joint Conf. Neural Netw., 2005, pp. 729-734.
A. Grover, A. Zweig, and S. Ermon, “Graphite: Iterative generative mod-
eling of graphs,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 2434-2444.
W. Guo, S. Huang, Y. Tao, X. Xing, and L. Lin, “Explaining deep learning
models—a Bayesian non-parametric approach,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2018, pp. 4514-4524.

W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “LEMNA: Explaining
deep learning based security applications,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2018, pp. 364-379.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 1024-1034.

F.Han, Y. Gu, G. L. Brown, X. Zhang, and X. Liu, “Neuroimaging contrast
across the cortical hierarchy is the feature maximally linked to behavior
and demographics,” Neuroimage, vol. 215, 2020, Art. no. 116853.

C. Helma, R. D. King, S. Kramer, and A. Srinivasan, “The predic-
tive toxicology challenge 2000-2001,” Bioinformatics, vol. 17, no. 1,
pp. 107-108, 2001.

G. B. Hermsdorff and L. M. Gunderson, “A unifying framework
for spectrum-preserving graph sparsification and coarsening,” 2019,
arXiv:1902.09702.

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space approaches
to social network analysis,” J. Amer. Stat. Assoc., vol. 97, no. 460,
pp. 1090-1098, 2002.

L. Holdijk, M. Boon, S. Henckens, and L. deJong, “[Re] parameterized
explainer for graph neural network,” ReScience C, vol. 7, no. 2, May 2021,
doi: 10.5281/zenodo.4834242.

E.Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” in Proc. Int. Conf. Learn. Representations, 2017. [Online].
Available: https://openreview.net/forum?id=rkE3y85ee
N. T. Kipf and M. Welling, “Variational
encoders,” 2016, arXiv:1611.07308.

N. T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.
N. M. Kriege, M. Fey, D. Fisseler, P. Mutzel, and F. Weichert, “Recognizing
cuneiform signs using graph based methods,” in Proc. Int. Workshop
Cost-Sensitive Learn., PMLR, 2018, pp. 31-44.

H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Interpretable & ex-
plorable approximations of black box models,” 2017, arXiv:1707.01154.
J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time: Den-
sification laws, shrinking diameters and possible explanations,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2005,
pp. 177-187.

J. Li, W. Monroe, and D. Jurafsky, “Understanding neural networks
through representation erasure,” 2016, arXiv:1612.08220.

R.Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convolutional neural
networks,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 3546-3553.

S. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4765-4774.

M. S. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 4765-4774.

D. Luoetal., “Learning to drop: Robust graph neural network via topolog-
ical denoising,” in Proc. ACM Int. Conf. Web Search Data Mining, 2021,
pp. 779-787.

J. Ma, P. Cui, K. Kuang, X. Wang, and W. Zhu, “Disentangled
graph convolutional networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 4212-4221.

J. Ma, W. Tang, J. Zhu, and Q. Mei, “A flexible generative framework
for graph-based semi-supervised learning,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2019, pp. 3276-3285.

C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A
continuous relaxation of discrete random variables,” in Proc. Int. Conf.
Learn. Representations, 2017.

M. Newman, Networks. Oxford, U.K.: Oxford Un. Press, 2018.

J. Ni et al., “Co-regularized deep multi-network embedding,” in Proc. Int.
Conf. World Wide Web, 2018, pp. 469-478.

M.T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?”
explaining the predictions of any classifier,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2016, pp. 1135-1144.

K. Riesen and H. Bunke, “Iam graph database repository for graph based
pattern recognition and machine learning, in Proc. Joint IAPR Int. Work-
shops Statist. Techn. Pattern Recognit. Struct. Syntactic Pattern Recognit.,
Springer, 2008, pp. 287-297.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Trans. Neural Netw., vol. 20,
no. 1, pp. 61-80, Jan. 2009.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2017, pp. 3145-3153.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” JEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 3319-3328.

J.J. Sutherland, L. A. O’brien, and D. F. Weaver, “Spline-fitting with a ge-
netic algorithm: A method for developing classification structure-activity
relationships,” J. Chem. Inf. Comput. Sci., vol. 43, no. 6, pp. 1906-1915,
2003.

C. David et al., “The WU-minn human connectome project: An overview,”
Neuroimage, vol. 80, pp. 62-79, 2013.

P. Veli¢kovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
‘Graph attention networks,” Proc. Int. Conf. Learn. Representations, 2018.

graph auto-

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.5281/zenodo.4834242
https://openreview.net/forum%7B?%7Did$=$rkE3y85ee

LUO et al.: TOWARDS INDUCTIVE AND EFFICIENT EXPLANATIONS FOR GNNs

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]
[62]
[63]

[64]

[65]

[66]

[67]

C.-J. Wang, S. Chae, L. A. Bunimovich, and B. Z. Webb, “Uncovering
hierarchical structure in social networks using isospectral reductions,”
2017, arXiv: 1801.03385.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” in Proc. Int. Conf. Learn. Representations, 2019.

C. Yang, A. Rangarajan, and S. Ranka, “Global model interpretation
via recursive partitioning,” in Proc. IEEE 20th Int. Conf. High Perform.
Comput. Commun.; IEEE 16th Int. Conf. Smart City; IEEE 4th Int. Conf.
Data Sci. Syst., 2018, pp. 1563-1570.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2018, pp. 974-983.

Z.Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNEXxplainer:
Generating explanations for graph neural networks,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2019, pp. 9240-9251.

J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “GraphRNN:
Generating realistic graphs with deep auto-regressive models,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 5694-5703.

H. Yuan, J.X. TangHu, and S. Ji, “XGNN: Towards model-level explana-
tions of graph neural networks,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2020, pp. 430-438.

H. Yuan, H.S. Y. Gui, and S. Ji, “Explainability in graph neural networks:
A taxonomic survey,” 2020, arXiv:2012.15445.

H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph
neural networks via subgraph explorations,” 2021, arXiv:2102.05152.
M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 5165-5175.

T. Zhao, D. Luo, X. Zhang, and S. Wang, “Faithful and consis-
tent graph neural network explanations with rationale alignment,”
2023, arXiv:2301.02791.

T. Zhao, D. Luo, X. Zhang, and S. Wang, “Towards faithful and consistent
explanations for graph neural networks,” in Proc. 16th ACM Int. Conf. Web
Search Data Mining, 2023, pp. 634-642.

C. Zheng et al., “Robust graph representation learning via neural sparsifi-
cation,” in Proc. Int. Conf. Mach. Learn., PMLR, 2020, pp. 11458—11468.
Y.Zhu, W. Xu,J. Zhang, Q. Liu, S. Wu, and L. Wang, “Deep graph structure
learning for robust representations: A survey,” 2021, arXiv:2103.03036.

Dongsheng Luo (Member, IEEE) received the doc-
toral degree from the College of Information Science
and Technology, Pennsylvania State University, su-
pervised by Prof. Xiang Zhang. He is an assistant
professor with Florida International University. His
research interests include data mining and machine
learning.

Tianxiang Zhao received the BS degree in computer
science from the University of Science and Technol-
ogy of China (USTC), Hefei, China, in 2017. He
is currently working toward the PhD degree in IST
with the Pennsylvania State University (PSU), State
College, PA, under the supervision of Dr. Suhang
Wang and Dr. Xiang Zhang, since 2019. His research
interests are in graph neural networks, weak supervi-
sion tasks, and knowledge transfer.

Wei Cheng received the BS degree from the School
of Software, Nanjing University, Nanjing, China, in
2006, the MSc degree from the School of Software,
Tsinghua University, Beijing, China, in 2010, and
the PhD degree from the Department of Computer
Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC, USA, in 2015. He is currently
a senior research staff member with the Data Sci-
ence Department, NEC Laboratories America, Inc.,
Princeton, NJ, USA. His current research interests
include data science, machine learning, web applica-

tions, and bioinformatics.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on September 19,2024 at 18:59:11 UTC from IEEE Xplore. Restrictions apply.

5259

Dongkuan Xu received the PhD degree from Penn-
sylvania State University. He is currently a assistant
professor with NC State, leading the NCSU Reliable
and Efficient Computing Lab and working on deep
learning, machine learning, and natural language
processing.

Feng Han received the PhD degree in bioengineering
from the Pennsylvania State University, advised by
Dr. Xiao Liu. His work aims to investigate the neural
correlates of cognitive decline and amyloid deposi-
tion in Alzheimer’s disease, as well as the brain func-
tion changes in normal aging and Parkinson’s disease.
His work also focused on brain-behavior association
and brain arousal by analyzing multimodal imaging
data.

Wenchao Yu received the PhD degree from the
University of California, CA, USA, in 2018. He is
currently a research staff member with the Data Sci-
ence Department, NEC Laboratories America, Inc.,
Princeton, NJ, USA.

Xiao Liu received the graduate and master’s degrees
from Beijing University, China, and the PhD degree in
biomedical engineering from the University of Min-
nesota. He received his PhD training from the Center
for Magnetic Resonance Research (CMRR). He is
the principal investigator with the Multimodal and
Computational Neuroimaging Laboratory (MCNL).
He joined the Nuclear Magnetic Resonance (NMR)
Center, National Institutes of Health (NIH) as a post-
doctoral fellow. He joined the Department of Biomed-
ical Engineering, Penn State University, in 2016 as an

Haifeng Chen is heading the Data Science and Sys-
tems Security Department, NEC Laboratories Amer-
ica, Princeton, New Jersey. He and his team members
are working on the various aspects of Big Data re-
search including data management and mining, arti-
ficial intelligence, software and system security, smart
services and platforms. He has served on the program
committee for a number of top conferences, such as
SigKDD, AAAL IEEE BigData, and has been on the
panel of NSF programs.

Xiang Zhang received the PhD degree from the
University of North Carolina, Chapel Hill, in 2011.
He is an associate professor with the College of
Information Sciences and Technology, Pennsylvania
State University. His research interests include data
mining, bioinformatics, and databases.

