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Abstract— The increasing prevalence of neural networks in
safety-critical control systems underscores the imperative need
for rigorous methods to ensure the reliability and safety of
these systems. This work introduces a novel approach employ-
ing hybrid zonotopes to compute the over-approximation of
backward reachable sets for neural feedback systems with non-
linear plant models and general activation functions. Closed-
form expressions as hybrid zonotopes are provided for the
over-approximated backward reachable sets, and a refinement
procedure is proposed to alleviate the potential conservatism
of the approximation. Two numerical examples are provided to
illustrate the effectiveness of the proposed approach.

I. INTRODUCTION

The integration of Neural Networks (NNs) in feedback
control systems necessitates the development of effective
methods to analyze the system’s behavior with robust and
reliable performance guarantees. NNs demonstrate remark-
able adaptability and are capable of learning intricate map-
pings from input to output, rendering them a potent tool
for controlling nonlinear dynamical systems. Nevertheless,
NNs are highly sensitive to even minor perturbations in
the input space [1], potentially leading Neural Feedback
Systems (NFSs), which are systems with NN controllers in
the feedback loop, to safety hazards. To analyze the behavior
of such NFSs, various methods have been proposed for the
reachability analysis of NFSs. The safety properties of these
systems can be verified by the forward reachability analysis
[2]-[9] or the backward reachability analysis [10]-[12].

The backward reachability problem is to compute a set of
states, known as the Backward Reachable Set (BRS), from
which the system’s trajectories can reach a specified target
region within a finite time horizon. When the target region
is chosen as the unsafe set for safety verification problems,
the computed BRS will bound the back-propagated trajecto-
ries that enter the unsafe set. Although there exist various
methods for computing the BRSs of systems without NNs
[13], [14], they are not directly applicable to NFSs due to
the inherently complex and nonlinear nature of NNs. For
isolated ReLU-activated NNs, [10] proposed a method to
compute the exact BRS of NNs by representing the NNs as
piecewise linear functions via the activation patterns of the
ReLU functions. For the NFS with a linear plant model, a
method based on Linear Programming (LP) relaxation was
proposed in [15] to over-approximate the BRSs; this method
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was extended in [11] for NFSs with nonlinear plant models
by utilizing the over-approximation tool OVERT [16] and a
guided partition algorithm. Despite the effectiveness of these
LP-based methods, the computed BRSs are usually limited
in the form of intervals and tend to be conservative.

Recently, Hybrid Zonotope (HZ) was proposed as a new
set representation that generalizes the polytope or constrained
zonotope [17]. By including binary variables in the set repre-
sentation, an HZ is equivalent to a finite union of polytopes,
and can conveniently represent non-convex and disconnected
sets with flat faces. HZs have proven advantages for set-
based computations in terms of computational efficiency and
accuracy [17]-[21]. In particular, HZs possess properties that
make them well-suited for reachability analysis of NFSs
by using set operations. For example, [8] showed that a
Feed-forward Neural Network (FNN) with RelLU activation
functions can be exactly represented by an HZ and provided
algorithms to compute the exact and approximated forward
reachable sets (FRSs) of NFSs; [12] considered NFSs with
linear plant models and presented results for computing exact
BRSs in the form of HZs.

This work aims to compute the HZ representations of the
over-approximated BRSs for NFSs where the plant model
is nonlinear and the controller is an FNN with general
activation functions. The contributions of this work are at
least twofold: (i) By leveraging over-approximation tools of
nonlinear functions, closed-form identities are provided for
over-approximating the BRSs of NFSs with general nonlinear
plant models and ReL.U-activated FNN controllers; (ii) The
proposed method is extended to NNs with other commonly
used activation functions such as leaky ReLU, tanh, and
sigmoid. The remainder of this paper is organized as follows:
Section II provides preliminaries on HZ and the problem
statement; Section III presents the results for NFSs with
nonlinear plant models and ReLU-activated FNNs; Section
IV extends these results to NFSs with general activation
functions; two numerical examples are provided in Section
V to demonstrate the performance of the proposed method;
and finally, the concluding remarks are made in Section VI.

Notation. Vectors and matrices are denoted as bold letters

(e.g., and ). The -th component of a
vector is denoted by  with . For a
matrix s denotes the matrix constructed

by the -th to -th rows of . The identity matrix in
is denoted as and  is the -th column of . The vectors
and matrices whose entries are all O (resp. 1) are denoted
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, the generalized intersection of

and under is , and the
-ary Cartesian power of  is . Given
L, such that = where is in the element-wise
sense, the set . is denoted as
Given two scalar , — such that _ —, the interval

is denoted as _ —

II. PRELIMINARIES & PROBLEM STATEMENT
A. Hybrid Zonotopes

Definition 1: [17, Definition 3] The set is a
hybrid zonotope if there exist s ,
, , s such that
where is the unit
hypercube in . The HCG-representation of the hybrid
zonotope is given by
Given an HZ
is called the center, the columns of are called the
binary generators, and the columns of are called the
continuous generators. The representation complexity of the
HZ is determined by the number of continuous generators
, the number of binary generators , and the number of
equality constraints [17]. For simplicity, we define the
set

, the vector

. An HZ with  binary generators is equivalent
to the union of constrained zonotopes [17, Theorem 5].
Identities are provided to compute the linear map and gen-
eralized intersection [17, Proposition 7], the union operation
[18, Proposition 1], and the Cartesian product of HZs [22,
Proposition 3.2.5].

B. Problem Statement

Consider the following discrete-time nonlinear system:

(1)

where are the state and the control
input, respectively. We assume and _ T,
where is called the state set and is called
the input set. The control input is given as

(2
where is an -layer FNN. The -th layer weight matrix
and the bias vector of are denoted as and s
respectively, where . Denote as the neurons
of the -th layer and as the dimension of . Then, for

3
where and is the vector-valued activation

function constructed by component-wise repetition of the
activation function ,i.e., In
the last layer, only the linear map is applied, i.e.,

. The activation function
considered in this work is not restricted to ReLU; see Section
IV for more discussion. In the following, we assume the FNN

controller satisfies R ; this assumption is
not restrictive since the output of any FNN can be saturated
into a given range by adding two additional layers with ReLU
activation functions [4], [12].

The NFS consisting of system (1) and the controller (2)
is a closed-loop system denoted as:

“)
Given a target set for the system (4), the set of
states that can be mapped into the target set by (4) in

exactly  steps is defined as the -step BRS and denoted
as

For simplicity, the one-step BRS is also
denoted as , 1.e., . In this work, we

assume the state set , the input set , the target set ,
and the set that over-approximates the nonlinear plant model

are all represented as HZs; this assumption enables us
to handle sets and plant models using a unified HZ-based
approach.

The following problem will be investigated in this work:
Given a target set represented as an HZ and a time
horizon , compute the over-approximation of BRS

of the neural feedback system (4), for

Compared with our previous result [12] that computes
the exact BRS for NFSs consisting of linear plant models
and ReLU-activated FNN controllers, this work considers
NFSs consisting of general nonlinear plant models and FNNs
with general activation functions, and therefore, only over-
approximated BRSs are computed.

III. BACKWARD REACHABILITY ANALYSIS OF RELU
ACTIVATED NEURAL FEEDBACK SYSTEMS

Our proposed method includes three main steps: (i) com-
pute an HZ envelope of the nonlinear function ; (ii) find
an HZ graph representation of the input-output relationship
of the FNN control policy ; (iii) calculate the one-step
over-approximated BRS in closed form, and refine the set
when an accurate result takes precedence over computational
efficiency. In this section, we assume the controller ~ shown
in (2) is an FNN  with ReLU activation functions across
all the layers, i.e., ; this
assumption will be relaxed in the next section. Note that the
time index of and are omitted for clarity in the section.

A. Envelope of Nonlinear Functions

For NFSs with linear plant models and ReLU activation
functions, HZ-based methods have been proposed to compute
both the exact FRSs and the exact BRSs [8], [12], [19].
However, since HZs can only represent sets with flat faces
(i.e., unions of polytopes), these exact analysis methods are
inapplicable to the case of general nonlinear plant models
shown in (4). As the first step towards computing the
over-approximated BRS of the system (4), we will find an
envelope of the nonlinear function

We denote the graph set of a given function
domain as

over the

. Since the exact representation of
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the graph set G (A, 1) is difficult to find, we will compute an
HZ-represented over-approximation of G (&', 1{), denoted as
Hp( X, L), such that Hy (A, U{) 2 Gy (X, U). The envelope
of a nonlinear function over a given domain can be found
using off-the-shelf methods [23]-[25]. In this work, we make
use of two approximation tools, namely Special Ordered Set
(505) [26] and OVERT [16], mainly because the envelopes
obtained by these two methods are easy to compute and can
be readily incorporated with the HZ-based set computations.

The over-approximation method based on SOS was orig-
inally developed for solving nonlinear and nonconvex opti-
mization problems [26]. In recent work, SOS approximations
were utilized to compute the FRSs of nonlinear dynamical
systems [20]. The SOS approximation & of a scalar-valued
function was defined in [20, Definition 3], while the identity
that converts & into an HZ was provided in [20, Theoem
4]. The maximum SOS approximation error & for some
common nonlinear functions was provided in [25]. Given
an 505 approximation Hgog as an HZ and the maximum
approximation error § £ ™, an envelop of the function f
can be given as an HZ H (X, U) £ Heos & £, where £ =
(diag([0] . 87]),0, O2nprs.,0,0) is the error HZ. For
nonlinear functions with multidimensional inputs, decompo-
sition techniques can be applied to avoid the exponential
complexity of SOS approximations [25].

For the OVERT method, a nonlinear function f with
multidimensional inputs and outputs will be decomposed
into multiple elementary functions e(.) with single inputs
and single outputs by the functional rewriting technique, and
then over-approximations of the element functions will be
constructed using a set of optimally chosen piecewise linear
upper and lower bounds [16]. In this work, we assume that
the number of breakpoints of the piecewise linear upper and
lower bounds, denoted as N (N = 3), are the same and only
optimize the breakpoints along one of the piecewise linear
bounds using OVERT. Denote the set of breakpoints for the
piecewise linear upper (resp., lower) bound as {(z, y**)}Y¥ ,
(resp.. {(zs,yi?) ). Note that the z-coordinates of the
lower and upper bound are the same. Since the endpoints
satisfy yf = yf® = e(z1) and 4 = Y3 = e(zn), the
set bounded by the piecewise linear upper and lower bounds
can be seen as a union of N — 1 polytopes. Each polytope
can be constructed by the breakpoints of the upper and
lower bounds, leading to N — 1 V-rep polytopes that over-
approximates the nonlinear element functions. Using [21,
Theorem 5], an HZ envelope representing the union of V-rep
polytopes can be found.

While both SO5-based and OVERT-based methods can
utilize decomposition techniques to generate a tight over-
approximation of f, the resultant HZ envelopes exhibit
varying levels of approximation accuracy and set complexity.
For example, to compare the set complexity of the resulting
HZs, we let the number of breakpoints be N for both the 508
and the OVERT approaches. Then, for any one-dimensional
nonlinear elementary function e(x), the complexity of the
HZ representations computed by 505 and OVERT is given
by ﬂ‘gﬂ‘g = 2N +2,nf9 = N - 1,059 = N +

Fig. 1: Comparison between OVERT and S0S. Both over-
approximate tanh(z) for = € [—w /2,7 /2] with the union
of 4 polytopes.

4, nOVERT _ AN 4 nVERT — 1 nOVERT — 2N It
can be observed that the HZ representation based on OVERT
approximations tends to have a larger set complexity than
the 505 method in terms of more continuous generators
and more equality constraints. However, the OVERT method
usually leads to more accurate over-approximations than
the SOS method. This is because the approximation error
4 in the SO5 method remains constant across the entire
domain, whereas the approximation error in the OVERT
method varies based on the distance from the breakpoints. An
example of over-approximation of the tanh function using
both methods is shown in Figure 1. Comparisons of the two
methods will be further discussed in Section V.

B. Over-approximation of One-step BRS

In this subsection, we will compute the closed-form ex-
pression of an over-approximation of the one-step BRS,
utilizing the HZ envelope of f calculated in Section III-A.

In order to incorporate the FNN controller m into the HZ-
based framework, we apply Algorithm 1 in our previous
work [12] to compute an HZ-represented graph set of w over
the domain X, df:m:nted as Hx = (G2, G, cr, A2, AL b)),
ie., He = gw( £ {[:1: -:.-JT |u=m(z),z € X}. Let
HelXU) J.,c;, A by} be the computed
HZ EI]"r'E]DpE of ll{e nonlinear functum J over the domain
X x I{ vsing the approach presented in Section II-A, ie.

ﬂf{xsuj = g_fixsu}‘

With notations above, the following theorem provides the
closed-form identities of an over-approximation of the one-
step BRS, P(T), with a given target set represented by an
HZ. The proof of this theorem is given in [27].

Theorem 1: Given the state set &, the input set I{, and
a target set represented by an HZ T = (G, G2, ¢, A,
AP b.) C B", the following HZ is an over-approximated
one-siep BRS of the NFS (4):

P(T) = (G, G, cp, A, Ay, by) 5
where cpy=cq [l : n,:|, Gf = [Gi[l:n,] 0 0], Gj =
[Gg.[l iny,z] 0 ﬂ] and

AL 0 0

0 Aj 0

A;= 0 0 A7 |,

G: —G{[l:n+m,:] 0

0 G’J[n+m.+1 In+m,: ] —Gf
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C. Refinement of Over-approximated Multi-step BRS

Based on the results of the preceding subsections, the -
step over-approximations of BRS for (4) can be computed
iteratively as follows:

(6)

Since Theorem 1 computes over the entire state-
input domain , a naive application of (6) based on The-
orem 1 may lead to conservative approximations for multi-
step computations. In order to mitigate the conservativeness,
we introduce a refinement procedure aimed at computing
~ within more tightly constrained prior sets, denoted as

where stands for “prior”. Such procedure allows
the nonlinearity to be approximated over tighter sets, thus
leading to less conservative results. Concretely, the refine-
ment procedure employs a recursive approach that utilizes
the BRSs obtained from the previous  to compute the
new prior sets.

With the same notations as in Theorem 1, the follow-
ing lemma provides a closed-form expression of an over-
approximation of BRS over the prior sets
The proof of this lemma is given in [27].

Lemma 1: Given the state set , the input set , the

target set , and the graph set of , , suppose that the
prior sets satisfies

(7
Let be the

over-approximated graph set of the nonlinear function
over the domain . Then, the one-step BRS of the
NFS (4) can be over-approximated by an HZ whose HCG-
representation is the same as (5) by replacing
with .

Algorithm 1 summarizes the over-approximation of BRS
for the closed-loop system (4) with the refinement procedure.
The prior sets for all the time horizons are initialized
as (line 1) and is computed over  with the large
scalars and by using Algorithm 1 in [12] (line 2). For
each time horizon , we compute the over-approximation of
the nonlinear plant model over the prior set and (line
5) and then the over-approximated one-step BRS is
computed by Lemma 1 (line 6). If or the refinement
epoch reaches the maximum number , the refinement
procedure will be skipped and the computed BRSs
for to  will be returned; otherwise, the tighter prior

Algorithm 1: BReachNonlin-HZ
Input: State domain , control input domain
set , nonlinear plant model , neural network
controller , large scalars , time horizon
, the number of refinement epochs
Output: Refined over-approximations of -step BRSs

, target

from to
1 Initialization: ; ; ;
2 Compute with and // Alg 1 in [12]
3 for do
4 for do
5 Compute ; // Section III-A
6 B Pre o ;
// Over—-approximate one-step BRS
7 if or then
8 | continue;
9 , B ; // The
prior sets for

10 return

sets are computed based on the over-approximated BRSs and
then passed to the next refinement epoch (line 9). Concretely,
in line 9, the bounding box of s

is computed by the and is set to be the prior sets
for the refinement procedure. The only shrinks the
bounding intervals of over the dimensions contributing
to the nonlinearity. Let . Such shrinking
interval, denoted as , can be obtained by solving two
Mixed-Integer linear Programs (MILPs): ,

Remark 1: The number of refinement epochs  in Algo-
rithm 1 represents the trade-off between the set approxima-
tion accuracy and the computation efficiency. Specifically,
the refinement procedure mitigates the conservativeness of
the set approximation but requires computing
and the bounding hyper-boxes of HZs at each epoch, which
introduces extra computation time. Simulation results for
different numbers of epochs are given in Section V.

Remark 2: The over-approximated BRSs can be used for
the safety verification of NFSs [12], [17]. Consider an HZ
initial state set and an HZ unsafe region .
Suppose that the -step BRS of  is over-approximated as
B via Algorithm 1 for . Then any trajectory
that starts from will not enter into the unsafe region

within  time steps if all the over-approximated BRSs

have no intersections with the initial set . By [17,
Proposition 7] and [12, Lemma 1], verifying the emptiness
of the intersection of and is equivalent to solve
an MILP.

IV. NEURAL FEEDBACK SYSTEM WITH GENERAL TYPES
OF ACTIVATION FUNCTIONS

In this section, we extend the results of the preceding sec-
tion that considers ReLU-activated FNNs to FNNs with more
general activation functions. We categorize the activation
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functions as either piecewise linear or non-piecewise linear.
For FNNs with piecewise linear activation functions, their
exact graph sets can be constructed, in which case Theorem
1 and Lemma 1 are directly applicable. For FNNs with
non-piecewise linear activation functions, their graph sets
can be over-approximated by using the methods in Section
III-A, based on which the over-approximated BRSs can be
computed.

A. Piecewise Linear Activation Functions

The graph of piecewise linear activation functions can be
exactly represented by a finite union of polytopes that is
equivalent to an HZ. For simplicity, we use the Parametric
ReLU (PReLU) activation function as an example to show
the construction of the graph set.

The PReLU is a parametric activation function defined as

if

if
Here is a parameter that is learned along with other
neural network parameters [28]. When , it becomes the
conventional ReLLU; when is a small positive number, it
becomes the Leaky ReLU. Similar to the construction of
HZ for ReLU in [12], given an interval domain s
the two line segments of PReLU can be exactly represented

as two HZs: B o s

The union of and can be

directly computed as a single HZ, , using Proposition 1
in [18]. Applying Proposition 3 in [8] we can remove the
redundant continuous generators to get

®)

where

Since (8) exactly represents PReLU over an interval
domain, Algorithm 1 in [12] can be directly applied to
PReLU-activated FNNs, and based on that, the exact graph
set of FNNs can be computed. Hence, Theorem 1,
Lemma 1, and Algorithm 1 can be directly employed to over-
approximate BRSs for a PReLU-activated NFS (4).

B. Non-Piecewise Linear Activation Functions

In addition to piecwise linear activation functions, non-
piecewise linear activation functions such as sigmoid and
tanh functions, are also widely employed in NNs [29].
Since the graph of non-piecewise linear functions cannot
be represented exactly by HZs, we will construct an over-
approximation of the graph set of FNNs

Since an activation function is a scalar function, we use
the methods discussed in Section III-A to construct an HZ
~ over the interval domain such that

©))

The following lemma gives the HZ over-approximation of
the graph of vector-valued activation function  that is con-
structed by component-wise repetition of the scalar activation
function overadomain  represented as an HZ. The proof
of this lemma is given in [27].

Lemma 2: Assume that a domain s represented as an

HZ such that . Let be the
graph of the vector-valued activation function
, 1.e., .
Then can be over-approximated by an HZ, denoted
as , Where
B B (10)
o isa
permutation matrix, and is given in (9).

Lemma 2 provides the transformation from the scalar-
valued nonlinear activation function that is over-
approximated based on Section III-A to vector-valued activa-
tion function , which is more favorable for layer-by-layer
operations when constructing the graph set of FNNs.

Denote the output set of Algorithm 1 in [12] by replacing

with  as . The following theorem shows that
is an over-approximation of the graph set of FNN  over the
HZ-represented domain set . The proof of this theorem is
given in [27].

Theorem 2: Given an -layer FNN with
non-piecewise linear activation functions and the domain set
represented as an HZ , the output set is an over-
approximation of the graph set of FNN | i.e.,

Theorem 2 extends our previous work [12] from the exact
graph set of ReL.U-activated FNN to the over-approximation
of the graph set of FNN with more general activation
functions. Let o ~ bethe over-
approximated graph set of FNN  over the domain  using
Theorem 2, i.e., . With the same notations in
Lemma 1, the following theorem provides the closed-form
expression of an over-approximation of the one-step BRS for
NFS (4) with non-piecewise activation functions. The proof
of this theorem is given in [27].

Theorem 3: Given the state set
get set , the prior sets
graph set of

, the input set , the tar-
, and the over-approximated
given as
, the one-step BRS of the NFS (4) can be
over-approximated by an HZ whose HCG-representation is
the same as (5) by replacing and
with

and , respectively.

V. SIMULATION RESULTS

In this section, we use two simulation examples to il-
lustrate the performance of the proposed method. The con-
sidered NFS consists of a Duffing Oscillator and an FNN
controller with either ReLU (Example 1) or tanh (Example
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2) activation functions. The simulation examples are imple-
mented in MATLAB R2022a and executed on a desktop with
an Intel Core i9-12900k CPU and 32GB of RAM.

Example 1: Consider the following discrete-time Duffing
Oscillator model from [30]:

Ty(t + 1) = z1(t) + 0.3xza(t),

za(t + 1) = 0.3z (2) + 0.82x5(t) — 0.3z, (£)* + 0.3u(t),

where T, To £ R are the states confined in the state set

= [-2,11] x [-2,3] and v € U = [0,5] is the
control input. The controller u is a two-layer Rel.U-activated
FNN with 10-5 hidden neurons that is trained to leam the
control policy given in [30]. The exact BRSs are obtained
by selecting samples from which trajectories can reach the
target set within T time steps; these samples are chosen
from uniformly distributed grids over X. To the best of
our knowledge, there is no existing set-propagation-based
method that can compute the over-approximated BRS for
the system shown above.

Given the target set T = [0.95, 1.05] = [0.95, 1.05], Algo-
rithm 1 and Theorem 1 can be employed to over-approximate
the BRSs since the X, I{f and T are HZs, satisfying all the
conditions of Theorem 1. Note that we use 10 breakpoints

2.5
-'I':l.r|l_|:'l stk
& Samples
P EReachNonlinHE, n, =1

BReachMonlin-HE, n. =10
2t \
1.5 \

\‘.

-1.5 -1 0.5 Q 0.5 1
I

{a) Over-approximated BRSs based on S0S.

2.5
-'I':l.r|l_|:'l stk
& Samples
P EReachNonlinHE, n, =1

BReachMonlin-HE, n. =10
2| " \
1.5 \

\‘.

-1.5 -1 0.5 Q 0.5 1

Iy
(b) Over-approximated BRSs based on OVERT.

Fig. 2: Over-approximated BRSs without refinement (cyan),
the refined over-approximated BRSs (dark green), and sam-
ples (red) from the true BRSs for Example 1.

to over-approximate the nonlinear term =z via SOS and
OVERT and then H (A7, 1) is constructed by following
a similar procedure as the example in [20]. Fig. 2 shows
the over-approximated and exact BRSs, indicating that the
BRSs computed by Algorithm 1 over-approximates the exact
BRSs, as shown in Theorem 1, and the conservativeness is
greatly mitigated by the refinement procedure. In addition,
the computed BRSs by using OVERT are less conservative
than those by using SOS.

Fig. 3a shows the set complexity of the ¢-step BRS via
S0S and OVERT for t = 1,2, .- , 8. Note that the BRSs and
refined BRSs have the same set complexity. The number of
generators and equality constraints has a linear growth rate
with respect to time steps. In addition, the number of binary
generators of BRSs is identical due to the same number
of breakpoints used in the OVERT method and the SOS
method. Fig. 3b and Fig. 3¢ show the computational time
and the approximation error for five-step BRS with different
numbers of refinement epochs n,.. The approximation error
is computed by the ratio between the volumes of the over-
approximated BRS and exact BRS as error = V—pﬁ
where Voyer and Voo are the volume of mer—appm:mancm
of last-step BRS and exact BRS respectively, which are
approximated by the Monte Carlo method. It can be observed
that the computation time increases almost linearly when
ny = 1 because the refinement procedure does not affect
the set complexity of the computed BRSs, and in addition,
the approximation error is converged after just one epoch in
this example.

Example 2: Consider the same Duffing Oscillator model
in Example 1. Instead of the Rel.U-activated FNN controller,
we frain a tanh-activated FNN with 5-5 hidden neurons to
learn the same control policy given in [30]. We use OVERT
with 7 breakpoints to construct the over-approximation of
the graph set of FNN H, based on Theorem 2, and then
compute the over-approximated BRSs with the same config-
urations as those in Example 1 based on Theorem 3. The
simulation resulis are shown in Figure 4. It is observed that
all the samples are enclosed by the over-approximated BRSs,
consistent with Theorem 3.

V1. CoNCLUSION

In this paper, we proposed a novel HZ-based approach to
over-approximate BRSs of NFSs with nonlinear plant mod-
els. For NFSs with Rel.U activation functions, by combining
techniques that over-approximate nonlinear functions with
the exact graph set of RelL.U-activated FNNs, we showed the
closed-form of over-approximated BRSs and a refinement
procedure to reduce the conservativeness. In addition, we ex-
tended the results to NFSs with piecewise and non-piecewise
linear activation functions. The performance of the proposed
approach was evaluated using two numerical examples.
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