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ABSTRACT

Real-time health monitoring systems generate a large volume of
sensing data requiring tremendous processing time and storage
space. Orthogonal to existing approximate computing mechanisms,
this work proposes a feature-driven approximation (FDApx) to ad-
dress the pressing need for fast data processing and a limited storage
budget in wearable health monitoring devices. The proposed FDApx
method reverses the features interested in the application to derive
an approximation threshold for the purpose of retaining feature-
critical information, rather than aimlessly saving or transmitting
all raw data. Case studies in an insole sensing system for fall risk
assessment show that FDApx can reduce the data size by up to 87%
over raw data and up to 85% over 2-bit precision reduction-based
approximation. The approximation from FDApx only results in up
to a 2% deviation in swing time; in contrast, the approximation
based on precision reduction causes a 30% deviation in the same
gait feature.
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+ Hardware — Design modules and hierarchy; - Applied com-
puting — Health care information systems.
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1 INTRODUCTION

Health monitoring systems provide a large volume of data for re-
mote diagnosis. For example, the REALDISP dataset [2] shows that
a personal wearable sensor could generate 180,000 sampling data
for 20ms. A wearable wrist device, which is Bluetooth low energy
enabled, has the potential to generate 315TB data per year [9]. For
a wearable device performing 24/7 monitoring, it is not affordable
to store such a large amount of data in mobile devices or transmit
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them to a cloud space within a limited power budget [21]. As Ap-
proximate Computing (AC) techniques trade accuracy for speed
improvement, memory reduction, and energy efficiency in various
data-intensive applications [15], approximate storage and compu-
tation are promising candidates for wearable sensing systems with
a restricted budget on memory and processing power.

The existing approximation mechanisms are applied to circuit,
architecture, algorithm, and software levels [19]. Limited work is
available to discuss the approximation at the application level, par-
ticularly for health monitoring. Circuit-level techniques [4, 6, 11, 14]
such as voltage scaling are not suitable for low-end edge devices for
health monitoring due to their narrow voltage swing range. Preci-
sion reduction techniques at circuit, storage, and software could lead
to the loss of critical information, which may be vital to diagnosing
the targeted health problems. Instruction set modification [8, 13]
is not affordable for low-end sensors and microcontrollers. Loop
iterations [1] based approximation is only useful for computation-
extensive applications, rather than for frequent storage elements.
As existing approximation methods are not designed for application-
oriented use, the deployed approximation either does not satisfy
the minimum requirement on accuracy or does not achieve the
desired approximation efficiency. For instance, an energy-efficient
health monitoring system [7] approximates wavelet coefficients
to reduce energy consumption; however, that system still requires
processing large amounts of data before transmitting the data to
the cloud service.

To address the limitations mentioned above, this work proposes
a feature-driven approximation method for health monitoring sys-
tems. The main contributions of this work are as follows:

o The proposed feature-driven approximation (FDApx) method
reverses the features interested in the application to derive
an approximation threshold for the purpose of retaining
feature-critical information, rather than aimlessly saving or
transmitting all raw data.

e To the best of our knowledge, this is the first work that
implements a high-level approximation mechanism at the
hardware level. We evaluate the approximation efficiency of
precision reduction, approximate arithmetic, and application-
level approximation in a health monitoring scenario.

o The success of the proposed FDApx relaxes the heavy burden
of sensing data transmission from sensing nodes to the cloud
and releases a large memory space from the personal mobile
device for temporal sensing data storage.

The rest of this work is organized as follows. Section II introduces
the background of the health-monitoring application and highlights
the key features of the sensing data of interest. Section III presents


https://doi.org/xxx
https://doi.org/xxx
https://doi.org/xxx

GLSVLSI °24, June 12-14, 2024, Tampa Bay Area, FL, USA

Microcontroller

Battery

@) (®) ©

Figure 1: A wearable insole system for fall risk assessment.
(a) The pressure sensor array, (b) the front and back side of
the printed circuit board that integrates a microcontroller
and a Bluetooth module, and (c) the entire sensing system.

the concept of feature-driven approximate computing and the im-
plementation details. Section IV provides the assessment results.
This work is concluded in Section V.

2 BACKGROUND AND PRELIMINARIES
2.1 Fall Risk Assessment via Wearable Insole

Falls among older adults are a serious and growing public health
problem [17]. In 2018, over one in four reported at least one fall,
leading to over 8 million injuries, 32,000 deaths, and $50 billion
in medical costs [3, 12]. Falls, with or without direct injuries, can
lead to devastating consequences, including fear of fall, reduced
mobility, functional decline, and loss of independence [16, 18]. To
avoid the serious consequences of falls, early detection of fall risks
has been recognized as an effective measure and recommended by
the Centers for Disease Control and Prevention (CDC). To perform
fall risk assessment, the work [5] introduces a wearable insole
system, which mainly includes a flexible pressure sensor array
shown in Fig. 1(a) and a printed circuit board (PCB) shown in
Fig. 1(b). To enable a high resolution in the measurement of the
ground reaction force (GRF), the flexible pressure sensor array has
96 pressure sensors uniformly distributed on the insole and is placed
inside a normal shoe. The microcontroller on the PCB is responsible
for collecting data from the pressure sensor array and transmitting
the data to a smartphone application via the Bluetooth module.
Figure 1(c) shows the overall sensing system in a shoe.

2.2 Key Features Interested in Fall Risk
Monitoring

Fall risk assessment relies on the gait parameters extracted from
insole sensing data. Among all those parameters, the fundamen-
tal Ground Reaction Force (GRF) measured by the insole system
is used to derive other gait features, which characterize an indi-
vidual’s walking activity and indicate his/her fall risk. The unit
of GRF is body weight (BW). The other key gait parameters we
consider in this work are illustrated in Fig. 2. The definition of all
gait parameters is summarized in Table 1. The gait cycle time is the
sum of stance time and swing time. Figure 3 highlights the typical
computation steps that we take to obtain the gait parameters for
fall risk assessment. The first two steps Reciprocal Computation (C)

Author1, Author2, Author3
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Figure 2: Gait parameters extracted from insole sensing data.

Table 1: Key Features for Proposed Feature-driven Approxi-
mate Computing,.

No. | Parameter Name Definition

Summation of the force measured by all the pressure

1 F
GR sensors under foot.

Time interval between two successive occurrences

z Gait Cycle Time (GCT) of one of the repetitive events of the same foot.

Time duration between the initial and last contact

3 Stance Time (StT) of a stride

Time duration between the last contact of one
stride and the initial contact of the subsequent stride
of the same foot.

4 Swing Time (SwT)

GRF Processing Module (GPM)

N N
s o Body Weight
- - (BW)
Sensing g - ‘ l
data £ q T Sensor Ground Reaction
— > [=F —
(R) E Conversion (©) | calibration (F) r WG (P) rForce (GRF)
a I

(GRF)

Gait Feature
Extraction

(GCT, StT, SwT, DsT)
Fall Risk Assessment

Figure 3: Computation flow for the gait parameters used in
fall risk assessment.

and Force Calibration (F) are repeated N times, where N is the num-
ber of sensors in one insole. The reciprocal computation module
converts sensor resistance to a conductance as expressed in Eq. (1).
0 = o
where i and j stand for the sensor ID and sampling time index, re-
spectively. The force applied to each sensor node F(i,j) is equivalent
to a conditionally weighted conductance, as expressed in Eq. (2).

32.99 - C(i,j), if (C(i,j) < 0.02)
F(ij) = 156.51 - C(i,j) — 0.4547, if (0.02 < C(i,j) < 0.04) (2)
93.41 - C(i,j) — 2.004, if (C(i,j) > 0.04)

The coeflicients in Eq. (2) are empirical values obtained from a large
number of clinic measurement [5]. We sum up the calibrated forces
F(i,j) and subtract the offset noise, modeled as the minimum force
F(:,j) observed at time stamp j, to obtain the final pressure value P
represented by Eq. (3).

P(j) = D F(i, j) — min(F(:}) 3)
i=1
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Figure 4: Overview of proposed FDApx method. (a) Concept
and (b) block diagram.

To normalize the final pressure, we define GRF(j) for the sampling
time stamp j as the ratio of P at that particular moment over the
body weight BW. The expression is as shown in Eq. (4).

5 _ PO)
GRF(j) = — 4
() == @

3 PROPOSED FEATURE-DRIVEN
APPROXIMATION (FDAPX)

3.1 Method Overview

Due to the real-time monitoring, the sensing data could quickly
accumulate to a large volume, which is not favorable for storage
and wireless communication in the real-time monitoring scenario.
The ultimate goal of our proposed Feature-Driven Approximation
(FDApx) is to significantly improve the approximation degree with-
out losing the accuracy of critical information. The core concept
of the proposed method is to exploit the data features interested
in applications to design the feature-driven approximation mecha-
nism. As shown in Fig. 4(a), the peak values of the original GRF are
critical for gait feature extraction and the rest of the data points do
not contribute to gait analysis. Our method simplifies the raw data
profile by applying a data filter with a customized approximation
threshold. After the standard GRF processing, our method will only
provide critical data points for storage and transmission without
losing the information useful for gait feature extraction.

The approximation threshold for the sensing data filter is au-
tomatically generated by a hardware module FDApx shown in
Fig. 4(b). By using FDApx, we can significantly reduce the size of
data memory before the GRF processing module. Inside FDApx, a
buffer is used to save a small set of training data, which facilitates
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determining the approximation threshold through the sequence of
Peak Detection, GRF Boundary Derivation and Resistance Threshold
Computation. As gait feature analysis replies to the peak value of
GREF, the gait feature extraction module provides specific feature
descriptions to the peak detection module and the GRF boundary
derivation module.

3.2 Derivation of Approximation Threshold

3.2.1 GRF boundary obtained from training data set. The peak
values in GRF are critical data points for gait feature extraction. In
the training phase, it is possible to capture all peaks by employing
peak detection techniques as illustrated in Fig. 4. GRFpoundary can
be calculated by finding the minimum value of the peak ground
reaction force in a training period. Certainly, a longer training
time will enable us to find a more stable GRF,oundary- However, as
indicated in Fig. 5(a), the GRFpoundary can be stabilized within 30
seconds in our insole sensing system.

3.2.2  Approximation Threshold. After rearranging Eq.(4), we can
obtain the pressure P(j) that satisfies the relation defined in Eq.(5).
P(j)
BW 2 GRFboundary 6)
Next, we replace P(j) with Eq. (3) and use F(i,j) within the range
of C(i,j) less than 0.2 to determine the maximum limit of R(i,j) in
Eq. (1). This substitution allows us to have the relationship between
conductance C(i,j) and GRFpoundary» as expressed in Eq. (6). The
parameter GRFp,undary is produced by a small set of training data
recorded per insole user.
N
>732.99- C(i) = GRFyoundary - BW (6)
i=1
If we assume that the body weight is uniformly distributed over
all 96 pressure sensors in the sole, the summation of C(i,j) can be
converted to N*C(i,j). Thus, the approximation threshold R; for our
FDApx can be represented in the form of the number of sensors N,
body weight BW, and GRFpoundary, as expressed in Eq. (7).

_ N -32.99
GRFboundary -BW

When GRFygundaries varies due to different training periods, the
fluctuation of the approximation threshold R; is minor. As shown
in Fig. 5(b), the right foot R; remains unchanged and R; and the
left foot Ry varies in a range of 247.85 to 255.02. Once the training
period is determined, we use the approximation threshold R; to
filter out the sensing data that do not carry gait features using

Eq. (8).

Ry (7)

R (R<Ry)
Rrpapx ~ {O (R> Ré) (8)

3.3 Hardware Implementation of FDApx

The proposed FDApx has been implemented on a Kintex-7 FPGA
board. Initially, we implemented the GRF Processing Module (GPM)
to generate training data. The training data (S1, Sy, .., Sg) go through
a peak detection module as shown in Fig. 6. The peak detection mod-
ule obtains training data as input in every clock cycle and stores it
in three registers (previous, current, and next). These registers shift
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Figure 5: The variation of (a) GRFygyundaries and (b) Ry in dif-
ferent lengths of training time.
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Figure 6: Timing diagram for the FDApx hardware imple-
mentation.
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Figure 7: GRF obtained with/without proposed FDApx.

the data when new training data comes. Thus, the peak detection
module compares three consecutive data points and detects the
GRFpeqk- For instance, we detected the peaks S3 and S7 as shown
in Fig. 6. All the detected GRF),¢ 4k values proceed through a GRF
boundary derivation block. GRFpoyndaryblock provides the mini-
mum value of the detected peaks. Thus, the resistance threshold of
our proposed method is calculated using the minimum value of all
the detected peaks.

4 EXPERIMENTAL RESULTS

The raw sensing data in the following experiments were obtained
from the insole system shown in Fig. 1. There were 96 pressure
sensors in total for the foot force measurement. Each sensing trail
contains 2995 samples per minute. All sensor data files were im-
ported and fed to the prototype of the proposed approximation
algorithms implemented in Verilog HDL and the Kintex-7 FPGA
board. The hardware cost of all methods under comparison was
reported by the FPGA design software Vivado 2023.1.
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Figure 8: Impact of approximation threshold on extracted
gait features (a) swing time and (b) stance time.

4.1 Impact of Approximation on Accuracy of
Gait Feature Extraction

4.1.1 Relation Between Approximation Threshold and Accuracy in
Extracted Gait Features. The proposed feature-driven approxima-
tion only retains the data that contribute to the features interested
in the specific application. In the fall risk assessment, only the peak
GREF values in each gait period are useful. Thus, we examine the
accuracy loss of our FDApx method by comparing the retrieved
peak GRF values. To investigate the impact of the approximation
threshold, we varied Rg with three numbers (100, 500, and 1000) in
our GRF computation. As shown in Fig. 7, although the different
approximation thresholds lead to slightly different peak GRF values,
our FDApx method captures all GRF peaks at the correct timing (as
it is supposed to be in the baseline).

Next, we evaluate the gait features defined in Table 1. As shown
in Fig. 8(a), the average swing time slightly decreases with the de-
creasing approximation threshold until 250. The accuracy loss in
the average swing time is 0.4% - 1.6% compared with the baseline
without approximation. However, if the approximation threshold
is lower than 250, the average swing time will not reflect the true
feature value and the accuracy loss increases to 31.96%. Figure 8(b)
indicates that the FDApx method only leads to a 0.3% loss in the
accuracy of stance time compared to the baseline. We summarize
the approximation-induced accuracy loss in Table 2. As can be seen,
our FDApx with an approximation threshold above 250 achieves
over 98.38% accuracy in swing time, stance time, and gait cycle
time. The worst-case accuracy drop on swing time is 1.62%. As the
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Table 2: Accuracy loss in gait parameters due to FDApx

Approximation Thresholds

Features
100 250 500 750 1000
Swing Time 31.96% | 1.62% | 0.71% | 0.30% | 0.40%
Stance Time 18.71% | 0.30% | 0.35% | 0.15% | 0.20%
Gait Cycle Time | 1.96% | 0.00% | 0.00% | 0.00% | 0.00%
0.3 i ;
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Figure 9: Impact of theoretical and empirical approximation
thresholds on gait features (a) swing time and (b) stance time.

approximation threshold reduces to 100, the accuracy of gait fea-
tures computed based on our approximation method significantly
decreases. This is because when the approximation threshold is set
too low, too many C(i,j) data points are filtered out. As a result, the
corresponding gait features carried by C(i,j) and GRF are sabotaged.

4.1.2  Comparison of Theoretical and Empirical Approximation Thresh-
olds. Our simulation results indicate that the optimal approxima-
tion threshold R; is around 250. The theoretical analysis in Eq.(7)
concludes the best range of Ry is 247.85 and 255.02. We compare the
swing and stance cycle time based on the empirical and theoretical
Ry inFig. 9. As shown in Fig. 9(a), the variation of swing time is 6%.
There is only a 3% deviation from the mean value in the stance time
shown by Fig. 9(b). This result confirms that the approximation
threshold derived by the proposed theoretical analysis is close to
the empirical approximation threshold. As mentioned in Section 3.2,
our training time is only a few ten seconds and thus it is affordable.
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4.2 Comparison with Other Approximation
Methods

In this subsection, we compare the baseline system [5], precision-
reduction-based approximation[10] and the proposed FDApx in
terms of accuracy of extracted gait parameters, approximation effi-
ciency, and hardware cost implemented on FPGAs.

4.2.1 Accuracy of Gait Features. Approximate computing may lead
to information loss. In the fall risk assessment, approximation will
result in the deviation of GRF from the baseline without approxima-
tion. We used the metric defined in Eq. (9) to evaluate the impact
of approximation on the accuracy of extracted gait features.

AGRF = |GRF without approximation — GRFyjith approximation| )

Figure 10 shows AGRF processed by two different approximation
methods. Only 10.68% of AGRF achieved by our proposed FDApx
method exceeds 0.1; in contrast, the approximation method that
ignores the two least important bits leads to 76.52% of AGRF being
greater than 0.1. The variance in GRF affects the swing time assessed
in the gait analysis. The multiple trail results shown in Fig. 11
indicate that, on average, the proposed FDApx only leads to 0% -
5% change in the swing time. In contrast, the precision reduction-
based approximation could cause a 5% - 35% increase/decrease in
the swing time. In summary, our FDApx is 30% more reliable than
a precision reduction-based approximation.

4.2.2  Approximation Efficiency. Approximation computing enables
us to lower the need for data storage and transmission. The ap-
plication of different approximation thresholds in the proposed
FDApx achieves different amounts of reduction (i.e., approximation
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Table 3: Hardware utilization for the FPGA prototype of dif-
ferent approximation methods.

Approximation FPGA Resource Critical Path
Method LUTs | Register | DSPs | BRAM | Delay (ns)
Baseline [5] 0.55% 0.12% 6.07% | 71.91% 25.38
Apx. Adder [20] 0.55% 0.12% 6.07% | 71.91% 25.73
Precision Reduction [10] | 0.49% 0.11% 5.83% | 69.66% 25.92
Proposed FDApx 0.90% 0.24% 13.45% | 14.38% 32.57

efficiency) in storage space or transmission bandwidth. As shown
in Fig. 12, when the approximation threshold decreases from 1500
to 100, the approximation efficiency of our FDApx increases to 87%
(95%) for the processing of right (left) foot sensing data analysis.
In contrast, for the same application with a resolution of 64-bit
data, the 2-bit precision reduction-based approximation will only
achieve the approximation efficiency of 3.125% (=2/64).

4.2.3 FPGA Cost. To support the stable extraction of gait features,
it is necessary to collect sensing data for a period of 30 seconds and
send those data as a batch to the GRF processing module. Without
the approximation mechanism before the GRF processing module,
that batch of data requires 71.91% of BRAM blocks in the Kintex-7
FPGA, which is shown in Table 3. Our FDApx exploits the prior
knowledge on the gait features to filter out the non-critical data,
reducing the need for BRAM to 14.38%. Although our proposed
method has a slight increase in the lookup tables (LUT), registers,
and DSPs, the significant reduction in BRAM outweighs the minor
increase in other FPGA resources. Due to the approximation before
the GRF processing module, the critical delay of FDApx is about 7ns
longer than the baseline and other approximation methods. This
limitation can be mitigated by applying a pipeline design in the
critical propagation path.

5 CONCLUSION

Feature-driven approximation (FDApx) is a new approximation
mechanism that is desirable for application-level approximation.
The proposed approximation inverses the feature extraction process
in the application of interest and then derives the approximation
threshold to filter out non-critical data. As the proposed approxi-
mation aims for the specific features, the loss in accuracy can be

Author1, Author2, Author3

well managed. We evaluated the proposed FDApx in a fall risk as-
sessment application. Experimental results show that the proposed
FDApx only degrades the accuracy by up to 1.62% in swing time
and 0.3% in stance time for the approximation threshold of 250. The
deviation in the extracted gait features obtained by the proposed
FDApx is 30% less than that induced by 2-bit precision reduction
based approximation. As the significant reduction in raw sensing
data happens before the application-oriented feature analysis, the
proposed FDApx can save more than 87% of storage space over
the baseline. The prototype of FDApx consumes 48% less FPGA
resource utilization rate than the existing approximation methods.

REFERENCES

[1] Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Framework for Support-
ing Energy-Conscious Programming using Controlled Approximation. In Proc.
PLDI'2010. ACM SIGPLAN.

[2] Toth Mate Banos, Oresti and Oliver Amft. 2014. REALDISP Activ-
ity Recognition Dataset. =~ UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5GP6D.

[3] Gwen Bergen, Mark R Stevens, and Elizabeth R Burns. 2016. Falls and fall injuries
among adults aged 65 years—United States, 2014. Morbidity and Mortality Weekly
Report 65, 37 (2016), 993-998.

[4] L Bhati, Z. Chishti, S. Lu, and B. Jacob. 2015. Flexible auto-refresh: Enabling
scalable and energy-efficient DRAM refresh reductions. In Proc. ISCA. 235-246.

[5] Diliang Chen, Yi Cai, and Ming-Chun Huang. 2018. Customizable pressure sensor
array: Design and evaluation. IEEE Sensors Journal 18, 15 (2018), 6337-6344.

[6] F. Frustaci, D. Blaauw, D. Sylvester, and M. Alioto. 2015. Better-than-voltage
scaling energy reduction in approximate SRAMs via bit dropping and bit reuse.
In Proc. PATMOS. 132-139.

[7] Avrajit Ghosh, Arnab Raha, and Amitava Mukherjee. 2020. Energy-Efficient
IoT-Health Monitoring System using Approximate Computing. Internet of Things
9 (2020), 100166. https://doi.org/10.1016/].i0t.2020.100166

[8] E.Hadi,S. Adrian, C. Luis, and B. Doug. 2012. Architecture Support for Disciplined
Approximate Programming. SIGARCH Comput. Archit. News 40, 1 (March 2012),
301-312.

[9] Ping Jiang, Jonathan Winkley, Can Zhao, Robert Munnoch, Geyong Min, and
Laurence T. Yang. 2016. An Intelligent Information Forwarder for Healthcare
Big Data Systems With Distributed Wearable Sensors. IEEE Systems Journal 10,
3 (2016), 1147-1159. https://doi.org/10.1109/JSYST.2014.2308324

[10] A.B.Kahng and S. Kang. 2012. Accuracy-configurable adder for approximate
arithmetic designs. In DAC Design Automation Conference 2012. 820-825.

[11] C.B. Kushwah and S. K. Vishvakarma. 2014. A sub-threshold eight transistor
(8T) SRAM cell design for stability improvement. In Proc. ICICDT. 1-4.

[12] Briana Moreland, Ramakrishna Kakara, and Ankita Henry. 2020. Trends in

nonfatal falls and fall-related injuries among adults aged 65 years—United States,

2012-2018. Morbidity and Mortality Weekly Report 69, 27 (2020), 875.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis

Ceze, and Dan Grossman. 2011. Ener]: Approximate Data Types for Safe and

General Low-Power Computation. SIGPLAN Not. 46, 6 (June 2011), 164-174.

A. Sampson, J. Nelson, K. Strauss, and L. Ceze. 2013. Approximate storage in solid-

state memories. In Proc. 2013 46th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO). 25-36.

[15] M. Sparsh. 2016. A Survey of Techniques for Approximate Computing. ACM

Comput. Surv. 48, 4, Article 62 (March 2016), 33 pages.

Daniel A Sterling, Judith A O’connor, and John Bonadies. 2001. Geriatric falls:

injury severity is high and disproportionate to mechanism. Journal of Trauma

and Acute Care Surgery 50, 1 (2001), 116-119.

[17] Judy A Stevens. 2013. The STEADI tool kit: a fall prevention resource for health

care providers. The IHS primary care provider 39, 9 (2013), 162.

Bruno J Vellas, Sharon ] Wayne, Linda J Romero, Richard N Baumgartner, and

Philip J Garry. 1997. Fear of falling and restriction of mobility in elderly fallers.

Age and ageing 26, 3 (1997), 189-193.

Pruthvy Yellu, Landon Buell, Miguel Mark, Michel A. Kinsy, Dongpeng Xu, and

Qiaoyan Yu. 2021. Security Threat Analyses and Attack Models for Approximate

Computing Systems: From Hardware and Micro-Architecture Perspectives. ACM

Trans. Des. Autom. Electron. Syst. 26, 4, Article 32 (Apr 2021), 31 pages.

Pruthvy Yellu, Nishanth Chennagouni, and Qiaoyan Yu. 2022. Leveraging Inter-

mediate Node Evaluation to Secure Approximate Computing for AI Applications.

In 2022 IEEE International Symposium on Technologies for Homeland Security (HST).

1-8. https://doi.org/10.1109/HST56032.2022.10025430

Wiebren Zijlstra and At L Hof. 2003. Assessment of spatio-temporal gait parame-

ters from trunk accelerations during human walking. Gait & posture 18, 2 (2003),

1-10.

=
&

[14

[16

jpry
&

[19

[20

[21


https://doi.org/10.1016/j.iot.2020.100166
https://doi.org/10.1109/JSYST.2014.2308324
https://doi.org/10.1109/HST56032.2022.10025430

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Fall Risk Assessment via Wearable Insole
	2.2 Key Features Interested in Fall Risk Monitoring

	3 Proposed Feature-Driven Approximation (FDApx)
	3.1 Method Overview
	3.2 Derivation of Approximation Threshold
	3.3 Hardware Implementation of FDApx

	4 Experimental Results
	4.1 Impact of Approximation on Accuracy of Gait Feature Extraction
	4.2 Comparison with Other Approximation Methods

	5 Conclusion
	References

