
IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024 1697

Reachability Analysis of Neural Network Control
Systems With Tunable Accuracy and Efficiency

Yuhao Zhang , Hang Zhang , and Xiangru Xu , Member, IEEE

Abstract—The surging popularity of neural networks in
controlled systems underscores the imperative for formal
verification to ensure the reliability and safety of such
systems. Existing set propagation-based approaches for
reachability analysis in neural network control systems
encounter challenges in scalability and flexibility. This
letter introduces a novel tunable hybrid zonotope-based
method for computing both forward and backward reach-
able sets of neural network control systems. The proposed
method incorporates an optimization-based network reduc-
tion technique and an activation pattern-based hybrid
zonotope propagation approach for ReLU-activated feed-
forward neural networks. Furthermore, it enables two
tunable parameters to balance computational complexity
and approximation accuracy. A numerical example is pro-
vided to illustrate the performance and tunability of the
proposed approach.

Index Terms—Reachable set, neural network control
systems, scalability, tunability, hybrid zonotope.

I. INTRODUCTION

N
EURAL Networks (NNs) have gained widespread use

in autonomous systems. However, the application of

NNs in safety-critical scenarios necessitates formal verifica-

tion as NNs exhibit high sensitivity to minor perturbations

in the input space. To address this issue, several recent

advancements have focused on reachability-based methods,

primarily owing to their computational efficiency in the safety

verification of Neural Network Control Systems (NNCS).

By abstracting the non-linear activation functions of NNs

using different set representations, the Forward Reachable Sets

(FRSs) and Backward Reachable Sets (BRSs) of NNCS can

be computed through set-propagation techniques to validate

the safety specifications [1], [2], [3], [4], [5]. Despite these

interesting results, many problems related to scalability and

approximation accuracy require further exploration [6], [7].

Recently, an approach based on Hybrid Zonotope (HZ)

was proposed to compute the exact FRS and BRS of NNCS
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Fig. 1. An illustration of the “tunability” of the proposed method.
The approximation error of reachable set computation varies with
values of the tunable tolerance parameter, δ̄, and the tunable relaxation
parameter, γ . Exact reachable sets (red) are computed when δ̄ = γ = 0.

with linear plant and ReLU-activated Feedforward Neural

Network (FNN) controllers [8], [9], [10]. With the capability

of representing non-convex sets with flat faces [11], [12], HZs

enable exact abstractions of ReLU-activated FNNs through

simple matrix operations. Nevertheless, the approaches men-

tioned above also face scalability challenges when dealing with

feedback systems incorporating large NNs. This is attributed to

the increasing representation complexity of the HZ reachable

sets, which escalates with the number of neurons in the NNs.

Heuristic complexity reduction techniques for general HZs

exist [9], [11], but they don’t leverage the inherent properties

of NNs. Several recent works proposed output-based NN

reduction algorithms by grouping neurons with similar ranges

over a given input domain [13], [14]; however, these methods

require predefined reduction metrics and only consider NNs

in isolation.

This letter presents a novel HZ-based approach with the

flexibility of balancing computational complexity and approx-

imation accuracy. Contributions of this letter are at least

twofold: i) A tunable optimization-based method is proposed

for reducing the number of neurons of a given FNN while

maintaining its intrinsic input-output mapping properties, with

the optimal reduction metrics determined on the fly. ii) Based

on the FNN reduction results, an activation pattern-based

approach is presented for computing the graph set of FNNs and

reachable sets of NNCS in the form of HZs. The constructed

HZ representations are proved to over-approximate the exact

graph and reachable sets. With the flexibility of tunable param-

eters, the proposed approach allows a trade-off between the

set representation complexity and the approximation accuracy

(see Fig. 1). The proposed approach can also restore exact
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reachability analysis as a special case and enable sound

and complete verification for NNCS. The performance and

tunability of the proposed method are demonstrated through a

numerical example.

Notation: The i-th component of a vector x ∈ R
n is denoted

by xi with i ∈ [n] � {1, . . . , n}. The i-th row (resp. j-th

column) of a matrix A ∈ R
n×m is denoted by A[i, :] (resp.

A[:, j]). For a set C ⊂ [n] (resp. C′ ⊂ [m]), A[C, :] (resp.

A[:, C′]) denotes a submatrix of A with all rows i ∈ C (resp.

all columns j ∈ C′). The i-th column of an identity matrix I

is denoted as ei. Given sets X ⊂ R
n, Z ⊂ R

m and a matrix

R ∈ R
m×n, the generalized intersection of X and Z under R

is X ∩R Z = {x ∈ X | Rx ∈ Z}. An interval with bounds

a, a ∈ R
n is denoted as [[a, a]]. The interval hull of a set

X ⊂ R
n is denoted as interval (X ) ⊂ R

n. The projection of a

set X ⊂ R
n onto a set of coordinates � = {i1, . . . , ik} ⊂ [n]

is denoted as proj�(X ) � {[ei1 · · · eik ]�x | x ∈ X } ⊂ R
k.

II. PRELIMINARIES & PROBLEM STATEMENT

We first give the definition of hybrid zonotope.

Definition 1 [11]: The set Z ⊂ R
n is a hybrid zonotope

if there exist c ∈ R
n, Gc ∈ R

n×ng , Gb ∈ R
n×nb , Ac ∈

R
nc×ng , Ab ∈ R

nc×nb , b ∈ R
nc such that Z = {Gcξ c +

Gbξb + c | ξ c ∈ B
ng
∞, ξb ∈ {−1, 1}nb , Acξ c + Abξb =

b} where B
ng
∞ = {x ∈ R

ng | ‖x‖∞ ≤ 1} is the unit

hypercube in R
ng . The HCG-representation of the HZ is given

by Z = 〈Gc, Gb, c, Ac, Ab, b〉, where c is called the center,

the columns of Gb are called the binary generators, and the

columns of Gc are called the continuous generators.

The representation complexity of Z is determined by ng, nb,

and nc. HZs are closed under commonly used set operations

such as linear map, intersection, and union. For an HZ Z ⊂

R
n, interval (Z) can be obtained by solving 2n Mixed Integer

Linear Programs (MILPs) [11], [12].

Next we define notations related to FNNs. Let π : Rn →

R
m be an �-layer FNN with weight matrices {W(k−1)}k∈[�] and

bias vectors {v(k−1)}k∈[�]. Denote x(k) ∈ R
nk as the neurons of

the k-th layer. Then, x(k) = φ(W(k−1)x(k−1) + v(k−1)), ∀k ∈

[�−1], where x(0) = x is the input of the FNN π and φ is the

vector-valued activation function constructed by component-

wise repetition of the activation function σ(·), i.e., φ(z) �

[σ(z1) · · · σ(znk
)]�. In the last layer, only the linear map is

applied, i.e., π(x) = x(�) = W(�−1)x(�−1) + v(�−1). Although

only ReLU activation functions are considered in this letter,

the proposed methods can be easily extended to other types

of activation functions by using their HZ approximation as

in [15]. Given an input set Z ⊂ R
n of the FNN π , the image

set of Z is defined as π(Z) = {z ∈ R
m | z = π(x), x ∈ Z}

and the graph of π over Z is defined as Gπ (Z) � {(x, z) ∈

R
n+m | z = π(x), x ∈ Z}.

The plant considered in this letter is given as

x(t + 1) = Adx(t) + Bdu(t) (1)

where x(t) ∈ X ⊂ R
n, u(t) ∈ R

m are the state and the control

input, respectively. The control input is u(t) = π(x(t)) where

π is a given �-layer FNN. The NNCS consisting of system (1)

and the controller π is a closed-loop system:

x(t + 1) = f cl(x(t)) � Adx(t) + Bdπ(x(t)). (2)

Given an initial set X0 ⊂ X for the NNCS (2), its T-step

FRS is defined as RT(X0) � {x(T) ∈ X | x(t) = f cl(x(t −

1)), x(0) ∈ X0, t ∈ [T]}; given a target set T ⊂ X , its T-step

BRS is defined as PT(T ) � {x(0) ∈ X | x(t) = f cl(x(t −

1)), x(T) ∈ T , t ∈ [T]}. We assume the state set X , target set

T , and initial set X0 are all represented as HZs.

In this letter, we aim to develop a systematic, HZ-based

approach for computing the FRS and BRS of the NNCS (2)

with a tunable trade-off between computational efficiency and

approximation accuracy.

III. TUNABLE FNN REDUCTION

In this section, we present a flexible optimization-based

approach for reducing the number of neurons of a given FNN

while preserving its important input-output mapping property.

Specifically, given an �-layer FNN π and an input domain Z ,

we aim to construct a new FNN π̃ that has a reduced number

of neurons than π and that over-approximates the original

FNN π over the domain Z , i.e., π(Z) ⊆ π̃(Z). The main

idea of our reduction approach is to group “similar” neurons

in each layer of the FNN according to variable merge buckets

that is defined below.

Definition 2: Given an �-layer FNN π , an input set Z , an

interval I(k) � [[α(k),β(k)]] ⊂ R
nk that bounds the ranges of

the neurons in the k-th layer where k ∈ [�−1], a set of scalar-

valued centers {c
(k)
j }

p

j=1, and a set of scalar-valued tolerances

{δ
(k)
j }

p

j=1, then a variable merge bucket of the k-th layer is

defined as

B(k) � B
(k)
1 ∪ B

(k)
2 ∪ · · · ∪ B(k)

p ⊆ [nk], (3)

with B
(k)
j � {i ∈ [nk] | [[α

(k)
i , β

(k)
i ]] ⊆ [[c

(k)
j −δ

(k)
j , c

(k)
j +δ

(k)
j ]]}

for j ∈ [p], where each neuron index i ∈ [nk] can only belong

to at most one bucket in B(k).

We call a neuron reducible if it is contained in a bucket

of B(k) with other neurons or if its range is a singleton

(i.e., α
(k)
i = β

(k)
i ). By definition, each bucket B

(k)
j contains

the indices of similar neurons whose output ranges fall into

an interval with center c
(k)
j and radius δ

(k)
j . To balance the

number of remaining neurons and approximation accuracy of

the reduced FNN, we formulate the following MILP to identify

the optimal centers {c
(k)
j }

p

j=1 and tolerances {δ
(k)
j }

p

j=1 of the

variable merge bucket B(k). Note that the superscript, k, is

dropped in the MILP for better readability.

min
{cj},{δj},{bi,j},{dj}

λ

p
∑

j=1

δj −

nk
∑

i=1

p
∑

j=1

bi,j −

p
∑

j=1

dj (4a)

s.t. 0 ≤ δj ≤ δ̄, bi,j ∈ {0, 1}, dj ∈ {0, 1}, cj ∈ R, (4b)
p

∑

j=1

bi,j ≤ 1, (4c)

αi − cj + δj ≥ −M
(

1 − bi,j

)

, (4d)

βi − cj − δj ≤ M
(

1 − bi,j

)

, (4e)
nk

∑

i=1

bi,j ≤ M
(

1 − dj

)

, ∀i ∈ [nk], ∀j ∈ [p]. (4f)

In (4), the k-th layer interval bounds I(k) = [[α(k),β(k)]], the

number of buckets p ∈ Z>0, the tunable tolerance parameter
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δ̄ ∈ R≥0, and a sufficiently large positive constant M are

all given. The binary variable bi,j indicates whether the i-th

neuron is in the j-th bucket through constraints (4d)-(4e); the

binary variable dj indicates whether the j-th bucket is empty

through constraint (4f); constraint (4c) indicates that a neuron

is assigned to at most one bucket; the objective function (4a) is

formulated to maximize the number of neurons to be reduced

while minimizing the total sizes of the tolerances; the weight

parameter λ in (4a) is used to balance the sizes of buckets and

the number of neurons to be reduced. It’s easy to check that

the MILP (4) is always feasible.

Remark 1: Compared with other existing works on NN

reduction such as [13], [14], our method can abstract the FNN

with the reduction metrics determined on the fly in an optimal

manner. Given I, p ∈ Z>0, δ̄ > 0 and 0 < λ < 1

pδ̄
in the

MILP (4), let B∗ be the variable merge bucket corresponding

to the optimal solution of MILP (4). It’s easy to check that

all the neurons in B∗ are reducible. Moreover, guided by the

objective function (4a), B∗ contains the maximum number of

reducible neurons with the least number of non-empty buckets.

After creating the variable merge bucket by solving (4),

all neurons contained in the variable merge bucket will be

removed and the induced approximation error will be added to

the next layer to ensure an over-approximation of the original

FNN. This is summarized in the following lemma; the proof

of this lemma is similar to that of [13, Proposition 4] and is

omitted due to the space limitation.

Lemma 1: For the k-th layer of an FNN π , k ∈ [�−1], given

the interval bounds I(k) ⊂ R
nk for the neurons in the k-th layer

and the variable merge bucket B(k), a reduced network π̃ is

constructed by adjusting the weights and bias of the (k−1)-th

and k-th layers as follows:

W̃
(k−1)

= W(k−1)
[

B
(k)

, :
]

, ṽ(k−1) = v(k−1)
[

B
(k)

, :
]

,

W̃
(k)

= W(k)
[

:,B
(k)

]

, ṽ(k) = v(k) + ε(k), (5)

where B
(k)

� [nk]\B(k) denotes the index set of remaining

neurons and ṽ(k) includes the approximation error ε(k) �
∑p

j=1 W(k)[:, B
(k)
j ] · proj

B
(k)
j

(I(k)). Then, π̃ over-approximates

π over the domain Z , i.e., π(Z) ⊆ π̃(Z).

The reduced network π̃ can be computed by applying

Lemma 1 layer-by-layer as summarized in Algorithm 1.

Specifically, for the k-th layer of π̃ , the output set X (k) is

computed through the function propagate in Line 4, which

represents FNN output computation algorithms such as [9,

Algorithm 1]. In Line 5, the interval hull of the HZ set X (k)

can be calculated exactly by solving a set of 2nk MILPs to

find the upper and lower bounds in the nk cardinal directions,

as detailed in [16, Proposition 3.2.10]. Based on the interval

bounds, a set of valid buckets is created by solving MILP (4)

in Line 6. Finally, in Line 7, weights and bias are adjusted

according to Lemma 1.

Proposition 1: Given an �-layer FNN π and an input

domain Z , Algorithm 2 returns a reduced FNN π̃ , such that

π(Z) ⊆ π̃(Z) and Gπ (Z) ⊆ Gπ̃ (Z). Moreover, π(Z) =

π̃(Z) and Gπ (Z) = Gπ̃ (Z) when δ̄ = 0.

Proof: By construction, after adjusting the weights and bias

of each layer in Line 7 of Algorithm 2, π̃ over-approximates

Algorithm 1: Optimization-Based FNN Reduction

Input: input domain Z , FNN π with weight matrices

{W(k−1)}�k=1 and bias vectors {v(k−1)}�k=1, the

number of buckets p ∈ Z>0, a sufficiently large

number M > 0, tunable tolerance bound δ̄ ≥ 0,

weight parameter 0 < λ < 1

pδ̄

Output: reduced FNN π̃ with weight matrices

{W̃
(k−1)

}�k=1 and bias vectors {ṽ(k−1)}�k=1

1 X (0) ← Z;

2 W̃
(0)

← W(0); ṽ(0) ← v(0);

3 for k ∈ {1, 2, . . . , � − 1} do

4 X (k) ← propagate(φ, W̃
(k−1)

, ṽ(k−1),X (k−1));

5 I(k) ← interval(X (k)); // Using [16, Prop.

3.2.10]

6 B(k),B
(k)

← solving MILP (4) with I(k);

7 W̃
(k−1)

, ṽ(k−1), W̃
(k)

, ṽ(k) ← (5) in Lemma 1;

8 return {W̃
(k−1)

}�k=1, {ṽ(k−1)}�k=1

π according to Lemma 1. When δ̄ = 0, all the bucket

tolerances are forced to be 0 and no approximation error will

be propagated through the reduced FNN (i.e., ε(k) = 0). Thus,

π(z) = π̃(z) and Gπ (Z) ⊆ Gπ̃ (Z).

Note that the input domain Z can be any set representations

as long as the interval bounds in Line 5 of Algorithm 1 can

be computed. However, as shown in [10], the input-output

mapping of ReLU-activated FNNs can be represented exactly

by HZs, and the tightest interval bounds can be computed

by the interval hull of HZs. So we will use HZ as the set

representation for FNNs and NNCS in the following.

IV. TUNABLE HZ PROPAGATION OF FNNS AND NNCS

In this section, we first present an approach for propagating

an HZ through a given FNN π by approximating its graph Gπ

with a tunable trade-off between computational efficiency and

approximation accuracy, and based on that, compute the FRSs

and BRSs of the NNCS (2).

Motivated by the fact that ReLU-activated FNNs usually

observe limited numbers of activation patterns [17], we first

propose a novel graph computation approach to construct a

relaxed over-approximation of the graph Gπ .

Consider the graph of a scalar-valued univariate ReLU

function x = ReLU(z) over an interval [[α, β]] ⊂ R, i.e.,

GReLU([[α, β]]) � {(z, x) ∈ R
2 | x = ReLU(z), z ∈ [[α, β]]}.

Depending on the activation pattern of ReLU, the graph can

be represented as the line segment in the first quadrant H+,

the line segment on the negative z-axis H−, or the union of

two line segments H± (see Fig. 2). Specifically,

GReLU([[α, β]])

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

H+ � 〈

[β−α
2

β−α
2

]

,∅,

[β+α
2

β+α
2

]

,∅,∅,∅〉, if 0 ≤ α ≤ β,

H− � 〈

[

β−α
2
0

]

,∅,

[

β+α
2
0

]

,∅,∅,∅〉, if α ≤ β ≤ 0,

H± � 〈Gc
h, Gb

h, ch, Ac
h, Ab

h, bh〉, if α < 0 < β,
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Fig. 2. The graph of a ReLU function over [[α, β]] can be represented
as an HZ. (a) Graph H± with α < 0 < β, (b) The triangle over-
approximation of the graph C� ⊃ H±.

where expressions of Gc
h, Gb

h, ch, Ac
h, Ab

h, bh can be found

in [10, eq. (3)]. The next lemma generalizes our previous result

in [10] and presents an HZ representation for the graph of the

vector-valued ReLU function φ over an HZ domain.

Lemma 2: Given a domain represented as an HZ Z ⊂ R
nk

and its interval hull I � [[α,β]] = interval(Z), then the graph

of the k-th layer’s vector-valued activation function φ : Rnk →

R
nk over Z can be exactly represented as

Gφ(Z) = (P · GReLU(I)) ∩[I 0] Z (6)

where P = [e2 e4 · · · e2nk
e1 e3 · · · e2nk−1]T ∈ R

2nk×2nk is a

permutation matrix and GReLU(I) = GReLU([[α1, β1]])×· · ·×

GReLU([[αnk
, βnk

]]).

The proof of Lemma 2 follows the same procedures as

[10, Lemma 2] and thus is omitted. As H+ and H− are

degenerated HZs without binary generators, the set complexity

of the constructed HZ using (6) is reduced by exploiting the

activation patterns of each neuron.

To further reduce the complexity of the computed HZ-

represented graph sets, the set H± can be over-approximated

by its triangle-shaped convex hull C� as shown in Fig. 2, i.e.,

H± ⊂ C� � 〈
[

Gc
h Gb

h

]

,∅, ch,
[

Ac
h Ab

h

]

,∅, bh〉. To limit the

conservatism on the over-approximated graphs, we introduce

a tunable relaxation parameter 0 ≤ γ ≤ 1 such that H± is

only replaced by the relaxed set C� when the ratio between α

and β is large enough, i.e.,

G̃ReLU([[α, β]]) =

{

C�, if (α < 0 < β) ∧
(

|α|
β

≤ γ ∨
β
|α|

≤ γ

)

,

GReLU([[α, β]]), otherwise.

Based on the relaxed formulation above, Lemma 2 can be

naturally extended to over-approximate the graph of the vector-

valued activation function φ over an HZ domain.

Proposition 2: Given an HZ Z ⊂ R
nk , its interval hull I =

interval(Z) and the tunable relaxation parameter 0 ≤ γ ≤ 1,

the graph of the activation function φ : R
nk → R

nk over Z

can be over-approximated by the following HZ:

G̃φ(Z) =
(

P · G̃ReLU(I)

)

∩[I 0] Z ⊇ Gφ(Z) (7)

where P and G̃ReLU(I) are defined similarly as in Lemma 2.

Moreover, when γ = 0, G̃φ(Z) = Gφ(Z).

With the increase of the tunable relaxation parameter γ ,

more graphs of individual neurons represented by H± will

be approximated by the relaxed set C�, resulting in a larger

over-approximated graph set of the activation function φ. In

the extreme case γ = 1, all the sets H± will be relaxed into

C� and G̃φ(Z) will become a degenerated HZ without binary

Algorithm 2: Tunable Graph Over-Approximation of FNN

Input: HZ input set Z , original FNN π with weight

matrices {W(k−1)}�k=1 and bias vectors

{v(k−1)}�k=1, number of buckets p ∈ Z>0, large

number M > 0, tolerance bound δ̄ ≥ 0, weight

parameter λ ≥ 0, relaxation parameter 0 ≤ γ ≤ 1

Output: Over-approximated graph G̃π as an HZ

1 X (0) ← Z = 〈Gc
z, Gb

z , cz, Ac
z, Ab

z , bz〉;

2 W̃
(0)

← W(0); ṽ(0) ← v(0);

3 for k ∈ {1, 2, . . . , � − 1} do

4 Z(k−1) ← W̃
(k−1)

X (k−1) + ṽ(k−1);

5 I
(k−1)
z = [[α(k−1),β(k−1)]] ← interval(Zk−1);

6 I
(k)
x ← φ(Ik−1

z );

7 B(k),B
(k)

← solving MILP (4) with I
(k)
x ;

8 W̃
(k−1)

, ṽ(k−1), W̃
(k)

, ṽ(k) ← (5) in Lemma 1;

9 Z̃(k−1) ← proj
B

(k)(Z(k−1)); // Linear map

10 Ĩ
(k−1)
z ← proj

B
(k)(I

(k−1)
z ); // Linear map

11 G̃(k) ← (P · G̃ReLU(Ĩ
(k−1)
z )) ∩[I 0] Z̃

(k−1); // HZ

intersection using [11, Prop. 7]

12 X (k) ← [0 I] · G̃(k); // Next layer input

13 〈Gc, Gb, c, Ac, Ab, b〉 ← W̃
(�−1)

X (�−1) + ṽ(�−1);

14 G̃π ← 〈

[

Gc
z 0

Gc

]

,

[

Gb
z 0

Gb

]

,

[

cz

c

]

, Ac, Ab, b〉;

15 return G̃π

generators. On the other hand, when γ = 0, no relaxation is

performed and therefore, Gφ(Z) = G̃φ(Z).

To construct an HZ over-approximation of the graph Gπ

for π , we can propagate the input set as an HZ through the

reduced FNN π̃ layer-by-layer using Proposition 2 and linear

map operations of HZs as summarized in Algorithm 2.

To incorporate the FNN reduction method presented in

Section III with the activation pattern-based graph com-

putation, both the pre-activation interval bounds and the

post-activation interval bounds of neurons in each layer are

needed in Algorithm 2. Instead of solving two sets of MILPs

to get the interval hulls of pre-activated HZ Z(k−1) and post-

activated HZ φ(Z(k−1)), we only compute the interval hull

once in Line 5 by solving a set of 2nk MILPs, similar to

Line 5 in Algorithm 1. The pre-activation interval bounds

are then propagated through the activation in Line 6 to

get post-activation interval bounds. For monotonic activation

functions like ReLU, the interval propagation can be computed

efficiently and exactly without introducing any conservatism;

in other words, interval(φ(Z)) = φ(interval(Z)) holds. Since

the size of the FNN π decreases after applying Lemma 1 for

each iteration in Line 8, the HZ Z(k−1) and the interval I
(k−1)
z

computed from the original FNN are projected onto the set

of coordinates corresponding to the remaining neurons (i.e.,

B
(k)

) in Line 9 and Line 10.

The following theorem shows that the graph over-

approximation in Algorithm 2 is sound.

Theorem 1: Given an �-layer ReLU-activated FNN

π : Rn → R
m and an HZ Z ⊂ R

n, the output of Algorithm 2
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G̃π is an HZ that over-approximates the exact graph of π over

Z , i.e., G̃π ⊇ Gπ (Z). Furthermore, G̃π = Gπ (Z) when δ̄ = 0

and γ = 0.

Proof: A reduced FNN π̃ is constructed using (5) in Line 8

of Algorithm 2. In Line 9-12, the over-approximated input set

Z̃(k−1), graph G̃(k) and output set X (k) of the k-th layer of the

reduced FNN is computed iteratively for k ∈ [� − 1]. Thus,

the over-approximation properties are preserved through the

propagation of each hidden layer. Only a linear map is applied

to the last layer in Line 13 and G̃π stacks the input set and the

over-approximated output set of π̃ as G̃π ⊇ Gπ̃ (Z). As π̃ over-

approximates π over Z , G̃π ⊇ Gπ̃ (Z) ⊇ Gπ (Z). Since Z is an

HZ and HZs are closed under all the set operations involved

in Algorithm 2, G̃π is also an HZ by construction. When δ̄ =

γ = 0, π̃ preserves the same input-output relationship of π

as shown in Proposition 1, and the constructed graph set in

Line 11 is exact for each layer by Proposition 2. Thus, G̃π =

Gπ (Z).

Remark 2: Given the calculated graph G̃π of Algorithm 2,

for any HZ-represented input set Zin ⊆ Z , the image set

of π can be over-approximated by Z̃image = [0m×n Im] ·

(G̃π ∩[In 0n×m] Zin); for any HZ-represented output set Zout ⊆

π(Z), the preimage set of π can be over-approximated by

Z̃pre = [In 0n×m] · (G̃π ∩[0m×n Im] Zout).

Finally, we give the following theorem that computes the

one-step over-approximated FRS and BRS for the NNCS (2).

Theorem 2: Consider NNCS (2) and any given HZ Z ⊂

R
n. Let G̃π be the over-approximated graph set of the FNN π

over the domain Z using Algorithm 2, i.e., G̃π ⊇ Gπ (Z).

(i) For any initial set X0 ⊆ Z represented by an HZ, the

one-step FRS of the NNCS (2) can be over-approximated by

the HZ R̃(X0) = [Ad Bd] · (G̃π ∩[In 0n×m] X0) ⊇ R(X0).

(ii) For any target set T ⊂ R
n represented by an HZ, the

one-step BRS of the NNCS (2) in the domain Z can be over-

approximated by the HZ P̃(T ) = [In 0n×m]·(G̃π ∩[Ad Bd]T ) ⊇

P(T ) ∩ Z.

(iii) The over-approximation in (i) and (ii) becomes exact

when δ̄ = γ = 0.

Proof: (i) Since G̃π ⊇ Gπ (Z) = {(x, u) ∈ R
n+m | x ∈

Z, u = π(x)} and R(X0) = {Adx + Bdu | x ∈ X0, u = π(x)},

we have R̃(X0) ⊇ [Ad Bd] · (Gπ (Z) ∩[I 0] X0) = {Adx +

Bdu | x ∈ (Z ∩ X0), u = π(x)} = R(X0).

(ii) Since G̃π ⊇ Gπ (Z) = {(x, u) ∈ R
n+m | x ∈ Z, u =

π(x)}, we have P̃(T ) ⊇ [In 0n×m] ·(Gπ (Z)∩[Ad Bd]T ) = {x ∈

R
n | x ∈ Z, u = π(x), Adx + Bdu ∈ T } = P(T ) ∩ Z .

(iii) The results follow from G̃π = Gπ (Z) if δ̄ = γ = 0.

Note that multi-step FRSs or BRSs can be computed by

applying this theorem iteratively, and the size of the reduced

FNNs might vary with each iteration as the reduction is

performed locally.

Similar to the analysis for isolated FNNs, the over-

approximated FRSs and BRSs of the NNCS (2) become exact

when δ̄ = γ = 0 is selected in Algorithm 2. Given an unsafe

set O as an HZ, sufficient safety verification conditions for the

NNCS (2) can be formulated as MILPs by checking whether

the intersection between the computed FRSs/BRSs and the set

O is empty [9], [10].

Remark 3: The tunable parameters δ̄ and γ in Algorithm 2

govern bucket tolerances and HZ representation complexity for

FNNs and NNCS. In general, increasing δ̄ reduces FNN sizes

while larger γ relaxes HZ representations, which will reduce

the computation time at the expense of larger approximation

errors, resulting in a sound but incomplete verification. In

practice, the values of δ̄ and γ should be adjusted for

desired approximation accuracy. When δ̄ = γ = 0, the

reachability analysis and safety verification results become

exact. Compared to existing HZ-based methods emphasizing

exact reachability analysis [9], [10], the proposed tunable

approach provides more flexibility in balancing computational

efficiency and approximation accuracy. This tunability offers

a powerful tool for the HZ-based method to handle NNCS

whose HZ set complexity arises from both the size of FNNs

and the error propagation during system evolution.

Remark 4: State-of-the-art NN verifiers like α, β-

CROWN [18] and Marabou [19] offer efficient analysis for

standalone NNs but introduce conservatism when directly

applied to NNCS. Compared with other set representations

(e.g., zonotopes [20], constrained zonotopes [3], and

polynotopes [21]) that have also been used for NNCS

reachability analysis, HZs can represent arbitrary non-

convex and disconnected sets with flat faces and their set

operations can be efficiently computed using simple identities.

These features make HZ better suited for investigating

NNCS reachability problems that usually involve non-convex

polytopic sets.

The method of this letter can be potentially extended to

NNCS with nonlinear plant and other types of activation func-

tions by incorporating the nonlinear reachability algorithms

in [15], [22]. The computational efficiency of the proposed

method may be also further improved by leveraging the linear

bound propagation techniques in [18].

V. SIMULATION RESULTS

The following example demonstrates the computation of

FRSs and BRSs using Theorems 1 and 2. Results are obtained

in MATLAB R2022a on a desktop with an Intel Core i9-

12900k CPU and 32GB of RAM.

Consider the following linearized ground robot model: x(t+

1) =

[

I2 I2

0 I2

]

x(t) +

[

0.5 · I2

I2

]

u(t), where the state x =

[x, y, ẋ, ẏ]� consists of x−y position and velocity, and the input

u(t) = π(x(t)) is a ReLU-activated FNN with 100 neurons

trained from a dataset generated by an MPC controller.

First, we compute FRSs R̃1(X0), . . . , R̃5(X0) using

Theorem 2 iteratively with a given initial set X0 = [[2.5, 3]]×

[[2.5, 3]] × [[−0.3,−0.1]] × [[ − 0.3,−0.1]] and tunable

parameters γ = 0 and δ̄ ∈ {0, 0.04dmax, 0.06dmax}, where dmax

is the largest range of neurons in each layer. The computation

takes 47.36 sec for δ̄ = 0, 62.78 sec for δ̄ = 0.04dmax,

and 70.15 sec for δ̄ = 0.06dmax. When δ̄ = 0.04dmax, the

reduced FNNs at t = 1, . . . , 5 have 4, 3, 7, 13, and 9 neurons,

respectively; when δ̄ = 0.06dmax, the reduced FNNs at t =

1, . . . , 5 have 1, 5, 5, 10, and 11 neurons, respectively. We

compare our method with NNV [5], ReachLP and ReachLP-

Partition with the default Greedy Sim-Guided partition [2].

The projections of the FRSs onto the x − y plane are shown

in Fig. 3. It can be seen that all FRSs in our method with

δ̄ = 0 coincide with the exact FRSs computed by [10]. For
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Fig. 3. The 5-step FRSs (projected on the x − y plane) that are
computed via the proposed method, NNV, ReachLP, and ReachLP-
Partition.

Fig. 4. The 2-step BRSs (projected on the x − y plane) that are
computed via the proposed method, BReachLP and ReBReachLP.

two other values of δ̄, the FRSs computed using our method

over-approximate the exact FRSs, where a larger δ̄ results in a

larger FRS as expected. Moreover, FRSs computed using our

method do not aggravate the conservativeness as t increases,

while those computed by NNV and ReachLP tend to be more

conservative with an increasing t.

Next, we compute two-step BRSs P̃1(T ) and P̃2(T ) with

a given target set T = [[−1.5,−0.5]] × [[−2.5,−1.5]] ×

[[−1.1,−0.9]] × [[−1.1,−0.9]] and tunable parameters γ =

0.1 and δ̄ ∈ {0, 0.06dmax, 0.08dmax} using Theorem 2 iter-

atively. A prior set enclosing the BRS is chosen as the

input set of Algorithm 2. For comparison, we use BReachLP

and ReBReachLP [4] to compute over-approximations of the

BRSs. Fig. 4 shows the projections of the computed BRSs

onto the x − y plane. Similar to the FRS case, our calculated

BRSs become more conservative with a larger δ̄. Nevertheless,

they are more accurate than the BRSs computed by BReachLP

and ReBReachLP at t = 2.

VI. CONCLUSION

We introduced a tunable HZ-based approach that inte-

grates an optimization-based FNN reduction technique with

an activation pattern-based HZ propagation of FNNs. With

two tunable parameters, our method can generate HZ over-

approximations for the BRSs and FRSs of NNCS, allowing for

a flexible balance between set complexity and approximation

accuracy. Moreover, the proposed approach was shown to

revert to exact reachability analysis as a special case.
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