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Abstract—The surging popularity of neural networks in
controlled systems underscores the imperative for formal
verification to ensure the reliability and safety of such
systems. Existing set propagation-based approaches for
reachability analysis in neural network control systems
encounter challenges in scalability and flexibility. This
letter introduces a novel tunable hybrid zonotope-based
method for computing both forward and backward reach-
able sets of neural network control systems. The proposed
method incorporates an optimization-based network reduc-
tion technique and an activation pattern-based hybrid
zonotope propagation approach for ReLU-activated feed-
forward neural networks. Furthermore, it enables two
tunable parameters to balance computational complexity
and approximation accuracy. A numerical example is pro-
vided to illustrate the performance and tunability of the
proposed approach.

Index Terms—Reachable set, neural network control
systems, scalability, tunability, hybrid zonotope.

|. INTRODUCTION

EURAL Networks (NNs) have gained widespread use
Nin autonomous systems. However, the application of
NNs in safety-critical scenarios necessitates formal verifica-
tion as NNs exhibit high sensitivity to minor perturbations
in the input space. To address this issue, several recent
advancements have focused on reachability-based methods,
primarily owing to their computational efficiency in the safety
verification of Neural Network Control Systems (NNCS).
By abstracting the non-linear activation functions of NNs
using different set representations, the Forward Reachable Sets
(FRSs) and Backward Reachable Sets (BRSs) of NNCS can
be computed through set-propagation techniques to validate
the safety specifications [1], [2], [3], [4], [S]. Despite these
interesting results, many problems related to scalability and
approximation accuracy require further exploration [6], [7].

Recently, an approach based on Hybrid Zonotope (HZ)
was proposed to compute the exact FRS and BRS of NNCS
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Fig. 1. An illustration of the “tunability” of the proposed method.
The approximation error of reachable set computation varies with
values of the tunable tolerance parameter, §, and the tunable relaxation
parameter, y. Exact reachable sets (red) are computed when § = y = 0.

with linear plant and ReLU-activated Feedforward Neural
Network (FNN) controllers [8], [9], [10]. With the capability
of representing non-convex sets with flat faces [11], [12], HZs
enable exact abstractions of ReLU-activated FNNs through
simple matrix operations. Nevertheless, the approaches men-
tioned above also face scalability challenges when dealing with
feedback systems incorporating large NNs. This is attributed to
the increasing representation complexity of the HZ reachable
sets, which escalates with the number of neurons in the NNs.
Heuristic complexity reduction techniques for general HZs
exist [9], [11], but they don’t leverage the inherent properties
of NNs. Several recent works proposed output-based NN
reduction algorithms by grouping neurons with similar ranges
over a given input domain [13], [14]; however, these methods
require predefined reduction metrics and only consider NNs
in isolation.

This letter presents a novel HZ-based approach with the
flexibility of balancing computational complexity and approx-
imation accuracy. Contributions of this letter are at least
twofold: i) A tunable optimization-based method is proposed
for reducing the number of neurons of a given FNN while
maintaining its intrinsic input-output mapping properties, with
the optimal reduction metrics determined on the fly. ii) Based
on the FNN reduction results, an activation pattern-based
approach is presented for computing the graph set of FNNs and
reachable sets of NNCS in the form of HZs. The constructed
HZ representations are proved to over-approximate the exact
graph and reachable sets. With the flexibility of tunable param-
eters, the proposed approach allows a trade-off between the
set representation complexity and the approximation accuracy
(see Fig. 1). The proposed approach can also restore exact
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reachability analysis as a special case and enable sound
and complete verification for NNCS. The performance and
tunability of the proposed method are demonstrated through a
numerical example.

Notation: The i-th component of a vector x € R” is denoted
by x; with i € [n] = {1,...,n}. The i-th row (resp. j-th
column) of a matrix A € R™" is denoted by A[i, :] (resp.
A[:,j]). For a set C C [n] (resp. C' C [m]), A[C,:] (resp.
A[:,C']) denotes a submatrix of A with all rows i € C (resp.
all columns j € C’). The i-th column of an identity matrix I
is denoted as e;. Given sets X C R", Z C R™ and a matrix
R € R™" the generalized intersection of X and Z under R
is ¥Ng Z = {x € X | Rx € Z}. An interval with bounds
a, a € R" is denoted as [[a, a]]. The interval hull of a set
X C R" is denoted as interval (X)) C R”". The projection of a
set X C R” onto a set of coordinates ® = {iy, ..., i} C [n]
is denoted as projg(X) = {le;, ~~-eik]Tx |x € X} C Rk

Il. PRELIMINARIES & PROBLEM STATEMENT

We first give the definition of hybrid zonotope.

Definition 1 [11]: The set Z C R" is a hybrid zonotope
if there exist ¢ € R", G¢ € R™"%, Gb e R™™, A° ¢
R*ns AP ¢ R™*™ b e R™ such that Z = {GE +
GPeP + ¢ | §¢ € BX.EP e (—1,1)™ A€ + APgP =
b} where Bsf = {x € R" | |x|]loc < 1} is the unit
hypercube in R"¢. The HCG-representation of the HZ is given
by Z = (G€, G’, ¢, A, AL, b), where ¢ is called the center,
the columns of G” are called the binary generators, and the
columns of G° are called the continuous generators.

The representation complexity of Z is determined by ng, np,
and n.. HZs are closed under commonly used set operations
such as linear map, intersection, and union. For an HZ Z C
R”, interval (£) can be obtained by solving 2n Mixed Integer
Linear Programs (MILPs) [11], [12].

Next we define notations related to FNNs. Let & : R? —
R™ be an £-layer FNN with weight matrices {W(k_l)}ke[g] and
bias vectors {(¥*~D};c(41. Denote x¥) € R as the neurons of
the k-th layer. Then, x® = ¢(W(k_1)x(k_l) +v*=Dy vk e
[¢—1], where x© = x is the input of the FNN =& and ¢ is the
vector-valued activation function constructed by component-
wise repetition of the activation function o (-), ie., ¢(z) =
[0(z1) -+ o(zy)]". In the last layer, only the linear map is
applied, i.e., m(x) =x® = W¢=DxE=D 4L =D Ajthough
only ReLU activation functions are considered in this letter,
the proposed methods can be easily extended to other types
of activation functions by using their HZ approximation as
in [15]. Given an input set Z C R” of the FNN x, the image
set of Z is defined as #(2) = {z e R" |z = (x),x € Z}
and the graph of w over Z is defined as G, (2) £ {(x,z) €
R | z = w(x),x € Z}.

The plant considered in this letter is given as

x(t+ 1) =Aux() + Bau(t) (D

where x(r) € X C R”, u(r) € R™ are the state and the control
input, respectively. The control input is u(¢) = w(x(¢)) where
m is a given £-layer FNN. The NNCS consisting of system (1)
and the controller & is a closed-loop system:

x(t+ 1) = fo(x(D) 2 Agx(t) + Bam (x(0). )

Given an initial set Xy C X for the NNCS (2), its T-step
FRS is defined as R7(Xp) = {(x(T) € X | x(r) = St —
1)), x(0) € Xy, t € [T]}; given a target set T C X, its T-step
BRS is defined as Pr(7T) £ {x(0) € X | x(r) = Sox@ —
1)), x(T) € T,t € [T]}. We assume the state set X, target set
T, and initial set X are all represented as HZs.

In this letter, we aim to develop a systematic, HZ-based
approach for computing the FRS and BRS of the NNCS (2)
with a tunable trade-off between computational efficiency and
approximation accuracy.

[1l. TUNABLE FNN REDUCTION

In this section, we present a flexible optimization-based
approach for reducing the number of neurons of a given FNN
while preserving its important input-output mapping property.
Specifically, given an £-layer FNN & and an input domain Z,
we aim to construct a new FNN 7 that has a reduced number
of neurons than m and that over-approximates the original
FNN 7 over the domain Z, ie., n(£) C w(Z). The main
idea of our reduction approach is to group “similar” neurons
in each layer of the FNN according to variable merge buckets
that is defined below.

Definition 2: Given an {-layer FNN 7, an input set Z, an
interval ZW £ [[a®, B (k)]] C R™ that bounds the ranges of
the neurons in the k-th layer where k € [£ — 1], a set of scalar-
valued centers {c( )}p |» and a set of scalar-valued tolerances

{S(k) }p |» then a variable merge bucket of the k-th layer is
deﬁned as

B0 2 B0 yBP U

with B £ (i € [me] | [l 8711 < 116 =6, ¢/ +8/1)
for j € [p], where each neuron index i € [n] can only belong
to at most one bucket in B®.

We call a neuron reducible if it is contained in a bucket
of B® with other neurons or if its range is a singleton
(i.e., oz,-(k) = ,Bi(k)). By definition, each bucket B contains
the indices of similar neurons whose output ranges fall into
an interval with center c( " and radius S(k To balance the
number of remaining neurons and approx1mat10n accuracy of
the reduced FNN, we formulate the following MILP to identify
the optimal centers {c } _, and tolerances {8 }p , of the

- UBP < [m, 3)

variable merge bucket B(k) Note that the superscript, k, is
dropped in the MILP for better readability

Za —ZZbU Zdj

{C,}{é} izt =1

st. 0<8 <8, bij 0,1}, d; € {0, 1}, ¢j € R, (4b)

i) (4a)
i.j

p
> b, (4c)
j=1

(xl'—Cj-i-(Sj > —M(l _bi,j)a (4d)
,3'—6‘]—5'<M(1—bi’j), (4e)
Zb,,<M1— ), Vi€ [nl, Vj € [pl. (4f)

In (4), the k-th layer interval bounds Z® = [[a®, B®)]], the
number of buckets p € Z~, the tunable tolerance parameter
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5 € Rxo, and a sufficiently large positive constant M are
all given. The binary variable b;; indicates whether the i-th
neuron is in the j-th bucket through constraints (4d)-(4e); the
binary variable d; indicates whether the j-th bucket is empty
through constraint (4f); constraint (4c) indicates that a neuron
is assigned to at most one bucket; the objective function (4a) is
formulated to maximize the number of neurons to be reduced
while minimizing the total sizes of the tolerances; the weight
parameter A in (4a) is used to balance the sizes of buckets and
the number of neurons to be reduced. It’s easy to check that
the MILP (4) is always feasible.

Remark 1: Compared with other existing works on NN
reduction such as [13], [14], our method can abstract the FNN
with the reduction metrics determined on the fly in an optimal
manner. Given Z, p € Z-o, § > 0 and 0 < A < ,,ls in the
MILP (4), let B* be the variable merge bucket corresponding
to the optimal solution of MILP (4). It’s easy to check that
all the neurons in B* are reducible. Moreover, guided by the
objective function (4a), B* contains the maximum number of
reducible neurons with the least number of non-empty buckets.

After creating the variable merge bucket by solving (4),
all neurons contained in the variable merge bucket will be
removed and the induced approximation error will be added to
the next layer to ensure an over-approximation of the original
FNN. This is summarized in the following lemma; the proof
of this lemma is similar to that of [13, Proposition 4] and is
omitted due to the space limitation.

Lemma 1: For the k-th layer of an FNN &, k € [£—1], given
the interval bounds Z®) c R"* for the neurons in the k-th layer
and the variable merge bucket B®  a reduced network 7 is
constructed by adjusting the weights and bias of the (k— 1)-th
and k-th layers as follows:

W(k—l) _ W(k—l)l:g(k)7 ] k=1 _ v(k—])[E(k)’ ]

W _ W(k)[:’ E(k)], 5O = y® 4 ®) )

—(k . .
where B() 2 [m]\B® denotes the index set of remaining
neurons and % includes the approximation error ¢® £
Z‘;’:l w®:, B;k)] - proj zi (Z™). Then, & over-approximates

7t over the domain Z, i.é., n(2) Ca(2).

The reduced network 7 can be computed by applying
Lemma 1 layer-by-layer as summarized in Algorithm I.
Specifically, for the k-th layer of 7, the output set X® is
computed through the function propagate in Line 4, which
represents FNN output computation algorithms such as [9,
Algorithm 1]. In Line 5, the interval hull of the HZ set X ®)
can be calculated exactly by solving a set of 2n; MILPs to
find the upper and lower bounds in the n; cardinal directions,
as detailed in [16, Proposition 3.2.10]. Based on the interval
bounds, a set of valid buckets is created by solving MILP (4)
in Line 6. Finally, in Line 7, weights and bias are adjusted
according to Lemma 1.

Proposition 1: Given an f-layer FNN m and an input
domain Z, Algorithm 2 returns a reduced FNN 7, such that
n(Z2) C n(2) and G (Z) C Gz(Z). Moreover, n(2) =
#(Z) and G;(Z) = G5 (Z) when § = 0.

Proof: By construction, after adjusting the weights and bias
of each layer in Line 7 of Algorithm 2, & over-approximates

Algorithm 1: Optimization-Based FNN Reduction

Input: input domain Z, FNN x with weight matrices
{W(]‘_l)}iz1 and bias vectors {v(k_l)}ﬁzl, the
number of buckets p € Z~ ¢, a sufficiently large
number M > 0, tunable tolerance bound § > 0,
weight parameter 0 < A < ig

Output: reduced FNN 7 with wei[éht matrices

{VNV(k_l)},‘iz1 and bias vectors {17(]‘71)},{:1

1 X0  z;

2 W < WO, 50 0,

sforkefl,2,...,£—1}do

4 X® « propagate(¢, W(kfl), k=D k=1,

5 M interval(X(k)); // Using [16,

3.2.10]
6 B®, BY < solving MILP (4) with Z®;
7 W(k_l), p&=D, W(k), 0 (5) in Lemma 1;

~ (k=1 (ke
8 return {W( )}le, A 1)}£:1

Prop.

7 according to Lemma 1. When § = 0, all the bucket
tolerances are forced to be 0 and no approximation error will
be propagated through the reduced FNN (i.e., ¢®¥ = 0). Thus,
n(z) =m(z) and G;(2) C Gz (2). n
Note that the input domain Z can be any set representations
as long as the interval bounds in Line 5 of Algorithm 1 can
be computed. However, as shown in [10], the input-output
mapping of ReLU-activated FNNs can be represented exactly
by HZs, and the tightest interval bounds can be computed
by the interval hull of HZs. So we will use HZ as the set
representation for FNNs and NNCS in the following.

IV. TUNABLE HZ PROPAGATION OF FNNs AND NNCS

In this section, we first present an approach for propagating
an HZ through a given FNN =z by approximating its graph G,
with a tunable trade-off between computational efficiency and
approximation accuracy, and based on that, compute the FRSs
and BRSs of the NNCS (2).

Motivated by the fact that ReLU-activated FNNs usually
observe limited numbers of activation patterns [17], we first
propose a novel graph computation approach to construct a
relaxed over-approximation of the graph G .

Consider the graph of a scalar-valued univariate ReLU
function x = ReLU(z) over an interval [[a, B]] C R, ie.,
Greru ([, B1) £ {(z,%) € R* | x = ReLU(2),z € [[a, BI}.
Depending on the activation pattern of ReLU, the graph can
be represented as the line segment in the first quadrant H,
the line segment on the negative z-axis H_, or the union of
two line segments H4 (see Fig. 2). Specifically,

Greru([la, BID

Hy & ([E},@, [ﬁ},@, ?,9),if0 <a <,
o [55] nnira < <0

Ha 2 (GS, GP e, AS, AL by), ifa <0 < B,
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Fig. 2. The graph of a ReLU function over [[«, 8]] can be represented
as an HZ. (a) Graph H+ with « < 0 < B, (b) The triangle over-
approximation of the graph Co > H .

where expressions of G, GZ . Ch, AT, AZ, b, can be found
in [10, eq. (3)]. The next lemma generalizes our previous result
in [10] and presents an HZ representation for the graph of the
vector-valued ReL.U function ¢ over an HZ domain.

Lemma 2: Given a domain represented as an HZ Z C R%*
and its interval hull Z £ [[«, B]] = interval(Z), then the graph
of the k-th layer’s vector-valued activation function ¢ : R"™* —
R over Z can be exactly represented as

Go(Z2) = (P - Greru(@D) Nir o] 2 (6)

where P =[ey e4 --- €2, €1 €3 - -+ e2nk_1]T € R2ux2n g g
permutation matrix and Grervy(Z) = Grerv([lee1, f111) X -+ - X
gReLU([[ank’ ﬂnl\]])

The proof of Lemma 2 follows the same procedures as
[10, Lemma 2] and thus is omitted. As H, and H_ are
degenerated HZs without binary generators, the set complexity
of the constructed HZ using (6) is reduced by exploiting the
activation patterns of each neuron.

To further reduce the complexity of the computed HZ-
represented graph sets, the set .+ can be over-approximated
by its triangle-shaped convex hull Ca as shown in Fig. 2, i.e.,
Hi C Ca £ ([GE GY]. 0. ch, [AS AL], 0, bp). To limit the
conservatism on the over-approximated graphs, we introduce
a tunable relaxation parameter 0 < y < 1 such that Hy is
only replaced by the relaxed set Cn when the ratio between o
and B is large enough, i.e.,

Carif@<0<pn(B=yvi=y),
GreLu([la, B1D,

Based on the relaxed formulation above, Lemma 2 can be
naturally extended to over-approximate the graph of the vector-
valued activation function ¢ over an HZ domain.

Proposition 2: Given an HZ Z C R, its interval hull Z =
interval(Z) and the tunable relaxation parameter 0 < y < 1,
the graph of the activation function ¢ : R™* — R* over Z
can be over-approximated by the following HZ:

Gy(2) = (P . GReLU(I)> Nizo) 2 2 G¢(2)

Greru (e, B1) =

otherwise.

(7

where P and GRELU(I) are defined similarly as in Lemma 2.
Moreover, when y =0, G4(Z) = Gg(2).

With the increase of the tunable relaxation parameter y,
more graphs of individual neurons represented by Hi will
be approximated by the relaxed set Ca, resulting in a larger
over-approximated graph set of the activation function ¢. In
the extreme case y = 1, all the sets H+ will be relaxed into
Cpa and Q¢ (Z) will become a degenerated HZ without binary

Algorithm 2: Tunable Graph Over-Approximation of FNN

Input: HZ input set Z, original FNN & with weight
matrices {W(k_l)}ﬁz | and bias vectors
{v(k_l)}izl, number of buckets p € Z.., large
number M > 0, tolerance bound § > 0, weight
parameter A > 0, relaxation parameter 0<y<l1

Output: Over-approximated graph G, as an HZ

0 _ b b .
1 X0 « Z=(G, GL, ¢, AS, AL, b.);
w9 < wO. 50 _ 0.
for ke {1,2,...,£— 1} do
s | 260 Dyl 4o,
5 ZHD — [[a®=D | B&=D]] — interval(ZF1);
k _
o | T < $UE:
7 B®, BY < solving MILP (4) with P,
~ (k—1) _(p— ~ (k) .
W( )’ v(k 1)’ W( )’ v(k)

w N

< (5) in Lemma 1;
9 Zk=D proij (Z*=Dy,
10 iz(k_l) ‘_Projg<k>(Iz(k_l)); // Linear map
1 GO — (P Crav @) Ny 2470, // HZ
intersection using [11l, Prop. 7]

12 X®O —100n-6®; // Next layer input

13 (G, G, e, A%, AP b) « W'V 45D,

- c b
o o (| [ Ee

5 return G,

// Linear map

[
'S

-

generators. On the other hand, when y = 0, no relaxation is
performed and therefore, Gy (2) = g},(Z).

To construct an HZ over-approximation of the graph G
for =, we can propagate the input set as an HZ through the
reduced FNN 5 layer-by-layer using Proposition 2 and linear
map operations of HZs as summarized in Algorithm 2.

To incorporate the FNN reduction method presented in
Section III with the activation pattern-based graph com-
putation, both the pre-activation interval bounds and the
post-activation interval bounds of neurons in each layer are
needed in Algorithm 2. Instead of solving two sets of MILPs
to get the interval hulls of pre-activated HZ Z*~1 and post-
activated HZ ¢(Z2%=1), we only compute the interval hull
once in Line 5 by solving a set of 2n; MILPs, similar to
Line 5 in Algorithm 1. The pre-activation interval bounds
are then propagated through the activation in Line 6 to
get post-activation interval bounds. For monotonic activation
functions like ReL.U, the interval propagation can be computed
efficiently and exactly without introducing any conservatism;
in other words, interval(¢(Z)) = ¢(interval(Z)) holds. Since
the size of the FNN =& decreases after applying Lemma 1 for
each iteration in Line 8, the HZ Z%*~D and the interval ng_l)
computed from the original FNN are projected onto the set
of coordinates corresponding to the remaining neurons (i.e.,

E(k)) in Line 9 and Line 10.

The following theorem shows that the graph over-
approximation in Algorithm 2 is sound.

Theorem 1: Given an {-layer ReLU-activated FNN
m : R" — R"™ and an HZ Z C R", the output of Algorithm 2
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Gx is an HZ that over-approximates the exact graph of 7 over
Z, i.e., Gn D G (2). Furthermore, _C';,, = Gr(Z) when § =0
and y =0.

Proof: A reduced FNN 1 is constructed using (5) in Line 8
of Algorithm 2. In Line 9-12, the over-approximated input set
Zk=1), graph G® and output set X® of the k-th layer of the
reduced FNN is computed iteratively for k € [¢ — 1]. Thus,
the over-approximation properties are preserved through the
propagation of each hidden layer. Only a linear map is applied
to the last layer in Line 13 and G, stacks the input set and the
over-approximated output set of & as Qn D Gz (2). As T over-
approximates 7t over Z, Gp 2 Gz (2) 2 Gz (2). Since Z is an
HZ and HZs are closed under all the set operations involved
in Algorithm 2, g",, is also an HZ by construction. When 5=
y = 0, & preserves the same input-output relationship of &
as shown in Proposition 1, and the constructed graph set in
Line 11 is exact for each layer by Proposition 2. Thus, G, =
Gn (2). ) m

Remark 2: Given the calculated graph G, of Algorithm 2,
for any HZ-represented input set Z; < Z, the image set
of m can be over-approximated by Zimage = [0;uxn Il -
(g} N, 0,51 Zin); for any HZ-represented output set Z,,;
7 (Z), the preimage set of m can be over-approximated by
2Zpre =L 0pxm]- (gn m[Omxn 1,] Zaut)-

Finally, we give the following theorem that computes the
one-step over-approximated FRS and BRS for the NNCS (2).

Theorem 2: Consider NNCS (2) and any given HZ Z C
R”. Let G, be the over-approximated graph set of the FNN
over the domain Z using Algorithm 2, i.e., g~,, D Gz (2).

(i) For any initial set Xy € Z represented by an HZ, the
one-step FRS of the NNCS (2) can be over-approximated by
the HZ R(AXp) = [Ay B4l - (Gr NI, 0,m] X0) 2 R(XD).

(ii) For any target set 7 C R" represented by an HZ, the
one-step BRS of the NNCS (2) in the domain_Z can be over-
approximated by the HZ P(T) = [I, 0,xm]- (G Nfa, B T) 2
P(THNZ.

(iii)) The over-approximation in (i) and (ii) becomes exact
when§ =y =0.

Proof: (i) Since Gy 2 G (2) = {(x,u) € R"™ | x ¢
Z,u=mn(x)} and R(Xp) = {Agx +Bgu | x € Xp, u = w(x)},
we have R(Xp) 2 [Ag Byl - (G (2) Niroy Xp) = {Aax +
Bju|xe (ZN A&y, u=nxx)}=TR>CA).

(i) Since Gz 2 G (2) = {(x,u) e R™™ |x € Z,u =
m(x)}, we have P(T) 2 (I 0pxm] - (G (2)Niay, B T) = {x €
R'|xeZ,u=n(x),Asx+BuecT}=P(T)NZ.

(iii) The results follow from G; = G, (2)if s =y =0. W

Note that multi-step FRSs or BRSs can be computed by
applying this theorem iteratively, and the size of the reduced
FNNs might vary with each iteration as the reduction is
performed locally.

Similar to the analysis for isolated FNNs, the over-
approximated FRSs and BRSs of the NNCS (2) become exact
when § = y = 0 is selected in Algorithm 2. Given an unsafe
set O as an HZ, sufficient safety verification conditions for the
NNCS (2) can be formulated as MILPs by checking whether
the intersection between the computed FRSs/BRSs and the set
O is empty [9], [10].

Remark 3: The tunable parameters § and y in Algorithm 2
govern bucket tolerances and HZ representation complexity for

FNNs and NNCS. In general, increasing & reduces FNN sizes
while larger y relaxes HZ representations, which will reduce
the computation time at the expense of larger approximation
errors, resulting in a sound but incomplete verification. In
practice, the values of § and y should be adjusted for
desired approximation accuracy. When § = y = 0, the
reachability analysis and safety verification results become
exact. Compared to existing HZ-based methods emphasizing
exact reachability analysis [9], [10], the proposed tunable
approach provides more flexibility in balancing computational
efficiency and approximation accuracy. This tunability offers
a powerful tool for the HZ-based method to handle NNCS
whose HZ set complexity arises from both the size of FNNs
and the error propagation during system evolution.

Remark 4: State-of-the-art NN  verifiers like o, -
CROWN [18] and Marabou [19] offer efficient analysis for
standalone NNs but introduce conservatism when directly
applied to NNCS. Compared with other set representations
(e.g., zonotopes [20], constrained zonotopes [3], and
polynotopes [21]) that have also been used for NNCS
reachability analysis, HZs can represent arbitrary non-
convex and disconnected sets with flat faces and their set
operations can be efficiently computed using simple identities.
These features make HZ better suited for investigating
NNCS reachability problems that usually involve non-convex
polytopic sets.

The method of this letter can be potentially extended to
NNCS with nonlinear plant and other types of activation func-
tions by incorporating the nonlinear reachability algorithms
in [15], [22]. The computational efficiency of the proposed
method may be also further improved by leveraging the linear
bound propagation techniques in [18].

V. SIMULATION RESULTS

The following example demonstrates the computation of
FRSs and BRSs using Theorems 1 and 2. Results are obtained
in MATLAB R2022a on a desktop with an Intel Core i9-
12900k CPU and 32GB of RAM.

Consider the following linearized ground robot model: x (4
) = I(ffﬂx(t) + |:g0'512'12 u(t), where the state x =

[x, y, %, ] T consists of x—y position and velocity, and the input
u(t) = m(x(t)) is a ReLU-activated FNN with 100 neurons
trained from a dataset generated by an MPC controller.

First, we compute FRSs Ri (X), ..., Rs(Xo) using
Theorem 2 iteratively with a given initial set Xy = [[2.5, 3]] x
[[2.5,3]] x [[-0.3,—-0.1]] x [[ — 0.3, —0.1]] and tunable
parameters y = 0 and 8 € {0, 0.04day, 0.06day ), Where diyax
is the largest range of neurons in each layer. The computation
takes 47.36 sec for § = 0, 62.78 sec for § = 0.04dmax,
and 70.15 sec for § = 0.06dmax. When § = 0.04dqyx, the
reduced FNNs atr=1,...,5 have 4, 3, 7, 13, and 9 neurons,
respectively; when § = 0.06d,,,4x, the reduced FNNs at r =
1,...,5 have 1, 5, 5, 10, and 11 neurons, respectively. We
compare our method with NNV [5], ReachLP and ReachL.P-
Partition with the default Greedy Sim-Guided partition [2].
The projections of the FRSs onto the x — y plane are shown
in Fig. 3. It can be seen that all FRSs in our method with
8 = 0 coincide with the exact FRSs computed by [10]. For
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Fig. 3.  The 5-step FRSs (projected on the x — y plane) that are
computed via the proposed method, NNV, ReachLP, and ReachLP-
Partition.
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Fig. 4. The 2-step BRSs (projected on the x — y plane) that are
computed via the proposed method, BReachLP and ReBReachLP.

two other values of &, the FRSs computed using our method
over-approximate the exact FRSs, where a larger § results in a
larger FRS as expected. Moreover, FRSs computed using our
method do not aggravate the conservativeness as ¢ increases,
while those computed by NNV and ReachLP tend to be more
conservative with an increasing ¢. ~ ~

Next, we compute two-step BRSs P;(7) and P> (7) with
a given target set 7 = [[—1.5,—0.5]] x [[-2.5, —1.5]] x
[[—1.1,—0.9]] x [[—1.1, —0.9]] and tunable parameters y =
0.1 and § € {0, 0.06d,nqx, 0.08,nax} using Theorem 2 iter-
atively. A prior set enclosing the BRS is chosen as the
input set of Algorithm 2. For comparison, we use BReachLP
and ReBReachLP [4] to compute over-approximations of the
BRSs. Fig. 4 shows the projections of the computed BRSs
onto the x — y plane. Similar to the FRS case, our calculated
BRSs become more conservative with a larger 5. Nevertheless,
they are more accurate than the BRSs computed by BReachLP
and ReBReachLP at r = 2.

VI. CONCLUSION

We introduced a tunable HZ-based approach that inte-
grates an optimization-based FNN reduction technique with

an activation pattern-based HZ propagation of FNNs. With
two tunable parameters, our method can generate HZ over-
approximations for the BRSs and FRSs of NNCS, allowing for
a flexible balance between set complexity and approximation
accuracy. Moreover, the proposed approach was shown to
revert to exact reachability analysis as a special case.
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