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Abstract

Timely regulation of carbon metabolic pathways is essential for cellular processes and to
prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline
adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and
other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for
energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional
regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the tar-
gets and function of TrmB, or its regulon, is conserved in related species with distinct meta-
bolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the
expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An
important regulatory control point in Hbt. salinarum, activation of ppsA and repression of
PYKA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic
hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the
expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or
catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest
rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.

Author summary

The breakdown of and synthesis of carbohydrates are central processes for life. The appro-
priate response to available nutrients is therefore critical for growth and survival. While
these metabolic pathways have been studied for decades, it remains unclear the extent to
which regulation of these processes is conserved. In the current study, we investigate the
regulation and conservation of central metabolism across related species of hypersaline
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adapted archaea, microorganisms living at nearly saturated salt. Nutrients are intermit-
tently available in hypersaline environments and therefore the appropriate timing of
uptake and use or synthesis of carbohydrates is key for growth and survival. We report
strong evolutionary conservation of an important regulatory protein and its respective
DNA binding sequence across archaeal species. However, the genes controlled by this reg-
ulator differ between species in concordance with variation in metabolic capacities
between species.

Introduction

Regulation of glycolytic and gluconeogenic activities in the cell is critical to generate energy and
direct carbon flux in the face of variable environments and nutrient availability. In bacteria and
eukaryotes, allosteric regulation plays an important role, though regulation at the transcrip-
tional and post-transcriptional levels also occurs [1-4]. However, studies in archaea suggest that
allosteric regulation of enzymes involved in central carbon metabolism is less prevalent
(reviewed in Ref. [5]). For example, reactions catalyzed by the antagonistic enzyme couples
phosphofructokinase (pfk) and fructose-1,6-bisphosphatase (fbp) are not allosterically regulated
in most characterized archaeal enzymes, as they are in bacteria. Archaeal pyruvate kinases
appear to be sensitive to allosteric activation by novel ligands AMP and 3-phosphoglycerate [6-
8]. Instead of allosteric regulation, studies comparing glycolytic and gluconeogenic growth con-
ditions in archaea indicate that regulation at the transcriptional level is important [9-16].

In Pyrococcus furiosus and Themococcus kodakarensis, both hyperthermophilic members of
Euryarchaea, a conserved transcription factor (TF) controls gluconeogenesis. TrmBL1 in Pyr.
furiosus and Tgr in Tcc. kodakarensis are TrmB family regulators that bind DNA in the absence
of glucose to induce the expression of gluconeogenic genes and suppress the expression of gly-
colytic genes. Both homologs recognize a conserved cis-regulatory motif that is absent from
closely related, non-carbohydrate utilizing species [17-19]. The direction of regulation is
determined by the motif location relative to other promoter elements: binding downstream of
the TATA-box inhibits RNA polymerase recruitment, whereas upstream binding activates
transcription.

Though this class of sugar-sensing TrmB regulators is broadly conserved in archaeal and
bacterial lineages [20, 21], the majority of homologs are found in Halobacteria, a class of
hypersaline-adapted Euryarchaea [22]. The non-carbohydrate utilizing, or nonsaccharolytic,
species Halobacterium salinarum NRC-1 encodes a single TrmB homolog that has been previ-
ously characterized. In Hbt. salinarum, TrmB regulates more than 100 genes via the same
mode of regulation proposed for hyperthermophiles. TrmB regulates the expression of genes
in the absence of glucose to activate gluconeogenesis and suppress other metabolic pathways
such as amino acid metabolism, cobalamin biosynthesis, and purine biosynthesis [10, 23].
Although glucose is not actively transported into the cell nor catabolized via glycolysis, it is
essential for glycosylation of the proteinaceous cell surface layer (s-layer) [24-28]. TrmB plays
an essential role in this process by controlling the availability of glucose moieties and expres-
sion of enzymes for amino acid metabolism and co-factor biosynthesis, and decreasing flux
through purine biosynthetic pathways [10, 23, 29, 30]. The genes encoding phosphoenolpyr-
uvate synthase (ppsA) and pyruvate kinase (pyk) comprise an important regulatory point con-
trolling carbon flux in Hbt. salinarum. Within five minutes of glucose addition, ppsA is de-
activated and pykA is de-repressed by TrmB [23]. Furthermore, TrmB regulates the expression
of several other transcription factors, endowing the gene regulatory network (GRN) with
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dynamical properties such as transient “just-in-time” expression of metabolic genes during
rapid nutrient shifts, suggesting that TrmB is a hub at the core of a larger GRN.

However, the majority of characterized Halobacteria, hereon referred to as haloarchaea for
clarity, are carbohydrate utilizers, or saccharolytic. These organisms primarily use the semi-
phosphorylative Entner-Doudoroft (spED) pathway for glycolysis, while a modified Embden
Meyerhof Parnas (EMP) pathway is predominately utilized during gluconeogenesis and fruc-
tose degradation (Fig 1) [31-33]. Glycolysis in saccharolytic haloarchaea has two
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Fig 1. Central carbon metabolism in Haloarchaea. In saccharolytic species, glucose is catabolized via the semi-
phosphorylative Entner-Doudoroff (spED) pathway (genes 1-10) [33]. In particular, saccharolytic species encode gapl
(6), while nonsaccharolytic species possess gapn (5). All species are predicted to synthesize glucose via the reverse EMP
pathway, or gluconeogenesis (genes 10-20) [5]. Abbreviations are as follows: G6P, glucose-6-phosphate; F6P, fructose-
6-phosphate; F1,6P, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde-
3-phosphate; 1,3BPG, 1,3-bisphosphoglycerate; PEP, phosphoenolpyruvate; A-CoA, acetyl-CoA; TCA, tricarboxylic
acid; KDG, 2-keto-3-deoxygluconate; KDPG, 2-keto-3-deoxy-6-phosphogluconate.

https://doi.org/10.1371/journal.pgen.1011115.9001
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distinguishing features from other archaeal groups that enable the same ATP yield as the spED
pathway in Bacteria: (i) a bacterial-type catabolic glyceraldehyde-3-phosphate dehydrogenase
(gapI), and (ii) an amphibolic archaeal phosphoglycerate kinase (pgk) [34]. Nonsaccharolytic
species, such as Hbt. salinarum and Natrinema sp. strain J7-2, possess all genes necessary for a
functional spED pathway except that they lack the gapI/pgk operon present in saccharolytic
genomes and instead encode an archaeal-specific nonphosphorylating glyceraldehyde-3-phos-
phate (GAP) dehydrogenase (gapn) [35-37]. Despite the presence of all necessary genes in the
genome, the activity of spED enzymes has not been detected in Hbt. salinarum [24, 27, 38]. In
particular, because the GAPN reaction proceeds without the formation of 1,3-bisphosphogly-
cerate coupled to substrate-level phosphorylation, the theoretical ATP yield of glycolysis in
nonsaccharolytic haloarchaea is lower than in haloarchaea encoding gapl.

As in the other bacteria and eukaryotes, the synthesis of glucose from pyruvate, or gluco-
neogenesis, proceeds through the reverse EMP pathway in haloarchaea. Enolase (eno), phos-
phoglycerate mutase (pgm), triose phosphate isomerase (fpi), and phosphoglucose isomerase
(pgi) enzymes are bidirectional and act in both glycolysis and gluconeogenesis (Fig 1). In con-
trast, the irreversible enzymes pgk, archaeal-specific gapn, and pyk are specific to glycolytic
reactions. The irreversible gluconeogenic enzyme ppsA catalyzes the reverse (gluconeogenic)
reaction, opposing pyk as in bacteria. Similarly, the gapn or gaplI reactions can be reversed by
the archaeal class of gluconeogenesis specific phosphorylating glyceraldehyde-3-phosphate
dehydrogenase (GAPDH, encoded by gapIl) [34]. In most archaea except for haloarchaea,
dihydroxyacetone phosphate (DHAP) and GAP are converted directly to fructose-6-phosphate
by a bifunctional fructose bisphosphate aldolase/phosphatase [5]. In haloarchaea, like in bacte-
ria and eukaryotes, these steps are catalyzed by fructose-bisphosphate aldolase (fba) and fruc-
tose bisphosphatase (fbp) [39].

The role of TrmB has yet to be investigated in other haloarchaea, particularly in models that
catabolize diverse sets of carbohydrates and are of interest for industrial applications [40, 41],
such as Haloarcula hispanica ATCC33960. Har. hispanica is a moderately halophilic archaeon
that grows on a wide array of carbon sources such as pentose and hexose sugars, disaccharides,
three-carbon molecules, and acetate [42, 43]. Moreover, when oxygen, nitrogen, or phospho-
rus is limited and carbon is abundant, Har. hispanica accumulates large quantities of poly
(3-hydroxybutyrate-co-3-hydroxyvalerate), or PHBV, a biodegradable plastic alternative [44-
46]. Due to its biotechnological potential, metabolic studies thus far have focused on PHBV
synthesis [13, 47, 48]. Correct activation of PHBV production implies sensing carbon availabil-
ity, down-regulation of glycolysis, and activation of the PHBV synthesis pathway. Our under-
standing of how various signals are integrated to coordinate such a response is still unclear. A
better understanding of metabolic regulation generally in Har. hispanica is needed to elucidate
the function of genes and enzymes for biotechnological applications.

In this study, we characterized TrmB in Haloarcula hispanica using high-throughput pheno-
typing, genome-wide binding assays, and expression experiments to compare its targets with
those previously reported in Hbt. salinarum [10]. We find that TrmB is essential for growth in
gluconeogenic conditions in both species, but when TrmB is deleted in Har. hispanica growth
can be restored by supplementing a wider variety of carbon sources, in line with its saccharoly-
tic capabilities. We identified 15 robust TrmB binding sites across the genome corresponding
to the differential expression of 9 genes predominately involved in gluconeogenesis. A point of
bidirectional regulation by TrmB of the EMP pathway in Hbt. salinarum (activation of ppsA
and repression of pykA) is absent in Har. hispanica. Instead, we propose that TrmB-dependent
induction of the archaeal, gluconeogenic-specific GAPDH is necessary for gluconeogenesis.
Together these results suggest an ancestral role for TrmB in enabling gluconeogenesis across
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Euryarchaea and highlight this family of transcriptional regulators as an important indicator of
metabolic versatility in hypersaline-adapted archaea.

Materials and methods
Media & growth conditions

All Har. hispanica strains were derived from Haloarcula hispanica ATCC33960 type strain.
Har. hispanica was routinely grown on rich medium for Haloferax volcanii modified to con-
tain 23% basal salts (YPC23) supplemented with 0.1% glucose (w/v) [49]. During glucose limi-
tation experiments, strains were grown in casamino acid media modified to 23% basal salt
concentration (Hh-CA). Briefly, 23% basal salts contain, per liter, 184 g of NaCl, 34.5 g of
MgSO, - 7H,0, 23 g of MgCl - 6 H,0, 5.4 g of KCI, and 15.3 mM Tris HCI (pH 7.5). If glucose
was supplemented, it was added to a final concentration of 0.1% (w / v) unless otherwise
noted. All media were supplemented with uracil (50 yg/ml) to complement the biosynthetic
auxotrophy of the A pyrF parent strain unless specified. Other ingredients and media prepara-
tion are in line with Allers et. al. [49]. All plates were incubated at 37°C for 8-10 days for single
colonies and liquid cultures were cultivated aerobically at 37°C with 250 rpm orbital agitation.

Strains, plasmids, & primers

Deletion and integration plasmids were constructed using isothermal assembly [50]. For
growth complementation assays, a heterologous expression vector for Har. hispanica was con-
structed from pWL502, a pyrF-based expression vector for Haloferax mediterranei [51].
Briefly, a mevinolin resistance cassette was amplified from pNBKO?7 and replaced the Hfx.
mediterranei pyrF at the Smal and BamHI sites to yield pAKS83. All plasmid sequences were
confirmed via Sanger sequencing and propagated in Escherichia coli NEB5a. Strains, plasmids,
and primers used are presented in S1, S2 and S3 Tables, respectively. Gene deletions and chro-
mosomal integrations were performed using two-stage selection and counterselection as
described previously [45]. Strains were generated using the spheroplasting transformation
method and plated on Hh-CA without supplemental uracil [52]. Resulting colonies were inoc-
ulated in 5 ml of YPC23 + glucose and grown for 48 hours and then plated onto Hh-CA + 150
pg/ml 5-Fluoroorotic acid (5-FOA) + glucose for counterselection.

To verify the complete deletion of all copies of trmB in the genome and to check for second-
ary mutations, genomic DNA was extracted using phenol:chloroform:isoamyl alcohol
(25:24:1) followed by ethanol precipitation. TruSeq libraries were prepared and sequenced on
Ilumina MiSeq by the Center for Genomic and Computational Biology at Duke University
(Durham, NC). Reads were aligned to the Har. hispanica ATCC33960 genome
(GCF_000223905.1, assembly ID ASM22390v1, accessed 2022-10-19) using breseq with
default options [53].

Sequence analysis of Har. hispanica TrmB homologs

To identify sugar-sensing TrmB homologs, reference proteomes were searched for protein
sequences similar to TrmByy, and results were filtered to include hits with identical domain
architecture. Domain identities and confidence values were confirmed using hmmscan on the
Pfam database [54, 55]. Har. hispanica TrmB protein and gene sequences were accessed from
NCBI and globally aligned to Halobacterium salinarum NRC-1 VNG1451C using EMBOSS
Needle [56].
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Quantitative phenotyping

Strains were streaked from freezer stocks for each experiment and incubated for 10 days. Sin-
gle colonies were inoculated in 5 mL YPC23 + glucose and grown to stationary phase (ODgpo
~ 4). Stationary precultures were then collected, washed twice in Hh-CA and diluted into 200
ul fresh Hh-CA with or without 25 mM of additional carbon sources to an initial ODgqq of
0.05. Growth was measured every 30 minutes at 37°C with continuous shaking for 72-90
hours in Bioscreen C analysis system (Growth Curves USA, Piscataway, NJ). For quantitative
analysis, growth curves were blank-adjusted within independent experiments, fitted, and holis-
tic differences across growth phases were summarized using the area under the curve (AUC)
[57]. AUC values were averaged across technical replicates, the standard deviation was calcu-
lated across biological replicates, and significant differences were evaluated by a two-tailed
paired Student’s t-test.

Isolation of uracil prototrophic AKS133 strains

Colonies used for AKS133 RNA-seq experiment that showed pyrF expression were subjected
to a quantitative growth assay in Hh-CA media + uracil + glucose to test for growth in the
absence of uracil. All 10 wells containing AKS133 grew in the absence of uracil. These cultures
were inoculated into Hh-CA—uracil + glucose for 24 hours and then plated in medium lack-
ing uracil for individual colonies. Of the ten cultures, single colonies were isolated from 7,
from which genomic DNA was extracted. Amplification of pyrF from genomic DNA con-
firmed that the endogenous deletion was intact in all prototrophic isolates, ruling out gene
conversion, and revealed pyrF sequence elsewhere in the genome (primer sequences are listed
in S3 Table). We were unable to locate pyrF with multiple attempts at arbitrary PCR [58], but
note that there is substantial sequence homology between the vector and the Har. hispanica
genome, particularly near the origins of replication.

AKS319 strain construction & verification

To construct AKS319, transformations were carried out as described above, except that all
media and plates were supplemented with glucose to alleviate selection. Colonies harboring
the deletion vector were passaged twice in YPC23 + glucose (for a total of 96 hours), and then
exposed to a higher concentration (250 ug/ml) of 5-FOA to select against pyrF and vector
retention. After initial confirmation of genotype by PCR, prior to storage and WGS, 5-FOA-
resistant colonies were screened for uracil prototrophic growth for 90 hours in Hh-CA
media * uracil + glucose. Genomic DNA was extracted and WGS was carried out to confirm
no reads mapped to the pyrF or trmB loci.

Chromatin immunoprecipitation

Strains DF60 and AKS155 were streaked from freezer stocks onto YPC23 plates and incubated
for 8 days. Independent colonies were used to start two cultures of DF60 and four cultures of
AKS155 in 10 mL YPC23. Precultures were grown for 29 hours (ODggo ~ 2) then collected at
6000 rpm for 2 minutes and washed twice with Hh-CA. AKS155 pellets were resuspended in
Hh-CA or Hh-CA + glucose and grown to midlog phase (average ODgyo ~ 0.34) before cross-
linking (S1 File). Samples were processed as described by Wilbanks et al. using anti-HA poly-
clonal antibody (Abcam catalog #ab9110) to immunoprecipitate cross-linked fragments [59].
Libraries were constructed by the Center for Genomic and Computational Biology at Duke
University (Durham, NC) using KAPA Hyper Prep kit and Illumina TruSeq adapters, and the
50 base pair, single-ended libraries were sequenced on an Illumina HiSeq 4000.
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ChIP-seq read processing & peak calling

Raw FastQ files were trimmed of adapter sequences with Trim_galore! 0.4.3 and Cutadapt 2.3
and read quality was checked with FastQC 0.11.7. Reads were aligned to the Har. hispanica
genome with Bowtie2 2.3.4.3 [60]. Aligned sequence files were then sorted, indexed, and con-
verted to binary format with samtools 1.9 [61]. Before calling the peaks, the fragment length
was optimized for each IP and input control sample using ChIPQC 1.30 [62]. Binding peaks
were called from sorted bam files using Mosaics 2.32 in R 4.1.2 with the calculated fragment
lengths and FDR < 0.01. DiffBind 3.4.11 was used to merge peaks that were shared in at least 3
biological replicates for samples grown without glucose (N = 4) and all samples grown in the
presence of glucose (N = 2) [63]. Briefly, binding peaks were merged if they overlapped by at
least one base pair, and consensus peaks were then trimmed to 300 base pair width centered
around the consensus peak maximum. Samples were RLE normalized. Separately, we used
DiffBind to identify peaks shared between glucose-replete and depleted samples that exhibited
differential binding. Peaks were visually verified using the trackvieweR package to determine
an enrichment cutoff [64]. Then, consensus peaks were annotated using IRanges and Geno-
micFeatures to identify genomic features overlapping and adjacent to TrmB binding peaks
[65]. For the per base enrichment plot, bam files were extended to the estimated average frag-
ment size by ChIPQC (150 base pairs), converted to BEDGRAPH format, and scaled accord-
ing to sequencing depth before calculating the enrichment ratio and averaging across
replicates as described by Griinberger et al. [66]. The fifteen regions identified via peak-calling
exactly correspond with regions surpassing log2 fold enrichment of 4.

RNA-isolation & sequencing

Strains DF60 and ASK133 or AKS319 were streaked from freezer stocks onto YPC23 + 0.1%
glucose plates and incubated for 10 days. Four single colonies of DF60 and ASK133 or AKS319
were inoculated in 5 mL YPC23 medium with 0.1% glucose and grown aerobically to station-
ary phase (ODgpy ~ 4). Cells were washed twice with Hh-CA medium without glucose and
transferred into fresh 50 mL Hh-CA with or without 0.1% glucose at an initial density of
ODyggo ~ 0.4. After 24 hours, cultures were harvested and RNA extracted using Absolutely
RNA Miniprep kit (Agilent Technologies, Santa Clara, CA) followed by additional DNAse
treatment with Turbo DNAse (Invitrogen, Waltham, MA). Total RNA was quantified using
Agilent Bioanalyzer RNA Nano 6000 chip (Agilent Technologies, Santa Clara, CA). The
absence of DNA contamination was determined on 200 ng of RNA in 25 PCR cycles. Ribo-
somal RNA was removed with the PanArchaea riboPOOL kit according to the manufacturer
protocol (siTOOLs Biotech, Germany), and sequencing libraries were constructed with NEB-
Next Ultrall Directional RNA Library Preparation Kit (Illumina, #E7760) as described previ-
ously [67]. The fragment size of the libraries was measured using the Agilent Bioanalyzer DNA
1000 chip and then pooled and sequenced on NovaSeq6000 at the Center for Genomic and
Computational Biology at Duke University (Durham, NC).

Differential expression analysis & clustering

FastQ files were processed as described for ChIP-seq, except alignment by Bowtie2 was done
using pair-end mode. After alignment, counts were calculated using featureCounts requiring
complete and concordant alignment of paired reads [68]. Samples were considered outliers
and removed prior to differential expression analysis if they had a pairwise correlation lower
than R = 0.6 with all other replicates. Differential expression analysis was carried out in
DeSeq2 with log2 fold-change and FDR cutoffs of 1 and 0.05, respectively, using an experimen-
tal design informed by TrmB model of regulation in Hbt. salinarum [10, 69]. To cluster
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differentially expressed genes based on expression patterns across strain and condition, nor-
malized counts were mean and variance standardized and subjected to k-means clustering and
visualized as described in [70].

Functional enrichment

Annotated and predicted gene functions were accessed from EggNOG 5.1 [71]. Genes adjacent
to TrmB binding sites were then tested for functional enrichment relative to the whole genome
using a hypergeometric test with Benjamini and Hochberg multiple testing correction.

Motif discovery & scanning

TrmB binding motif was identified using the command line version of MEME Suite 5.5.1. Spe-
cifically, sequences under consensus peaks (300 base pairs) were extracted and analyzed with
XSTREME for motif discovery, motif enrichment, and motif comparison [72]. Default settings
were used except that the maximum motif width was set to 19 base pairs and a first-order Mar-
kov background model was generated using non-coding regions of the Har. hispanica genome
to control for dinucleotide frequencies. The recognition motif reported for Hbt. salinarum was
included for downstream motif enrichment and similarity assessment (see reference [10] sup-
plemental table 5). The motif identified was robust to zero and second-order background
models. To identify motif occurrences genome-wide, the Haloarcula hispanica reference
genome was scanned using FIMO with a p-value cutoff of 1 x 107,

Results
Four TrmB homologs are encoded in the Har. hispanica genome

Using bioinformatic analysis, we investigated the conservation of TrmB. We detected 619 pro-
teins with identical domain architecture as Hbt. salinarum TrmB across archaeal and bacterial
Pfam reference proteomes (S1 File). Of these, almost half were encoded in haloarchaeal
genomes (Fig 2A). On average, Haloarchaea genomes (n = 97) contain three TrmB homologs
per genome, compared to an average of one homolog outside of haloarchaea (n = 238), indicat-
ing lineage-specific expansion of this class of regulators (p-value < 2.2 x 107", one-sided Wil-
coxon test). Some regulators containing the TrmB DNA-binding domain have been recently
shown to function during oxidative stress in haloarchaea [22], but proteins with both a TrmB
DNA-binding domain and carbohydrate-binding domain have not been functionally charac-
terized in haloarchaea aside from VNG_1451C in Hbt. salinarum (hereafter referred to as
TrmByy,).

To determine the most likely functional ortholog of Hbt. salinarum TrmB (VNG_1451C)
in the Har. hispanica genome, we searched the 148 proteins with predicted DNA-binding
capabilities. Ten of these putative transcription factors have a TrmB DNA-binding domain
and four contain both the TrmB DNA-binding domain and sugar-binding domain (PF01978
and PF11495, respectively): HAH_0923, HAH_1548, HAH_1557, and HAH_2795 (Fig 2B).
Multiple sequence alignment revealed that HAH_0923, HAH_1548, and HAH_2795 maintain
two of the six active site residues required for sugar-binding in Thermococcus litoralis, while
HAH_1557 preserved four of the six residues [73]. Both G320 and E326 residues, which when
mutated in Tcc. litoralis drastically reduce the binding affinity for sucrose and maltose, are
conserved across the haloarchaeal TrmB proteins analyzed [73]. In contrast, N305, which is
specific for maltose but not sucrose binding, is not conserved outside of hyperthermophiles
[74]. Of the TrmB homologs in Har. hispanica, HAH_1548 exhibits the highest amino acid
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Fig 2. Sugar-sensing TrmB homologs. A) Phylogenetic distribution of TrmB proteins that also contain a carbohydrate-binding domain. B)
Multiple sequence alignment of the sugar-binding domain of Har. hispanica TrmB homologs. Red, underlined residues are essential for sugar
binding in Tcc. litoralis, conserved residues are in bold underline [73, 74]. Asterisks below the alignment denote identical residues and dots
represent similar residues. Organism abbreviations and locus tags are as follows: TLI_TRMB, Tcc. litoralis OCC_03542; PFU_TRMBLI, Pyr.
furiosus PF0124; TKO_TGR, Tcc. kodakaraensis TK1769; HBT_TRMB, Hbt. salinarum VNG_1451C. Har. hispanica TrmB homologs are
named according to their identity to characterized proteins.

https://doi.org/10.1371/journal.pgen.1011115.g002

Table 1. Har. hispanica TrmB homologs.

TrmB homolog gene name
VNG_1451 trmB
HAH_1548 trmB
HAH_2795 trmB2
HAH_1557 trmB3
HAH_0923 trmB4

sequence identity to TrmByy,, and best agreement with the sugar-binding domain consensus
(e-value = 3.3 x 1072, Table 1).

In Tcc. litoralis and Tcc. kodakarensis, the trmB homolog is located near genes that encode
carbohydrate ABC transporters. However, in Hbt. salinarum and Pyr. furiosus, these genes are

protein identity protein positives DBD e-value SBD e-value
100% 100% 1.8x1077° 6.1x107%°
56.5% 74.2% 1.1x107%8 33x107%°
31.2% 47.5% 1.5x107° 35x 1071
27.2% 48.5% 29%x10778 12x107™
25.4% 39.9% 1.9x10°% 40x107"7

Protein sequences were globally aligned to Hbt. salinarum TrmB. DNA-binding domain (DBD) and sugar-binding domain (SBD) confidence scores were calculated

with hmmscan [54].

https://doi.org/10.1371/journal.pgen.1011115.t001
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absent from the genomic region surrounding trmB [10, 75]. Genomic context analysis revealed
that HAH_ 1548 is upstream of a putative carbohydrate ABC transporter and glucose-1-dehy-
drogenase. HAH_1557 flanks the same ABC transport system but has a substantially lower
identity to TrmByg,, (Fig 2B, Table 1). Thus, HAH_1548 was distinguished via sequence align-
ment and genomic context as the likely functional homolog of TrmByy, (for clarity, hereafter
we refer to the HAH_ 1548 gene as trmBy,, and the translated protein as TrmByy,,).

TrmBy,, is essential for growth in gluconeogenic conditions

To assess whether TrmByy,, plays a physiological role in carbohydrate metabolism and gluco-
neogenesis, we deleted trmBp,,. Because haloarchaea are polyploid [76], it is possible for copies
of the wild-type locus to persist at levels too low to detect via Sanger sequencing [77]. There-
fore, the genotypes of all strains in this study were confirmed with short-read whole genome
sequencing (WGS). WGS of the trmBy,, deletion strain confirmed it to be free of second-site
mutations and chromosomal copies of trmBy,, (S1 Fig, SRA accession PRINA947196). Nota-
bly, DF60, the A pyrF parent strain, harbors a previously unreported 2.6 kb deletion disrupting
HAH_2675-79, encoding flgA1 and cheW1. This region is absent in all strains derived from
the A pyrF strain in this study.

We subjected both A trmBpy,, and A trmBp,, to a panel of nine ecologically and physiologi-
cally relevant carbon sources at an equimolar concentration to facilitate comparisons between
species (Fig 3). As expected from previous reports, the Hbt. salinarum A trmB strain exhibits a
severe growth defect under gluconeogenic conditions [10]. Only glucose and glycerol stimulate
growth in the deletion strain (Fig 3A). The slight differences between these results and those
reported by Schmid et al. are due to differences in supplemental carbon concentration
(389mM and 760mM for glucose and glycerol, respectively, [10]).

Growth assays also revealed a severe growth defect of the A trmBp,, strain in Hh-CA (Fig
3B). Without additional carbon sources, amino acids are the sole nitrogen and carbon source
in Hh-CA, so cells rely on gluconeogenesis to synthesize all required glucose. Normal growth
could be restored with heterologous expression of TrmByy,, (S2 Fig). In contrast to Hbt. sali-
narum, A trmBg,, growth could be restored by the addition of glucose, fructose, sucrose, or
glycerol. Xylose stimulated growth to 57% of the parent strain, as measured by the area under
the growth curve (AUC), but growth remains depressed relative to the parent strain in the
presence of ribose, pyruvate, acetate, and galactose. Accelerated growth of the parent strain in
media supplemented with pyruvate and ribose contributes to the lower growth ratios reported
for those carbon sources (S2 Fig).

We next titrated the concentration of glucose to identify the minimum amount that
restored normal growth (Fig 3C). Relative to parent strain growth in the absence of carbon, A
trmBpy,, was stimulated 0.31, 0.81, 1.42, 1.73, 1.74-fold with no supplemental carbon source,
0.01%, 0.05%, 0.1%, and 0.5% glucose (w/v), respectively. Glucose concentrations above 0.1%
did not further stimulate growth, identifying 0.1% glucose, or 5.55 mM, as the minimal glucose
concentration needed to rescue growth. These data demonstrate that TrmB is indispensable
for growth under gluconeogenic conditions in haloarchaea with various metabolic capabilities,
and implicate glucose in the function of TrmB in both Hbt. salinarum and Har. hispanica.

TrmBy,, binds promoters of genes involved in central carbon metabolism

To determine whether TrmBy,, functions as a transcriptional regulator, we located TrmByy,,-
DNA interactions with chromatin immunoprecipitation coupled to sequencing (ChIP-Seq) in
the presence and absence of glucose. A trmBp,,::hemagglutinin (HA) epitope fusion at the
endogenous locus was constructed for these experiments and confirmed via WGS (S1 Fig).
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Fig 3. TrmBy,, is essential for gluconeogenic growth. Proportion of parent growth achieved by (A) A trmBy,, and
(B) A trmBy,, with various carbon supplements, as measured by area under the growth curve (AUC). Error bars
indicate the standard deviation over a minimum of 3 biological replicates, each in technical triplicate. Insets show the
fitted, log-transformed growth curves of A trmB strains in each condition. Asterisks indicate the significance of growth
difference relative to the parental strain in each respective condition. C) Effect of increasing glucose concentrations on
the growth of Har. hispanica A trmB and A pyrF strains. Solid lines represent the mean of the log-transformed growth
curve, and shaded regions depict 95% confidence intervals. For all panels, asterisks indicate significance: * p-

value < 0.05; ** < 0.01; **** < 0.0001.

https://doi.org/10.1371/journal.pgen.1011115.9003

There was no difference in the growth of the tagged strain from the parent strain in the absence
of glucose, suggesting the C-terminal fusion retained full functionality (S2 Fig).

Consistent with the model of regulation reported in Hbt. salinarum and homologs in hyper-
thermophiles [10, 17, 78], TrmBy,, primarily binds DNA when glucose is absent (Fig 4A).
Under this condition, fifteen reproducible TrmBy,, binding sites, or peaks, were enriched rela-
tive to the input control (Table 2, Fig 4B, Methods). Of the 15 peaks, seven exhibited
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The 19-base pair motif identified is similar to the binding motif reported for TrmByy, (p-value = 0.017, TomTom
[79]).

https://doi.org/10.1371/journal.pgen.1011115.9004
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Table 2. Har. hispanica TrmB binding-sites.

peak
rank

1

AN W

~N

10
11

12
13

14
15

genomic LFC
context peak
—*— 213.66
* 154.1
- 121.07
* 92.46
*— 85.71
—*— 49.84
*— 47.56
*— 39.81
—* = 37.36
*— 30.84
—*— 18.73
*— 11.22
—*— 8.39
*— 6.47
—*= 6.29

LFC
-gluc

6.94

6.66

5.96
4.46

4.69
5.22

motif |location |locus name LFC annotation
RNA

yes promoter | HAH_1418 | paaH -6.58 | 3-hydroxybutyryl-CoA dehydrogenase class 1 fructose-
promoter | HAH_1419 | fbp bisphosphatase

yes | promoter | HAH_0188 -4.63 | hypothetical protein

yes intergenic

yes promoter | HAH_4332 | gdh glucose dehydrogenase

yes promoter | HAH_5129 4.72 | sugar porter family MFS transporter

yes promoter | HAH_1365 | porA flavodoxin reductase family I pyruvate:ferredoxin
promoter | HAH_1366 oxidoreductase

yes promoter | HAH_0887 | cysK -1.36 | cysteine synthase A

yes promoter | HAH_1264 universal stress protein

yes promoter | HAH_2729 | gapIl -4.13 | aminopeptidase type II GAP dehydrogenase
promoter | HAH_2730

yes | promoter | HAH_2323 | ppsA phosphoenolpyruvate synthase

yes promoter | HAH_2805 | ribC -2.89 | hypothetical protein riboflavin synthase
promoter | HAH_2806

yes promoter | HAH_3039 AsnC family transcriptional regulator

yes promoter | HAH_1011 CBS domain-containing protein gfo/Idh/MocA family
promoter | HAH_1012 oxidoreductase

yes promoter | HAH_5130 2.87 | universal stress protein

yes promoter | HAH_5033 -3.30 | rubrerythrin-like domain protein Glu/Leu/Phe/Val
promoter | HAH_5034 -3.43 | dehydrogenase

Genomic context indicates the orientation of adjacent genes (* indicates the peak). Peak log-fold change (LFC peak) represents the enrichment of IP samples relative to

input controls. LFC -gluc represents the relative enrichment between no glucose and glucose conditions after relative log expression (RLE) normalization in DiffBind.

Rows without LFC -gluc values were detected only in samples without glucose, except for HAH_5130 which was detected stably across conditions. The magnitude of

TrmB-dependent differential expression as calculated by DeSeq2 is reported in LFC RNA column. Negative values indicate a reduction of glucose-dependent expression

when trmBy,, is deleted relative to the parent strain. Empty cells indicate no significant differential expression was detected.

https://doi.org/10.1371/journal.pgen.1011115.t002

significantly increased binding in the absence of glucose relative to glucose-replete samples
(FDR < 0.1). Seven other peaks were exclusively detected in the absence of glucose, and one
was observed in all samples regardless of glucose availability (S1 File, S3 Fig).

TrmBy,, binding sites were predominantly located in non-coding regions of the genome
(Fig 4C): 41% of the bases in enriched regions were non-coding (p-value < 1 x 10~'%, binomial
test), despite non-coding sequences comprising only 13% of the Har. hispanica genome. In the
absence of experimentally characterized promoters for Har. hispanica up to 250 base pairs of
non-coding sequences upstream of translational start sites were considered promoter regions.
TrmBy,, binding sites overlap the promoter regions of 20 genes (Table 2). Of those, five are
homologous to TrmByyy, targets by reciprocal protein blast, all in the canonical EMP gluconeo-
genic pathway: pyruvate oxidoreductase (encoded by porA/B), phosphoenolpyruvate synthase
(ppsA), GAPDHII (gapll), and fructose-bisphosphatase (fbp). Overall, the predicted function
of genes near binding sites were significantly enriched for carbohydrate transport and metabo-
lism (adjusted p-value < 7.3 x 10~°, hypergeometric test). Notably, the second largest peak is
located in the promoter of HAH_5129, a sugar major facilitator superfamily (MFS) transporter
(PF00083, e-value < 3.0 x 10'*%), highlighting this gene as a candidate for the primary glucose
transporter in Har. hispanica.

Computational de novo motif detection using 300 base pairs around binding summits
revealed a 19 base pair partially palindromic binding motif (Fig 4D). The motif is similar to
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the TrmB recognition sequence reported for Hbt. salinarum (p-value = 0.017, calculated with
TomTom [79]), and robust to various background models (S4 Fig). The motif occurs 235
times throughout the genome, and of those, 67 instances occur in the promoter regions of 58
genes (motif occurrences on opposite strands were considered distinct, S1 File). Like genes
near peaks, genes with motifs located in promoter regions are enriched for functions in the
transport and metabolism of carbohydrates and amino acids (hypergeometric test adjusted p-
value < 5.2 x 107> and 0.003, respectively). Together, these data support the model that in the
absence of glucose TrmBy,, recognizes a conserved cis-regulatory sequence to bind DNA near
genes primarily involved in carbon metabolism.

Transcriptome profiling suggests cryptic integration of deletion vector,
resulting in uracil prototrophy in A trmBy,, strains

We conducted transcriptome profiling to determine the direction of TrmB-dependent regula-
tion of genes near binding sites and to elucidate TrmByy,, targets in instances where peaks
were located over the promoters of divergent genes. Unexpectedly, we observed high pyrF
expression even though the pyrF gene (the ura5 homolog) is deleted in the parent strain to
enable genetic manipulation [45]. Transcripts mapping to the pyrF locus were not present in
any parent samples but were detected in all A trmBp,, (AKS133) samples regardless of glucose
availability. Subsequent phenotyping and genotyping confirmed stably inherited uracil proto-
trophy in 7 of 10 independent AKS133 isolates and ruled out stock contamination, vector
propagation, and gene conversion at the endogenous locus (S5 Fig; Methods). This points to
homologous recombination of the deletion vector, which harbors pyrF, elsewhere in the
genome.

We carefully generated a new A trmBy,, strain, AKS319, and repeated the experiment.
Despite additional safeguards during strain generation and genotype confirmation by WGS, 4
of 8 A trmBy,,, samples exhibited high pyrF expression (S6 Fig; Methods). Due to this variation,
however, we were able to investigate the fitness and transcriptomic consequences of pyrF
expression in the AKS319 strain and across A trmBpy,,, strains (S6 Fig). AKS319 exhibits a
more extreme growth defect relative to AKS133, which can be mostly, but not completely,
ameliorated by glucose supplementation. However, expression of pyrF has little effect on the
overall transcriptome: average counts per gene are highly correlated across all A trmBy,, sam-
ples regardless of pyrF expression both before (56 Fig) and after batch correction(Fig 5A, S1
File). The repeated and apparently independent instances of vector integration resulting in
uracil prototrophy suggests that both deletion strains are likely mixed populations with a small
proportion of cells retaining vector sequence. TrmByy,, may be conditionally essential in the
DF60 background, explaining this phenomenon.

TrmBy,, activates genes involved in gluconeogenesis and tryptophan
biosynthesis and represses those encoding glucose uptake

Based on the model of TrmB regulation described in Hbt. salinarum, we reasoned that direct
targets of TrmByy,, would exhibit differential expression only when TrmB is present and active,
i.e., in the parent strain grown in the absence of glucose (Fig 4A). This assumption was made
explicit in the DeSeq2 model used to identify differentially expressed genes [69]. Using this
framework, we detected 32 genes that were significantly differentially expressed (FDR < 0.05;
LFC > 1) in the parent vs mutant strain across two independent analyses, one including and
the other excluding samples with counts mapping to pyrF (Fig 5B, S1 File). Because pyrF
expression, when present, is not glucose-dependent, it was not considered significant using
this explicit model.
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https://doi.org/10.1371/journal.pgen.1011115.g005
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Of the 32 genes, three are significantly up-regulated in A trmBy,, relative to the parent
strain in the absence of glucose: glutamate synthase (encoded by HAH_0919), a universal stress
protein (HAH_5129), and the MFS family sugar transporter (HAH_5130) (Fig 5C and 5D).
The remaining 29 genes exhibit the opposite pattern: they are significantly down-regulated in
the deletion strain, exhibiting a pattern across strains and conditions consistent with transcrip-
tional activation by TrmB. The predicted products of these 29 genes are enriched for functions
in amino acid transport and metabolism (adjusted p-value = 1.085 x 10™'°, hypergeometric
test) including two tryptophan biosynthesis operons, cysteine synthase, a putative amino acid
transporter, and a TRAP transporter (Fig 5D). Genes whose expression is induced also include
those predicted to function in gluconeogenesis (gapIl and class I fructose-bisphosphate
encoded by fbp) and two small hypothetical proteins less than 50 amino acids in length
(HAH_0188 and HAH_2805).

Integrating across experiments, nine genes are adjacent to TrmByy,, binding sites contain-
ing a palindromic cis-regulatory motif, and are differentially expressed (Table 2, Fig 4D). Tak-
ing the ChIP-seq, RNA-seq, and motif evidence together, we conclude that these genes
comprise the high-confidence regulon under the direct transcriptional control of TrmByy,,
(Fig 5C bolded, Fig 6A). For these targets, we also determined whether the relative TrmB motif
distance from the putative TATA box or start codon was predictive of the direction of regula-
tion (S4 Table). The archaeal promoter architecture resembles a simplified version of that
found in eukaryotes, including a TATA box located around -26 bp and a BRE element around
-33 bp [80, 81]. Generally, motifs were upstream of predicted transcription initiation features,
consistent with our observation that TrmB acts primarily as an activator. In contrast, genes
repressed by TrmB binding had motifs that overlapped the predicted B recognition elements,
though HAH_0188 is a notable exception (S4 Table).

Given the small number of TrmB binding sites across the genome, it was surprising that
only half of the binding sites were near genes that exhibited differential expression. We won-
dered if there might be other regulatory mechanisms at play, namely TrmBy,,-dependent reg-
ulation of small or antisense RNAs, which have recently been described in other haloarchaeal
species [82-85]. Since we required correct strand orientation when generating transcript
counts, reads mapping to the non-coding strand would not have been considered in the down-
stream differential expression analysis. We visualized strand-specific reads near peaks and
identified an unannotated transcript approximately 200 base pairs in length near the sole inter-
genic peak in our data (peak 3, Table 2). This transcript is induced when TrmB is active and
contains a predicted promoter sequence upstream (S7 Fig). We also saw evidence for a tran-
script anti-sense to HAH_0887 that appears to be induced when TrmB is active, and that both
genes encoding putative small proteins (HAH_0188 and HAH_2805) appear to have extended
3" UTRs (S7 Fig). We did not find any evidence for unannotated transcripts for peaks near
HAH_1010, HAH_1264, HAH_3039, or HAH_4332. Unannotated transcripts require valida-
tion and further characterization to be considered direct targets of TrmByy,,, but support the
hypothesis that TFs may regulate the expression of regulatory RNAs in haloarchaea, as has
been reported for methanogens [86].

Discussion

Our data facilitate the general comparison of the TrmB regulon in Euryarchaea and more
closely between Hbt. salinarum and Har. hispanica. We detected fewer TrmBy,, binding sites
than TrmBL1 in Pyr. furiosus across the genome (15 and 28, respectively [17]). Moreover,
TrmBy,, acts primarily as an activator of gluconeogenic genes while TrmBL1 was predicted to
repress most of its targets, which were involved in glycolysis (21, based on relative motif
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Fig 6. Comparison of TrmB targets in gluconeogenesis in haloarchaea. Summary of experimental evidence of TrmB regulon in (A) Har. hispanica
and (B) Hbt. salinarum. Data for Hbt. salinarum summarized from figures 4 and 6 of Schmid et. al. [10]. C, D: Summary of TrmB targets that encode
enzymes in central carbon metabolism for each species. Targets in the high-confidence regulon are indicated with solid, colored arrows. Genes
differentially expressed but lacking a nearby binding site are indicated with dashed arrows. Targets that were near binding sites but not differentially
expressed are indicated in light blue. Solid gray arrows indicate that specific carbohydrate transport systems are unknown or that genes are present but
no enzymatic activity has been detected. Genes predicted to encode the necessary enzymes are labeled (see S8 Fig for normalized expression values).
Additional putative pyruvate oxidation systems that are not regulated by TrmB are listed in gray. G6P, glucose-6-phosphate; F6P, fructose-6-phosphate;
F1,6P, fructose-1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; DKFP, 6-deoxy-5-ketofructose-1-phosphate; GAP, glyceraldehyde-
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2-keto-3-deoxy-6-phosphogluconate.
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location) [17]. Similarly to TrmBL1, however, our in vivo data suggest that expression of
TrmBy,, is not autoregulated, contrary to reports of other homologs in vitro [10, 87]. Con-
served regulon members include gapIl and an MFS transporter, which are activated and
repressed, respectively.

At the sequence level, only two homologs are near TrmB binding sites and exhibit congru-
ent differential expression patterns in both haloarchaeal species: fbp and gaplI (Fig 6C and
6D). In general, much more of the triose portion of the EMP pathway (sometimes referred to
as “lower glycolysis”, although here “upper gluconeogenesis” would be more appropriate)
appears to be regulated by TrmB in Hbt. salinarum relative to Har. hispanica (Fig 6). For
example, TrmB represses and activates genes that encode pyruvate kinase (pyk) and phospho-
enolpyruvate synthase (ppsA), respectively, in Hbt. salinarum. In Har. hispanica, this control
point appears to be less important. This may be because multiple pyruvate oxidation systems
are present (listed in Fig 6), including pyruvate carboxylase, homologous to the preferred ana-
plerotic enzyme in another saccharolytic haloarchaeal species, Haloferax volcanii [88]. None of
the genes encoding pyruvate oxidation systems were differentially expressed in A trmBp,, (S8
Fig), though TrmByy,, robustly binds near ppsA and porAB. Additional experiments could
reveal whether these genes are differentially expressed in Har. hispanica at other points in the
growth curve, or whether these binding sites have lost their regulatory function over the course
of evolution [89, 90].

The Har. hispanica genome encodes two GAPDH homologs belonging to the bacterial type
I and archaeal type II clades (gapI and gapll, respectively). In Archaea, gapI homologs occur
almost exclusively in saccharolytic haloarchaea and are derived from an ancient horizontal
transfer of gapI from bacteria [34]. This acquisition, along with an amphibolic phosphoglycer-
ate kinase (pgk), grants an additional ATP generation during glycolysis relative to traditional
archaeal spED pathways [5]. In Haloferax volcanii, gapIl and gapl catalyze the gluconeogenic
and glycolytic reactions, respectively [34]. Our data suggest that the functional specificity of
GAPDH homologs is preserved in Har. hispanica: gapll is a direct target of TrmB and its
expression is strongly induced in gluconeogenic conditions. In contrast, gapl and cotran-
scribed pgk, are repressed in a manner consistent with TrmB-dependent regulation, though it
did not pass our significance threshold (p-value = 0.079, S8 Fig, S1 File). In Har. hispanica,
TrmB-dependent activation of gapII is necessary for growth under gluconeogenic conditions
(Figs 3 and 6), perhaps replacing regulation of ppsA/pykA as a critical metabolic control point.

Phenotype data also emphasize gaplI as a key site of regulation: glycerol, sucrose, and fruc-
tose intermediates are predicted to enter gluconeogenesis after reactions catalyzed by GAPD-
HII (Fig 6C), and the addition of these carbon sources to the medium can abrogate the growth
defect in A trmBp,, background (Fig 3B). The Har. hispanica genome encodes a putative glu-
cose isomerase, HAH_0464, and sucrose hydrolase, HAH_2053, which could enable the con-
version of fructose and sucrose to glucose, respectively. Har. hispanica also encodes homologs
of the bacterial-type phosphoenolpyruvate-dependent phosphotransferase system involved in
fructose degradation in Haloferax volcanii [11, 16, 39]. These enzymes may contribute to the
observed recovery of growth in the presence of sucrose and fructose, but further experiments
are needed to test these predictions. In contrast, supplemental pyruvate has no effect on the
growth of the deletion strain, indicating that the only way for Har. hispanica to generate neces-
sary glucose from pyruvate is via the reverse EMP pathway. Interestingly, ribose has no effect
on growth rate in the deletion strain, while xylose partially restores growth, suggesting Har.
hispanica may be able to generate upper EMP intermediates from xylose but not ribose. This
observation is consistent with work showing that Har. hispanica uses distinct enzymes to
metabolize ribose and xylose and that xylose catabolism utilizes a promiscuous xylonate/gluco-
nate dehydratase [91].
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Transcriptome profiling revealed robust TrmB-dependent induction of the tryptophan bio-
synthesis operons, including the multi-functional fructose bisphosphate aldolase, HAH_2396.
This enzyme is predicted to function in a modified shikimate synthesis pathway as well as cata-
lyze the interconversion between GAP and DHAP in the EMP pathway [92]. It is evolution-
arily distinct from the archaeal class I fructose bisphosphate aldolase regulated by TrmB in
Hbt. salinarum. In Har. hispanica, there are no binding sites or motif occurrences in the geno-
mic regions surrounding the tryptophan biosynthesis operons, indicating additional factors
may be involved in the regulation of these promoters. A potential candidate is TrmB homolog
HAH_0923, as it exhibits similar TrmByy,,-dependent expression in response to glucose as the
tryptophan operons. Unlike TrmByy,, which binds near five transcriptional regulators includ-
ing itself [10], HAH_3039 and HAH_0923 are the only regulators distinguished as possible tar-
gets of TrmB in Har. hispanica with binding and expression data, respectively.

Due to the cryptic presence of vector sequence in the A trmByy,, strains studied here, we
focus mainly on the direct targets of TrmByy,, as this interaction term is better able to control
for any nonspecific effects of pyrF expression and uracil prototrophy. However, we note that
the expression of other metabolic pathways is altered in our data (S7 Fig). Specifically, genes
involved in the catabolism of ribose, xylose, and arabinose are induced in A trmBpg,, exclu-
sively when glucose is absent, a pattern consistent with indirect repression via as-yet-unknown
regulators or mechanisms [91]. Expression of the operon encoding enzymes for the methylas-
partate cycle is also elevated in the absence of glucose in A trmB samples, indicating that TrmB
may indirectly repress other major anaplerotic pathways in Har. hispanica. Notably, the
methylaspartate cycle in haloarchaea is correlated with the ability to synthesize the industri-
ally-relevant biopolymer PHBV under favorable environmental conditions [93]. However, we
did not observe accumulation of PHBV granules in our media conditions or any significant
differential expression of the operon encoding the PHBV pathway (S8 Fig).

Conclusion

The analyses reported here indicate that TrmB directly activates the expression of genes
involved primarily in gluconeogenesis and indirectly regulates tryptophan synthesis in Har.
hispanica, enabling cells to survive in gluconeogenic conditions. TrmBy,, does not directly
repress the expression of glycolytic enzymes or other pathways such as cofactor biosynthesis
and purine biosynthesis, or acts as a global transcriptional regulator similar to homologs
from other archaea [10, 17]. Instead, TrmBy,, solely represses the expression of a putative
glucose transporter when glucose is absent. Further work is needed to determine if this
streamlined regulon in Har. hispanica is indicative of sub-functionalization and whether
other TrmB homologs present may regulate some of these peripheral functions. Gluconeo-
genesis is an essential cellular function in haloarchaea, but it remains to be discovered
whether the metabolic fate of glucose made via gluconeogenesis is conserved in metaboli-
cally distinct groups.

Supporting information

S1 Fig. Genotype confirmation by whole-genome sequencing. A: Summary of variants iden-
tified in each strain. “X” indicates that the mutation (rows) was detected in a given strain (col-
umns). Strain designations are given in S1 Table. Representative coverage plots confirming
chromosomal deletions for (B) pyrF locus for all strains and (C) trmBpy,, strains. X-axis pro-
vides the genome coordinates. Tables report local read depth, or sequencing coverage, for each
strain. D: Confirmation of C-terminal trmB-hemagglutinin fusion used for
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immunoprecipitation experiments.
(TIF)

S2 Fig. A trmB growth. A: In-trans complementation of A trmBy,, in both AKS133 and
AKS319 backgrounds. Log-transformed, fitted growth curves of complementation strains and
strains harboring the empty vector (EV) grown in the presence or absence of glucose. Shaded
regions depict the 95% confidence intervals. B: Area under the growth curve (AUC) of (A),
with FDR-corrected significance scores. C: Parent strain and A trmBp,, growth in each condi-
tion relative to no carbon, measured by AUC. All growth experiments were done with a mini-
mum of 3 biological replicates, each in technical triplicate. Error bars depict the standard
deviation of the mean.

(EPS)

S3 Fig. Relative position of genes, consensus peaks, and motifs for 15 regions identified by
ChIP-seq. Per base coverage of a representative IP sample in the absence of glucose shown in
black, an IP sample in glucose is shown in blue. Pile-up was calculated from unextended bam
files. The relative location of consensus peaks and motifs is shown below. Magenta bars indi-
cate whether nearby genes were differentially expressed: magenta bars above the line represent
genes up-regulated in the A trmBy,, mutant. The height of the magenta bar represents the
magnitude of change, according to the log fold change (LFC) scale bar to the right of each
panel. Gene strand orientation and labels are shown in grey. Motif locations are indicated by
the vertical blue line within each panel. Numbers above each panel indicate the genomic coor-
dinates and chromosomal element of the region displayed.

(EPS)

S4 Fig. Effect of background model on discovered motifs. Sequences corresponding to peaks
were extracted and submitted to XTREME as described in the methods. Yellow highlights indi-
cate the motif reported in Fig 4.

(TIF)

S5 Fig. pyrF transcripts correspond to uracil prototrophy in AKS133. A: Diagram depicting
the process of isolating uracil prototrophic strains from AKS133. B: Average number of tran-
scripts mapping to pyrF in AKS133 RNA-seq samples. Standard deviation in parentheses. The
point shape indicates the flow cell, or batch, on which the samples were sequenced. C: Log-
transformed growth curves in the presence and absence of supplemental uracil and 5-FOA or
no uracil. Shaded regions depict the 95% confidence intervals. Inset shows growth curves for
individual cultures. Isolates AKS265-71 were obtained using the strategy summarized in A. D:
Prototrophic isolates in C were streaked from freezer stock for genomic DNA extraction.
Amplification by PCR indicates pyrF sequence is present in the genome (left), but that the
endogenous deletion is intact (right).

(TIF)

S6 Fig. pyrF expression has negligible impact on A trmBg,, fitness and transcriptome. A:
Fitted, log-transformed growth curves showing that AKS319 phenocopies AKS133, and (B)
that there is no significant difference between AKS133 and AKS319 in 25 mM glucose as mea-
sured by the area under the curve (AUC). Strain colors are preserved in A and B. ** p-

value < 0.01; **** < 0.0001. C: No significant differences in the growth rate of AKS319 cul-
tures prior to RNA extraction between replicates exhibiting pyrF expression and not. Optical
density measurements of the cultures harvested for RNA-seq are shown, with corresponding
pyrF counts summarized in the table below. D: Average counts per transcript are highly corre-
lated across AKS319 samples regardless of pyrF expression for both -glucose (N = 2) and
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+glucose conditions (N = 2). Average counts per transcript are highly correlated across
AKS319 and AKS133 regardless of pyrF expression for both -glucose (N = 6) and +glucose
conditions (N = 8). Average pyrF counts for each comparison are indicated in orange. Data are
normalized relative to library size but have not been batch corrected.

(TTF)

S7 Fig. Strand-specific expression data reveal novel transcript features. Top row: Novel
transcripts observed antisense to HAH_2649 (arCOG11826) and HAH_0885 (SOS response
associated peptidase). Bottom row: Targets predicted to encode small proteins appear to have
extended 3° UTRs. Green tracks show the per base coverage of transcripts originating from the
top strand for representative sample. Blue histograms show transcripts originating from the
bottom strand.

(EPS)

S8 Fig. Expression of genes involved in central carbon metabolism and other catabolic
pathways. A: Normalized expression pattern of genes listed in Fig 6. Yellow indicates elevated
expression relative to other conditions, and purple indicates reduced expression. B: Normal-
ized expression of genes involved in characterized anaplerotic and catabolic pathways in Har.
hispanica [13, 47, 48, 91, 93] and TrmB homologs in Table 1.

(EPS)

S1 File. Supporting File 1.
(XLSX)

S1 Table. Strains used in this study.
(DOCX)

$2 Table. Plasmids used in this study.
(DOCX)

$3 Table. Primers used in this study.
(DOCX)

$4 Table. Motif position relative to predicted transcription initiation elements for direct
targets of TrmByy,,. Motif sequences are highlighted in purple. Motif occurrences on opposite
strands were considered distinct. Darker purple color indicates motif instances on opposite
strands overlap. Start codons are highlighted in grey. Putative initiation elements are bolded
and underlined (TATA-box and BRE). Other haloarchaea have been reported to frequently
lack identifiable TATA sequences [94]. If a promoter element could not be identified, the
expected location (i.e., -26/-27 for TATA and -33/-34 for BRE) was underlined.

(TIF)
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