o’ .
veel materials
e w

Review

Structural Relaxation, Rejuvenation and Plasticity of Metallic
Glasses: Microscopic Details from Anelastic Relaxation Spectra

Michael Atzmon %, Jong Doo Ju 3 and Tianjiao Lei

check for
updates

Citation: Atzmon, M.; Ju, J.D.; Lei, T.
Structural Relaxation, Rejuvenation
and Plasticity of Metallic Glasses:
Microscopic Details from Anelastic
Relaxation Spectra. Materials 2023, 16,
0. https://doi.org/

Academic Editor: Pawel Stoch

Received: 19 September 2023
Revised: 11 November 2023
Accepted: 15 November 2023
Published: 27 November 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Nuclear Engineering and Radiological Sciences, University of Michigan,

Ann Arbor, MI 48109, USA

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Materials Engineering, Testing and Standards (METS), Central Laboratory, Ford Motor Company,
Dearborn, MI 48120, USA

Department of Metallurgy and Materials Engineering, University of Alabama, Tuscaloosa, AL 35487, USA
*  Correspondence: atzmon@umich.edu

Abstract: The lack of periodicity and long-range order poses significant challenges in explaining and
modeling the properties of metallic glasses. Conventional modeling of nonexponential relaxation
with stretched exponents leads to inconsistencies and rarely offers information on microscopic
properties. Instead, using quasi-static anelastic relaxation, we have obtained relaxation-time spectra
over >10 orders of magnitude of time for several metallic glasses. The spectra enable us to examine in
microscopic detail the distribution of shear transformation zones and their properties. They reveal an
atomically-quantized hierarchy of shear transformation zones, providing insights into the effect of
structural relaxation and rejuvenation, the origin of plasticity and the mechanisms of the alpha and
beta relaxation.
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1. Introduction

Amorphous solids, some of which form in natural processes, have been known to
humans for thousands of years. Amorphous metallic alloys have only been known in recent
decades. Initially formed by vapor deposition [1], they were later formed by solidification
from the melt [2], resulting in metallic glasses. The first metallic glasses required high
cooling rates to bypass crystallization, typically 10° °C/s or higher, which limited at
least one dimension to <10~* m. A major breakthrough was achieved when new alloy
compositions were discovered that required far lower cooling rates, resulting in bulk
metallic glasses with dimensions that exceeded 1072 m [3-5]. As a result, new, especially
structural, applications became possible [6,7]. Additional experimental techniques became
accessible, e.g., calorimetry in the supercooled liquid region and macroscopic mechanical
testing, contributing to enhanced scientific understanding.

Scientists have long been intrigued and challenged by glasses, especially metallic
glasses. The periodicity of crystalline solids allows for the use of powerful tools to measure
and model their structure and properties. No such tools are available for amorphous
solids. Furthermore, the structure and properties of metallic glasses depend strongly on
their thermal history, since they relax structurally as they evolve toward a metastable
equilibrium state. In addition, rejuvenation by thermal or mechanical means can reverse
some of these processes. In equilibrium crystalline solids, in contrast, well-defined point-
and extended defects can be introduced by thermal and mechanical treatment, but the base
structure at atmospheric pressure is only a function of temperature.

Dislocations, which play a central role in crystalline metal plasticity, are currently
well understood [8]. The pioneering work of Sir William Bragg [9] with periodic, two-
dimensional bubble rafts allowed him to visualize edge dislocations and their motion,
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and hypothesize their role in plasticity. Subsequent theoretical work led to a detailed
understanding of their properties [8]. Crystal periodicity allows for imaging of dislocations
in transmission electron microscopy [10].

In the absence of experimental and theoretical tools that parallel those available for
crystalline solids, E. Orowan hypothesized that plastic deformation of disordered solids
is accommodated by local, irreversible, rearrangements of clusters consisting of a few
atoms/molecules [11]. Because of constraints posed by surrounding atoms/molecules, such
rearrangements require thermal activation. Orowan proposed that if such rearrangements
are rare and the matrix remains rigid, the memory of the rearranged domains is maintained,
leading to anelasticity, i.e., time-dependent mechanical reversibility resulting from back-
stress upon change in imposed constraints. On the other hand, if the rearranged domains
exceed a threshold volume fraction, their memory is lost and permanent deformation, i.e.,
creep, results. This concept has also been incorporated into more-recent discussions [12-14].

Motivated by Bragg’s bubble-raft experiment and Orowan’s work, Argon and Kuo [15]
created a two-dimensional physical analog of a binary amorphous solid by mixing bubbles
of two sizes, each representing an atomic species, reflecting the ease of glass formation in a
binary alloy compared to an elemental metal. This glass analog was then subjected to shear
in its plane. While dislocations or point defects are readily visible in a periodic bubble raft,
observing rearrangements in an amorphous bubble raft required careful tracking of the
position of each bubble. At high stress, corresponding to low temperature, they observed
local, disk-shaped, rearrangements. At low stress, corresponding to high temperature, they
observed shear transformations of equiaxed bubble clusters, with shear values of the order
of 0.2. Later experiments in colloidal glass were consistent with these observations [16].
Subsequent studies by numerous authors, e.g., Ref. [17], termed these clusters shear trans-
formation zones (STZs). STZ behavior is the focus of the present review. The work included
is based on our initial discovery of an atomically quantized hierarchy of STZs [18].

The present review consists of the following:

A summary of Argon’s analysis of the mechanics and thermal activation of STZs.
Our approach, which consists of (i) quasi-static anelastic recovery experiments that
span more than ten orders of magnitude of time and (ii) computational determination
of relaxation-time spectra by direct spectrum analysis (DSA).

e  Relaxation-time spectra were determined numerically from the strain/time data. These
provided valuable information on STZ size and property distribution, revealing an
atomically-quantized hierarchy of STZs.

e  Analysis of anelastic relaxation in the nonlinear regime, related to that of Argon and
Shi’s creep experiments [19], provided an independent determination of the STZ
transformation strain. Similar to the dislocation core in crystalline solids, this strain is
far larger than the macroscopic yield strain.

e  STZ spectra were computed from published dynamic-mechanical data. The results
provide further, consistent, confirmation of the prior results and their analysis.

e  Simple calculations show that stretched exponent fits, commonly used to fit non-exponential
relaxation, are of limited utility. In particular, the time constant is ambiguous, and its ap-
parent activation energy is not expected to reflect a specific physical process.

e  The systematic error is evaluated for spectrum determination based on measurements
conducted at discrete temperature increments and the assumption that the evolution
at each temperature is dominated by a single activation free energy.

e  Characterization of the details of structural relaxation and induced rejuvenation
through their effect on STZ properties shows that these processes cannot be described
with the evolution of a single variable.

e  Anelastic relaxation spectra were obtained for La-based metallic glasses, some of
which exhibit a distinct high-frequency/low-temperature (f3) relaxation. Among
the results, the following was found: contrary to suggestions by many authors, the
« and 3 relaxation correspond to the same mechanism. Both are reversible when
the corresponding STZs occupy a small volume fraction. The results also suggest
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that different elements are involved in slow vs. fast STZs, corresponding to the
o and (3 relaxation, respectively. Simulations of dynamic-mechanical behavior for
experimentally obtained STZ spectra further support the notion that the « and 3
relaxation correspond to the same mechanism. That curves obtained at different
temperature can be shifted into a single master curve cannot be seen as proof of a
single activation energy.

e By comparing metallic glasses that exhibit different degrees of plasticity at similar
composition, plasticity is explained in terms of the volume fraction occupied by
kinetically active potential STZs.

2. Theory of Thermally-Activated Shear Transformation

While STZ analyses in the literature are typically based on an assumption of a single
STZ size, our observations, reviewed below, indicate a spectrum of sizes and properties. We
therefore modified Argon’s kinetic model [12] to express the shear strain rate as a function
of shear stress o to account for a spectrum of STZ types, indexed initially with m, each
contributing additively to the total shear strain rate [18]:

. AF, ra
Vo = 2cm'y§vcexp(—ld1")sinh(%”>, (1)

where 7] is the transformation shear strain of an STZ unconstrained by the surround-
ing matrix (~0.2 [18]), and 7§ = [2(4 —5v)/15(1 — v)]y{ is the constrained value with
v = 0.324 [20] being Poisson’s ratio. v is the attempt frequency, k is the Boltzmann con-
stant, and T is the temperature. (2, is the m-type STZ volume, so 'yoT 2, is the activation vol-
ume. AF,, is the activation free energy for the shear transformation of m-type STZs [18,19]:

_ (7_51/) 2(1—0—1/)72 10577
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where the term with 32 (~ 1) accounts for the dilatation associated with a shear transforma-
tion. Osr7 is the shear resistance of STZs, y is the shear modulus, and g7z /u = 0.025 [21].
This third term in the brackets is negligible compared to the first and second term. Note that
in Ref. [12], the pre-exponential factor c is interpreted as the volume fraction occupied by
potential (or fertile) STZs, i.e., atomic clusters capable of undergoing a shear transformation.
In the present work, the c;, are resolved by STZ type, m, and obtained from experiment, as
shown below. It is noted that in the notation used, overlapping potential STZs are counted
multiple times. Equation (1) is valid as long as only a small fraction of them undergoes
shear transformations.

3. Experiments and Spectrum Determination

The experimental basis for the presently reviewed work is the room-temperature
measurement of quasi-static anelastic relaxation (Figure 1) over a wide range of time con-
stants. The simple exponential decay for each time constant in the spectrum facilitates the
data analysis, as compared with commonly used dynamic-mechanical analysis (discussed
below). For short time constants, ~1.5 x 1073200 s, using a nanoindenter at fixed force to
monitor the displacement of a cantilever (Figure 1a) as a function of time provided the strain
evolution. For long time constants, up to ~6 x 10 s, instrumented measurements pose
stability challenges. Instead, therefore, 20—40 um thick ribbon samples were constrained
for 2 x 10° s around a mandrel at a fixed radius of curvature; subsequently, their radii of
curvature were monitored as a function of time in a stress-free state. Except for the early
study of AlgsgNi3 Y95 [18], the sample curvature determination was performed using an
automated fit to its image. Based on the confirmed linearity of the relaxation process, the
strain and stress at any distance from the neutral midplane were calculated as a function of
time. The strain at the surface is used in all reported data.
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4. An Atomically Quantized Hierarchy of STZs [18]
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ery. Figure 3 shows representative ¢4, (t) /¢’ curves, along with corresponding computed
spectra, f(7), for the cantilever (Figure 3a) and mandrel (Figure 3b) experiments. Fits
obtained with different numbers of fitting points, N; and N3, demonstrate the consistency
of spectrum computation.
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Surprisingly, the spectra in Flgure 3 consist of distinct peaks, indexed with m. This

discovery motlvated w&i@kﬁsﬁ%’cﬂﬁﬁéﬁ}%ﬁwﬁ éfg&ﬁﬁhp&ﬁﬁ% indsxed with s This

spring (effective Hi§#e VT e e gt s sRifdafbist lépélgp?frng
%éﬁgaax(s ?gﬁ‘ﬁelq@ﬁ&%&ﬂg% Yeunsis @@dféﬁfeéé)nﬁ%g@égﬁ@agh%l@ﬁ% ot iR
a series of Voigt units, each consisting of a spring (effective modulus E},) and dashpot
(effective viscosity 7;,) in parallel (Figure 4, top). Under zero or fixed stress, each Voigt unit
relaxes exponentially with a time constant

3 ®)

Tm =
7
Em



Materials 2023, 16, 0

dashpot (effective viscosity 17,,) In parallel (Figure 4, top). Under zero or 11xed stress,
Voigt unit relaxes exponentially with a time constant
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atomically-quantized hierarchy of STZs — the spectrum peaks correspond to STZs that consist
of n=14,..., 21 atoms. The dominance of a single element, Al, likely facilitates the resolution
of this hierarchy. The activation free energies corresponding to this STZ hierarchy, AF,
range from 0.85 to 1.26 eV (Equation (2), Figure 5f).

Later experiments [27], conducted at longer duration (constraining time 42723106 s

and anelastic recovery for 1.1 x 108 s) further confirmed the hierarchy, showing the signa-
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Values for m = 4 were obtained by interpolation. (f) Volume fraction of potential STZ as a function
of AF/KT. The error bars are the standard deviation of the mean, obtained by averaging over mul-
tiple measurements. Reproduced from Ju, J.D.; Jang, D., Nwankpa, A; Atzmon. M. An atomically
quantized hierarchy of shear transformation zones in a metallic glass. J. Appl. Phys. 2011, 109. with

permission of AIP Publishing [18].
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Fitting the nonlinear equations to these data, 7y} = 0.17 is obtained. By computing
the fit sensitivity to this value, the random error is determined to be +3%. As before for
the (2, this small error is due to the fact that ] appears in the exponent in Equation (2).
The value obtained, ’yg = 0.17, is reasonably close to the value assumed in the analysis in
Ref. [18], 0.2, as summarized above. It is much greater than the universal, low-temperature,
macroscopic yield strain observed in metallic glasses, 0.036 [31]. An important parallel to
crystalline solids helps illustrate this difference in magnitude: the strain in a dislocation
core is of the order of 1, yet the yield strain in metals is below 0.01. It is worth noting that in
some studies, equating the transformation strain to the yield strain resulted in unphysically
large STZ sizes being backed out from the data [32,33].

6. Dynamic-Mechanical Analysis [34]

In the analysis of quasi-static data obtained at room temperature, the temperature
dependence of the strain rate had to be assumed, see Equations (1) and (2). Measurements
at varying temperature involve stability challenges because of the long time involved.
While fitting frequency-dependent dynamic-mechanical data poses challenges, it enabled
us to carry out a direct evaluation of the temperature dependence.

The analysis methodology to be used was evaluated by simulating the loss modu-
lus [26], Es (w), as a function of frequency w for an input spectrum of time constants, f*(7),

based on Ref. [18]:
wT;

E!(w) = E; x/ () — 1 _dint. 7)
S( ) 0 f ( )1 ( i)z
E{ (w), plus added noise, was then fitted with
E'(w) = N Wt , 8
( ) Zl:lfll ( Ti)z ( )

where the time constants 7; are logarithmically spaced, N = 70 and the f; are fitting parame-
ters representing a discrete best estimate of the spectrum. Iterative fits were repeated for
increasingly tighter target tolerance values [34] for each of the multiple simulated spectra.
It was found that input spectra were most-accurately recovered for the tolerance value at
which R?, the coefficient of determination, began to increase. This tolerance value was used
as the best-fit criterion when analyzing the experimental data.

Because of the steep variation of the loss modulus with temperature, curves measured
as a function of frequency, acquired at multiple temperatures, lend themselves better to
fitting the model than the more common curves obtained as a function of temperature.
Therefore, the extensive data of Ref. [35], obtained for Zryg gTi138Cu125NijgBesy 5, were
used in the analysis. The fits and corresponding spectra are shown in Figure 7. The time
constants obtained from each peak are shown in Arrhenius plots in Figure 8 as a function
of temperature. The goal was to obtain simultaneous fit lines for all STZ sizes, based on an
atomically quantized hierarchy of STZs. For each trial STZ size n, the time constant was
expressed as a function of temperature based on the theory reviewed above:

o 3kT o (AFn> ©)
T 2u(1 V) vsvd Qu P\kT )

with AF, given by Equation (2).

Since the data [35] were obtained both below and above the glass transition tempera-
ture, Tg, and the shear modulus varies significantly with temperature in the latter range,
its approximate linear temperature dependence above T, was included in the fits [36-39].
They were carried out simultaneously for all values of T and n. The main challenge was
determining which set of data points corresponded to the same STZ size, n, within a
multi-n simultaneous fit. Several plausible groupings were attempted each below and
above T. The only combination of such sets that yields continuity and the same 1 values
across Ty is that shown in Figure 8a. The resulting n values range from 25 to 33, with
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corresponding activation free energies of 1.75-2.3 eV. These results are consistent with
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n, compared with 14-22 at room temperature in Ref. [18], are expected since the spectra

increase monotonically and larger STZs become active with increasing temperature.
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7. The Stretched Exponent [45]

This section further rationalizes the need to compute relaxation-time spectra from the
anelastic relaxation data described above. Many processes in nature exhibit exponential
decay, which takes place when the rate of change of a variable is proportional to the
variable itself. However, one often encounters deviations from this ideal behavior. Early on,
Kohlrausch [46] proposed describing the electrostatic discharge of a capacitor as a function
of time with a stretched exponent,

x(t) = x(O)exp (— (t/)"), (1)

with 7; and B being constants and x(0) being the initial charge. Currently, many studies
of non-exponential relaxation in disordered materials employ this expression, referred to
as Kohlrausch-William Watts (KWW) [47,48]. This time dependence has also been used to
derive the behavior in the frequency domain [47]. The expression, which often provides
good fits, is phenomenological in most cases, with few exceptions for which it results
from a mechanistic model [49-51], usually near or above the glass transition. Despite
the phenomenological nature of Equation (11), it is often assumed to represent a physical
process [52-60], leading to conclusions that are difficult to support. Examples among these
are the KWW fitting of the dielectric loss or the loss modulus in glass. Deviations from the
fitted KWW curve at high frequency, also seen in our E”(w) calculated from experimental
spectra, are interpreted by some authors as resulting from a separate relaxation mechanism.
This amounts to assuming a priori that the behavior should correspond to the spectrum
of time constants consistent with KWW behavior. However, as our present results and
analysis show, a single mechanism, namely shear transformations, can explain the behavior
without relying on this often unsupported restriction. The very interpretation of 7; as a time
constant is problematic because of an internal inconsistency: simulated data points, based on
a stretched exponent, shifted by 10% of s, exp(—((t+3)/30)%), were fitted with an unshifted
stretched exponent (Figure 10). The fitting parameters depend on the range of ¢ values and
the manner in which the points are spaced on the t axis. However, as shown in Figure 10,
similar results are obtained for linear (a) and logarithmic (b) spacing, where the former
gives greater weight to long time values. Both yield good fits with similar fitting parameters.
Remarkably, the 75 values obtained are higher by >30% than the value of 30 used to simulate
the data points. This is a result of the fact that, unlike for a simple exponent, the relative rate
of change of the stretched exponent is not constant in time. The common assumption that
the temperature dependence of 7;, however obtained, can yield an activation energy [53,57]
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8. Systematic Error in Spectrum Determination by Temperature Stepping [61]

One method of obtaining approximate spectra from relaxation measurements is
based on measurements conducted by stepping the temperature from the lowest to the
highest. It is then assumed that the behavior at each step i at temperature Tj, is dominated
dlny
at/ply,
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by a single activation free energy given by AF; = —k . The assumption implicit in
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8. Systematic Error in Spectrum Determination by Temperature Stepping [61]

One method of obtaining approximate spectra from relaxation measurements is based
on measurements conducted by stepping the temperature from the lowest to the highest.
It is then assumed that the behavior at each step i at temperature T, is dominated by

a single activation free energy given by AF; = —k ;ET) . The assumption implicit in

T

this approximation is that at each step, processes with lower activation free energy have
equilibrated, while those with higher activation free energy are frozen. Argon and Kuo [62]
proposed this method to evaluate the activation free energy spectrum for torsional creep
experiments. One aspect of the spectrum they obtained was a drop at the highest value
of AF;. In contrast, Refs. [18,27] exhibit a monotonically increasing spectrum, which is
also consistent with the free-volume model [27]. In this context, it is instructive to assess
the error introduced by the approximation of a dominant activation free energy at each
temperature step. For this purpose, we assumed a simple, monotonic, spectrum of activa-
tion free energies, qualitatively similar to that in Figure 5f. By simulating the process of
anelastic relaxation at stepwise increasing temperatures, we obtained a simulated, apparent
spectrum, based on the approximation of Ref. [62], which exhibits a decrease at the highest
activation free energy (Figure 11). Comparison with the assumed input spectrum illustrates
that the observed decrease is an artifact of the temperature-stepping method: processes
with high activation energy are not completely frozen at lower temperatures, thus reducing
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occur rapidly during the initial stages of relaxation, where the latter is characterized by
calorimetry. Efforts to design tough metallic glasses have included inducing the process
opposite to structural relaxation, namely rejuvenation. This has been accomplished, e.g.,
by annealing above Ty [65] or by plastic deformation, including shot peening [66]. In ad-
dition, cyclic elastic loading [67], constrained loading [68] and irradiation [69,70] have led
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initial stages of relaxation, where the latter is characterized by calorimetry. Efforts to design
tough metallic glasses have included inducing the process opposite to structural relaxation,
namely rejuvenation. This has been accomplished, e.g., by annealing above T [65] or by
plastic deformation, including shot peening [66]. In addition, cyclic elastic loading [67],
constrained loading [68] and irradiation [69,70] have led to rejuvenation. Cycling between
room and cryogenic temperature has also been reported to lead to rejuvenation [71], as
determined from measurements of stored enthalpy and yield. The authors proposed a
rejuvenation mechanism due to heterogeneity of the thermal expansion coefficient, leading
to microscopic stresses and local yielding. This novel result holds promise for practical
applications, being non-destructive, controllable and isotropic [72-74]. It is noted, however,
that, the authors have recently reported that the effect of cryogenic rejuvenation decays
over time, likening the rejuvenation process to anelastic strain accumulation [75].

As with other examples, the lack of a periodic structure and microscopic structural
probes poses challenges to obtaining a detailed description of the atomic-scale effect of
cryogenic cycling. Relaxation-time spectra offer an opportunity for progress toward this
goal. The nondestructive nature of cryogenic cycling offers an advantage in that the
process preserves sample geometry. Two metallic glasses that undergo significant anelastic
relaxation at room temperature, LaygCuy5Al5 and LaygNij5Als5, were investigated [63].
Figure 12 shows the anelastic strain as a function of time after constraining and releasing
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In the strain curves, there is no immediately obvious effect of cryogenic cycling.

In theystraiecuny epethareohipuednmvediasl Y o) eflecl afrgigogenis. SIghng to

However, Ahe spiectsa gagupatgdificgroothem (fgnaepeakseReahfustheerdetailsginimétatste a

Algg gNis 7degrddbgireld) inhesition tafithdiptiaict, pepddaRpodmt teiipepethres itfitte leadsdotame

decrease inotistairttensi tiesi ofhtiftetp bags res peciatistaintat lofdtestprglk, writbgtnéclorgdies tédvres

constant, dhel ehisisphifdingl bmeeecinientsikignite. Ihtessteting yhemdgaivagicliniahechu btew-

ever, the peak intensities are not affected by cryogenic cycling: the areas under resolvable

peaks or peak sets for the cycled samples fit on the same curve, as a function of aging time,

as those for the aged samples that were not cycled (Figure 15). Based on the discussion in

Section 4, we conclude that structural relaxation associated with aging leads to a reduction

in the number of potential STZs. The increase in time constants is likely due to an increase
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the corresponding time constants (Figure 14), restoring them to pre-aging values. However,

the peak intensities are not affected by cryogenic cycling: the areas under resolvable peaks

or peak sets for the cycled samples fit on the same curve, as a function of aging time, as those

for the aged samples that were not cycled (Figure 15). Based on the discussion in Section 4,

we conclude that structural relaxation associated with aging leads to a reduction in the

number of potential STZs. The increase in time constants is likely due to an increase in the

modulus of the glass, which increases the activation free energy for shear transformations

(see present Equation (2) and Figure 7 in Ref. [76]). Cryogenic rejuvenation likely restores

the elastic modulus. However, it does not lead to a recovery of the number density of

potential STZs. The impact of structural relaxation on the number density of potential STZs,

as seen in the amount of normalized anelastic strain, is mainly on those consisting of a

Materials 2023, 16, x FOR PEER reEviitger number of atoms, which are the slowest. This is seen qualitatively in Ref. [63], ang
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Figure 14. The evolution of time constants of different STZ types, m, with aging time for LazoCuisAlis
and LanNiisAlis metallic glasses. Downwards arrows indicate the effect of cryogenic cycling follow-
ing aging. Reprinted from Lei, T.J.; DaCosta, L.R.; Liu, M.; Wang, W.H.; Sun Y.H.; Greer, A.L.; M.
Materials 2023, 16, 0 Atzmon. Microscopic characterization of structural relaxation and cryogenic rejuvenation in metal-3
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10. The Mechanism of the 8 Relaxation [76]
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(1) Although cryogenic rejuvenation does not restore the c,;, plasticity is improved by
this process because of the increased fraction of potential STZ with a sufficiently short
time constant to participate in deformation.

(2) A comparison of the time scale for structural relaxation, > 10° s, with the shorter times
for anelastic relaxation indicates that the mechanisms underlying the two processes
cannot be assumed to be the same. The driving force for the former is thermodynamic,
whereas for the latter it is mechanical.

(3) While a measurement of a single variable, e.g., stored enthalpy or plasticity, may
give the impression that the cryogenic cycling process leads to a reversal of struc-
tural relaxation due to aging, these results clearly show that the details are more
nuanced. Generally, structural relaxation and rejuvenation cannot be described with a

Materials 2023, 16, x FOR PEER REVIEW single variable. 18 of 24
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In Refs. [18,76,86], a single mechanism, namely shear transformations, consistently

describes the entire range of relaxation times observed. This suggests that even though
the {8 relaxation appears distinct in the loss modulus for some metallic glasses, a separate
mechanism need not be invoked. This is seen when E”(w) is computed [44] from the ex-
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In Refs. [18,76,86], a single mechanism, namely shear transformations, consistently
describes the entire range of relaxation times observed. This suggests that even though
the (3 relaxation appears distinct in the loss modulus for some metallic glasses, a separate
mechanism need not be invoked. This is seen when E”(w) is computed [44] from the
experimental spectrum obtained for quasi-static relaxation [18] — it exhibits a high-frequency
tail (Figure 9b) despite the fact that the spectrum corresponds to a single mechanism.

In much of the literature, e.g., Refs. [87,88], the o and {3 relaxations are discussed in
terms of their reversibility vs. irreversibility. The « relaxation, generally associated with
the glass transition, is described as irreversible whereas the {3 relaxation is described as
reversible. Ref. [89] goes further and suggests that some 3 relaxations are reversible, and
others are not. We argue that reversibility or lack thereof are not inherent properties of

f 24
small but become irreversible at hurh volume fraction as a result of loss of back-stress Qur

anelastic relaxation experiments demonstrate that all STZ sizes, including those underlying

both the o angl, B rglaation. are-sexesriRle Al SRt ringo RN NGY QG6HPS: B ess.

volume fractisy; anelastic relaxation experiments demonstrate that all STZ sizes, including those un-
derlying both the a and relaxatlon are reversible at small strains, when they occupy a

11. STZ Properties ameRlasticity
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the observed room-temperature tensile detormation. We propose that the detormation

cannot be acc&?ﬁ%‘éf‘i’dﬂgfﬂ{g @St%\?‘%ﬁd}ﬁ‘iﬁ%PFFéﬁﬂb%{‘&FHé‘ﬁ’i?é Sy stypstishian %“5 ﬂstRef
17 and 18. Thlg zé'hﬁiv}zhlz Or at1 f@f% 1n%er1%cct 1ong i Sd“ e¥ rﬁfeﬁmd ceRtration 10n er we
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For the stress applied in the tensile measurements, the strain rate obtained is higher than
that expected from the active STZs observed. Similarly, the total strain in Figure 20 cannot be
accounted for by the total volume fraction of active STZs contributing to Figures 17 and 18. This
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is likely a result of STZ interactions due to their high concentration at these strain values,
leading to a reduction in their elastic energy barrier and therefore enhanced kinetics [19].
Thus, larger STZs than those participating in linear anelasticity contribute to the observed
room-temperature tensile deformation. We propose that the deformation observed in
Figure 20 does not represent an activated flow state, such as described in Ref. [12], for
which a steady-state structure is achieved by repeated regeneration. Rather, we argue, this
deformation is in a transient state, which persists as long as potential STZs keep up with
the applied strain. Beyond this point, the increasing applied strain is accommodated by
localization, resulting in failure. Since the LayyCuy5Al5 alloy contains an overall higher
volume fraction occupied by potential STZs than LayyNij5Aljs does, the former reaches
higher strains before it fails.

12. Additional Properties

There may be potential for expanding the STZ model to describe additional atomic
transport phenomena not addressed in this review. Argon and Shi [19] address the limit
of the model, when back-stress is lost due to STZs being in close proximity to each other.
Short-range diffusion, e.g., in multilayered thin films with short modulation wavelength,
could take place by small displacements associated with STZs. This would be consistent
with the observation of two different time constants for interdiffusion in modulated Ni-Zr
thin films [91]. Flow or long-range diffusion would require STZ percolation. For flow
to take place, the volume fraction that is rigid, i.e., does not contain active potential STZs,
exp(—X%, cu), where 1y is the temperature-dependent maximum size of such potential
STZs, has to be below the percolation threshold. Otherwise, the matrix is rigid. The
requirement for long-range diffusion is less strict: 1 — exp(—Y,°; ¢, ), the volume fraction
occupied by active potential STZs, has to exceed the percolation threshold. As noted above,
overlapping potential STZs are counted multiple times, so Y, ; ¢, > 1 is possible [27].

13. Conclusions

Due to the lack of periodicity, microscopic atomic rearrangements in metallic glasses
can typically only be inferred indirectly from experiment. While physical analogs and
molecular dynamics have contributed important insights, they are not suitable for simulat-
ing processes with a wide range of activation free energy and therefore time constants. We
show here that anelastic relaxation, conducted over a wide range of time constants, can
provide important insights when combined with spectrum determination. This work will
hopefully motivate further simulations and experiments. For example, since the number of
directions in phase space is too large to comprehensively capture in atomistic simulations,
the present results could offer possible directions to probe in order to determine the barriers
to possible shear transformations, e.g., by extending Ref. [92]. Atom-probe tomography
investigations of chemical heterogeneity could help evaluate the conclusions that suggest
composition differences between fast and slow STZs.
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