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1 Introduction 

AFSD-Nets: A Physics-

Informed 

Machine Learning Model for 

Predicting the Temperature 

Evolution During Additive 

Friction Stir Deposition 

This study models the temperature evolution during additive friction stir deposition 
(AFSD) using machine learning. AFSD is a solid-state additive manufacturing 
technology that deposits metal using plastic flow without melting. However, the ability 

to predict its performance using the underlying physics is in the early stage. A physics-
informed machine learning approach, AFSD-Nets, is presented here to predict 
temperature profiles based on the combined effects of heat generation and heat transfer. The 

proposed AFSD-Nets includes a set of customized neural network approximators, which 
are used to model the coupled temperature evolution for the tool and build during multi-
layer material deposition. Experiments are designed and performed using 7075 aluminum 
feedstock deposited on a substrate of the same material for 30 layers. A comparison of 
predictions and measurements shows that the proposed AFSD-Nets approach can accurately 
describe and predict the temperature evolution during the AFSD process. [DOI: 
10.1115/1.4065178] 

Keywords: additive manufacturing, additive friction stir deposition, temperature, 
physicsinformed machine learning, neural networks, advanced materials and processing, 
metrology, modeling and simulation, sensing, monitoring and diagnostics 

[3]. These advantages make AFSD an attractive choice for the 

defense and aerospace industries, for example. 

Copyright © 2024 by ASME 



081003-2 / Vol. 146, AUGUST 2024 Transactions of the ASME 

Additive friction stir deposition (AFSD) has emerged as a novel, 

solid-state metal additive manufacturing (AM) technology with the 

potential for broad application. AFSD is a plasticity-based, 

solidstate AM process where no melting occurs, and the geometry 

and microstructure are produced during layer-by-layer severe 

plastic deformation. This is fundamentally different from the 

solidification mechanism observed during fusion-based AM 

technologies in which the materials are melted using a high-

intensity heat source [1,2]. AFSD can, therefore, provide superior 

mechanical and material properties, including lower porosity, 
reduced thermal gradients, lower residual stress, and uniform and 

homogeneous microstructure Prior AFSD studies have considered 

both the process and build material characteristics. For process 

efforts, AFSD has been combined with machining and metrology 

while considering the hybrid manufacturing processes holistically 

to arrive at a comprehensive approach to process planning [4–6]. It 

provides a new option for the emerging hybrid manufacturing 

approach to reduce material use and removal [7,8]. For materials, 

researchers have deposited multiple materials, including aluminum 

alloys [9–12], pure copper [13], magnesium alloys [14,15], 

stainless steel [16], and titanium alloys [17]. Various process 

control parameters, including spindle speed, material feed rate, and 

traverse speed, have been investigated to understand their impact 

on deposition [4,18]. Process topics include temperature [15], 

plastic strain [10], residual stress [11,19], morphology and 

microstructure [10,12– 14,16,17,20,21], and material flow [22]. 

It is understood that the complex coupled thermomechanical 

behaviors, severe plastic deformation, and multiple process control 

parameters present a significant challenge for AFSD modeling 

research [9,18,23–28]. The peak temperatures of Cu and Al-Mg-Si 

during AFSD were empirically modeled as power law relationships 

with respect to spindle speed and traverse speed [18]. Multi-

physics-coupled thermomechanical process models have also been 
presented. For example, coupled thermomechanical mesh-free 

models based on smoothed particle hydrodynamics (SPH) have 

been applied to simulate the temperature, build profile, and plastic 

strain for AFSD [23]. Researchers have compared material 

constitutive models [24] and combined computational and 

experimental approaches to explore particle tracking [25]. Mesh-

based modeling efforts include the finite volume method (FVM) for 

heat influx and outflux analysis [26], computational fluid dynamics 

(CFD) for material flow and thermomechanical processing history 

[27], the finite element method (FEM) for the stress induced by 

spatial nonuniformity of dynamic bulk modulus [9], a multi-layer 

FEM for explaining the microstructure using spatial and temporal 
prediction of temperature [28], and a multilayer FEM in Ref. [29] 

for linking process parameters to microstructure. A comprehensive 

review of AFSD research from the perspective of process-structure-

property-performance convergence is presented in Ref. [30]. 

However, these high-fidelity process models are still in their early 

stages of development. Current limitations include instability with 

boundary conditions (such as significant viscosity differences 

between the build material and atmosphere), high computational 

cost (36 h of computation for a single-layer deposition simulation 

has been reported [23]), and poor scalability for multi-layer 

depositions (most studies focus on a single layer with a few 

exceptions). This poses challenges for real-time prediction, control, 

and optimization, as well as scalability to production-level part 

manufacturing using multi-layer depositions and complicated tool 

paths. 

In terms of machine learning (ML) modeling efforts, only a few 

recent studies have investigated tool temperature modeling using 

neural networks [31]. Besides, a growing research focus is on 

physics-informed machine learning (PIML) that combines existing 

physical knowledge with data such that the acquired ML models 

can better respect physical laws [32]. Prior PIML approaches can 

be classified into the following categories: (1) physics-informed 

neural networks (PINN) that integrate the governing equations into 

the neural network (NN) loss function as soft constraints [33] or 

hard constraints [34]; (2) physics-informed features construction 

for ML model input [35,36]; and (3) physics information 

incorporated into the ML model structure design [37]. However, 
these PIML approaches are generally designed for a single physical 

process, which is described by a specific set of governing equations. 

While the AFSD process is a multi-stage and multi-physics additive 
manufacturing process that involves mechanical inputs, multiple 

thermal cycles, heat generation, cooling, and heat transfer, the 

above PIML approaches cannot be directly applied to the studied 

AFSD modeling. 

This study focuses on two physical phenomena determining 

temperature evolution during AFSD: heat generation (at the tool 

deposition surface) and heat transfer (between the tool, build, and 

substrate). Currently, the underlying physics of heat generation and 

heat transfer processes with respect to process parameters are not 
well understood. This study investigates the fundamental functional 

relationships between heat generation and heat transfer to 

accurately describe temperature evolution during AFSD. This 

represents the first attempt at modeling AFSD temperature 

evolution using ML and in-process data signals. The primary 

contributions are the following: 

(1) A physics-informed machine learning approach, AFSDNets, 

is developed to model the heat generation and heat transfer 

during AFSD. Process decomposition based on the process 

parameters and physical variables is used to describe heat 

generation and heat transfer during a thermal cycle. 

These thermal stages and the location-based, time-delay 

phenomenon for heat transfer are incorporated into AFSD-

Nets as underlying physics embedded in the in-process data 

to improve the model accuracy. 

(2) The proposed AFSD-Nets accurately predicts the 

temperature evolution due to heat generation and heat 

transfer using in-process data from a 30-layer deposition. 

The computation time is 5 min. This shows the accuracy and 

efficiency of the proposed AFSD-Nets approach in 

comparison to existing multi-physics process models. 

Additionally, the ML models can be integrated into the 
current multi-physics process modeling framework as 

thermal model surrogates. 

(3) It is demonstrated that the AFSD-Nets models are 

generalizable using coupled time domain simulation. Given 

process parameters and initial temperatures, the simulation 

can predict the tool and the build temperature evolution 

during AFSD. This shows the effectiveness of the models in 

capturing the underlying physics and their potential use for 

AFSD control and optimization. 

The paper is organized as follows: In Sec. 2, AFSD is described, 

and the temperature evolution due to heat generation and heat 
transfer is introduced. Section 3 presents the AFSD-Nets design 

using distinct stages of heat generation and heat transfer for both 

the tool and the build. The experimental setup for depositing an 

aluminum alloy on an aluminum substrate and collecting data is 

described in Sec. 4. The numerical results of the proposed AFSD-

Nets are presented in Sec. 5. For experimental validation, additional 

physical and numerical experiments for the proposed AFSD-Nets 

and its acquired models are presented in Sec. 6. Section 7 provides 

conclusions and the research outlook. 
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2 AFSD Temperature Evolution 

This section describes the heat generation and heat transfer, 

which determine the temperature evolution in AFSD. Based on this, 

the strategy for modeling the underlying heat generation and heat 

transfer physics as functions of the process parameters is presented. 

The AFSD temperature evolution is described in Fig. 1. At the 

beginning of each layer’s deposition, the tool is moved downward 

toward the substrate, leaving a small gap between the tool and the 

substrate. The square feed rod (9.53 mm side length by 508 mm 

axial length) is forced downward by a ball screw actuator at the 

selected material feed rate through the hollow, rotating tool. This 

generates frictional heating at the substrate interface, which 

increases the local temperature and reduces the feed rod strength 

sufficiently to cause plastic flow and a metallurgical bond with the 

substrate or previous layer. The tool is subsequently traversed along 

the programmed path using the selected traverse speed to deposit 

material in a layer-by-layer fashion. 

Heat generation can be divided into two general stages: heating 

and deposition. In the heating stage, the heat is generated mainly by 

the contact friction between the extruded material and the tool 

bottom and substrate top surfaces. The temperature increases with 

spindle speed due to increased power input. Once the temperature 

reaches the desired level (based on the temperature-dependent 

material strength), the spindle speed is reduced, and the deposition 

stage begins. The heat is then generated at a relatively slower rate 

due to the (typically) lower spindle speed during deposition. 

The time-dependent heat transfer is the result of heat generation 

at the moving heat source from one layer to the next. The heat is 

conducted away from both the tool and the build during the entire 

AFSD process. This conduction includes two stages: layer 

deposition and after layer deposition. The former stage corresponds 

to a moving heat source, while the latter relates to the initial 

conditions and specific locations on the build. 

Figure 2 displays the temperature evolution induced by heat 

generation and heat transfer. The data represent two layers of a 30-

layer 

perature profiles due to discrete deposition intervals. 

deposition obtained using the experimental setup described in Sec. 

4. The temperatures from the thermocouples embedded in the tool 

and substrate are shown as a function of deposition time. The heat 

generation and transfer stages are identified. The timedelay heat 

transfer from the moving heat source to the four K-type 

thermocouples in the substrate is also observed. 

In this study, a process decomposition is performed to isolate the 

data due to heat generation and heat transfer by separating the time 

series into segments. Figures 2(b) and 2(c) show the process 

decomposition using spindle torque and the tool’s axial location. 

Heat generation at the tool deposition surface begins when the 

rotating tool moves downward to provide contact between the 

feedstock and the build (i.e., the tool’s axial location is the current 

build thickness), and the spindle torque increases. On the contrary, 

tool cooling begins when the tool leaves the build, and the spindle 

torque decreases. 

In this context, the fundamental research question for this study 

is: What are the functional relations of heat generation and heat 

transfer that can accurately describe the temperature evolution 
during AFSD? The approach is to design a physics-informed 

machine learning model for AFSD to identify these relations using 

in-process data. Technical solutions, the experimental setup, and the 

research findings are presented in the following sections. 

3 Proposed AFSD-Nets 

This section presents the proposed physics-informed ML 
approach, AFSD-Nets, for modeling the temperature evolution 

during AFSD. An overview of AFSD-Nets is first presented. This is 

followed by its component design for temperature evolution at tool 

and build. The models identified by AFSD-Nets are then applied in 

coupled time domain simulation. 

3.1 Overview of AFSD-Nets. The main idea of AFSD-Nets is to 

model each of the heat generation, cooling, and heat transfer stages 

with a distinct neural network and then couple them to model 

temperature evolution during the entire AFSD process. AFSD-Nets 

is a PIML approach because it is established based on the physical 

process decomposition and coupling of AFSD. 

Because the AFSD process is a multi-stage and multi-physics 
additive manufacturing process, a single PIML model cannot 

 

Fig. 1 AFSD temperature evolution consists of heat generation and heat transfer. Heat is generated by friction at the tool deposition surface and 

plastic deformation within the material (adiabatic heating). During layer-by-layer deposition, heat conducts away from this moving heat source to 

the build and substrate. Thermal cycling is observed in the tool deposition tem- 



081003-4 / Vol. 146, AUGUST 2024 Transactions of the ASME 

capture all the underlying temperature evolution patterns for the 

heat generation, cooling, and heat transfer stages. AFSD-Nets 

incorporates the physical knowledge of multi-stage and multi-

physics processes into the design of multiple networks that have 

causal relationships with each other. Within each network, physical 

knowledge is also incorporated as the input features like, for 

example, the Euclidean distance between the tool and the build, 

which is calculated as an input feature for modeling heat transfer 

from the tool to the build. 

Figure 3 displays an overview of the proposed AFSD-Nets 

approach. Underlying physics during AFSD, including the thermal 

cycle, process decomposition of heat generation and heat transfer, 

and location-based time-delay phenomenon for heat transfer at the 

build are incorporated into the design of the ML models. 

Customized neural networks can, therefore, be built for each stage 

of heat generation and heat transfer as follows. For temperature 

evolution at the tooltip, networks for heat generation at the tool 
deposition surface and tool cooling are developed. For deposition 

temperature evolution, a mask mechanism on the features is applied 

for the build heat transfer network to indicate the existence of the 

moving heat source or not. These neural networks are trained and 

optimized individually using the in-process data based on the time 

segment where the specific thermal process occurs. The set of 

learned networks by AFSD-Nets are coupled to perform the time 

domain simulation of temperature evolution during AFSD. The 

simulation output of the tool heat generation network is used to set 

initial conditions of the tool cooling network simulation, and vice 

versa, to fully describe the temperature evolution at the tooltip. The 

tooltip temperature prediction is then used as input to the heat 

transfer network. Due to the mask mechanism, a unified network 

model is learned and used for simulating the heat transfer at the 

build. The combined outcomes propagate to describe and predict 

the temperature evolution during multi-layer material deposition. 

3.2 Heat Generation and Tool Cooling Networks for Modeling 
Tool Temperature Evolution. The heat generation stage begins at the 

tool surface during deposition, and then tool cooling begins when 

the tool leaves the build, and the spindle 

 

Fig. 2 Temperature evolution induced by heat generation and heat transfer. Data are from two layers 
of a 30-layer deposition using the experiment setup in Sec. 4. (a) Process decomposition of 
temperature evolution at the tooltip and the build using spindle torque in (b) and the tool’s axial 
location in (c). Tooltip temperature was measured by a thermocouple embedded in the rotating tool, 
and the build temperatures were measured using four K-type thermocouples (KTC) in the substrate. 
(b) Data are separated by whether the spindle torque is applied or removed. (c) Data are separated 
by the tool’s axial location. Heat generation begins when the rotating tool is in contact with the build, 
and the spindle torque increases. Cooling begins when tool leaves the build, and the spindle torque 
decreases. 
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Fig. 3 Overview of the proposed AFSD-Nets as a set of customized neural networks informed by the underlying physics during AFSD. Each network 
models a specific thermal stage of heat generation and heat transfer. The coupled time domain simulation describes and predicts the temperature 
evolution during AFSD. 

torque subsequently decreases. The heat generation network and 

tool cooling network are developed to model the time-dependent 

tool temperature. The coupled heat generation and tool cooling 

determine the tool temperature evolution during AFSD. 

One thermal cycle of the tool during AFSD consists of the heat 

generation and tool cooling stages. For any thermal cycle, let Pheat 

and Pcool denote the process windows for heat generation and tool 

cooling throughout. It is assumed that the tooltip and deposition 

surface temperatures are equal during the heat generation stage. Let 

T(t) denote the temperature at time t and T(t −Δt) denote the 

temperature at time t −Δt throughout this paper. 

3.2.1 Heat Generation Network. The heat generation stage in any 

thermal cycle can be described as an unknown dynamical system 

with control, where t ∈ Pheat. Let u(t) = [u1(t), u2(t)] denote the vector 

of in-process control variables, where u1(t) is the vector of process 

parameters that can be explicitly selected and controlled, such as 

tool spindle speed, feedstock and tool feed velocities. u2(t) includes 

process physical variables that cannot be explicitly selected but can 

be measured, such as spindle torque and actuator force to push the 

feedstock through the rotating spindle. The following heat 

generation network is proposed 

Ttool(t) = N heat gen(u(t −Δt), Ttool(t −Δt)), t ∈ Pheat 

where N heat gen(·) is the standard fully connected neural network 

with several hidden layers, each defined in the form h = σ(wh + b). 

Here, w represents the weights from the preceding hidden layer to 

the current one, and b represents the bias. The activation function 

tanh(·) is used to account for non-linearity 

σ(x) = tanh(x) = 
e
exx −+ 

e
e−

−
x
x 

For the output layer, only the linear combination of the last 

hidden layer is applied as Ttool(t). The determination of the input for 

the mapping, the network structure, and the weights within the 

model should be established based on the physical knowledge and 

available data. A grid search, combined with validation techniques, 

is employed for this purpose. The required temperature data is 

obtained using a thermocouple embedded in close proximity to the 
tooltip. The heat generation network is used to identify a direct 

relationship between the temperature and other in-process data 

during the heat generation stage. 

3.2.2 Tool Cooling Network. The tool cooling network is 

developed to model the tool cooling stage, where t ∈ Pcooling for any 

thermal cycle. The initial state of heat generation plays a crucial 

role in multi-layer deposition during AFSD. In conjunction with the 
heat generation network, the tool cooling network aids in 

determining the initial condition for the heat generation stage of the 

next thermal cycle. The proposed tool cooling network is 

Ttool(t) = N tool cool(Ttool(t −Δt), Troom), t ∈ Pcool where Troom 

denotes the room temperature. The tool cooling network N tool cool(·) 

is the classical Nonlinear Autoregressive with Exogenous Inputs 

(NARX) network that aligns with commonly used neural network 

structures in heat transfer. 

Coupling the heat generation network and tool cooling network, 

we have 

Ttool(t) 
= 

NN heat  gen(u(t −
Δ

−t)Δ, Tt)tool, T(roomt 

−)Δ, t)), tool cool(Ttool(t 

t ∈ Pheat 

t ∈ Pcool 

This equation can be used to model the tool temperature evolution 

for all thermal cycles during AFSD. 

 3.3 Heat Transfer Network for Modeling Build 

Temperature Evolution. The build temperature evolution is caused 

by heat transfer during the layer-by-layer deposition and subsequent 

thermal cycling. To accurately model the build temperature 
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evolution, three important factors should inform the ML method: 
(1) the build geometry changes layer by layer; (2) the presence or 

absence of the moving heat source results in two distinct heat 

transfer mechanisms; and (3) there is a time delay between 

deposition events. In particular, the process decomposition within a 

single thermal cycle is insufficient to describe the time-delay 

phenomenon. This motivates the design of a unified neural network, 

the heat transfer network, for modeling build temperature evolution 

during AFSD. 

3.3.1 Heat Transfer Network. The heat transfer network 
establishes a mapping between the moving heat source and the 

build temperature at a specific location. 

Three input features are selected to develop the heat transfer 

network. They are the Euclidean distance d between the tool and 

target location on the build, the tool temperature Ttool(t −Δt) at time 

t −Δt, and the build temperature Tbuild
cb (t −Δt) at location cb and time 

t −Δt. The distance d is given by 

d(ct, cb) = (xtool − xbuild)2 + (ytool − ybuild)2 + (ztool − zbuild)2 

where ct = [xtool, ytool, ztool] and cb = [xbuild, ybuild, zbuild] refer to the 

coordinates of the tool and any target build location, respectively. 

The build geometry information is contained in this feature. To 

accommodate the two distinct heat transfer mechanisms caused by 

the presence or absence of the moving heat source, a mask function 

is introduced 

Mask(d, Ttool(t −Δt)) = 

(d,dTmasktool,(tT−maskΔt))), , 

( 

t ∈ Pheat 

t ∈ Pcool 

When the moving heat source is present (t ∈ Pheat), the features d 

and Ttool(t −Δt) are active. However, when the moving heat source 

is not present (t ∈ Pcool), these two features are irrelevant. For any t 

∈ Pcool, dmask and Tmask are set as the predefined constants to 

eliminate their influence. With this mask function, the heat transfer 

network is given by 

Tbuildcb (t) = N heat trans(Mask(d, Ttool(t −Δt)), Tbuildcb (t −Δt)), 

t ∈ Pheat ∪ Pcool 

where N heat trans(·) is a standard fully connected neural network. This 

unified equation can be used to model the build temperature 

evolution for all thermal cycles during AFSD. 

The mask function establishes the heat transfer network as a 

unified neural network approximator for build temperature 

evolution, with the ability to capture the time-delay phenomenon 

across multiple thermal cycles. After training, the heat transfer 

network can predict the temperature evolution of a given location 

cb on the build. 

It is noted that the basic components and operators used for the 

neural network models are by default. Each neural network is 

trained by minimizing the mean squared error (MSE) using the 

backpropagation algorithm 

= 1N(·) − T(·)22 

MSE 

n 

where n is the number of samples used for updating the weights of 

the corresponding network. 

3.4 Coupled Time Domain Simulations for Tool and Build. Let 

T
tool

∗ (t) and 
T

build
∗cb (t) denote the learned models for the tool and 

build by AFSD-Nets. After all neural networks in AFSD-Nets are 

trained, they are coupled to execute a time domain simulation for 

predicting the time-dependent AFSD temperature, as described by 

Algorithm 1 in Table 1. The coupled thermal behaviors of heat 

generation and heat transfer between the tool, build, and substrate 
determine the interconnectivity between these three networks. The 

final value from the heat generation simulation is used as the 

initial value for the following tool cooling simulation and vice versa 
(Step 1). After the tool temperature simulation is completed, the in-

process tool temperature prediction for all layers is stored (Step 2). 

For each build location, the build temperature is predicted by the 

heat transfer network using the initial condition and tool 

temperature prediction (Step 3). In this sense, the coupled 

interconnectivity makes AFSD-Nets the state-space representation 

of the thermal dynamical system during AFSD, which can simulate 

the entire temperature evolution. This is important for the practical 

use of the learned models to perform offline simulations that predict 

the temperature evolution due to different process parameters. This 

 Table 1 Algorithm procedure of time domain simulation using AFSD-Nets models 

 

Algorithm 1. Time domain simulation using AFSD-Nets models 

 

Input: Learned models: T t), and Tbuild
∗cb (t). 

Process control parameters: u(t) in the form of in-process data. 

Number of deposition layers: L. Let l be the index of the current deposition layer. 

Given T (0) when deposition begins at the first layer, Tbuild
∗cb (0), is the initial temperature of location Initial conditions: 

cb at build. Step 1. Execute time domain simulation for tool temperature. Set l = 1. while(l ≤ L): 

value T(0), when t ∈ Pheat gen;  1.1 Execute simulation for heat generation at lth layer by T  ) with initial 

 1.2 Use final value of T ) as initial value to execute simulation for tool cooling at lth layer by T ), when t ∈ Pcooling; 

 Update T  (0) by the final value of T .  1.3

Step 2. T← Prediction of in-process tool temperature for all layers. 

Step 3. Execute time domain simulation for build temperature. For a given location cb at build: 

Execute simulation for heat transfer at build by Tbuild
∗cb (t) using the initial condition Tbuild

∗cb (0) and tool temperature 

prediction T; Output: Prediction of tool temperature evolution Ttool
∗ (t), and prediction of build temperature evolution Tbuild

∗cb (t) at location cb. 
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information can be used to define operating parameters in a pre-

process sense. Further control and optimization of AFSD can also 

be potentially developed based on this accurate and 

computationally efficient coupled time domain simulation. 

4 Experimental Setup 

A commercially available MELD Manufacturing L3 machine 

was used to deposit solid wrought aluminum 7075 feedstock rod 

with 9.53 mm×9.53 mm×508 mm dimensions on the aluminum 

7075 substrate. Deposition was performed to build a wall with a 

length of 216 mm and height of 45 mm (30 layers with each layer 

1.5 mm thickness). Deposition was performed in a single direction, 

and the tool was returned to the same starting position for each 
layer. Given the wall length, a single rod of wrought stock was able 

to deposit two layers before the next rod was inserted into the 

spindle (i.e., the L3 is a discrete deposition machine where each rod 

must be manually loaded). The time required to insert the next rod 

was 2–3 min. To maintain consistent starting conditions for each 

layer, an artificial interval of 2 min was inserted after the first 

deposition layer for each rod to mimic the time interval for refilling. 

The result was 30 individual deposition layers that each had a 

similar initial temperature for the tool, substrate, and build. 

The operating parameters were 135 rpm spindle speed during 

deposition, 115.6 mm/min material feed rate, and 127 mm/min tool 

feed rate (traverse speed). To begin each layer, the spindle speed 

was set at 350 rpm to heat the material and was reduced to 135 rpm 

as the deposition began. A cooling jacket located around the tool 

was run at a constant flowrate during deposition to cool the tool and 

avoid excessive heating of the rod within the tool, which can cause 

the deposition to fail due to adhesion between the rod and the tool’s 
internal passage. After the numerical results in Sec. 5 were 

obtained, additional experiments using a different spindle speed of 

115 rpm were performed for further experimental validation. See 

details in Sec. 6. 

Time series data (spindle speed, torque, and power; material feed 
rate and actuator force and torque; and position, velocity, and torque 

for the X, Y, and Z axes) were recorded by the L3 controller using 

a 1 Hz sampling rate. The IR camera temperature data were sampled 

separately, as shown in Fig. 4(a). The tool thermocouple embedded 

in the rotating tool (a MELD Manufacturing product) was located 

within 0.25–0.38 mm of the tool surface and was used to measure 

the tool–deposit interface temperature. A FLIR 70 infrared camera 

was attached to the moving spindle carriage. The peak temperature 

within the field of view was sampled at 30 Hz. Black tape was 

wrapped around the tool head to approximate black body 

emissivity. The IR camera and the tool-embedded thermocouple 

temperatures were compared to confirm the performance of the two 

sensors. 

For the substrate temperature, two baseplates were used. The 

upper baseplate was the one where the deposit was made, and four 

equally spaced K-type thermocouples were embedded 2.54 mm 

below the build surface and along the track direction from the 

underside of this plate. Figure 4(b) shows the locations of the four 

thermocouples. The end of the plate nearest the deposit start is 

marked with an “S,” the end closest to the deposit end is marked 

with an “E,” and the intermediate distance between two adjacent 

thermocouples was 58.5 mm. The underside in Fig. 4(b) was 

covered by the lower baseplate to protect the thermocouples. 

The experiments resulted in 11,358 in-process data points. The 

number of data points from each layer is different. For each layer, 
the number of data points collected at the heat generation stages 

varies from 136 to 178, and the number of data points collected at 

the cooling stage varies from 149 to 634. This can be caused by 

variations in the time for manually loading feedstock and in the 

waiting time between the deposition of each layer to satisfy the 

work condition before it starts to traverse. The features include the 
L3 controller-captured data (spindle speed, torque, and power; 

material feed rate and actuator force and torque; and position, 

velocity, and torque for the X, Y, and Z axes), the tooltip 

temperature from the embedded thermocouple, and the 

temperatures from the four substrate thermocouples. Additionally, 

the 341,606 data points obtained by the IR camera were used to 

validate the embedded thermocouple temperature, demonstrating 

good agreement between the two. For the subsequent analysis, the 
temperature data from the embedded thermocouple was used to 

represent the tooltip temperature. 

5 Computational Experiments 

In this section, the numerical results and analysis of the proposed 

AFSD-Nets are presented. The in-process data obtained using the 

experimental setup shown in Sec. 4 were used to train and test the 

model. The AFSD-Nets models are first validated to confirm good 

accuracy. Then time domain simulations are performed to show the 

effectiveness of the learned models in predicting the entire 

temperature evolution at the tool and build during AFSD. All 

computations are completed using PYTHON and executed using 
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an AMD Ryzen 7 5800X @3.80 GHz, 32 GB Memory, 64-bit 

Windows operating system, and eight cores with 16 logical 

processors. Note the CPU computation is reported as there was no 

significant difference between the computational times when 

selecting GPU or CPU implementations for the simple neural 

network structures applied in AFSD-Nets. 

5.1 Parameter Settings of AFSD-Nets. The model structures and 

training for AFSD-Nets are as follows. The dataset is split into 

training, validation, and test sets, with a split ratio of 20:5:5 layers, 

respectively. Process decomposition based on spindle torque and 

the tool’s axial position, as described in Sec. 2, is performed to 

separate each layer into heat generation and cooling stages. For the 

heat generation stage of each layer, the first 20 measurements are 

truncated. The input data are normalized using min-max 

normalization to mitigate the impact of varying magnitudes, while 

the output data undergo a logarithmic transformation to reduce 

parameter sensitivity. For the tool heat generation network, a grid 

search for the nine model structures consisting of the number of 

hidden layers selected from the set [1, 2, 3] and the number of nodes 

in each hidden layer chosen from the set [8, 10, 16] is performed. 

For the tool cooling network, a fixed NARX network structure is 

employed after a preliminary grid search, which is not presented for 
brevity. The model structure is set as [2, 4, 1], which consists of two 

input nodes, one hidden layer with four nodes, and one output node. 

Other parameters use default settings in the adopted NARX 

network operated by the MATLAB engine on the PYTHON platform. 

Forbuildtemperatureevolution,theentiredatasetisfirstprocessed 

by the Mask(·) function for setting the distance and tool temperature 

values. The values for (dmask, Tmask) must be less than the smallest 

values of distance and tool temperature within the entire dataset. 

This is to ensure these two features do not affect the network 

training when the tool leaves the build (t ∈ Pcool) while maintaining 

the underlying physics defined by the data scale when the tool is on 

the build (t ∈ Pheat). After this, the min-max normalization is used 

as x′ = (x − xmin)/(xmax − xmin), where x and x′ are the original and 

scaled values of distance or tool temperature, and xmin and xmax are 

the minimum and maximum values within the dataset, respectively. 

In this paper, (dmask, Tmask) = (−2, − 100) is set, considering the 

ranges of distance d ∈ [0.16, 8.13] mm and the tool temperature Ttool 

∈ [20.3, 447.8]°C in the dataset. In addition, only training data from 

the first three thermocouples (KTC1, KTC2, and KTC3) are stacked 

as a single dataset for training, while the last thermocouple near the 

end of the build (KTC4) is used for validation of the extrapolation 

capability of the learned model. The model structure is set as [3, 10, 
10, 10, 1] (three input nodes, three hidden layers each with ten 

nodes, and one output node) after a preliminary grid search, which 

is not presented for brevity. 

5.2 Validation of Learned Models. Each network of AFSDNets is 

trained using the settings stated in Sec. 5.1. The training time for 

AFSD-Nets (single execution without grid search) is less than 5 

min, with about 1 min, 30 s, and 3 min for the tool heat generation 
network, tool cooling network, and heat transfer network at build, 

respectively. The learned models are validated in this section before 

the time domain simulation is completed. 

5.2.1 Model Validation for Tool Temperature Evolution. For the 

heat generation network at the tool deposition surface, two sets of 

input features are employed depending on which process control 

parameters are used. The fi
rst learned model 

N heat gen(3) considers 

three features, including the time-delay tool temperature, spindle 

speed, and material feed rate. This makes the learned N heat gen(3) 

independent of other in-process signals and available for offline 

time domain simulation of heat generation, given the process 

parameter values along the path. The second learned model N heat 

gen(6) considers six features, including the time-delay tool 

temperature, the in-process signals spindle torque, feed actuator 
torque, and feed actuator force, as well as spindle speed and 

material feed rate. The motivation for using the in-process signals 

is to explore the relationship of these signals to temperature 

evolution, which can enable real-time prediction, control, and 

optimization. 

 

Fig. 4 Experimental setup for depositing 7075 aluminum feed rod on a 7075 aluminum substrate for 30 layers using the MELD Manufacturing L3 

machine. (a) A thermocouple embedded in the tool was used to measure the tool temperature near the deposition interface. A FLIR A70 infrared 

camera was attached to the spindle carriage to measure the external temperature at the tooltip. Four equally spaced thermocouples were 

embedded in the substrate for measuring temperature evolution beneath the deposition track. (b) Substrate with locations of the four 

thermocouples. The location nearest the deposit start is marked with an “S,” and the location nearest the deposit end is marked with an “E.” 
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Table 2 shows the two learned models N heat gen(3) and N heat gen(6) 

and their performance comparison. The best model structure 

column shows [3,8,1] (three input nodes, one hidden layer with 

eight nodes, and one output node) and [6,16,16,16,1] (six input 

nodes, three hidden layers each with sixteen nodes, and one output 

node) are chosen for N heat gen(3) and N heatgen(6), respectively. This 

best model structure is selected by grid search (see Sec. 5.1) from 

nine candidates. It is seen that a simpler model structure is chosen 

for a model with fewer features and vice versa. This can be because 

fewer features include less information and could need a simpler 

model structure to avoid overfitting during validation. On the 

contrary, more features could need a more complicated model 

structure to avoid underfitting. Mean squared error (MSE) is used 

for training the neural network models, which measures the error 

between the logarithmically transformed prediction and 

measurement. The mean absolute percentage error (MAPE) is used 

for validating and testing the model performance on unseen data; it 

provides improved insight into the relative error compared to MSE. 

MAPE is evaluated by scaling the prediction and measurement to 

their original values. It can be seen that for all metrics of MSE and 

MAPE, N heatgen(6) outperforms N heatgen(3). While N heatgen(6) is 

significantly better than N heat gen(3) on the training set, the 

difference in performance decreases for the validation and testing 

sets. This shows the balance between the model accuracy and the 

model complexity induced by features and structures. It is noted the 

total grid search training times for N heatgen(3) and N heat gen(6) are 6 

min and 8 min, respectively. 

Figures 5 and 6 display the prediction of tool temperature 

evolution for the heat generation stage on the training, validation, 

N heatgen(3) and N heat gen(6). It is seen that and testing sets by 

the predictions for both models provide good agreement with the 

measured data. From these time series predictions, the differences 

between N heat gen(3) and N heat gen(6) are slight. Good extrapolation 

capability is also observed. 

Figure 7 shows temperature prediction for the cooling stage using 

the tool cooling network on the training, validation, and test sets. 

The predictions closely agree with the measurement data. It is 
understood that the cooling stage of the tool undergoes mainly 

conduction through the feedstock rod and convection to the air. The 

learned tool cooling network demonstrates its capability to 

accurately capture the combined effects of conduction and 

convection. 

 Table 2 Learned models and their performances for the heat generation network with two sets of input features 

Learned 

model 
Spindle 

speed 
Spindle 

torque 

Selected 

 

Material feed rate 

features 

Feed 
actuator 

torque Feed 
actuator 

force 
Tool 

temperature 

 Metrics  

Best model 

structure 
Training 

MSE 
Validation 

MAPE 
Test 

MAPE 

N heat 

gen(3) 

N heat 

gen(6) 

√ 

√ 

√ 

√ 

√ 

√ √ 

√ 

√ [3,8,1] 
[6,16,16,16,1] 

0.0003 
0.0001 

0.0046 
0.0037 

0.0076 
0.0050 

 

 Fig. 5 Temperature prediction of heat generation stage by Nheat gen(3) on the training, validation, and testing sets 
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Fig. 6 Temperature prediction of heat generation stage by Nheat gen(6) on the training, validation, and testing sets 

 

Fig. 7 Temperature prediction of cooling stage by tool cooling network on the training, validation, and testing sets 

5.2.2 Model Validation for Build Temperature Evolution. The 
learned heat transfer network for the temperature evolution at the 

build is validated using the measurement data from the four 

thermocouples located in the substrate. Figure 8 displays the 

prediction results on the training and testing sets for the temperature 

at the four thermocouples in (a) to (c), respectively. It is seen that 

the predictions closely agree with the measurement data. Notably, 

Fig. 8(d) shows the extrapolation capability of the learned heat 

transfer network; the temperature prediction is accurate even 

though no data from thermocouple 4 is used in the training. Given 
any location on the build, its temperature evolution can be 

predicted. The good accuracy of the AFSD-Nets models enables the 

use of time domain simulation for further performance evaluation 

when predicting temperature evolution during AFSD. 

5.3 Time Domain Simulation of Learned Models. This section 

presents the time domain simulation detailed in Algorithm 1 for 

both tool and build temperature evolution during AFSD using the 

validated models. The temperatures at time zero of the 

measurement data for the tool and the four thermocouples in the 

substrate are used as initial conditions for the simulation. The 
process decomposition is applied to determine which learned model 

should be used during simulation at any time. The time-step is set 

as 1 s. The simulation is completed over 11,358 steps to include all 

30 layers of the deposition. 

5.3.1 Time Domain Simulation for Tool Temperature Evolution. 

The heat generation network N heat gen(3) uses only two process 

parameters and the time-delay tool temperature as inputs. 

Therefore, it can be used for time domain simulation in an offline 

fashion. Figure 9 displays the results of time domain simulation for 

tool temperature evolution using the coupled N heat gen(3) and tool 

cooling network. In general, the simulation captures the trend of the 

temperature evolution at the tool for all layers, with a few 

exceptions at the peak temperatures during deposition. The first two 

layers are shown in Fig. 10. A shift to the left is observed. This is 

caused by the training data pre-processing to remove the first 20 

measurements (a local temperature peak is observed at the virtual 

inlet) at each heat generation stage. During AFSD, the heating stage 

is typically longer with a newly filled feedstock rod as it is heated 

from room temperature. This causes a temperature reduction when 

the spindle speed is reduced from the peak value to the desired value 
for deposition. It is noted that for the coupled mode of time domain 

simulation, the accuracy of the heat generation network 

significantly impacts the tool cooling network by means of setting 

the initial conditions and vice versa. From this perspective, the 

learned models capture the underlying physics of the tool 

temperature evolution. 

Similarly, Figs. 11 and 12 show the results for time domain 

simulation of the coupled heat generation network N heat gen(6) and 

tool cooling network. N heat gen(6) uses two process parameters and 

three in-process signals (spindle torque, feed actuator torque, and 
feed actuator force). Thus, it has the potential to be used for real-

time applications; recall that the L3 controller can constantly 

provide in-process signals by its embedded sensors. It is seen that 

the deviations between the simulation and measurement at peak 

temperatures are reduced, showing the advantages of including in-

process signal features for the model performance improvement. 

 5.3.2 Time Domain Simulation for Build Temperature 

Evolution. The tool temperature prediction by coupled simulation 

of the heat generation network N heat gen(3) and tool cooling network 
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is used as input to the heat transfer network to perform time domain 

simulation of the build temperature evolution. Figure 13 shows the 

results of this simulation. It is observed that the simulation 

generally captures the behaviors of the temperature evolution at 
build, including the thermal cycle and the trends of a time-

dependent decrease of the peak temperatures and timedependent 

increase in lowest temperatures as the wall height (and its thermal 

mass) increases. Figures 13(a) and 13(b) display some deviations 

from the measurement at the peak temperatures for the first 15 

layers, while Figs. 13(c) and 13(d) accurately predict the peak 

temperatures. Lastly, Fig. 13(d) shows some non-smooth curves at 

the time epochs for process decomposition. This can be caused by 

the soft incorporation of discrete characteristics from the mask 

function in the current model structure, which may fail to recognize 

the underlying discrete patterns or disambiguate unrelated inputs. 

The temperature predictions after 15 layers for all thermocouples 

are observed to deviate from the measurement. Potential 

explanations for this deviation are summarized into three key 

points: (a) All models are approximations of the ground truth. 

Neural networks have their limitations in approximating this 

complicated, multistage, and multi-physics AFSD process. (b) Time 

domain simulations have accumulated numerical errors. (c) 

Effective sensor measurements of the top layer (surface heat 

source) are not included, and only the sensor data at the tool head 
(single dot moving heat source) is available. Nevertheless, 

considering that only the initial values for the first two seconds are 

given, a complete 30-layer time domain simulation (11,358 steps) 

shows the superior performance of the proposed AFSD-Nets as it 

correctly captures the trend of thermal cycles and peak temperatures 

for most layers. 

In addition, the tool temperature measurement is used instead as 

input for the heat transfer network to execute the time domain 

simulation. As shown in Fig. 14, it is observed that the deviations 

at the first 15 layers are significantly decreased. This indicates that 

integrating the in-process signals can have a great improvement on 

the simulation performance and can provide an accurate digital twin 

of the physical process for use in real-time prediction, control, and 

optimization. 
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Fig. 8 Temperature prediction by the learned heat transfer network at the build on the training and testing sets. (a) to (c) represent the results for 
thermocouple 1 to 3, respectively, and (d) shows the extrapolation for thermocouple 4 prediction. 

6 Additional Validations of AFSD-Nets and Its 

Acquired Models 

In this section, additional validations for AFSD-Nets and its 

acquired models are presented to demonstrate superior performance 

in three ways: (1) In Sec. 6.1, numerical validation of AFSD-Nets 

versus non-physics-informed machine learning is presented; (2) 

Sec. 6.2 shows the results for a different training data size; (3) in 

Sec. 6.3, new experiments on a different spindle speed of 115 rpm 

are conducted, and the acquired models from the 135 rpm data are 

validated using the 115 rpm data. Note that all results reported in 
this section are sourced from time domain simulations of the 

acquired models under comparison. In addition, for the build 

temperature, only the trajectory of thermocouple 4 is displayed 

since it is pure extrapolation. 

 6.1 Numerical Validation on Physics-Informed and 

Non-Physics-Informed Models. For this validation, the temperature 

evolution of the tool and build are respectively modeled by an 

individual NARX model. Compared with AFSD-Nets, the two 

networks N heat gen(·) and N tool cool(·) are combined as a single NARX 

for tool temperature modeling. The mask function in N heat trans(·) is 
also removed from the build temperature modeling. 
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In addition, the training data are not processed by physics-informed 

process decomposition. By using such settings, the NARX models 

are purely data-driven models that do not include physics-informed 

process decomposition of AFSD. Figure 15 shows the comparison 

results. The NARX model completely fails to model tool 

temperature evolution. For build temperature evolution, the NARX 
model has larger deviations from the measurements compared to 

AFSDNets. This validates that the proposed physics-informed 

machine learning approach, AFSD-Nets, can capture the underlying 

temperature evolution pattern of the AFSD process and thus it 

significantly outperforms the purely data-driven approach. 

6.2 Numerical Validation on Different Training Data Sizes. A new 

setting for splitting the 30-layer deposition data is used as 

[10,10,10] in contrast to the original [20,5,5] setting in 

 

Fig. 11 Time domain simulation of tool temperature evolution by coupled Nheat gen(6) and tool cooling network with steady-state spindle speed of 135 

rpm 

 

Fig. 9 Time domain simulation of tool temperature evolution by coupled Nheat gen(3) and tool cooling network with steady-state spindle speed of 

135 rpm 

 

 Fig. 10 The zoom in of the tool temperature evolution prediction in Fig. 9 
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 Fig. 12 The zoom in of the tool temperature evolution prediction in Fig. 11 

 

Fig. 13 Time domain simulation of build temperature evolution by coupled heat transfer networks. (a)–(d) show the results for prediction 

at thermocouples 1–4, respectively. The tool temperature prediction by coupled simulation of heat generation network Nheat gen(3) and 
tool cooling network is used as input of heat transfer networks. 
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Fig. 14 Time domain simulation of build temperature evolution using the measured tool head temperature. (a)–(d) show the results for prediction at 
thermocouples 1–4, respectively. The measurement of tool temperature is used as input to the heat transfer 

networks. 

Sec. 5. This new setting is used to validate the effectiveness of 

AFSD-Nets and the stability of the acquired models on different 

training data sizes. Figures 16(a) and 16(b) show the comparison 

results for tool and build temperature, respectively. For the tool, the 

model of [10,10,10] successfully captures temperature evolution 

and performs almost the same as that of [20,5,5]. For the build 

temperature, the model of [10,10,10] performs better than [20,5,5] 

for the first few layers and then worse than [20,5,5] for the last few 

layers. This is reasonable since the model of [10,10,10] is only 

trained using data from the first 10 layers. In general, both models 

are comparable. This validation shows that the proposed AFSD-

Nets maintains stable performance for different training data 

settings. 

6.3 Experimental Validation with Different Deposition 
Parameters. A critical issue with all ML approaches is their 

capability to extrapolate, that is, to predict beyond the data on which 

the ML models are trained. To validate the extrapolation capability 

of AFSD-Nets, additional physical experiments were performed 

using a spindle speed of 115 rpm while all other settings remained 

the same, as described in Sec. 4. The acquired models from 

AFSDNets using the data from a spindle speed of 135 rpm are 
directly used for the prediction of the measurements for the spindle 

speed of 115 rpm. Figure 17 shows good alignment between the 

simulation predictions and the measurements. The results 

demonstrate that the acquired AFSD-Nets models have strong 
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extrapolation capability for the new spindle speed and can be 

potentially 
Fig. 15 Time domain simulation of tool and build temperature evolution by AFSD-Nets and a single NN without physics-informed process 
decomposition. (a) Simulation of tool head temperature evolution and (b) simulation of build temperature evolution. 
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Fig. 16 Time domain simulation of tool and build temperature evolution by AFSD-Nets (20,5,5) and AFSD-Nets (10,10,10). AFSDNets (20,5,5) refers 
to the AFSD-Nets learned from the data with splitting of 20 training layers, 5 validation layers, and 5 test layers. (a) Simulation of tool head 
temperature evolution and (b) simulation of build temperature evolution. 

 

Fig. 17 Time domain simulation of tool and build temperature evolution given the steady-state spindle speed of 115 rpm. The AFSD-Nets obtained 
from the dataset of spindle speed of 135 rpm is directly utilized for simulating temperature evolution under the new setting of spindle speed. (a) 
Simulation of tool head temperature evolution and (b) simulation of build temperature 

evolution. 

used for real-time predictions with other deposition settings in 

practice. 

7 Conclusions and Outlook 

This study presents a machine learning modeling effort for the 

temperature evolution of an emerging solid-state additive 

manufacturing process, additive friction stir deposition. The in-
process signals are analyzed, and a process decomposition of the 

complete AFSD process is performed to generate multiple stages of 

heat generation and heat transfer. Based on this, a physics-informed 

machine learning approach, denoted as AFSD-Nets, is proposed to 

model heat generation and heat transfer by developing a set of 

neural networks, with each network modeling a distinct stage. For 

the tool temperature evolution, time-delay information and 

nonlinear autoregressive exogenous models are used for the 

modeling of heat generation and cooling, respectively. Heat 
generation models using process parameters only or process 

parameters and in-process signals as inputs are investigated. For the 

build temperature, the learned heat transfer network with a moving 

heat source is reused as an initial model for training the cooling 

network. Numerical results show good agreement of the learned 

models by AFSD-Nets to the experimental data. Time domain 

simulation is performed to demonstrate the effectiveness of the 

learned models by coupling them to predict the entire temperature 
evolution during AFSD. These results show the powerful 

capabilities of the proposed physics-informed machine learning 

approach to advance the understanding of the physical process of 
AFSD, as well as the potential to apply AFSD-Nets as the digital 

twin of AFSD temperature evolution using in-process data. 

This study has two main limitations. The primary one is that the 

experimental data are from a single combination of process 

parameters, which limits the AFSD-Nets’ ability to predict the 

behavior of different process parameters. Another one is the lack of 

interpretability of the learned models relative to the unknown 

governing equations. Future work will focus on designing a series 

of representative experiments to improve AFSD-Nets for the 

prediction of arbitrary process parameters, including tool spindle 

speed, material feed rate, and tool feed rate. In addition, the build 

geometry, tool path, and spatial temperature measurements will be 
utilized to enable AFSD-Nets to generate the 3D temperature 

distribution for a comprehensive description of the build 

temperature evolution. The interpretability of the learned models by 

AFSD-Nets will also be explored and enhanced to advance the 

understanding of the underlying physics during AFSD. 
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