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1 Introduction

AFSD-Nets: A Physics-
Informed

Machine Learning Model for
Predicting the Temperature
Evolution During Additive
Friction Stir Deposition

This study models the temperature evolution during additive friction stir deposition
(AFSD) using machine learning. AFSD is a solid-state additive manufacturing
technology that deposits metal using plastic flow without melting. However, the ability

to predict its performance using the underlying physics is in the early stage. A physics-
informed machine learning approach, AFSD-Nets, is presented here to predict
temperature profiles based on the combined effects of heat generation and heat transfer. The
proposed AFSD-Nets includes a set of customized neural network approximators, which
are used to model the coupled temperature evolution for the tool and build during multi-
layer material deposition. Experiments are designed and performed using 7075 aluminum
feedstock deposited on a substrate of the same material for 30 layers. A comparison of
predictions and measurements shows that the proposed AFSD-Nets approach can accurately
describe and predict the temperature evolution during the AFSD process. [DOI:
10.1115/1.4065178]

Keywords: additive manufacturing, additive friction stir deposition, temperature,
physicsinformed machine learning, neural networks, advanced materials and processing,
metrology, modeling and simulation, sensing, monitoring and diagnostics

[3]. These advantages make AFSD an attractive choice for the
defense and aerospace industries, for example.
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Additive friction stir deposition (AFSD) has emerged as a novel,
solid-state metal additive manufacturing (AM) technology with the
potential for broad application. AFSD is a plasticity-based,
solidstate AM process where no melting occurs, and the geometry
and microstructure are produced during layer-by-layer severe
plastic deformation. This is fundamentally different from the
solidification mechanism observed during fusion-based AM
technologies in which the materials are melted using a high-
intensity heat source [1,2]. AFSD can, therefore, provide superior
mechanical and material properties, including lower porosity,
reduced thermal gradients, lower residual stress, and uniform and
homogeneous microstructure Prior AFSD studies have considered
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both the process and build material characteristics. For process
efforts, AFSD has been combined with machining and metrology
while considering the hybrid manufacturing processes holistically
to arrive at a comprehensive approach to process planning [4-6]. It
provides a new option for the emerging hybrid manufacturing
approach to reduce material use and removal [7,8]. For materials,
researchers have deposited multiple materials, including aluminum
alloys [9-12], pure copper [13], magnesium alloys [14,15],
stainless steel [16], and titanium alloys [17]. Various process
control parameters, including spindle speed, material feed rate, and
traverse speed, have been investigated to understand their impact
on deposition [4,18]. Process topics include temperature [15],
plastic strain [10], residual stress [11,19], morphology and
microstructure [10,12- 14,16,17,20,21], and material flow [22].

It is understood that the complex coupled thermomechanical
behaviors, severe plastic deformation, and multiple process control
parameters present a significant challenge for AFSD modeling
research [9,18,23-28]. The peak temperatures of Cu and AI-Mg-Si
during AFSD were empirically modeled as power law relationships
with respect to spindle speed and traverse speed [18]. Multi-
physics-coupled thermomechanical process models have also been
presented. For example, coupled thermomechanical mesh-free
models based on smoothed particle hydrodynamics (SPH) have
been applied to simulate the temperature, build profile, and plastic
strain for AFSD [23]. Researchers have compared material
constitutive models [24] and combined computational and
experimental approaches to explore particle tracking [25]. Mesh-
based modeling efforts include the finite volume method (FVM) for
heat influx and outflux analysis [26], computational fluid dynamics
(CFD) for material flow and thermomechanical processing history
[27], the finite element method (FEM) for the stress induced by
spatial nonuniformity of dynamic bulk modulus [9], a multi-layer
FEM for explaining the microstructure using spatial and temporal
prediction of temperature [28], and a multilayer FEM in Ref. [29]
for linking process parameters to microstructure. A comprehensive
review of AFSD research from the perspective of process-structure-
property-performance convergence is presented in Ref. [30].

However, these high-fidelity process models are still in their early
stages of development. Current limitations include instability with
boundary conditions (such as significant viscosity differences
between the build material and atmosphere), high computational
cost (36 h of computation for a single-layer deposition simulation
has been reported [23]), and poor scalability for multi-layer
depositions (most studies focus on a single layer with a few
exceptions). This poses challenges for real-time prediction, control,
and optimization, as well as scalability to production-level part
manufacturing using multi-layer depositions and complicated tool
paths.

In terms of machine learning (ML) modeling efforts, only a few
recent studies have investigated tool temperature modeling using
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neural networks [31]. Besides, a growing research focus is on
physics-informed machine learning (PIML) that combines existing
physical knowledge with data such that the acquired ML models
can better respect physical laws [32]. Prior PIML approaches can
be classified into the following categories: (1) physics-informed
neural networks (PINN) that integrate the governing equations into
the neural network (NN) loss function as soft constraints [33] or
hard constraints [34]; (2) physics-informed features construction
for ML model input [35,36]; and (3) physics information
incorporated into the ML model structure design [37]. However,
these PIML approaches are generally designed for a single physical
process, which is described by a specific set of governing equations.
While the AFSD process is a multi-stage and multi-physics additive
manufacturing process that involves mechanical inputs, multiple
thermal cycles, heat generation, cooling, and heat transfer, the
above PIML approaches cannot be directly applied to the studied
AFSD modeling.

This study focuses on two physical phenomena determining
temperature evolution during AFSD: heat generation (at the tool
deposition surface) and heat transfer (between the tool, build, and
substrate). Currently, the underlying physics of heat generation and
heat transfer processes with respect to process parameters are not
well understood. This study investigates the fundamental functional
relationships between heat generation and heat transfer to
accurately describe temperature evolution during AFSD. This
represents the first attempt at modeling AFSD temperature
evolution using ML and in-process data signals. The primary
contributions are the following:

(1) A physics-informed machine learning approach, AFSDNets,

is developed to model the heat generation and heat transfer
during AFSD. Process decomposition based on the process
parameters and physical variables is used to describe heat
generation and heat transfer during a thermal cycle.
These thermal stages and the location-based, time-delay
phenomenon for heat transfer are incorporated into AFSD-
Nets as underlying physics embedded in the in-process data
to improve the model accuracy.

(2) The proposed AFSD-Nets accurately predicts the
temperature evolution due to heat generation and heat
transfer using in-process data from a 30-layer deposition.
The computation time is 5 min. This shows the accuracy and
efficiency of the proposed AFSD-Nets approach in
comparison to existing multi-physics process models.
Additionally, the ML models can be integrated into the
current multi-physics process modeling framework as
thermal model surrogates.

(3) It is demonstrated that the AFSD-Nets models are
generalizable using coupled time domain simulation. Given
process parameters and initial temperatures, the simulation
can predict the tool and the build temperature evolution
during AFSD. This shows the effectiveness of the models in
capturing the underlying physics and their potential use for
AFSD control and optimization.

The paper is organized as follows: In Sec. 2, AFSD is described,
and the temperature evolution due to heat generation and heat
transfer is introduced. Section 3 presents the AFSD-Nets design
using distinct stages of heat generation and heat transfer for both
the tool and the build. The experimental setup for depositing an
aluminum alloy on an aluminum substrate and collecting data is
described in Sec. 4. The numerical results of the proposed AFSD-
Nets are presented in Sec. 5. For experimental validation, additional
physical and numerical experiments for the proposed AFSD-Nets
and its acquired models are presented in Sec. 6. Section 7 provides
conclusions and the research outlook.
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2 AFSD Temperature Evolution

This section describes the heat generation and heat transfer,
which determine the temperature evolution in AFSD. Based on this,
the strategy for modeling the underlying heat generation and heat
transfer physics as functions of the process parameters is presented.

The AFSD temperature evolution is described in Fig. 1. At the
beginning of each layer’s deposition, the tool is moved downward
toward the substrate, leaving a small gap between the tool and the
substrate. The square feed rod (9.53 mm side length by 508 mm
axial length) is forced downward by a ball screw actuator at the
selected material feed rate through the hollow, rotating tool. This
generates frictional heating at the substrate interface, which
increases the local temperature and reduces the feed rod strength
sufficiently to cause plastic flow and a metallurgical bond with the
substrate or previous layer. The tool is subsequently traversed along
the programmed path using the selected traverse speed to deposit
material in a layer-by-layer fashion.

Heat generation can be divided into two general stages: heating
and deposition. In the heating stage, the heat is generated mainly by
the contact friction between the extruded material and the tool
bottom and substrate top surfaces. The temperature increases with
spindle speed due to increased power input. Once the temperature
reaches the desired level (based on the temperature-dependent
material strength), the spindle speed is reduced, and the deposition
stage begins. The heat is then generated at a relatively slower rate
due to the (typically) lower spindle speed during deposition.

The time-dependent heat transfer is the result of heat generation
at the moving heat source from one layer to the next. The heat is
conducted away from both the tool and the build during the entire
AFSD process. This conduction includes two stages: layer
deposition and after layer deposition. The former stage corresponds
to a moving heat source, while the latter relates to the initial
conditions and specific locations on the build.

Figure 2 displays the temperature evolution induced by heat
generation and heat transfer. The data represent two layers of a 30-

and substrate are shown as a function of deposition time. The heat
generation and transfer stages are identified. The timedelay heat
transfer from the moving heat source to the four K-type
thermocouples in the substrate is also observed.

In this study, a process decomposition is performed to isolate the
data due to heat generation and heat transfer by separating the time
series into segments. Figures 2(b) and 2(c) show the process
decomposition using spindle torque and the tool’s axial location.
Heat generation at the tool deposition surface begins when the
rotating tool moves downward to provide contact between the
feedstock and the build (i.e., the tool’s axial location is the current
build thickness), and the spindle torque increases. On the contrary,
tool cooling begins when the tool leaves the build, and the spindle
torque decreases.

In this context, the fundamental research question for this study
is: What are the functional relations of heat generation and heat
transfer that can accurately describe the temperature evolution
during AFSD? The approach is to design a physics-informed
machine learning model for AFSD to identify these relations using
in-process data. Technical solutions, the experimental setup, and the
research findings are presented in the following sections.

3 Proposed AFSD-Nets

This section presents the proposed physics-informed ML
approach, AFSD-Nets, for modeling the temperature evolution
during AFSD. An overview of AFSD-Nets is first presented. This is
followed by its component design for temperature evolution at tool
and build. The models identified by AFSD-Nets are then applied in
coupled time domain simulation.

3.1 Overview of AFSD-Nets. The main idea of AFSD-Nets is to
model each of the heat generation, cooling, and heat transfer stages
with a distinct neural network and then couple them to model
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Fig. 1 AFSD temperature evolution consists of heat generation and heat transfer. Heat is generated by friction at the tool deposition surface and
plastic deformation within the material (adiabatic heating). During layer-by-layer deposition, heat conducts away from this moving heat source to
the build and substrate. Thermal cycling is observed in the tool deposition tem-

perature profiles due to discrete deposition intervals.

deposition obtained using the experimental setup described in Sec.
4. The temperatures from the thermocouples embedded in the tool
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temperature evolution during the entire AFSD process. AFSD-Nets
is a PIML approach because it is established based on the physical
process decomposition and coupling of AFSD.

Because the AFSD process is a multi-stage and multi-physics
additive manufacturing process, a single PIML model cannot
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capture all the underlying temperature evolution patterns for the
heat generation, cooling, and heat transfer stages. AFSD-Nets
incorporates the physical knowledge of multi-stage and multi-
physics processes into the design of multiple networks that have
causal relationships with each other. Within each network, physical
knowledge is also incorporated as the input features like, for
example, the Euclidean distance between the tool and the build,
which is calculated as an input feature for modeling heat transfer
from the tool to the build.

Figure 3 displays an overview of the proposed AFSD-Nets
approach. Underlying physics during AFSD, including the thermal
cycle, process decomposition of heat generation and heat transfer,
and location-based time-delay phenomenon for heat transfer at the
build are incorporated into the design of the ML models.
Customized neural networks can, therefore, be built for each stage
of heat generation and heat transfer as follows. For temperature
evolution at the tooltip, networks for heat generation at the tool
deposition surface and tool cooling are developed. For deposition
temperature evolution, a mask mechanism on the features is applied
for the build heat transfer network to indicate the existence of the

moving heat source or not. These neural networks are trained and
optimized individually using the in-process data based on the time
segment where the specific thermal process occurs. The set of
learned networks by AFSD-Nets are coupled to perform the time
domain simulation of temperature evolution during AFSD. The
simulation output of the tool heat generation network is used to set
initial conditions of the tool cooling network simulation, and vice
versa, to fully describe the temperature evolution at the tooltip. The
tooltip temperature prediction is then used as input to the heat
transfer network. Due to the mask mechanism, a unified network
model is learned and used for simulating the heat transfer at the
build. The combined outcomes propagate to describe and predict
the temperature evolution during multi-layer material deposition.

3.2 Heat Generation and Tool Cooling Networks for Modeling
Tool Temperature Evolution. The heat generation stage begins at the
tool surface during deposition, and then tool cooling begins when
the tool leaves the build, and the spindle
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Fig. 2 Temperature evolution induced by heat generation and heat transfer. Data are from two layers

of a 30-layer deposition using the experiment

setup in Sec. 4. (a) Process decomposition of

temperature evolution at the tooltip and the build using spindle torque in (b) and the tool’s axial
location in (c). Tooltip temperature was measured by a thermocouple embedded in the rotating tool,
and the build temperatures were measured using four K-type thermocouples (KTC) in the substrate.
(b) Data are separated by whether the spindle torque is applied or removed. (c) Data are separated

by the tool’s axial location. Heat generation begins

when the rotating tool is in contact with the build,

and the spindle torque increases. Cooling begins when tool leaves the build, and the spindle torque

decreases.
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Fig. 3 Overview of the proposed AFSD-Nets as a set of customized neural networks informed by the underlying physics during AFSD. Each network
models a specific thermal stage of heat generation and heat transfer. The coupled time domain simulation describes and predicts the temperature

evolution during AFSD.

torque subsequently decreases. The heat generation network and
tool cooling network are developed to model the time-dependent
tool temperature. The coupled heat generation and tool cooling
determine the tool temperature evolution during AFSD.

One thermal cycle of the tool during AFSD consists of the heat
generation and tool cooling stages. For any thermal cycle, let Pheat
and Pcool denote the process windows for heat generation and tool
cooling throughout. It is assumed that the tooltip and deposition
surface temperatures are equal during the heat generation stage. Let
T(t) denote the temperature at time t and T(t -At) denote the
temperature at time t —At throughout this paper.

3.2.1 Heat Generation Network. The heat generation stage in any
thermal cycle can be described as an unknown dynamical system
with control, where t € Preat. Let u(t) = [ui(t), uz(t)] denote the vector
of in-process control variables, where ui(t) is the vector of process
parameters that can be explicitly selected and controlled, such as
tool spindle speed, feedstock and tool feed velocities. ux(t) includes
process physical variables that cannot be explicitly selected but can
be measured, such as spindle torque and actuator force to push the
feedstock through the rotating spindle. The following heat
generation network is proposed

Ttool(t) = N heat gen(u(t —At), Ttool(t —At)), t € Pheat
where N heat_gen(+) is the standard fully connected neural network
with several hidden layers, each defined in the form h = o(wh + b).
Here, w represents the weights from the preceding hidden layer to

the current one, and b represents the bias. The activation function
tanh(-) is used to account for non-linearity

o(x) = tanh(x) = S5 Tr Sex

For the output layer, only the linear combination of the last
hidden layer is applied as Ttol(t). The determination of the input for
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the mapping, the network structure, and the weights within the
model should be established based on the physical knowledge and
available data. A grid search, combined with validation techniques,
is employed for this purpose. The required temperature data is
obtained using a thermocouple embedded in close proximity to the
tooltip. The heat generation network is used to identify a direct
relationship between the temperature and other in-process data
during the heat generation stage.

3.2.2 Tool Cooling Network. The tool cooling network is
developed to model the tool cooling stage, where t € Pcooling for any
thermal cycle. The initial state of heat generation plays a crucial
role in multi-layer deposition during AFSD. In conjunction with the
heat generation network, the tool cooling network aids in
determining the initial condition for the heat generation stage of the
next thermal cycle. The proposed tool cooling network is

Ttool(t) = N tool_cool( Ttool(t =At), Troom), t € Pcool Where Troom

denotes the room temperature. The tool cooling network N tool_cool(*)

is the classical Nonlinear Autoregressive with Exogenous Inputs
(NARX) network that aligns with commonly used neural network
structures in heat transfer.

Coupling the heat generation network and tool cooling network,
we have

Trool(t) - NN heat_gen(u(t —A—t)A, Tt)tool, T(roomt t € Pheat
t € Pcool
—)A, t)), tool cool(Ttool(t

This equation can be used to model the tool temperature evolution
for all thermal cycles during AFSD.

3.3 Heat Transfer Network for Modeling Build
Temperature Evolution. The build temperature evolution is caused
by heat transfer during the layer-by-layer deposition and subsequent
thermal cycling. To accurately model the build temperature
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evolution, three important factors should inform the ML method:
(1) the build geometry changes layer by layer; (2) the presence or
absence of the moving heat source results in two distinct heat
transfer mechanisms; and (3) there is a time delay between
deposition events. In particular, the process decomposition within a
single thermal cycle is insufficient to describe the time-delay
phenomenon. This motivates the design of a unified neural network,
the heat transfer network, for modeling build temperature evolution
during AFSD.

Table 1

where N heat rans(+) is a standard fully connected neural network. This
unified equation can be used to model the build temperature
evolution for all thermal cycles during AFSD.

The mask function establishes the heat transfer network as a
unified neural network approximator for build temperature
evolution, with the ability to capture the time-delay phenomenon

across multiple thermal cycles. After training, the heat transfer
network can predict the temperature evolution of a given location

Algorithm procedure of time domain simulation using AFSD-Nets models

Algorithm 1. Time domain simulation using AFSD-Nets models

Input: Learned models: Trool (t), and Tyl ().

Process control parameters: u(t) in the form of in-process data.

Number of deposition

Initial conditions:

layers: L. Let I be the index of the current deposition layer.

Given T (0) when deposition begins at the first layer, Toyuiia™ (0), is the initial temperature of location

¢y at build. Step 1. Execute time domain simulation for tool temperature. Set 1 = 1. while(I1< L):

tool

(t skl

1.1 Execute simulation for heat generation at Ith layer by T ) with initial value T(0), when t € Phear_gen;
12 Use final value of T:v'nl (") as initial value to execute simulation for tool cooling at Ith layer by T[:::,ol(t), when t € Peqoling;
#(+1) # .
1.3 ; Update Trool (0) by the final value of Tuoats 1 =141,
Step 2. T¢  wa®  Prediction of in-process tool temperature for all layers.
Step 3. Execute time domain simulation for build temperature. For a given location ¢, at build:

Execute simulation for heat transfer at build by Tpuia*® (t) using the initial condition Tyyia* (0) and tool temperature tool

#l (f)

prediction T; Output: Prediction of tool temperature evolution Tio* (t), and prediction of build temperature evolution Tyyia™ (t) at location cy.

3.3.1 Heat Transfer Network. The heat transfer network
establishes a mapping between the moving heat source and the
build temperature at a specific location.

Three input features are selected to develop the heat transfer
network. They are the Euclidean distance d between the tool and
target location on the build, the tool temperature Twoi(t —At) at time
t —At, and the build temperature Touila® (t —At) at location coand time

t =At. The distance d is given by

d(ct, cb) = (Xtool = Xbuild)2 + (Ytool = Ybuild)2 + (Ztool = Zbuild)2

where ct = [Xtool, ytool, Ztool] and cb = [Xbuild, ybuild, Zbuild] refer to the
coordinates of the tool and any target build location, respectively.
The build geometry information is contained in this feature. To
accommodate the two distinct heat transfer mechanisms caused by
the presence or absence of the moving heat source, a mask function
is introduced

Mask(d, Ttool(t -At)) =
(d,dTmasktool, (t T-maskAt))), ,
(

When the moving heat source is present (t € Pheat), the features d
and Twol(t —At) are active. However, when the moving heat source
is not present (t € Pcool), these two features are irrelevant. For any t
€ Pcool, dmask and Tmask are set as the predefined constants to
eliminate their influence. With this mask function, the heat transfer
network is given by

t € Pheat
t € Pcool

Thuildes (t) = N heat trans(Mask(d, Ttool(t —At)), Tbuildes (t —At)),

t € Pheat U Pcool

081003-6 / Vol. 146, AUGUST 2024

¢y on the build.

It is noted that the basic components and operators used for the
neural network models are by default. Each neural network is
trained by minimizing the mean squared error (MSE) using the
backpropagation algorithm

ZINC)-T()2 -
MSE
n

where n is the number of samples used for updating the weights of
the corresponding network.

3.4 Coupled Time Domain Simulations for Tool and Build. Let

Tmol* (t) and Tbund*Cb (t) denote the learned models for the tool and
build by AFSD-Nets. After all neural networks in AFSD-Nets are
trained, they are coupled to execute a time domain simulation for
predicting the time-dependent AFSD temperature, as described by
Algorithm 1 in Table 1. The coupled thermal behaviors of heat
generation and heat transfer between the tool, build, and substrate
determine the interconnectivity between these three networks. The
final value from the heat generation simulation is used as the

initial value for the following tool cooling simulation and vice versa
(Step 1). After the tool temperature simulation is completed, the in-
process tool temperature prediction for all layers is stored (Step 2).
For each build location, the build temperature is predicted by the
heat transfer network using the initial condition and tool
temperature prediction (Step 3). In this sense, the coupled
interconnectivity makes AFSD-Nets the state-space representation
of the thermal dynamical system during AFSD, which can simulate
the entire temperature evolution. This is important for the practical
use of the learned models to perform offline simulations that predict
the temperature evolution due to different process parameters. This

Transactions of the ASME



information can be used to define operating parameters in a pre-
process sense. Further control and optimization of AFSD can also
be potentially developed based on this accurate and
computationally efficient coupled time domain simulation.

4  Experimental Setup

A commercially available MELD Manufacturing L3 machine
was used to deposit solid wrought aluminum 7075 feedstock rod
with 9.53 mmx9.53 mmx508 mm dimensions on the aluminum
7075 substrate. Deposition was performed to build a wall with a
length of 216 mm and height of 45 mm (30 layers with each layer
1.5 mm thickness). Deposition was performed in a single direction,
and the tool was returned to the same starting position for each
layer. Given the wall length, a single rod of wrought stock was able
to deposit two layers before the next rod was inserted into the
spindle (i.e., the L3 is a discrete deposition machine where each rod
must be manually loaded). The time required to insert the next rod
was 2-3 min. To maintain consistent starting conditions for each
layer, an artificial interval of 2 min was inserted after the first
deposition layer for each rod to mimic the time interval for refilling.
The result was 30 individual deposition layers that each had a
similar initial temperature for the tool, substrate, and build.

The operating parameters were 135 rpm spindle speed during
deposition, 115.6 mm/min material feed rate, and 127 mm/min tool
feed rate (traverse speed). To begin each layer, the spindle speed
was set at 350 rpm to heat the material and was reduced to 135 rpm
as the deposition began. A cooling jacket located around the tool
was run at a constant flowrate during deposition to cool the tool and
avoid excessive heating of the rod within the tool, which can cause
the deposition to fail due to adhesion between the rod and the tool’s
internal passage. After the numerical results in Sec. 5 were
obtained, additional experiments using a different spindle speed of
115 rpm were performed for further experimental validation. See
details in Sec. 6.

Time series data (spindle speed, torque, and power; material feed
rate and actuator force and torque; and position, velocity, and torque
for the X, Y, and Z axes) were recorded by the L3 controller using
a 1 Hz sampling rate. The IR camera temperature data were sampled
separately, as shown in Fig. 4(a). The tool thermocouple embedded
in the rotating tool (a MELD Manufacturing product) was located
within 0.25-0.38 mm of the tool surface and was used to measure
the tool—deposit interface temperature. A FLIR 70 infrared camera
was attached to the moving spindle carriage. The peak temperature
within the field of view was sampled at 30 Hz. Black tape was
wrapped around the tool head to approximate black body
emissivity. The IR camera and the tool-embedded thermocouple
temperatures were compared to confirm the performance of the two
Sensors.

For the substrate temperature, two baseplates were used. The
upper baseplate was the one where the deposit was made, and four
equally spaced K-type thermocouples were embedded 2.54 mm
below the build surface and along the track direction from the
underside of this plate. Figure 4(b) shows the locations of the four
thermocouples. The end of the plate nearest the deposit start is
marked with an “S,” the end closest to the deposit end is marked
with an “E,” and the intermediate distance between two adjacent
thermocouples was 58.5 mm. The underside in Fig. 4(b) was
covered by the lower baseplate to protect the thermocouples.

The experiments resulted in 11,358 in-process data points. The
number of data points from each layer is different. For each layer,
the number of data points collected at the heat generation stages
varies from 136 to 178, and the number of data points collected at
the cooling stage varies from 149 to 634. This can be caused by
variations in the time for manually loading feedstock and in the
waiting time between the deposition of each layer to satisfy the
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work condition before it starts to traverse. The features include the
L3 controller-captured data (spindle speed, torque, and power;
material feed rate and actuator force and torque; and position,
velocity, and torque for the X, Y, and Z axes), the tooltip
temperature from the embedded thermocouple, and the
temperatures from the four substrate thermocouples. Additionally,
the 341,606 data points obtained by the IR camera were used to
validate the embedded thermocouple temperature, demonstrating
good agreement between the two. For the subsequent analysis, the
temperature data from the embedded thermocouple was used to
represent the tooltip temperature.

5 Computational Experiments

In this section, the numerical results and analysis of the proposed
AFSD-Nets are presented. The in-process data obtained using the
experimental setup shown in Sec. 4 were used to train and test the
model. The AFSD-Nets models are first validated to confirm good
accuracy. Then time domain simulations are performed to show the
effectiveness of the learned models in predicting the entire
temperature evolution at the tool and build during AFSD. All
computations are completed using PYTHON and executed using
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FLIR A70 infrared camera
attached to the tool

" Four equally
N spaced
4 thermocouples |
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the substrate
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rotating tool

Deposition
direction

Fig. 4 Experimental setup for depositing 7075 aluminum feed rod on a 7075 aluminum substrate for 30 layers using the MELD Manufacturing L3
machine. (a) A thermocouple embedded in the tool was used to measure the tool temperature near the deposition interface. A FLIR A70 infrared
camera was attached to the spindle carriage to measure the external temperature at the tooltip. Four equally spaced thermocouples were
embedded in the substrate for measuring temperature evolution beneath the deposition track. (b) Substrate with locations of the four
thermocouples. The location nearest the deposit start is marked with an “S,” and the location nearest the deposit end is marked with an “E.”

an AMD Ryzen 7 5800X @3.80 GHz, 32 GB Memory, 64-bit
Windows operating system, and eight cores with 16 logical
processors. Note the CPU computation is reported as there was no
significant difference between the computational times when
selecting GPU or CPU implementations for the simple neural
network structures applied in AFSD-Nets.

5.1 Parameter Settings of AFSD-Nets. The model structures and
training for AFSD-Nets are as follows. The dataset is split into
training, validation, and test sets, with a split ratio of 20:5:5 layers,
respectively. Process decomposition based on spindle torque and
the tool’s axial position, as described in Sec. 2, is performed to
separate each layer into heat generation and cooling stages. For the
heat generation stage of each layer, the first 20 measurements are
truncated. The input data are normalized using min-max
normalization to mitigate the impact of varying magnitudes, while
the output data undergo a logarithmic transformation to reduce
parameter sensitivity. For the tool heat generation network, a grid
search for the nine model structures consisting of the number of
hidden layers selected from the set[1, 2, 3] and the number of nodes
in each hidden layer chosen from the set [8, 10, 16] is performed.
For the tool cooling network, a fixed NARX network structure is
employed after a preliminary grid search, which is not presented for
brevity. The model structure is set as [2, 4, 1], which consists of two
input nodes, one hidden layer with four nodes, and one output node.
Other parameters use default settings in the adopted NARX
network operated by the MATLAB engine on the PYTHON platform.

Forbuildtemperatureevolution,theentiredatasetisfirstprocessed
by the Mask(-) function for setting the distance and tool temperature
values. The values for (dmask, Tmask) must be less than the smallest
values of distance and tool temperature within the entire dataset.
This is to ensure these two features do not affect the network
training when the tool leaves the build (t € Pcoor) while maintaining
the underlying physics defined by the data scale when the tool is on
the build (t € Phear). After this, the min-max normalization is used
as X' = (X — Xmin)/(Xmax — Xmin), Where x and X are the original and
scaled values of distance or tool temperature, and Xmin and Xmax are
the minimum and maximum values within the dataset, respectively.
In this paper, (dmask, Tmask) = (=2, = 100) is set, considering the
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ranges of distance d € [0.16, 8.13] mm and the tool temperature Ttool
€[20.3,447.8]°C in the dataset. In addition, only training data from
the first three thermocouples (KTC1, KTC2, and KTC3) are stacked
as a single dataset for training, while the last thermocouple near the
end of the build (KTC4) is used for validation of the extrapolation
capability of the learned model. The model structure is set as [3, 10,
10, 10, 1] (three input nodes, three hidden layers each with ten
nodes, and one output node) after a preliminary grid search, which
is not presented for brevity.

5.2 Validation of Learned Models. Each network of AFSDNets is
trained using the settings stated in Sec. 5.1. The training time for
AFSD-Nets (single execution without grid search) is less than 5
min, with about 1 min, 30 s, and 3 min for the tool heat generation
network, tool cooling network, and heat transfer network at build,
respectively. The learned models are validated in this section before
the time domain simulation is completed.

5.2.1 Model Validation for Tool Temperature Evolution. For the
heat generation network at the tool deposition surface, two sets of
input features are employed depending on which process control

parameters are used. The ﬁrSt learned model N heat gen(3) considers

three features, including the time-delay tool temperature, spindle
speed, and material feed rate. This makes the learned N heat gen(3)
independent of other in-process signals and available for offline
time domain simulation of heat generation, given the process
parameter values along the path. The second learned model N heat
gen(6) considers six features, including the time-delay tool
temperature, the in-process signals spindle torque, feed actuator
torque, and feed actuator force, as well as spindle speed and
material feed rate. The motivation for using the in-process signals
is to explore the relationship of these signals to temperature
evolution, which can enable real-time prediction, control, and
optimization.
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Table 2 shows the two learned models N heat_gen(3) and N heat gen(6)
and their performance comparison. The best model structure
column shows [3,8,1] (three input nodes, one hidden layer with
eight nodes, and one output node) and [6,16,16,16,1] (six input

Table 2

MAPE, N heatgen(6) outperforms N heatgen(3). While N heatgen(6) is
significantly better than N heat gen(3) on the training set, the
difference in performance decreases for the validation and testing
sets. This shows the balance between the model accuracy and the

Learned models and their performances for the heat generation network with two sets of input features

Selected features

Metrics

Feed

Learned Spindle Spindle Material feed rate

actuator

torque Feed

actuator  Tool Best model Training Validation Test

model speed  torque force temperature  structure MSE  MAPE MAPE
N heat \ \ \
gen(3) v v v [3,8,1]  0.0003 0.0046 0.0076
N heat [6,16,16,16,1] 0.0001  0.0037 0.0050
gen(6) \ v v
500
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o
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b
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Fig. 5 Temperature prediction of heat generation stage by Nheat gen(3) On the training, validation, and testing sets

nodes, three hidden layers each with sixteen nodes, and one output
node) are chosen for N heat gen(3) and N heat,.(6), respectively. This
best model structure is selected by grid search (see Sec. 5.1) from
nine candidates. It is seen that a simpler model structure is chosen
for a model with fewer features and vice versa. This can be because
fewer features include less information and could need a simpler
model structure to avoid overfitting during validation. On the
contrary, more features could need a more complicated model
structure to avoid underfitting. Mean squared error (MSE) is used
for training the neural network models, which measures the error
between the logarithmically transformed prediction and
measurement. The mean absolute percentage error (MAPE) is used
for validating and testing the model performance on unseen data; it
provides improved insight into the relative error compared to MSE.
MAPE is evaluated by scaling the prediction and measurement to
their original values. It can be seen that for all metrics of MSE and
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model complexity induced by features and structures. It is noted the
total grid search training times for N heatgen(3) and N heat gen(6) are 6
min and 8 min, respectively.

Figures 5 and 6 display the prediction of tool temperature
evolution for the heat generation stage on the training, validation,
and testing sets by - N heatgen(3) and N heat gen(6). It is seen that
the predictions for both models provide good agreement with the
measured data. From these time series predictions, the differences
between N heat gen(3) and N heat gen(6) are slight. Good extrapolation
capability is also observed.

Figure 7 shows temperature prediction for the cooling stage using
the tool cooling network on the training, validation, and test sets.
The predictions closely agree with the measurement data. It is
understood that the cooling stage of the tool undergoes mainly
conduction through the feedstock rod and convection to the air. The
learned tool cooling network demonstrates its capability to
accurately capture the combined effects of conduction and
convection.
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Fig. 7 Temperature prediction of cooling stage by tool cooling network on the training, validation, and testing sets

5.2.2 Model Validation for Build Temperature Evolution. The
learned heat transfer network for the temperature evolution at the
build is validated using the measurement data from the four
thermocouples located in the substrate. Figure § displays the
prediction results on the training and testing sets for the temperature
at the four thermocouples in (a) to (c), respectively. It is seen that
the predictions closely agree with the measurement data. Notably,
Fig. 8(d) shows the extrapolation capability of the learned heat
transfer network; the temperature prediction is accurate even
though no data from thermocouple 4 is used in the training. Given
any location on the build, its temperature evolution can be
predicted. The good accuracy of the AFSD-Nets models enables the
use of time domain simulation for further performance evaluation
when predicting temperature evolution during AFSD.

5.3 Time Domain Simulation of Learned Models. This section
presents the time domain simulation detailed in Algorithm 1 for
both tool and build temperature evolution during AFSD using the
validated models. The temperatures at time zero of the
measurement data for the tool and the four thermocouples in the
substrate are used as initial conditions for the simulation. The
process decomposition is applied to determine which learned model
should be used during simulation at any time. The time-step is set
as 1 s. The simulation is completed over 11,358 steps to include all
30 layers of the deposition.

5.3.1 Time Domain Simulation for Tool Temperature Evolution.
The heat generation network N heat gen(3) uses only two process
parameters and the time-delay tool temperature as inputs.
Therefore, it can be used for time domain simulation in an offline
fashion. Figure 9 displays the results of time domain simulation for
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tool temperature evolution using the coupled N heat gen(3) and tool
cooling network. In general, the simulation captures the trend of the
temperature evolution at the tool for all layers, with a few
exceptions at the peak temperatures during deposition. The first two
layers are shown in Fig. 10. A shift to the left is observed. This is
caused by the training data pre-processing to remove the first 20
measurements (a local temperature peak is observed at the virtual
inlet) at each heat generation stage. During AFSD, the heating stage
is typically longer with a newly filled feedstock rod as it is heated
from room temperature. This causes a temperature reduction when
the spindle speed is reduced from the peak value to the desired value
for deposition. It is noted that for the coupled mode of time domain
simulation, the accuracy of the heat generation network
significantly impacts the tool cooling network by means of setting
the initial conditions and vice versa. From this perspective, the
learned models capture the underlying physics of the tool
temperature evolution.

Similarly, Figs. 11 and 12 show the results for time domain

simulation of the coupled heat generation network N heat_gen(6) and
tool cooling network. N heat gen(6) uses two process parameters and
three in-process signals (spindle torque, feed actuator torque, and
feed actuator force). Thus, it has the potential to be used for real-
time applications; recall that the L3 controller can constantly
provide in-process signals by its embedded sensors. It is seen that
the deviations between the simulation and measurement at peak
temperatures are reduced, showing the advantages of including in-
process signal features for the model performance improvement.

5.3.2 Time Domain Simulation for Build Temperature
Evolution. The tool temperature prediction by coupled simulation
of the heat generation network N heat gen(3) and tool cooling network
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is used as input to the heat transfer network to perform time domain
simulation of the build temperature evolution. Figure 13 shows the
results of this simulation. It is observed that the simulation
generally captures the behaviors of the temperature evolution at
build, including the thermal cycle and the trends of a time-
dependent decrease of the peak temperatures and timedependent
increase in lowest temperatures as the wall height (and its thermal
mass) increases. Figures 13(a) and 13(b) display some deviations
from the measurement at the peak temperatures for the first 15
layers, while Figs. 13(c) and 13(d) accurately predict the peak
temperatures. Lastly, Fig. 13(d) shows some non-smooth curves at
the time epochs for process decomposition. This can be caused by
the soft incorporation of discrete characteristics from the mask
function in the current model structure, which may fail to recognize
the underlying discrete patterns or disambiguate unrelated inputs.

The temperature predictions after 15 layers for all thermocouples
are observed to deviate from the measurement. Potential
explanations for this deviation are summarized into three key
points: (a) All models are approximations of the ground truth.
Neural networks have their limitations in approximating this
complicated, multistage, and multi-physics AFSD process. (b) Time
domain simulations have accumulated numerical errors. (c)
Effective sensor measurements of the top layer (surface heat
source) are not included, and only the sensor data at the tool head
(single dot moving heat source) is available. Nevertheless,
considering that only the initial values for the first two seconds are
given, a complete 30-layer time domain simulation (11,358 steps)
shows the superior performance of the proposed AFSD-Nets as it
correctly captures the trend of thermal cycles and peak temperatures
for most layers.

In addition, the tool temperature measurement is used instead as
input for the heat transfer network to execute the time domain
simulation. As shown in Fig. 14, it is observed that the deviations
at the first 15 layers are significantly decreased. This indicates that
integrating the in-process signals can have a great improvement on
the simulation performance and can provide an accurate digital twin
of the physical process for use in real-time prediction, control, and
optimization.
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Fig. 8 Temperature prediction by the learned heat transfer network at the build on the training and testing sets. (a) to (c) represent the results for
thermocouple 1 to 3, respectively, and (d) shows the extrapolation for thermocouple 4 prediction.

6 Additional Validations of AFSD-Nets and Its
Acquired Models

In this section, additional validations for AFSD-Nets and its
acquired models are presented to demonstrate superior performance
in three ways: (1) In Sec. 6.1, numerical validation of AFSD-Nets
versus non-physics-informed machine learning is presented; (2)
Sec. 6.2 shows the results for a different training data size; (3) in
Sec. 6.3, new experiments on a different spindle speed of 115 rpm
are conducted, and the acquired models from the 135 rpm data are
validated using the 115 rpm data. Note that all results reported in
this section are sourced from time domain simulations of the
acquired models under comparison. In addition, for the build
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temperature, only the trajectory of thermocouple 4 is displayed
since it is pure extrapolation.

6.1 Numerical Validation on Physics-Informed and
Non-Physics-Informed Models. For this validation, the temperature
evolution of the tool and build are respectively modeled by an
individual NARX model. Compared with AFSD-Nets, the two
networks N heat gen(+) and N tool cool(+) are combined as a single NARX
for tool temperature modeling. The mask function in N heat trans(+) 1S
also removed from the build temperature modeling.
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Fig. 10 The zoom in of the tool temperature evolution prediction in Fig. 9

In addition, the training data are not processed by physics-informed
process decomposition. By using such settings, the NARX models
are purely data-driven models that do not include physics-informed
process decomposition of AFSD. Figure 15 shows the comparison
results. The NARX model completely fails to model tool
temperature evolution. For build temperature evolution, the NARX
model has larger deviations from the measurements compared to
AFSDNets. This validates that the proposed physics-informed
machir;% tl)earning approach, AFSD-Nets, can capture the underlying

temperature evolution pattern of the AFSD process and thus it

significantly outperforms the purely data-driven approach.

6.2 Numerical Validation on Different Training Data Sizes. A new
setting for splitting the 30-layer deposition data is used as

[10,10,10] in contrast to the original [20,5,5] setting in
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Fig. 11 Time domain simulation of tool temperature evolution by coupled Nheat gen(6) and tool cooling network with steady-state spindle speed of 135

rpm
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Fig. 13 Time domain simulation of build temperature evolution by coupled heat transfer networks. (a)—(d) show the results for prediction

at thermocouples 1-4, respectively. The tool temperature prediction by coupled simulation of heat generation network Nheat_gen(3) and

tool cooling network is used as input of heat transfer networks.
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Fig. 14 Time domain simulation of build temperature evolution using the measured tool head temperature. (a)—(d) show the results for prediction at
thermocouples 1-4, respectively. The measurement of tool temperature is used as input to the heat transfer

networks.

Sec. 5. This new setting is used to validate the effectiveness of
AFSD-Nets and the stability of the acquired models on different
training data sizes. Figures 16(a) and 16(b) show the comparison
results for tool and build temperature, respectively. For the tool, the
model of [10,10,10] successfully captures temperature evolution
and performs almost the same as that of [20,5,5]. For the build
temperature, the model of [10,10,10] performs better than [20,5,5]
for the first few layers and then worse than [20,5,5] for the last few
layers. This is reasonable since the model of [10,10,10] is only
trained using data from the first 10 layers. In general, both models
are comparable. This validation shows that the proposed AFSD-
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Nets maintains stable performance for different training data
settings.

6.3 Experimental Validation with Different Deposition
Parameters. A critical issue with all ML approaches is their
capability to extrapolate, that is, to predict beyond the data on which
the ML models are trained. To validate the extrapolation capability
of AFSD-Nets, additional physical experiments were performed
using a spindle speed of 115 rpm while all other settings remained
the same, as described in Sec. 4. The acquired models from
AFSDNets using the data from a spindle speed of 135 rpm are
directly used for the prediction of the measurements for the spindle
speed of 115 rpm. Figure 17 shows good alignment between the
simulation predictions and the measurements. The results
demonstrate that the acquired AFSD-Nets models have strong
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Fig. 15 Time domain simulation of tool and build temperature evolution by AFSD-Nets and a single NN without physics-informed process
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Fig. 16 Time domain simulation of tool and build temperature evolution by AFSD-Nets (20,5,5) and AFSD-Nets (10,10,10). AFSDNets (20,5,5) refers

to the AFSD-Nets learned from the data with splitting of 20 training la
temperature evolution and (b) simulation of build temperature evolution.
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Fig. 17 Time domain simulation of tool and build temperature evolution g

iven the steady-state spindle speed of 115 rpm. The AFSD-Nets obtained

from the dataset of spindle speed of 135 rpm is directly utilized for simulating temperature evolution under the new setting of spindle speed. (a)

Simulation of tool head temperature evolution and (b) simulation of build

evolution.

used for real-time predictions with other deposition settings in
practice.

7  Conclusions and Outlook

This study presents a machine learning modeling effort for the
temperature evolution of an emerging solid-state additive
manufacturing process, additive friction stir deposition. The in-
process signals are analyzed, and a process decomposition of the
complete AFSD process is performed to generate multiple stages of
heat generation and heat transfer. Based on this, a physics-informed
machine learning approach, denoted as AFSD-Nets, is proposed to
model heat generation and heat transfer by developing a set of
neural networks, with each network modeling a distinct stage. For
the tool temperature evolution, time-delay information and
nonlinear autoregressive exogenous models are used for the
modeling of heat generation and cooling, respectively. Heat
generation models using process parameters only or process
parameters and in-process signals as inputs are investigated. For the
build temperature, the learned heat transfer network with a moving
heat source is reused as an initial model for training the cooling
network. Numerical results show good agreement of the learned
models by AFSD-Nets to the experimental data. Time domain
simulation is performed to demonstrate the effectiveness of the
learned models by coupling them to predict the entire temperature
evolution during AFSD. These results show the powerful
capabilities of the proposed physics-informed machine learning

Journal of Manufacturing Science and Engineering

temperature

approach to advance the understanding of the physical process of
AFSD, as well as the potential to apply AFSD-Nets as the digital
twin of AFSD temperature evolution using in-process data.

This study has two main limitations. The primary one is that the
experimental data are from a single combination of process
parameters, which limits the AFSD-Nets’ ability to predict the
behavior of different process parameters. Another one is the lack of
interpretability of the learned models relative to the unknown
governing equations. Future work will focus on designing a series
of representative experiments to improve AFSD-Nets for the
prediction of arbitrary process parameters, including tool spindle
speed, material feed rate, and tool feed rate. In addition, the build
geometry, tool path, and spatial temperature measurements will be
utilized to enable AFSD-Nets to generate the 3D temperature
distribution for a comprehensive description of the build
temperature evolution. The interpretability of the learned models by
AFSD-Nets will also be explored and enhanced to advance the
understanding of the underlying physics during AFSD.
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