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ABSTRACT

Sharing genomic databases is critical to the collaborative research
in computational biology. A shared database is more informative
than specific genome-wide association studies (GWAS) statistics as
it enables “do-it-yourself" calculations. Genomic databases involve
intellectual efforts from the curator and sensitive information of
participants, thus in the course of data sharing, the curator
(database owner) should be able to prevent unauthorized
redistributions and protect individuals’ genomic data privacy. As it
becomes increasingly common for a single database be shared
with multiple recipients, the shared genomic database should also
be robust against collusion attack, where multiple malicious
recipients combine their individual copies to forge a pirated one
with the hope that none of them can be traced back. The strong
correlation among genomic entries also make the shared database
vulnerable to attacks that leverage the public correlation models.

In this paper, we assess the robustness of shared genomic
database under both collusion and correlation threats. To this end,
we first develop a novel genomic database fingerprinting scheme,
called Gen-Scope. It achieves both copyright protection (by
enabling traceability) and privacy preservation (via local
differential privacy) for the shared genomic databases. To defend
against collusion attacks, we augment Gen-Scope with a powerful
traitor tracing technique,

i.e., the Tardos codes.

Via experiments using a real-world genomic database, we show
that Gen-Scope achieves strong fingerprint robustness, e.g., the
fingerprint cannot be compromised even if the attacker changes
45% of the entries in its received fingerprinted copy and colluders
will be detected with high probability. Additionally, Gen-Scope
outperforms the considered baseline methods. Under the same
privacy and copyright guarantees, the accuracy of the fingerprinted
genomic database obtained by Gen-Scope is around 10% higher
than that achieved by the baseline, and in terms of preservations
of GWAS statistics, the consistency of variant-phenotype
associations can be about 20% higher. Notably, we also empirically
show that Gen-Scope can identify at least one of the colluders even
if malicious receipts collude after independent correlation attacks.
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1 INTRODUCTION

In recent decades, significantly large amounts of genomic data
have been generated and collected at a unprecedented rate.
Among them, single-nucleotide polymorphism (i.e., SNP) data
(representing point mutations in DNA) has been widely used in
Genome-wide association studies (GWAS) to discover the
associations between phenotypes and particular traits or human
diseases. Moreover, the implementation and sharing of genomic
databases, e.g., the single nucleotide polymorphism databases
(dbSNP) [41, 42, 53] has significantly advanced the collaborative
research on physical mapping, population genetics, human biology,
and modern medicine [43].

Security and Privacy Concerns. While the benefits of col-

lecting SNPs and constructing dbSNP are trumpeted by the
computational biology community, the increased availability of
such data has raised concerns about the data owners’ copyright
and the data contributors’ privacy. Thus, an owner of dbSNP will
only share its data to authorized recipients, e.g., service providers
(SPs) like hospitals and research institutions after data use
agreements and also want to prevent illegal redistribution of data.
Most importantly, when data leakage happens, genomic database
owner needs to be able to collect evidence to accuse the party (or
parties) who should be responsible for the leakage. For example,
in commercial genetic testing, such as 23andme [1], companies
providing genetic testing services need to collect and store
genomic data from other resources. Such genomic data can be
used for research purposes for the benefits of the participating
customers, but must be protected from unauthorized
redistribution.

On the other hand, genomic data, such as SNP and
nucleobases, contains sensitive features that can be used to
identify individuals (via forensics), connect to other family
members (via kinship), and infer individuals’ health condition
(associating SNPs with diseases) [36]. For example, information
about the number of minor alleles (alleles/nucleotides that are
observed less frequently in DNA) in an individual can be used to
identify that person’s identity through
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genetic profiling , which is controversial and raises ethical, legal,
and privacy concerns. Hence, the data curator is also obligated to
protect the privacy of the individuals (data contributors). It is
noteworthy that the General Data Protection Regulation (GDPR)
lists genetic data as “special categories of personal data" that is
subject to organizational and technical safeguards [39].

1.1 Entire Database v.s. Summary Statistics
We focus on the sharing of the entire dbSNP instead of releasing
specific GWAS statistics (e.g., correlation between SNP pairs or

To be more specific, genetic profiling analyzes specific regions of an individual’s SNPs
and creates a unique genetic profile for that individual. By comparing the profile to a
database of known profiles, it is possible to discover the individual’s identity or
determine his/her relationship to other individuals in the database

allele frequencies) under differential privacy. This is because in a
typical GWAS process, the researchers do not know in advance
which SNP pairs to use and what types of statistical tests to query
[40]. Usually, the number of significant SNPs associated with
specific diseases and the pairs of correlated SNP entries are the
results of GWAS process, not the input [28].

Thus, in this work, we are motivated to first develop a feasible
genomic database sharing scheme to provide researchers access to
genomic data for the purposes of collaborative research and “do-
ityourself" calculations, which provides more freedom than simply
allowing computations on a server owned by genomic database
owner. To address the above security and privacy concerns, the
developed scheme should have both copyright protection and
privacy preservation guarantees for the shared genomic databases.

1.2 Our Solution

In the literature, quite a few works have attempted to address the
problems of protecting the copyright and privacy of dbSNP in
isolation. In particular, in order to protect copyright and deter
illegal redistribution, a series of genome
watermarking/fingerprinting schemes have been developed [5, 24,
37, 55]. To protect the privacy of the individuals in genomic
databases, both cryptographic techniques [4, 6, 58] and statistical
approaches (via differential privacy) [21, 26, 28, 50, 56, 57] have
been proposed. However, encrypted genomic data only allows a
limited number of operations and usually requires high
computation costs. Thus, differential privacy-based genomic data
sharing has been widely adopted.

To achieve both copyright protection and privacy preservation
for genomic databases, a straightforward two-step approach is to
insert fingerprint into a differential-privately sanitized dbSNP.
However, this significantly reduces the utility of the final dbSNP (as
will be empirically shown in Section 8), because it requires adding
separate noises to achieve the two guarantees; first adding noise
to attain privacy guarantee, and then adding additional noise (via
fingerprinting) to obtain copyright guarantee.
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In this paper, we propose Gen-Scope, which shares genomic

databases and simultaneously achieve copyright protection and

privacy presérvation via one-shot noise (fingerprint) insertion. In

Gen-Scope, the inserted fingerprint can also be used to protect the
privacy of the genomic data. The key idea is to leverage the intrinsic
randomness of fingerprint insertion and transform it into a
provable privacy guarantee [23]. In particular, we first observe that
fingerprint insertion essentially flips each bit of a SNP data
randomly, and this leads to the value of that SNP being changed
with certain probability, then from which, we can derive the
privacy guarantee in the form of local differential privacy (LDP)
[15]. Since Gen-Scope only inserts noise once, the final dbSNP has
high utility
(measured in terms of the accuracy of dbSNP and GWAS statistics).
Part of the Gen-Scope is adapted from previous works on
relational databases fingerprinting [23-25, 27]. However, both [24]
and [23] are only robust against random bit flipping attack, subset
attack, superset attack, and correlation attacks [27]; the inserted
fingerprints may still be compromised by collusion attack (possibly
after a few rounds of correlation attacks). To address this issue, we
improve [23, 24] by incorporating the Tardos code [48], which is
one of the most powerful techniques to fight against collusion
attacks by identifying the colluders with very high probability.
Furthermore, [24] does not consider the privacy of the shared
database, whereas, in this work, our main goal is to simultaneously
achieve LDP and robust fingerprinting with high database utility.
On the other hand, the privacy guarantee developed in [23] cannot
be directly cast into LDP, because LDP requires that after
perturbation, each data entry has non-zero probability of taking
any other values in the input domain, whereas [23] does not allow
the original data value to be modified to certain values from the
domain.

Contributions. This work is the first to achieve genomic data-
base fingerprinting with LDP guarantee. The proposed Gen-Scope
can also be augmented to defend against the collusion attacks
launched by allied attackers after correlation attacks. In particular,

o We derive a closed-form expression which connects the
percentage of fingerprinted bits (7) with the robustness against
random bit flipping attack and collusion attack. We also empirically
investigate the robustness against correlation attacks.

o We analyze the required fraction of changed SNP entries
for Gen-Scope and the two-stage approach (differentially private
perturbation followed by fingerprinting) to achieve the required
privacy and copyright guarantees.

. Experiment results show that, under the same
guarantees of copyright protection and privacy preservation, Gen-
Scope results in dbSNP with higher utility than the two-step
approach. For example, the accuracy of the fingerprinted genomic
database obtained by Gen-Scope can be 10% higher than that
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achieved by the naive twostage approach, and in terms of
preservation of GWAS statistics, the consistency of SNP-phenotype
associations can be 20% higher. When the shared dbSNP is
compromised by correlation attacks followed by collusion attack,
Gen-Scope can still identify at least one of the colluders.

Gen-Scope helps facilitate the progress of collaborative genomic
research by relieving the tension between the utility of genomic
databases and the privacy of participants as well as the rights of
the genomic database owner.

Roadmap. We review related works in Section 2. Preliminaries
on database fingerprinting and genomics are reviewed in Section
3. In Section 4, we describe the system and threat models, and the
evaluation metrics. Section 5 introduces Gen-Scope, and Section 6
discusses how to improve it to defend against the collusion attack.
In Section 7, we derive a closed-form expression connecting the
density of fingerprinted bits and the corresponding robustness and
also analyze the required amount of modification on SNP entries.
In Section 8, we compare Gen-Scope with the two-step approach.
Finally, Section 9 concludes the paper.

2 RELATED WORK

Fingerprinting techniques are originally proposed to prevent illegal
redistribution of multimedia, e.g., images [17], audio [7], videos
[47], and text documents [11]. The first work that applies unique
fingerprinting (i.e., watermarking) to relational database is [2],
which modifies insignificant bits of data entries to preserve the
utility of the database. Different from fingerprinting,
watermarking all service providers (SPs) receive the same

in
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original data domain, hence, all bits should be subject to equal
probability of being modified.

The first genomic fingerprinting scheme was proposed in [5],
which shares personal genomic sequential data by jointly
considering collusion attack and data correlation. Then, [55]
develops a probabilistic fingerprinting scheme by considering the
conditional probabilities between SNPs of a single individual. [37]
develops a watermarking scheme for sequential SNP data based on
belief propagation which considers privacy and watermark
robustness. However, these works all focus on the genomic data
(SNPs) of a
single individual, rather than a genomic database, i.e., a collection
of individuals’ SNP record. Very recently, [24] proposes the first
fingerprinting scheme that can handle collections of genomic
sequences by extending [27, 32]. In Table 1, we summarize the
differences between existing works and this paper.

This work is different from all the previously mentioned works
on genomic data fingerprinting, because it is the first to investigate
all 3 problems together, i.e., (i) fingerprinting an entire genomic
database (instead of single genomic record), (ii) achieving
copyright protection and privacy preservation via one-shot
steganographic mark insertion, and (iii) defending against both
collusion attacks and correlation attacks.

3 PRELIMINARIES
In this section, we provide background information for database
fingerprinting and genomics in general.

watermarked copy, so it is not feasible to trace the source of data 3.1 Database Fingerprinting Techniques

leakage.
Properties VLDBY'03 | TDSC'05 | RAID'19 | Bioinformatics’21 | RAID'21 | ISMB'21 | NDS$'23 | this

[2] [32] [5] [37] [27] [24] [23] paper

Distinguish malicious SPs X v N4 X v N v v
Privacy guarantee X X X v X X v v
Collusion-attack resistant X v v X X X X N4
Correlation-attack resistant X X X X v v X v
Handle relational v v X X v N4 v v
databases

Table 1: Comparison of various schemes. v'indicates the scheme has a certain property, and Xindicates the opposite.

Afterwards, some works using [2] as the building block have
been proposed [18, 32, 33]. For example, [32] allows that the
inserted fingerprint can be arbitrary bit-strings. [27] develops
fingerprinting scheme that can defend attacks that leverage the
correlations among data records. Most recently, a database
fingerprinting scheme with provable privacy guarantees is
developed in [23]. However, the authors in [23] term their privacy
guarantee as entry-level differential privacy, which is unfamiliar to
genetics practitioners. In particular, in entry-level DP, only limited
number of insignificant bits will be modified, thus the modified
data entries cannot span the original input domain. Whereas, in
LDP, the domain of perturbed data entries is identical to the
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Database fingerprinting schemes are steganography techniques
that randomly change selected data entries with certain
probability. The modified values of the selected entries in a given
database are determined by a unique binary bit-string customized
for each database recipient. The value of the binary bit-string (i.e.,
the fingerprint/steganographic mark of the recipient) is obtained
by a message authentication code (MAC) involving a cryptographic
hash function, a secret cryptographic key of the database owner,
and the identity of the recipient. The process of modifying data
points based on the fingerprint is called fingerprint insertion. Since
the fingerprints are hard to be detected or compromised, a
malicious recipient will be held responsible if it leaks its received
database.
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3.2 Genomic and GWAS Background

3.2.1 Single Nucleotide Polymorphism. Double stranded DNA

molecules in the human genome are composed of two
complementary polymer chains, each containing nucleotides (i.e.,
A, C, G, T). Although most of the DNA sequence is similar across
the entire human population, roughly 0.5% of an individual’'s DNA
(which equates to millions of nucleotides) differs from the
reference genome [30, Chapter 2]. The most common type of DNA
variation is a Single Nucleotide Polymorphism (SNP). Each person
has approximately 4 million SNPs. A SNP is the mutation at a single
nucleotide at a particular loci of the genome. For each SNP, there
are two types of nucleotides (or alleles), i.e., major allele (the allele
that is observed with a high frequency) and minor allele (the allele
that is observed with a low frequency). Each SNP includes two
nucleotides, one inherited from each parent. As a result, biologist
represents a SNP using the number of minor alleles (0, 1, or 2).

Below is a toy example on the SNP from three individuals [54].

Example 1. Suppose we consider the SNP at position 1000 on the
Chromosome 1 (the largest human chromosome). At this position,
individuals may have different nucleotides. The reference genome
is a ‘C’ nucleotide at this position. However, in some individuals,
there could be a mutation where instead of ‘C’, they have an ‘A’
nucleotide. Thus, for this SNP at position 1000 on Chromosome 1,
the major allele is ‘C’, which is the nucleotide observed with high
frequency in the population. The minor allele is ‘A’, observed with
lower frequency.

Each individual would have two alleles at this SNP position, one
inherited from each parent. If Alice has inherited ‘C’ from one
parent and ‘C’ from the other parent, indicating Alice has 0 minor
alleles at position 1000. If Bob has inherited ‘C’ from one parent
and ‘A’ from the other parent, indicating he has 1 minor allele at
position 1000. If Charlie has inherited ‘A’ from both parents,
indicating he has 2 minor alleles at this position. As a result, the
SNP value at position 1000 for Alice, Bob, and Charlieis 0, 1, and 2,
respectively.

This paper considers the genomic database, which is a collection
of SNPs of a certain population, i.e., dbSNP [53]. In dbSNP, each
row corresponds to the SNP sequence of an individual. Suppose
there are /individuals and each has ZSNPs, then, the dbSNP is

€ { }/xPrepresented as R
0,12.

3.2.2 Genome-wide Association Studies. The genetic makeup of an

organism is referred to as its genotype, while the observable traits
it exhibits are known as its phenotype. For instance, the ability to
roll one’s tongue represents a phenotype, while the underlying
genetic factors influencing tongue rolling ability constitute the
genotype. The genotype is inherited from an organism’s parents,
while the phenotype is not directly inherited. Instead, phenotype
is shaped by a combination of factors including the genotype,
epigenetic modifications, environment, and etc. Establishing
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universally accepted taxonomy or encoding standards for
phenotype data remains a challenge due to its multifaceted nature.
GWAS [51] focuses studying the associations between SNP and
phenotype (e.g., the characteristics of being able to roll one’s
tongue). For example, a GWAS on tongue rolling ability will
investigate the genetic variant (SNPs) whose genotypes are
associated with the ability to roll one’s tongue.

Individuals participating in GWAS are categorized into two
groups: those exhibiting a specific trait, such as the ability to roll
one’s tongue, are grouped as cases, while those lacking such a trait
are grouped as controls, see, e.g., [35]. GWAS examines the
genomes of participants in both case and control groups. If a
particular type of genetic variant, such as a SNP, is found to occur
more frequently in individuals with the trait (i.e., in the case
group), it is deemed to be associated with the trait. The most
popular statistical method applied in GWAS is the p-value
measurement [19, 44]. In particu-
lar, SNPs with are considered to have strong associations with the
phenotype if the corresponding z-value is low. More details are
deferred to Section 4.2.

Recently GWAS have revealed that a patient’s risk for specific
diseases can be partially predicted based on their SNPs [36]. As a
result, the leakage of SNPs can pose a significant threat to an
individual’s privacy, and the sharing of relational database
consisting of individuals’ SNPs should be regulated with copyright
protections.

4 SYSTEM, THREATS, AND METRICS

In this section, we first present an overview of the proposed
GenScope, and then discuss its properties, i.e., the guarantees on
copyright protection and privacy preservation against various
threat models. Lastly, we provide the utility metrics of the shared
dbSNP.

4.1  Gen-Scope Overview

We consider a database owner (Alice) with a dbSNP represented
using R. Each SNP (i.e., the entry of the database) is represented by
the number of its minor alleles as 0, 1, or 2, and can be encoded as
“00”, “01”, or “10”, respectively.

We show the overview of the system model in Figure 1 (adapted
from the general relational database sharing in [23]). Alice wants
to share the genomic database R with A4 SPs. To prevent
unauthorized redistribution of the database by a malicious SP, Alice
embeds unique fingerprints in all shared copies of the dbSNP. The
fingerprint essentially changes different entries in R at different
SNP positions (indicated by the yellow dots). The fingerprint (a

binary bit-string) generated for the /h SP (SP,) is fsp;, and the
dbSNP received by SP;is eRspi. Both fsp;and eR/are obtained using

the proposed scheme (see Section 5). In Figure 1, if SP forges a
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pirated dbSNP, i.e., R, by changing some values (indicated by the

red dots) in its received copy, i.e., eRspi, Alice is able to accuse SP,

fspy = [10010- -]

fsp, = [01100 - - E
~ } Database owner
A
A

o
R (E
. RSP. LT /;p =
A0 = /7 Rgp,
4\“. extract : 0001_
oo I‘ﬁ fingerprint i) o
L ¢ V| of fep, C X L
R ' copyright Rgp \

%pmt&cﬁoﬂ ¥ sl 4
SP;

Case Control
is r;[t] orr;[t]'? GWAS

vrilt] € R {unau]horized redistribution of da‘[abasa]
local differential privacy subjecting to potential attacks

Y N

fingerprint | * (Tfingerprint database sharing
insertion J 7V |_detection J ————p-[accuse malicious SP |

Figure 1: [Adapted from [23]] Alice adds a unique fingerprint in
each copy of her dbSNP when sharing. The fingerprint changes
entries at different locations (the yellow dots) in R. She can identify
the malicious SP who pirates and redistributes her dbSNP using a
distorted fingerprint. All shared dbSNP copies achieve LDP and
fingerprint robustness.

for data leakage with high probability by extracting /sp.from R. In
addition to the copyright protection, Alice also preserves the
privacy of SNP data and maintain high database utility.

4.1.1 Properties of Gen-Scope. In general, a genomic database re-
cipient (SP) can be any of the following: (1) an honest party who
will use the received dbSNP to perform GWAS, (2) an attacker who
wants to make illegal profits by changing some entries in its
received dbSNP and making pirate copies of it, or (3) a curious
party who tries to infer the original SNP values. Thus, our proposed
Gen-Scope is designed to achieve the following properties

3 (i) high utility (measured in terms database accuracy and
consistency of SNP-phenotype association) for the fingerprinted
dbSNP in order to support accurate GWAS,

. (i)

redistribution,

copyright protection to discourage illegal
i.e., to successfully extract a malicious SP’s fingerprint when Alice
identifies a pirated version of the released dbSNP (even if the

malicious SP tries to distort the fingerprint in its received dbSNP),

. (iii) local differential privacy guarantee against attributes
inference attacks, i.e., a data analyst cannot distinguish between r,
[4] and r/[ A’ by using its received copy of dbSNP.

Although (ii) and (iii) are different properties, they can be
achieved at the same time (by leveraging the intrinsic randomness
during fingerprint insertion), however, at the cost of (i). Thus, in
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practice, the database owner needs to strike a balance between
the requirements of (ii) (iii) and (i). In this paper, we assume that
Alice is benign (i.e., she will not modify its own dbSNP to frame any
SP).

4.1.2 Threats to Gen-Scope. The objectives of malicious SPs are

. (a) illegally redistribute received dbSNP (i.e., make
pirated copies by launching various attacks targeting the inserted
fingerprint bit-string) without being accused by Alice, and/or
launch
inference attack aiming to recover the original values of SNPs in its
received dbSNP,

. (b) preserve database utility to gain illegal profit.

Malicious SPs will introduce extra utility loss while distorting the
fingerprint in received dbSNPs. That is (a) and (b) are also
conflicting objectives. We consider that all malicious SPs are
rational (i.e., they

will not over-distort a dbSNP, otherwise they cannot make illegal
profit out of a pirated copy with poor utility). Thus, a rational SP
will try to get away with making pirated copies of the dbSNP by
changing as few SNP values as possible.
Next, we discuss the threats to copyright and privacy separately.

Threats to copyright. In this paper, we mainly focus on the fol-
lowing attacks targeting on the inserted fingerprints.

. Random Bit Flipping Attack [2]. To pirate a dbSNP, a
malicious SP can select random bit positions in its received copy of
the genomic database and flip their bit values, e.g., a SNP value 0
(“00”) becomes 1 (“01”) after the attack. As will be shown in
Section 8, Gen-Scope is robust against this threat even if the
attacker flips more than 45% of the bits in its received copy.

. Collusion Attack [8, 9, 38]. Via collusion, two or more
malicious SPs combine their individual versions of fingerprinted
dbSNP to forge a pirated copy in hope of that none of them can be
traced back. In Section 6, we will show that by adopting the Tadros
codes [48], Gen-Scope can be collusion-resistant.

. Correlation Attacks [24]. By modifying the SNP values a
dbSNP, the inserted fingerprints will make the correlations
between genome sequence deviate from the original correlation
models. Thus, an attacker can compare the publicly available
correlation models (e.g., Mendel's law and/or linkage
disequilibrium) with the empirical correlations obtained from
fingerprinted dbSNP to infer and compromise the fingerprinted
entries. In Section 8.4, we will show that Gen-Scope is also robust
against correlation attacks. Threats to privacy. Malicious SPs may
also try to infer the original
values of specific SNPs of individuals to compromise the privacy of
sensitive information about individuals, e.g., the predisposition to
diseases and family relationships [57]. In Gen-Scope, by leveraging
the randomness in fingerprinting, we achieve plausible deniability
for the individuals.

In this paper, we only consider the attribute inference attack in
privacy threat due to the constraint of the relational model of the
genomic database, where each genomic data record can be
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uniquely referred to by an immutable primary key (see Definition
1). It is a hard requirement that the primary keys (i.e., pseudo IDs
of data records) are immutable in relational databases, because
they also serve as the foreign keys to link between different
databases in DBMS (database management system). Such property
is leveraged in all database fingerprinting schemes, e.g., [2, 24, 27].
As a direct consequence, it is no secret whether an individual’s
genomic record is present in a dbSNP or not due to the uniqueness
and immutability of the primary keys. Hence, the membership
inference attack against differential privacy becomes an ill-posted
problem in the scenario of fingerprinting a relational database
(please refer to [23, Section Ill] for more elaboration).

4.2 Fingerprint Robustness and Utility Metrics
The primary goal of a malicious SP is to distort the fingerprint in its
received dbSNP before redistribution to avoid being accused.
Similar to [23-25, 27], we use the percentage of compromised
fingerprint bits, i.e., Percmp, to measure the robustness of the
fingerprint scheme.

1 _
Percmp=—x Illf(/) /() ’
£1

VA

where 1{-}is the indicator function, Zis the length of the fingerprint

bit-string, /is the extracted fingerprint bit-string from-R (i.e., a

pirated dbSNP), and /(4 (or /() is the&h bit in /(or £). In [24,
27],

the authors have shown that if Percmp > 50%, a malicious SP can
cause the database owner to accuse other innocent SPs who also
received the databases. In this paper, we only focus on Percmp,
because other robustness metrics (e.g., the accusable ranking of a

malicious SP) can be derived from Percmp [27].

Fingerprinting naturally changes the values of SNPs, and hence
degrades the utility of the dbSNP. Similar to [24], we also quantify
the utility of a fingerprinted dbSNP using the following metrics.
Accuracy of the database, i.e., Acc. This calculates the percentage
of matched SNP entries between the original dbSNP and the
fingerprinted copy (or the pirated copy). In Section 7, we will
present close-form relationships between accuracy (100% minus
percentage of changed entries), fingerprinting robustness, and
privacy guarantee.

Consistency of SNP-phenotype association. GWAS quantifies

the associations between a phenotype and each SNP in a dbSNP
using a p-value with a confidence level of 95% [19, 44]. SNPs with
low grvalues (typically less than 0.05) are considered to have

664

Tianxi Ji, Erman Ayday, Emre Yilmaz, and Pan Li

strong associations with the phenotype (i.e., the association is very
unlikely to be due to chance). Generally, a larger utility loss in terms
of accuracy degradation will lead to less accurate SNP-phenotype
association. To evaluate the p-value of each SNP in a dbSNP, we
first randomly divide the database into non-overlapping case
(denoted as .5) and control (denoted as £) groups, and then follow
the steps listed in (1) to perform the calculations.

Co(S1+.52)
Oor=
So(c1+ &)

1 1 1 1
StadErr(n(0R) \/51 ¥S; S Ci+Cy Go,
In(OA)
zZ= —_—
Stdfrr(In(OR)
Here OAis the odd ratio, o, S1, and 53 (or (o, €1, and (3) are the

(1)

p=W(-2+1-W(2).

numbers representing a specific SNP taking a value of 0, 1, and 2 in
the case (or control) group. S¢d/77 (In(OA)) denotes the standard
error of the logarithm of the odd ratio, and zis the standard normal
deviation (i.e., zvalue). Finally, the z~value is the area (probability)
of the normal distribution that falls outside +z and it can be
obtained using W(-); the cumulative distribution function of the
standard normal distribution.

To evaluate the GWAS utility, we identify the top-A"percentage
SNPs (the A percentage SNPs with the lowest z-values) from the
original (non-fingerprinted) dbSNP (R). Then, we check the fraction
such SNPs being preserved (i.e., remains to be the top-A"
percentage SNPs) after fingerprinting or various attacks. Since
GWAS utility depends on the dbSNP and the partition of

case/control group, we will empirically evaluate it in Section 8.2.2.

5 THE PROPOSED GEN-SCOPE SCHEME

In this section, we first review the relational model of dbSNP. Then,
we discuss how to leverage the randomness of fingerprinting to
preserve privacy in dbSNP sharing; we derive a sufficient condition
connecting fingerprinting to LDP. Next, we present Gen-Scope
that complies with the sufficient condition and enables copyright
protection and privacy-preservation simultaneously.

5.1 Relational dbSNP and Privacy Model

Definition 1 (Relational model of dbSNP [12, 24]). A dbSNP

(R) is a collection of 7-tuples. Each of these tuples represents the
SNP sequence of a specific individual. Each SNP sequence is
associated with a primary key, i.e., a pseudo-identifier used to
uniquely identify that individual. The SNP sequence of the ih
individual is denoted as r/and the primary key of that individual is
ri.PmyKey.
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It is noteworthy that in DBMS (database management system),
the primary keys must be immutable [3, 13, 20] to support
database operations, like union, intersection, and update. Primary
keys also serve as foreign keys (a column that creates a relationship
between two tables in DBMS). Thus, updating a primary key can
mess up many other tables or rows in the DBMS. As a result, when
fingerprinting a relational genomic database, the primary keys
should not be changed if a dbSNP is fingerprinted or pirated [2, 31,
32]. In other words, the fingerprint bit-string only changes the
attributes (i.e., the
SNP values) of individuals and keeps their pseudo-identifiers intact.
If a malicious SP destroys all primary keys when redistributing a
dbSNP, such dbSNP will be considered to have no utility, because
its linkability to other genomic databases in DBMS is lost, thus, can
hardly support a wide range of GWAS or biomedical research.

Definition 2 (&LDP [14]). A randomized mechanism M with
domain D satisfies LDP if the following holds for all pairs of single
data entry xand x',

Pr[M(1) = ¥ € Range(M)] < e“CPr[M(x') = y € Range(M)], where

Range(M) is the set of all possible outputs for a data entry.

5.2

Similar to all database fingerprinting schemes [2, 18, 25, 27, 29, 32,
33], which change randomly selected bits of encoded data using a
certain probability, Gen-Scope also flips each of the two bits of a
SNP with probability z (< 0.5). The change to bits (i.e., flipping) is
performed by conducting an exclusive or (XOR) operation between
that bit and a Bernoulli random variable Z ~ Bernoulli(»). The
collections of selected SNP bits vary for different SPs, and their
fingerprinted values (the results after the XOR operation) are
decided by the unique fingerprint bit-strings of the SPs. Thus,
database fingerprinting is a randomized mechanism, which is
endowed with certain level of privacy guarantee. The following
theorem shows that by calibrating the probability (p),
fingerprinting is able to achieve LDP for each SNP entry.

Connecting Fingerprinting to Privacy

Theorem 1. Given a dbSNP R, a fingerprinting scheme (denoted
as M), that conducts the XOR operation between a bit of SNP and a
Bernoulli random variable Z ~ Bernoulli(p), is said to achieve &
local differential privacy with respect to each SNB, if p z %2.

e +1

Theorem 1 can be proved by adapting the steps developed in
[23]. Please refer to Appendix A.1 for the detailed proof. It is
noteworthy that the achieved DP guarantee in Theorem 1 is
different with the one in [23], because [23] only allows limited
insignificant bits to be modified by the mark bits, thus, after
perturbation, the output data entries cannot span the original
input data domain. Whereas, since SNP data can be fully
characterized by two bits, and the marked bits are applied to all
bits of the SNP data, LDP can be achieved while fingerprinting the
genomic relational database.
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53 dbSNP Fingerprinting meeting «LDP

This section provides an exposition of our proposed Gen-Scope,
which satisfies the sufficient condition developed in Theorem 1;
Gen-Scope fingerprints dbSNP with &LDP guarantee.

5.3.1 Fingerprint Insertion. First, we collect all bits in R in a set
P:P= rz‘[[,k]lf € [1,N].t € [1,T],k € [1,2] , where /is the
number of individuals in R, and 7’is the total number of SNPs for

each individual. When the database owner (Alice) wants to share
a fingerprinted copy of R with an SP which has a publicly known ID
denoted as /2, she generates the unique fingerprint for this SP via
f= AMACY| /D), which is a message authentication code (MAC)
involving a cryptographic hash function and a secret cryptographic
key (Y is the secret key of Alice and | represents the
concatenation operator).

Alice also has a cryptographic pseudorandom sequence
generator U, which selects the SNP entries and their bits, and
determines the mask bit .+ and fingerprint bit / (which is an
element of the fingerprint bit-string f) to obtain the Bernoulli
random variable (i.e., = x @ /). To be more specific, for each r/
[z /] (the Ath to last bit of the zth SNP of individual /) in P, Alice sets
the initial seed

1 1

as s={Y|riPmyKey| | £}. If U1(s) mod | 27|=0(p>e 2+1),
then r;[Z 4] is fingerprinted using the following steps. The steps to
generate a fingerprinted dbSNP eR for SP, /2, is summarized in
Algorithm 1. In particular, the subroutine of fingerprinting a

specific SNP bit is shown in (2).

Algorithm 1: Fingerprint insertion.

Input  :dbSNP R, privacy budget ¢, Bernoulli distribution parameter
2> 1/(&7%+ 1), pseudorandom number sequence generator U,
database owner’s secret key Y Output: &LDP fingerprinted dbSNP,
i.e., M (R) =eR.

1 Construct the fingerprintable set
P:”[m\j € [1,N].te[1,T]ke[12]}
> Generate the fingerprint string, i.e., f = ZMAC (Y | /D).

3 forallr/[£4] € P do

4 Cat mrmiidavandam cand - = {Y |r.. DW,.VAerI 7}
5 if U.(-) man || =nthen

6 ‘ Finmmvnvine [« 2 ] cin 1

7 cas g =R

Set mask bit x=0, if Uy(ss) is even; otherwise .xr= 1.



Proceedings on Privacy Enhancing Technologies 2024(3)

Set fingerprint index /= U3z(.s) mod Z.

Let fingerprint bit /= f(4. (2)

Obtain mark bit #=x@ /.

Setr/[th)=ri[th] D 5.

Now, we arrive at the following LDP guarantee on the
fingerprinting scheme on dbSNP. This privacy guarantee is a
specialization of the entry-level privacy guarantee on general
relational database.

Its proof can be adapted from [23] and is shown in Appendix A.2.

Theorem 2. Algorithm 1 is &local differentially-private.

Post-processing. After fingerprinting the genomic database (R),
some entries may have values that are outside the domain of the
SNP (i.e., {0,1,2}). Thus, we also need to post-process the resulting
database (M(R)) to eliminate entries that are not in the original
domain. Otherwise, the database recipient can understand that
these entries are changed due to fingerprinting. Due to the post-
processing im-

munity property of DP, there is no privacy degradation in this step.
Even though the post-processing may alter some fingerprinted
entries, it has negligible impact on the fingerprint robustness,
because it only changes a small fraction of fingerprinted entries,
and in the fingerprint extraction phase, we determine the value of
each bit in the fingerprint by counting how many times it has
been extracted as 1 or 0 followed by majority voting, i.e., each bit
of the fingerprint is recovered by the majority voting on the
positions marked by this fingerprint bit (i.e., Line 8 in Algorithm
2).

Generally, post-processing steps are able to make a
fingerprinted database meet the domain requirements so as to
achieve better utility in downstream applications. In [27], the
authors show that post-processing steps can make a fingerprinted
database preserve the column- and row-wise data correlations and
the covariance matrix of the database, which are frequently
utilized to establish predictive models, e.g., regression and
probability fitting.

5.3.2 Fingerprint Extraction. When Alice observes a leaked (or

pirated) dbSNP denoted as R, she will try to identify the traitor

(malicious SP) by extracting the fingerprint from R and comparing
it with the fingerprints of SPs who have received her database.

Algorithm 2: rivcavcavine ~vtvnnsian

Input  :The original dbSNP R, the leaked dbSNP R, the Bernoulli
distribution parameter p, Alice’s secret key Y,
pseudorandom number sequence generator U, and a

fingerprint template.

Output:Extracted fingerprint from R.
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1 Initialize co() =c1() =0, V/€ [1,4].

2 Construct the fingerprintable set P.
3 forallr, € P do

4 Cat mmmtidavandam cand -~ = {Y | r. nmﬂ.V,.l.«| I.}
5 | if U,(-) s | | = nthen
6 ‘ Curdumnd £ iia (D)

7 forall: € 1 s] do
8 f(1)=1 :cc,(r)/(c1(1)+c,\(r))2- _....,Jf(r)zn 3
GO/l () +en() = -

9 Patiiv ~avdimnbad Eamnvnsint kit asuina~f

We show the fingerprint extraction procedure in Algorithm 2. In

particular, Alice first initiates a fingerprint template (/1, - - -, /Z) =
(?, 2, -+, 7). Here, “?” means that the fingerprint bit at that
position remains to be determined. Then, Alice locates the
positions of the fingerprinted bits exactly as in Algorithm 1, and fills
in each “?” using majority voting. To be more precise, she first
constructs the fingerprintable sets P from R, i.e., P = r/[£4li €[1,
N),te(1,7,£€ (], 2] , where /is the number of records

in R. Note that, in general, &/ # /V, because a malicious SP may
conduct the subset attack to remove some SNP sequences from
the received dbSNP before leaking it. Then, Alice selects the same
bit positions, mask bit ., fingerprint index / using the
pseudorandom seed s={Y|riPmyAKey| ¢| £}, and recover (extract)
/7using steps in (3), which is exactly the reverse of (2).

Set mask bit x=0, if Uy(.s) is even; else .x=1.

Set fingerprint index /= U3(.s) mod Z.

_ (3)
Recover mark bit Z=r/[£4] D ri[z A].

Recover fingerprint bit /7= v @ Z.

Since the value of /may be changed due to various attacks, Alice
/

will maintain and update two counting arrays coand c1, where co(4)
and c1(4) record the number of times /7is recovered as 0 and 1,
respectively. Finally, Alice sets f(4) = 1 if c1(4/(c1(4) + co(4)) = 7; and
f(4) = 0 if co()/(c1() + co(4)) = 7, otherwise she keeps f(4) =7 (i.e.,
this fingerprint bit cannot be determined due to low confidence),
where 7 € (0.5, 1] is the parameter that quantifies Alice’s

confidence in the fingerprint recovery phase.

6 AUGMENTING GEN-SCOPE AGAINST COLLUSION

ATTACK USING TARDOS CODE
When fingerprinted copies of dbSNP are shared with multiple SPs,
two or more malicious SPs can combine their individual versions
of dbSNP to forge a pirated copy in hope that none of them can
be traced back, which is known as the collusion attack [8, 48].
In the literature, several works have proposed collusion-resistant
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fingerprinting schemes for relational databases, e.g., Boneh-Shaw
(BS) codes [8, 9] and Tardos codes [45, 48] (refinement of BS
codes by reducing the length of code-word). Robustness of a
fingerprinting scheme is crucial against such attacks in case
different copies of the dbSNP is breached at the same time or
multiple SPs holding different copies of the dbSNP collude. Our
proposed Gen-Scope is readily to be incorporated with the Tardos
codes [48] to achieve dbSNP fingerprinting with privacy guarantee
and robustness against collusion attack. In particular, Alice (the
dbSNP owner) only needs to replace the fingerprint generation
step (Line 2 of Algorithm 1) with the Tardos codes [48] shown as
in Algorithm 3, where pis the probability of changing one bit of a
SNP entry, which is also the probability of a specific element in
Tardos codes taking value 1. The PDF of pis parameterized by £ €
(0, 0.5). As will be clear later, the value of #determines whether
Gen-Scope can achieve LDP and robustness against collusion
attacks at the same time.

Algorithm 3:Tavcdae cnda cacnvnsinn

1 Sample a random variable z from probability density function

- 1 1
/(,27,!) 2arcsin(1-2¢) m,fe (0/ 05)

2 Generate the Tardos fingerprint string, i.e., f ~ Bernoulli(p).

After generating a customized Tardos code for a specific SP, Alice
can embed the code into the dbSNP by following the same
procedure in the proposed algorithm (i.e., applying (2) while
switching f with the Tardos code). For completeness, we
summarize the steps to generate privacy-preserving fingerprinted
dbSNP copies with collusion resistance in Algorithm 4.

Algorithm A Deivimans Domcasine Cinmaean fadin ~f ALCRID
aiidkls Aalliinimia DAacicdaum~an
Input  :dbSNP R, privacy budget ¢ Bernoulli distribution

/(72 + 1), pseudorandom number

parameter p > 1 sequence generator U, database
owner’s secret key Y Output:slocal differentially-private
fingerprinted dbSNP with robustness against collusion attacks.

1 Construct the fingerprintable set
Pzr,[wﬂi €ll yprellTLke[L2]}
> Generate the Tardos fingerprint string using Algorithm 3.

3 forallr/[£4] € P do

4 Cat mrmiidavandam cand - = {Y | r nmﬂ.ix,.].¢| 7}
5 if Ui(-) ~~a || =nthen

6 ‘ Finmmvnvine [ [ e 2 ] cin 1

7 cas g =R

Once having spotted a pirated copy of the shared dbSNP, Alice
will first use the same steps discussed in Algorithm 2 to extract

'

the fingerprint bit-string (denoted as f ), and then perform the
accusation steps presented in [48] to hold one or more colluders
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(malicious SPs) responsible. To be more specific, for each SP with
public /2, Alice computes the accusation sum via

2IFL PEREV1-»  f/=1
Stowerma= 1060 0, U= V _»p . ()
/ B 1, =0

and finally accuses this SP as guilty if > Z(Zis a predetermined
0
accusation threshold).

To defend against collusion attack, the goal of the database
owner is to identity at least one pirate of the guilty coalition [48].
Thus,
the robustness against collusion attack is usually quantified using
the desired probability of an innocent SP gets falsely accused, i.e.,
/1, and the probability of failing to accuse any of the colluders (ma-

licious SPs), i.e., /. Before establishing the privacy guarantee using
the Tardos codes, we first review its original robustness guarantee
as follows, which is a restatement of Corollary 1 in [46].

Theorem 3 (Robustness of Tardos Codes [46]). Given at most

0 colluders (c022), c0£< 1, £€ (0, 0.5), 0 < f1 K f2 K 1. If the

; > 4x%c In(f71)
database owner uses Tardos codes with length /= 0 1
and

accusation threshold Z=20o[In(4” 1)], then the probability of an
1innocent SP being falsely accused is at most /1, and the
probability of failing to accuse any of the colluders is at most /.

Now, we unify &LDP guarantee and robustness against collusion
attack by tuning £ (parameter of the Tardos codes, Line 1 of
Algorithm 3). By adapting the theoretical results established in [46]
(in particular Corollary 1 in [46], which improves the original Tardos
codes in [48]), we can arrive at the following conclusion.

Theorem 4. Given at most <0 colluders (c022), c0t<1, t€

(O, 0.5), 0 <AL HK ! (here tis the parameter of the

probability density function used in Tardos code, and 1 and />
are probability of false accusation and miss accusation), if Gen-
Scope incorporating the Tardos codes satisfy the following
conditions

2 2 -1
(1) Tardos codes with length 2= 4™ <o (A1) and accusation
_ -1
threshold 7= 20¢o[In(5] A

1
€lep and ¢
e +loa

(2) w<eg2+1 , 1),

then, the fingerprinted dbSNP provides the following guarantees
(i) the probability of an innocent SP being falsely accused is at
most £, and probability of failing to accuse any of the

colluders is at most (5,
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(ii) elocal differential privacy with respect to each SNP entry.

Proof. The pair of condition (1) and guarantee (i) is achieved by
directly applying the theoretical results of Tardos codes (refer the
proof to Corollary 1in [46] for details). The pair of condition (2) and
guarantee (ii) holds, because one can easily verify that /() (step
1 of Tardos code generation) only spans the interval of [£ 1 - 4. It

1

py ez

suggests e—_¢2+1, which is a sufficient condition to invoke

Theorem 1 and 2. O

collusion resistant if ¢ € (0, =)

f . )
0 AT 5

(=1

B 4

collusion resistant collusion resistant
but not e-LDP if and e-LDP if
te(0,—=) t€ [, 1)
+1 e/?4+17 ¢

el

Figure 2: Range of #when LDP is attained (or not) by the Tardos
codes with different parameter £

To better interpret the results of Theorem 3 and Theorem 4, we
visualize the range of Zwhere &LDP is attained or not by using the
Tardos codes in Figure 2. To be more specific, the fingerprinted

database can withstand collusion attack of at most «p colluders as

1
long as € ©, Co )_. Moreover, if the Tardos code parameter (i.e.,
Z) is cho-

1
€ [eff2+ 1
sen appropriately, i.e., ¢ ,
), the fingerprinted database
1c0

can also achieve &LDP. However, the maximum collusion size is
1
limited to [ef/2 +1|. On the contrary, if 2€ (0, & g/2+1), the

resulting fingerprinted database cannot achieve the &LDP
guarantee.

Note that another challenge in practical use of DP is the
cumulative privacy loss when the same statistics are repeatedly
calculated and released using the same DP mechanism. This is
also true for sharing a privacy-preserving dbSNP with multiple SPs.
If the dbSNP is shared to «p receipts, we consider the privacy
leakage will compose linearly, e.g., each SNP is protected under
&cp-LDP.

7 QUANTIFYING PRIVACY AND COPYRIGHT
ROBUSTNESS GUARANTEE

As utility is one of the most important metrics in biomedical
research, we compare the accuracy of fingerprinted dbSNP and
GWAS statistics achieved by Gen-Scope and the naive two-step
approach (LDP followed by fingerprinting) in Section 8. To achieve
a fair comparison, we require that both Gen-Scope and the two-
step approach provide an identical privacy and copyright
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protection guarantees. Same privacy guarantee. Since both Gen-
Scope and the two-step
approach provide local differential privacy, to achieve the same

privacy guarantee, we can set the same ¢value for both of them.

Now, we provide a novel approach to quantify the robustness
(copyright protection guarantee) against random bit flipping
attack and collusion attack at the same time. The robustness
against correlation attacks will be empirically evaluated in

Section 8. Same copyright protection guarantee. We require

both Gen-

Scope and the two-step approach achieve the same robustness
against random bit flipping attack (with flipping probability 1/2)

and collusion attack (discussed in Section 4.1.2). This is because
ran-

2
dom bit flipping attack is the most powerful among simple
attacks , as the flipped SNP entries may create a fingerprint
pattern that misleads Alice during the fingerprint extraction
phase [24, 27]. We
also consider the robustness against collusion attack, because it
has become increasingly common in data sharing. Since the
robustness of a fingerprinting scheme is related to the
percentage (density) of fingerprinted bits (denoted as ), we
need to derive a closed form expression connecting » with
robustness against random bit flipping attack and collusion
attack. Note that the robustness against correlation attack
depends on the specific correlation models and vary with the
database [24, 27], thus, we only consider empirical study on
correlation attacks followed by collusion attacks.

We first discuss the robustness against random bit flipping

attack. Given a specific value of p (» € (0, 1)), the number of
fingerprinted bits in a dbSNP is 247’ (/ and 7 are the number
of rows and columns of dbSNP and each SNP is coded using 2
bits). Suppose the length of the fingerprint bit-string is Z, then,
each bit of the fingerprint bit-string is used 2/7//Z times
approximately (because each fingerprint bit is randomly
sampled from a length Z string). Thus, in order to compromise a
particular fingerprint bit, a malicious SP needs to alter it for at
least )2 V7" [ times (where 7€ (0.5, 1) is

Alice’s confidence in recovering a fingerprint bit via majority vote
in Algorithm 2). Hence, the probability (denoted as ) that
a marnd

licious SP can successfully compromise a fingerprint bit via random

bit flipping attack is p= [,247/, nNTI Ty

rnd ET2NT /L 14 2
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To achieve identical robustness against random bit flipping
attack, we require p being upper bounded by a specific
threshold rnd

(Q) for both Gen-Scope and the two-stage approach. Then, the

*

required percentage of fingerprinted bits () can be achieved via

yx=arg min BRRRy )23 V7 /L P2NT[L 1 287 [2< QRERRL.  (5)

ETRNT]L
[l
*

7 can be interpreted as the smallest percentage of
fingerprinted bits that can guarantee that random bit flipping
attack succeeds with probability at most Q (Q « 1). Clearly, it is
computationally

*
prohibitive to directly solve for y in (5). Here, we provide an
approximate solution to (5). First, due to the symmetry of
Binomial distribution, (5) is equivalent to

1-2S2¥7)L NRNTIL 12NT]L (6)

*

y=argmin y

<Q.
In particular, (6) is the cumulative density function (CDF) of the

=0

Binomial distribution with parameter }2A/7//Z (number of trials)
and

1 1
(probability of each trial being successful), i.e., Binomial(}2/V7/Z,

- ).

2 2

2Simple attacks are those that do not require additional information, e.g., data
correlation or fingerprinted dbSNPs received by others. Examples of simple attacks
include random bit flipping attack, subset (superset) attack, rounding attack [2].

Such CDF is evaluated at )27’/ - 72 V7' /. On the other hand,
(5) is the complementary CDF (i.e., the tail distribution) of the same
distribution evaluated at z7p2A7/Z. Next, we approximate
Binomial(p2 /7] Z, 1_) using a Gaussian

2

distribution with mean )27/ Z x !_and variance RNTIL xIx T
2 2 2
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i.e.,, N (}//VT/L,;//VT/ZZ).3 Then, the value of Gaussian random

variable leading to cumulative probability Q can be calculated via

X =07Yq) V}//W’/ZL + yN7T' [/, where ®71(-) returns the

inverse value of standard Gaussian CDF given a probability Q.

* V-

Then, by letting X 2 (1 - 7))2/7]Z, we can solve for yas 2

PR (0

(1=n-

—_—

Vi w011 (207) 2.

, Which suggests »

nr )

Based on Theorem 4, given a predetermined probability £1, we
can achieve robustness against collusion attack involving at most
cacolluders as long as the length of the fingerprint bit-sting satisfies
Lz 4”263 ln(ﬁfl). Hence, to simultaneously achieve robustness

(copyright guarantee) against random bit flipping attack and
collusion attack, we require the percentage of fingerprinted bits
satisfy

4mco2In(f1-1)! ©-1(Q)2

)

N7 1-27

Then, we obtain the following claims about the privacy and
copyright guarantees of Gen-Scope and the two-stage approach.

Claim 1. For any € > 0, Gen-Scope achieves &LDP, robustness
against random bit flipping attack (with failure probability at most
Q), and robustness against collusion attack with co colluders (with

2
false accusation probability at most 1) if e. g2+l 2 7. To this
end,

ee22

Gen-Scope will change ! -e ¢2+10f the SNP entries.

Proof. According to Theorem 1, Gen-Scope achieves &LDP if the
probability of a bit of SNP is changed due to fingerprint insertion

satisfies pz e 5/1 , i.e., the probability of a bit of SNP is xored

by

241
1

1is larger than. Since there is equal probability that a bit

eq2+1
of SNP is not changed due to fingerprint insertion (i.e., a bit of SNP
is xored by 0), it implies the percentage of fingerprinted bits

(a bit of SNP being either xored by 1 or 0) caused by Gen-Scope
2

is at least Zp: ¢2+1. To satisfy the required robustness against
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e
random flipping attack and collusion attack, it is

: sufficient to make

>
241 T

7 (where yis provided in (7)). Since Gen-Scope changes

1274
each SNP bit independently with probability z, the percentage of
changed SNP entries in Gen-Scopeis 1 - (1 —p)z. By plugging in

2

¢12+1, we obtain the conclusion. O

e

Claim 2. For any € > 0, the two-stage approach (LDP followed by

fingerprinting) achieves &LDP, robustness against random bit
flipping attack (with failure probability at most Q), and robustness

against collusion attack with v colluders (with falsely accusation

probability at most /) if it first changes the value of each SNP with
1
probability cand then fingerprints at least y bits of the new SNPs, ¢
7
wherey is given in (7). To this end, the two-stage approach will
—change1  p2

. 1 1 .
approximately g2+~ - —-_2 of the SNP entries.
3N(722z, 720 (1 - p)) is a good approximation of Binomial(7,2) when both 7zpand 7(1 -
) is greater than 5 [34], which is the case for our considered experiments on dbSNP

in Section 8.
Proof. In the first step of the two-stage approach, to achieve &

LDP on SNP data, a random response scheme is applied [52], which
1

shares an incorrect value of a specific SNP with probability

£ e

+77-1
where 72= 3 is the number of possible values a SNP can take. Then,
to further make the perturbed dbSNP satisfy the required
robustness against random flipping attack and collusion attack, the
two-stage approach needs to change at least y bits of the SNPs.
Since during fingerprinting insertion each selected bit will be xored
by 1 or 0 with equal probability, the fingerprinting stage will change
a bit

v 72

_,whichleadstol- 1- _
2 2

of a SNP with probability changed

SNP entries. ]

8 EXPERIMENT RESULTS

We evaluate the developed Gen-Scope using a real world large-
sclae dbSNP (i.e., the HapMap dataset [16, 22]), which is a
collection of

SNP sequences of 15,000 individuals. Each individual has 156 SNPs.
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8.1 Ethical Considerations

Our research does not entail direct engagement with human
participants, thereby minimizing ethical risks commonly
associated with genomic data collection. The HapMap genomic
dataset used in this study is a public dataset and its participants’
genomic data is collected with informed consent, privacy
protection, transparency, and integrity [49].

The primary concern of using this HapMap dataset and genomic
dataset in general is that the experiments may reveal information
about individuals’ health risks, ancestry, or other sensitive traits,
which could have significant implications for their well-being and
rights. Our proposed Gen-Scope precisely addresses this concern
by making sure that all experiment results are protected under
local differential privacy.

When utilizing genomic datasets, data curators, researchers,
and service providers are obligated to uphold the trust of
participants and possess mechanisms to trace the origins of data
breaches. Our proposed Gen-Scope also addresses this concern by
incorporating imperceptible fingerprints, preventing potential
data leakage and facilitating the tracing of data provenance.

8.2 Comparison with the Two-Stage Approach
First, we compare Gen-Scope with the two-stage approach by
evaluating the accuracy and GWAS statistics of the fingerprinted
dbSNPs when they provide the same privacy and copyright
guarantees.

821 According to (7), the copy-

right guarantee of a fingerprinted dbSNP is determined by 4
parameters, i.e., (i) Q: the probability upper bound that random bit
flipping attack can successfully compromise a fingerprint bit, (ii) =
Alice’s confidence when recovering a specific fingerprint bit in

Comparing accuracy of dbSNPs.

fingerprint extraction phase (Algorithm 2), (iii) 41: the probability
of false accusation in collusion attack, and (iv) co: the number of
colluders. We investigate the impact of each parameter while
keeping the others fixed. Particularly, for each obtained p;, we first
achieve

&LDP guarantee for Gen-Scope by solving

2= y(Claim 1),
/
e +1
2
=

that satisfy the

ytwo conditions in Theorem 4, and finally insert Tardos code
into a dbSNP by applying Algorithm 4. The obtained fingerprinted
dbSNP will satisfy &LDP and copyright guarantee (with provided Q,
Z

i.e.,, ¢ 2In_-1). Next, we generate Tardos codes

/1, and ). Then, to let the two-stage approach achieve the same

LDP and copyright guarantee, we replace each SNP value with an
1 2

& Where e=2In( --1), and
e+2 V4

incorrect value with probability
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then apply a previously developed genomic database
fingerprinting scheme to mark p of the bits in the perturbed
dbSNP (i.e., run Algorithm 1 in [24] with p= p,p where y»-(or y)
is the row-(or column-)wise fingerprint density).

In Figure 3-6, we obtain the various privacy guarantees (&) by
varying Q, z; /1, and «, respectively, and also compare the accu-
racy of Gen-Scope and the two-stage approach using the obtained

= =-5=

€. Specifically, in Figure 3, we fix 07,41 10 5, and
Q[ -13  -4]

vary in 10 , 10 . On the left panel of Figure 3, we plot the LDP

, €0

guarantee (¢€) versus log (Q). We see that privacy guaran-
10

tee becomes weaker (€increases) as Q increases. This is because
the larger the value of Q, the less the robustness becomes against
random flipping attack, which implies that the inserted fingerprint
is sparse, i.e., € has a larger value. On the right panel of Figure 3,
given the obtained ¢ we plot the accuracy of fingerprinted dbSNPs
obtained by both approaches when Q increases. Clearly, Gen-
Scope always achieves higher accuracy than the two-stage
approach, because it unifies privacy preservation and copyright
protection into one step. For both approaches, accuracy increases

with Q, as higher
Q implies lower fingerprinted bits, i.e., smaller value of y(see (7)).
==-5= [ ]
In Figure 4, we fix 110, 05, and vary zin 0.65, 0.8 (Alice’s
confidence in majority voting in Algorithm 2). The left panel of
Figure 4 shows that privacy guarantee becomes weaker when 7
increases. Since Q quantifies the probability that random bit
flipping attack successfully compromises zof those dbSNP bits that
are marked by a specific fingerprint bit, if zincreases for a fixed Q,
it implies that fingerprinting robustness decreases, which suggests
weaker privacy. From the right panel of Figure 4, we observe as 7
increases (i.e., € increases), Gen-Scope also outperforms the
twostage approach.
= Q= -5 =
In Figure 5, we fix 7 0.75, 10 5,and vary f1in
[ -13 -4]
10, 10 . The left panel of Figure 5 shows that privacy guarantee

, €0

becomes weaker when £1 increases. This is due to the reason that

the higher value of £ implies less fingerprinting robustness against
collusion attack, which further suggests weaker privacy. From the
right panel of Figure 5, we observe that Gen-Scope still
outperforms the two-stage approach in terms of the accuracy of
obtained dbSNP.
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= Q==-5
In Figure 6, we fix 70.75, 1 10, and vary ¢p from 2 to 6. From
the left panel of Figure 6, we can see privacy becomes stronger

(i.e., edecreases) as ¢pincreases. This is because higher value of o
means that the fingerprinted dbSNP is robust against collusion
attack involving more colluders, which leads to a higher value of
and requires more bits to be fingerprinted. Thus, this also leads to
decreasing accuracy of fingerprinted dbSNP obtained by the two
approaches as shown in the right panel of Figure 6. However, Gen-
Scope still achieves higher accuracy, because it attains the required
privacy preservation and copyright protection guarantee via one-
shot noise injection.

From Figure 3-6, we observe that the privacy guarantee and fin-

gerprinting robustness is limited under high eregime. In particular,

when £> 4, the proposed Gen-Scope method leads to similar utility

5 0.9
privacy guarantee €) for, — Gen-Scope
47 Gen-Scope 08
and two-stage >
3 (S}
o
w 507
3
2 ©

o
o

0 0.5
-14 -12 -10 -8 -6 -4
log;(£2) €

Figure 3: (1) Gen-Scope versus the two-stage approach under the
same privacy and copyright guarantees. Fixing z=0,7,

s1= 107, =5, varying Q.
55

5 privacy guarantee €) ~— Gen-Scope
—for Gen-Scope / 0.9~ two-stage
4.5 and two-stage / -
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55 0.95
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Figure 4: (2) Gen-Scope versus the two-stage approach under the
same privacy and copyright guarantees. Fixing Q= /1= -5, c0=5,
varying 7.
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Figure 5: (3) Gen-Scope versus the two-stage approach under the Figure 6: (4) Gen-Scope versus the two-stage approach under the

same privacy and copyright guarantees. Fixing 7= 0,75,

Q=10-5, c0 =5, varying A1.

with the two-stage approach, and the shared genomic databases
obtained using both methods will have poor privacy guarantees
and fingerprinting robustness. Thus, to fulfill the three
requirements (security, privacy, utility discussed in Section 4.1.1)
when sharing genomic database, the database owner need to
choose an appropriate & For the database considered in this work,
when ¢ is approximately 3, the proposed Gen-Scope has clear
advantage over the two-stage approach in terms of all fingerprint
robustness, privacy, and GWAS utility. We defer the task of
determining the optimal ¢ that achieves a suitable balance
between utility, privacy, and robustness to future research.

8.2.2 Comparing GWAS statistics. To evaluate the utility of GWAS

statistics, we investigate the consistency of SNP-phenotype
association of dbSNPs obtained using various methods and
compare them with the SNP-phenotype association obtained from
the original dbSNP. In particular, we first obtain the set of top-A~
percentage of SNPs having strong associations with a phenotype
(i.e., top-A" percentage SNPs with the lowest p-values) from the
original dbSNP and denote this set as the ground-truth set. Next,
we get the new sets of top-A"SNPs from (i) Gen-Scope, (ii) two-
stage approach (i.e., LDP followed by fingerprinting in [24]), (iii)
only LDP perturbation of the original dbSNP (i.e., no copyright
protection is attained), and (iv) only fingerprinting the original
dbSNP (i.e., no privacy guarantee is attained). Finally, we evaluate
the consistency by counting the fraction of overlapping between
each of the new sets and the

ground-truth set.

13 4

In this experiment, we set 7=0.85, Q= £ € {10
2

,"',10 }7

and obtainp using (7) and set €2 In(  -1). In Figure 7, we plot the

V4
fraction of consistent SNP-phenotype association when A”is 10, 20,

and 30. Clearly, Gen-Scope can always achieve higher consistency
frequency than the two-stage approach. For example, when we
consider the top-10% of the SNPs having strong associations with
a phenotype, Gen-Scope can preserve about more than 20% of
those SNPs compared with the two-stage approach when € is
about 3.3.
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same privacy and copyright guarantees. Fixing 7= 0,75
Q= f1=10-5, varying c0.

Additionally, we also present the Type 1 error (known as the
false positives). It is the number of the SNPs erroneously identified
as having strong associations by various mechanisms, when in
reality, they have weak associations according to the ground-truth
set. Specifically, these SNPs do not belong to the top-A"percentage
of SNPs with the lowest p-values. Note that for any fixed 4, the
number of strongly and weakly associated SNPs are also fixed.
Thus, a false positive SNP must corresponds to a false negative SNP
(the SNP erroneously identified as having weakly associated). As a
result, Type 1 error equals to Type 2 error in our study. We show
the experiment results in Figure 8 when A’is 10, 20, and 30. Clearly,
Gen-Scope can always achieve lower Type 1 or (Type 2) error than
the two-stage approach as it modifies less SNPs to achieve both
privacy guarantee and fingerprinting robustness.
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8.3 Robustness against Random Bit Flipping Attack

and Collusion Attack
Next, to verify the fingerprinting robustness of Gen-Scope, we
launch random bit flipping attack and collusion attack on the
obtained fingerprinted dbSNP. In particular, we let a malicious SP
randomly flip a certain percentage of the bits in its received copy
of dbSNP, and then extract the fingerprint bit-string from the

Proceedings on Privacy Enhancing Technologies 2024(3)

To test the robustness against collusion attack, we fix 41 10 (see
Theorem 4) and let Alice generate Tardos code by only considering
2, 4, or 6 colluders, i.e., v € {2, 4, 6}, when there are actually a1
colluders, and 1 € {2, 3, - - -, 10}. We let the the coalition employ

the majority strategy [9, 32], where colluding SPs compare their
received dbSNPs and replace each bit with the majority of that bit
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Figure 7: Comparison of the consistency of SNP—phenotype association achieved by Gen-Scope, the two-stage approach, LDP (without
copyright guarantee), and fingerprinting in [24] (without privacy guarantee).
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Figure 8: Comparison of the Type 1 (or Type 2) error of the SNP—phenotype association achieved by Gen-Scope, the two-stage approach,
LDP (without copyright guarantee), and fingerprinting in [24] (without privacy guarantee).

compromised dbSNP, compare the extracted string with the
original fingerprint bit-string that is generated for this SP, and
finally compute the percentage of compromised fingerprint bits

(Percmp in

Section 4.2). In Figure 9(a), by selecting the privacy budget £from

{1, 2, 3, 4, 5}, we plot Percmp when the percentage of flipped bits
increases from 10% to 45%. Clearly, even with the least guarantee
on privacy and copyright protection (i.e., €= 5), the malicious SP
can only compromise less than 23% of the fingerprint bits even
though it sacrifices the utility of the dbSNP by flipping 45% of the
bits. This suggests a very high robustness against random bit
flipping attack, because as long as less than half of the fingerprint
bits are compromised, Alice is able hold the malicious SP
responsible for the data leakage [24, 27].

=-5
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in all the copies. Then, after extracting the fingerprint from the
pirated dbSNP, we calculate the frequency of detecting at least one

of the 1 colluders. The frequency is obtained by repeating the
experiment 30 times. We plot the results in Figure 9(b). We
observe that as long as ¢y < ¢1, Alice can always trace one of the
colluders.

Even when c¢1 > ¢, the successful tracing frequency is still high,
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random bit flipping attack collusion attack
Figure 9: Investigation of robustness of Gen-Scope against random
bit flipping attack and collusion attack. (a): Robustness against

random bit flipping when €€ {1, 2, 3, 4, 5} and the percentage of

random flipped bits increases from 10% to 45%. (b) Robustness
against against Collusion attack consider

2, 4, or 6 colluders, i.e., @ € {2, 4, 6}, when there are actually c1

3 10
PR }

colluders, and ¢1 € {2,

e.g., when there are 10 colluders actually, but Alice only consider
=4, sheis still able to accuse one of the 10 colluders with chance

larger than 90%. This suggests that the proposed Gen-Scope is also
robust against the collusion attack.

8.4 Robustness against Correlation Attacks Followed
by Collusion Attack

Now we empirically investigate the robustness of the proposed
Gen-Scope against the most powerful attack combination, i.e.,
each malicious receipts independently perform correlation attacks
on their own received fingerprinted dbSNP, and then forge a single
copy via collusion.

Since the added privacy-preserving fingerprint changes entries
in the original dbSNP, which will lead to the change of statistical
relationships among genome data at different locations, the
malicious SP can leverage the auxiliary correlation models (which
are usually publicly available) to more accurately infer the
potentially fingerprinted SNPs, and then distort the fingerprint. In
this work, we consider the recently proposed correlation attacks in
[24], where a malicious SP utilizes the inherent linkage
disequilibrium (i.e., the joint distributions) among SNPs to identify
the fingerprinted positions in a genomic database.

In favor of the attackers, we assume that the malicious SP has
prior knowledge about the linkage disequilibrium (i.e., the joint
distributions among each pair of the SNPs) that are directly
calculated from the original dbSNP. Note that this is the most
powerful correlation attack that could be launched against a given
fingerprinted relational database [25]. We denote the knowledge
set of joint distributions on the original dbSNP as J = {/,, /|7 € F,
2# g}, where pand gare the SNP sequences for all individuals in R
at location p and ¢. Once receiving a fingerprinted dbSNP R, the
malicious SP e

first calculates a new set of joint probability distributions (denoted
as Je) based on eR. Then, it compares Je with its prior knowledge J,
and flips the entries in eR that leads to large discrepancy between
Je and J. Please refer to [24, 25] for the detailed correlation attacks.

Scenario 1. We first release the entire dbSNP (all 156 SNPs of

15,000 individuals), and let co = c1 = 3 (i.e., the Tardos code is
generated by considering 3 colluders and the actual number of
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colluders is also 3), Alice’s confidence in recovering the fingerprint
bits be 98%, random bit flipping attack can success with probability

0= 10-8, and false accusation happens with probability £ = 10-8.
Under this setup, Gen-Scope changes about 2.4% of the entries in
the original dbSNP. After letting each 3 malicious SPs perform
correlation attacks independently and merge their compromised
copies by majority voting, it is interesting to find that proposed
Gen-Scope is still robust, i.e., 2 out of 3 colluders can still be
identified, and the accusation score .Syzextemal (defined in (4))
calculated for each SP is intact with or without the correlation
attacks. This is because in this scenario, only 2.4% of the SNPs are
modified by the Tardo code, and there are 156 columns in the
dbSNP, thus the impact to the joint distributions among SNPs is
negligible (i.e., the discrepancy between J and Je is small). Thus,
the correlation attacks can hardly infer enough fingerprinted
entries. In fact, according to the experiments in [24], it requires
about 10% modifications in dbSNP to make the correlation attack
successful.

Scenario 2. To increase the discrepancy between J and Je,

we now consider releasing the first 30 SNPs of all individuals. By
keeping the same parameter setups with scenario 1, the Tardos
code can change about 12% of the entries in each shared copy of
the dbSNP. Since there are only 30 columns, the impact to the joint
distributions among SNPs will be high. We find that the proposed
Gen-Scope is still robust against correlation attacks followed by
collusion attacks, even if the actual number of colluders is lager

than . In Figure 10 we show the accusation score for one of the

colluder identified by Alice when = 3 and there are actual ¢1 €
{3, 4, 5, 6, 7} colluders. Clearly, the correlation attack can decrease
the accusation scores (correlation attack only, blue bars) by some
extent, yet, the new accusation scores (correlation attack followed
by collusion, red bars) are still higher than the accusation threshold

Z= Zch[In(ﬁ—l)]. Thus, Gen-Scope is also robust against the
1 strong combination of correlation followed by
collusion attack.

2500
I collusion attack only
correlation followed by collusion attack
2000 —_accusation threshold Z
)
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<1500
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%1000
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©

(41}
o
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Figure 10: Accusation scores for the identified colluder with and
without correaltion attack.
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9  CONCLUSION

In this paper, we have proposed Gen-Scope, which is the first
genomic database fingerprinting scheme that can simultaneously
achieve copyright protection, privacy preservation, and accurate
value (utility) when sharing genomic databases. Gen-Scope attains
LDP by leveraging the intrinsic randomness during fingerprint
insertion. We also discussed how to improve Gen-Scope to defend
against collusion attacks. We have theoretically showed that to
achieve the identical privacy and copyright guarantee, Gen-Scope
will change less SNPs than the two-stage approach (LDP followed
by fingerprinting). The proposed Gen-Scope is also robust against
correlation attacks. Experiments on a real world genomic database
corroborated our theoretical findings, e.g., Gen-Scope can achieve
GWAS statistics that is about 20% more accurate than the two-
stage approach.
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A OMITTED PROOFS A.1 Proof of Theorem 1
Proof. Let r/[£] and r/[£4] be two possible values that the #th

SNP of the zth individual can take in a dbSNP, i.e., r/[4], r/[4 €
{0, 1, 2} and r/[4 # r/[£]. Denote the last bit of r/[#A] as r/[z 1] and

the second to the last bit of r/[£] as r/[Z 2], and suppose after

fingerprinting both r/[£] and r/[4 become re/[£]. Moreover, let

Bitk
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ri[z /] or (r/[£ A4]). Then, we have
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where (2) is because each bit of r/[4 (or r;/[£]) is marked
independently, and (4) is obtained by 1—_19)2 < applying #®

v=(1-wv+ul-2

€
for any binary zand z. Then, by makinge, we complete
Y4

the proof. m]
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(or £ ) denotes the Bernoulli random variable that is used to
mark XORed by 1) with probability higher than g, and this satisfies

the sufficient condition developed in Theorem 1. O
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A.2 Proof of Theorem 2
Proof. Since the value of U(s) (the s/th random value generated

by U) is uniformly distributed for a given s[10], we (x = 0) = %

have
1 1
Pr Uy(s) mod | |=0=1/] 22| > 2p. Similarly, Pr,

2w

1(s) mod L%J =0 >
thus, for any fingerprint bit /, Pr #=1, U
1
x 2p = p, which suggests that each r [ 4] will be changed (i.e.,

2 /
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