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ABSTRACT 
Sharing genomic databases is critical to the collaborative research 

in computational biology. A shared database is more informative 

than specific genome-wide association studies (GWAS) statistics as 

it enables “do-it-yourself" calculations. Genomic databases involve 

intellectual efforts from the curator and sensitive information of 

participants, thus in the course of data sharing, the curator 

(database owner) should be able to prevent unauthorized 

redistributions and protect individuals’ genomic data privacy. As it 

becomes increasingly common for a single database be shared 

with multiple recipients, the shared genomic database should also 

be robust against collusion attack, where multiple malicious 

recipients combine their individual copies to forge a pirated one 

with the hope that none of them can be traced back. The strong 

correlation among genomic entries also make the shared database 

vulnerable to attacks that leverage the public correlation models. 

In this paper, we assess the robustness of shared genomic 

database under both collusion and correlation threats. To this end, 

we first develop a novel genomic database fingerprinting scheme, 

called Gen-Scope. It achieves both copyright protection (by 

enabling traceability) and privacy preservation (via local 

differential privacy) for the shared genomic databases. To defend 

against collusion attacks, we augment Gen-Scope with a powerful 

traitor tracing technique, 

i.e., the Tardos codes. 

Via experiments using a real-world genomic database, we show 

that Gen-Scope achieves strong fingerprint robustness, e.g., the 

fingerprint cannot be compromised even if the attacker changes 

45% of the entries in its received fingerprinted copy and colluders 

will be detected with high probability. Additionally, Gen-Scope 

outperforms the considered baseline methods. Under the same 

privacy and copyright guarantees, the accuracy of the fingerprinted 

genomic database obtained by Gen-Scope is around 10% higher 

than that achieved by the baseline, and in terms of preservations 

of GWAS statistics, the consistency of variant-phenotype 

associations can be about 20% higher. Notably, we also empirically 

show that Gen-Scope can identify at least one of the colluders even 

if malicious receipts collude after independent correlation attacks. 
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1 INTRODUCTION 
In recent decades, significantly large amounts of genomic data 

have been generated and collected at a unprecedented rate. 

Among them, single-nucleotide polymorphism (i.e., SNP) data 

(representing point mutations in DNA) has been widely used in 

Genome-wide association studies (GWAS) to discover the 

associations between phenotypes and particular traits or human 

diseases. Moreover, the implementation and sharing of genomic 

databases, e.g., the single nucleotide polymorphism databases 

(dbSNP) [41, 42, 53] has significantly advanced the collaborative 

research on physical mapping, population genetics, human biology, 

and modern medicine [43]. 

Security and Privacy Concerns. 
While the benefits of col-

 

lecting SNPs and constructing dbSNP are trumpeted by the 

computational biology community, the increased availability of 

such data has raised concerns about the data owners’ copyright 

and the data contributors’ privacy. Thus, an owner of dbSNP will 

only share its data to authorized recipients, e.g., service providers 

(SPs) like hospitals and research institutions after data use 

agreements and also want to prevent illegal redistribution of data. 

Most importantly, when data leakage happens, genomic database 

owner needs to be able to collect evidence to accuse the party (or 

parties) who should be responsible for the leakage. For example, 

in commercial genetic testing, such as 23andme [1], companies 

providing genetic testing services need to collect and store 

genomic data from other resources. Such genomic data can be 

used for research purposes for the benefits of the participating 

customers, but must be protected from unauthorized 

redistribution. 

On the other hand, genomic data, such as SNP and 

nucleobases, contains sensitive features that can be used to 

identify individuals (via forensics), connect to other family 

members (via kinship), and infer individuals’ health condition 

(associating SNPs with diseases) [36]. For example, information 

about the number of minor alleles (alleles/nucleotides that are 

observed less frequently in DNA) in an individual can be used to 

identify that person’s identity through 
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genetic profiling , which is controversial and raises ethical, legal, 

and privacy concerns. Hence, the data curator is also obligated to 

protect the privacy of the individuals (data contributors). It is 

noteworthy that the General Data Protection Regulation (GDPR) 

lists genetic data as “special categories of personal data" that is 

subject to organizational and technical safeguards [39]. 

1.1 Entire Database v.s. Summary Statistics 
We focus on the sharing of the entire dbSNP instead of releasing 

specific GWAS statistics (e.g., correlation between SNP pairs or 

 

1To be more specific, genetic profiling analyzes specific regions of an individual’s SNPs 

and creates a unique genetic profile for that individual. By comparing the profile to a 

database of known profiles, it is possible to discover the individual’s identity or 

determine his/her relationship to other individuals in the database 
allele frequencies) under differential privacy. This is because in a 

typical GWAS process, the researchers do not know in advance 

which SNP pairs to use and what types of statistical tests to query 

[40]. Usually, the number of significant SNPs associated with 

specific diseases and the pairs of correlated SNP entries are the 

results of GWAS process, not the input [28]. 

Thus, in this work, we are motivated to first develop a feasible 

genomic database sharing scheme to provide researchers access to 

genomic data for the purposes of collaborative research and “do-

ityourself" calculations, which provides more freedom than simply 

allowing computations on a server owned by genomic database 

owner. To address the above security and privacy concerns, the 

developed scheme should have both copyright protection and 

privacy preservation guarantees for the shared genomic databases. 

1.2 Our Solution 
In the literature, quite a few works have attempted to address the 

problems of protecting the copyright and privacy of dbSNP in 

isolation. In particular, in order to protect copyright and deter 

illegal redistribution, a series of genome 

watermarking/fingerprinting schemes have been developed [5, 24, 

37, 55]. To protect the privacy of the individuals in genomic 

databases, both cryptographic techniques [4, 6, 58] and statistical 

approaches (via differential privacy) [21, 26, 28, 50, 56, 57] have 

been proposed. However, encrypted genomic data only allows a 

limited number of operations and usually requires high 

computation costs. Thus, differential privacy-based genomic data 

sharing has been widely adopted. 

To achieve both copyright protection and privacy preservation 

for genomic databases, a straightforward two-step approach is to 

insert fingerprint into a differential-privately sanitized dbSNP. 

However, this significantly reduces the utility of the final dbSNP (as 

will be empirically shown in Section 8), because it requires adding 

separate noises to achieve the two guarantees; first adding noise 

to attain privacy guarantee, and then adding additional noise (via 

fingerprinting) to obtain copyright guarantee. 

In this paper, we propose Gen-Scope, which shares genomic 

 

databases and simultaneously achieve copyright protection and 

privacy preservation via one-shot noise (fingerprint) insertion. In 

 

Gen-Scope, the inserted fingerprint can also be used to protect the 

privacy of the genomic data. The key idea is to leverage the intrinsic 

randomness of fingerprint insertion and transform it into a 

provable privacy guarantee [23]. In particular, we first observe that 

fingerprint insertion essentially flips each bit of a SNP data 

randomly, and this leads to the value of that SNP being changed 

with certain probability, then from which, we can derive the 

privacy guarantee in the form of local differential privacy (LDP) 

[15]. Since Gen-Scope only inserts noise once, the final dbSNP has 

high utility 

(measured in terms of the accuracy of dbSNP and GWAS statistics). 

Part of the Gen-Scope is adapted from previous works on 

relational databases fingerprinting [23–25, 27]. However, both [24] 

and [23] are only robust against random bit flipping attack, subset 

attack, superset attack, and correlation attacks [27]; the inserted 

fingerprints may still be compromised by collusion attack (possibly 

after a few rounds of correlation attacks). To address this issue, we 

improve [23, 24] by incorporating the Tardos code [48], which is 

one of the most powerful techniques to fight against collusion 

attacks by identifying the colluders with very high probability. 

Furthermore, [24] does not consider the privacy of the shared 

database, whereas, in this work, our main goal is to simultaneously 

achieve LDP and robust fingerprinting with high database utility. 

On the other hand, the privacy guarantee developed in [23] cannot 

be directly cast into LDP, because LDP requires that after 

perturbation, each data entry has non-zero probability of taking 

any other values in the input domain, whereas [23] does not allow 

the original data value to be modified to certain values from the 

domain. 

Contributions. This work is the first to achieve genomic data- 

base fingerprinting with LDP guarantee. The proposed Gen-Scope 

can also be augmented to defend against the collusion attacks 

launched by allied attackers after correlation attacks. In particular, 

• We derive a closed-form expression which connects the 

percentage of fingerprinted bits (𝛾) with the robustness against 

random bit flipping attack and collusion attack. We also empirically 

investigate the robustness against correlation attacks. 

• We analyze the required fraction of changed SNP entries 

for Gen-Scope and the two-stage approach (differentially private 

perturbation followed by fingerprinting) to achieve the required 

privacy and copyright guarantees. 

• Experiment results show that, under the same 

guarantees of copyright protection and privacy preservation, Gen-

Scope results in dbSNP with higher utility than the two-step 

approach. For example, the accuracy of the fingerprinted genomic 

database obtained by Gen-Scope can be 10% higher than that 



Privacy-Preserving Fingerprinting Against 
Collusion and Correlation Threats in Genomic Data Proceedings on Privacy Enhancing Technologies 2024(3) 

661 

achieved by the naïve twostage approach, and in terms of 

preservation of GWAS statistics, the consistency of SNP-phenotype 

associations can be 20% higher. When the shared dbSNP is 

compromised by correlation attacks followed by collusion attack, 

Gen-Scope can still identify at least one of the colluders. 

Gen-Scope helps facilitate the progress of collaborative genomic 

research by relieving the tension between the utility of genomic 

databases and the privacy of participants as well as the rights of 

the genomic database owner. 

Roadmap. We review related works in Section 2. Preliminaries 

on database fingerprinting and genomics are reviewed in Section 

3. In Section 4, we describe the system and threat models, and the 

evaluation metrics. Section 5 introduces Gen-Scope, and Section 6 

discusses how to improve it to defend against the collusion attack. 

In Section 7, we derive a closed-form expression connecting the 

density of fingerprinted bits and the corresponding robustness and 

also analyze the required amount of modification on SNP entries. 

In Section 8, we compare Gen-Scope with the two-step approach. 

Finally, Section 9 concludes the paper. 

2 RELATED WORK 
Fingerprinting techniques are originally proposed to prevent illegal 

redistribution of multimedia, e.g., images [17], audio [7], videos 

[47], and text documents [11]. The first work that applies unique 

fingerprinting (i.e., watermarking) to relational database is [2], 

which modifies insignificant bits of data entries to preserve the 

utility of the database. Different from fingerprinting, in 

watermarking all service providers (SPs) receive the same 

watermarked copy, so it is not feasible to trace the source of data 

leakage. 

Afterwards, some works using [2] as the building block have 

been proposed [18, 32, 33]. For example, [32] allows that the 

inserted fingerprint can be arbitrary bit-strings. [27] develops 

fingerprinting scheme that can defend attacks that leverage the 

correlations among data records. Most recently, a database 

fingerprinting scheme with provable privacy guarantees is 

developed in [23]. However, the authors in [23] term their privacy 

guarantee as entry-level differential privacy, which is unfamiliar to 

genetics practitioners. In particular, in entry-level DP, only limited 

number of insignificant bits will be modified, thus the modified 

data entries cannot span the original input domain. Whereas, in 

LDP, the domain of perturbed data entries is identical to the 

original data domain, hence, all bits should be subject to equal 

probability of being modified. 

The first genomic fingerprinting scheme was proposed in [5], 

which shares personal genomic sequential data by jointly 

considering collusion attack and data correlation. Then, [55] 

develops a probabilistic fingerprinting scheme by considering the 

conditional probabilities between SNPs of a single individual. [37] 

develops a watermarking scheme for sequential SNP data based on 

belief propagation which considers privacy and watermark 

robustness. However, these works all focus on the genomic data 

(SNPs) of a 

single individual, rather than a genomic database, i.e., a collection 

of individuals’ SNP record. Very recently, [24] proposes the first 

fingerprinting scheme that can handle collections of genomic 

sequences by extending [27, 32]. In Table 1, we summarize the 

differences between existing works and this paper. 

This work is different from all the previously mentioned works 

on genomic data fingerprinting, because it is the first to investigate 

all 3 problems together, i.e., (i) fingerprinting an entire genomic 

database (instead of single genomic record), (ii) achieving 

copyright protection and privacy preservation via one-shot 

steganographic mark insertion, and (iii) defending against both 

collusion attacks and correlation attacks. 

3 PRELIMINARIES 
In this section, we provide background information for database 

fingerprinting and genomics in general. 

3.1 Database Fingerprinting Techniques 

Database fingerprinting schemes are steganography techniques 

that randomly change selected data entries with certain 

probability. The modified values of the selected entries in a given 

database are determined by a unique binary bit-string customized 

for each database recipient. The value of the binary bit-string (i.e., 

the fingerprint/steganographic mark of the recipient) is obtained 

by a message authentication code (MAC) involving a cryptographic 

hash function, a secret cryptographic key of the database owner, 

and the identity of the recipient. The process of modifying data 

points based on the fingerprint is called fingerprint insertion. Since 

the fingerprints are hard to be detected or compromised, a 

malicious recipient will be held responsible if it leaks its received 

database. 

Properties 
VLDBJ’03 

[2] 
TDSC’05 

[32] 
RAID’19 

[5] 
Bioinformatics’21 

[37] 
RAID’21 

[27] 
ISMB’21 

[24] 
NDSS’23 

[23] 
this 

paper 

Distinguish malicious SPs ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 

Privacy guarantee ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ 

Collusion-attack resistant ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ 

Correlation-attack resistant ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ 

Handle relational 

databases 
✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ 

Table 1: Comparison of various schemes. ✓indicates the scheme has a certain property, and ✗indicates the opposite. 
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3.2 Genomic and GWAS Background 

3.2.1 Single Nucleotide Polymorphism. 
Double stranded DNA 

molecules in the human genome are composed of two 

complementary polymer chains, each containing nucleotides (i.e., 

A, C, G, T). Although most of the DNA sequence is similar across 

the entire human population, roughly 0.5% of an individual’s DNA 

(which equates to millions of nucleotides) differs from the 

reference genome [30, Chapter 2]. The most common type of DNA 

variation is a Single Nucleotide Polymorphism (SNP). Each person 

has approximately 4 million SNPs. A SNP is the mutation at a single 

nucleotide at a particular loci of the genome. For each SNP, there 

are two types of nucleotides (or alleles), i.e., major allele (the allele 

that is observed with a high frequency) and minor allele (the allele 

that is observed with a low frequency). Each SNP includes two 

nucleotides, one inherited from each parent. As a result, biologist 

represents a SNP using the number of minor alleles (0, 1, or 2). 

Below is a toy example on the SNP from three individuals [54]. 

Example 1. Suppose we consider the SNP at position 1000 on the 

Chromosome 1 (the largest human chromosome). At this position, 

individuals may have different nucleotides. The reference genome 

is a ‘C’ nucleotide at this position. However, in some individuals, 

there could be a mutation where instead of ‘C’, they have an ‘A’ 

nucleotide. Thus, for this SNP at position 1000 on Chromosome 1, 

the major allele is ‘C’, which is the nucleotide observed with high 

frequency in the population. The minor allele is ‘A’, observed with 

lower frequency. 

Each individual would have two alleles at this SNP position, one 

inherited from each parent. If Alice has inherited ‘C’ from one 

parent and ‘C’ from the other parent, indicating Alice has 0 minor 

alleles at position 1000. If Bob has inherited ‘C’ from one parent 

and ‘A’ from the other parent, indicating he has 1 minor allele at 

position 1000. If Charlie has inherited ‘A’ from both parents, 

indicating he has 2 minor alleles at this position. As a result, the 

SNP value at position 1000 for Alice, Bob, and Charlie is 0, 1, and 2, 

respectively. 

This paper considers the genomic database, which is a collection 

of SNPs of a certain population, i.e., dbSNP [53]. In dbSNP, each 

row corresponds to the SNP sequence of an individual. Suppose 

there are 𝑁 individuals and each has 𝑃 SNPs, then, the dbSNP is 

∈ { }𝑁 ×𝑃 represented as R 

0, 1, 2 . 

3.2.2 Genome-wide Association Studies. 
The genetic makeup of an 

organism is referred to as its genotype, while the observable traits 

it exhibits are known as its phenotype. For instance, the ability to 

roll one’s tongue represents a phenotype, while the underlying 

genetic factors influencing tongue rolling ability constitute the 

genotype. The genotype is inherited from an organism’s parents, 

while the phenotype is not directly inherited. Instead, phenotype 

is shaped by a combination of factors including the genotype, 

epigenetic modifications, environment, and etc. Establishing 

universally accepted taxonomy or encoding standards for 

phenotype data remains a challenge due to its multifaceted nature. 

GWAS [51] focuses studying the associations between SNP and 

phenotype (e.g., the characteristics of being able to roll one’s 

tongue). For example, a GWAS on tongue rolling ability will 

investigate the genetic variant (SNPs) whose genotypes are 

associated with the ability to roll one’s tongue. 

Individuals participating in GWAS are categorized into two 

groups: those exhibiting a specific trait, such as the ability to roll 

one’s tongue, are grouped as cases, while those lacking such a trait 

are grouped as controls, see, e.g., [35]. GWAS examines the 

genomes of participants in both case and control groups. If a 

particular type of genetic variant, such as a SNP, is found to occur 

more frequently in individuals with the trait (i.e., in the case 

group), it is deemed to be associated with the trait. The most 

popular statistical method applied in GWAS is the 𝑝-value 

measurement [19, 44]. In particu- 

lar, SNPs with are considered to have strong associations with the 

phenotype if the corresponding 𝑝-value is low. More details are 

deferred to Section 4.2. 

Recently GWAS have revealed that a patient’s risk for specific 

diseases can be partially predicted based on their SNPs [36]. As a 

result, the leakage of SNPs can pose a significant threat to an 

individual’s privacy, and the sharing of relational database 

consisting of individuals’ SNPs should be regulated with copyright 

protections. 

4 SYSTEM, THREATS, AND METRICS 
In this section, we first present an overview of the proposed 

GenScope, and then discuss its properties, i.e., the guarantees on 

copyright protection and privacy preservation against various 

threat models. Lastly, we provide the utility metrics of the shared 

dbSNP. 

4.1 Gen-Scope Overview 
We consider a database owner (Alice) with a dbSNP represented 

using R. Each SNP (i.e., the entry of the database) is represented by 

the number of its minor alleles as 0, 1, or 2, and can be encoded as 

“00”, “01”, or “10”, respectively. 

We show the overview of the system model in Figure 1 (adapted 

from the general relational database sharing in [23]). Alice wants 

to share the genomic database R with 𝑁 SPs. To prevent 

unauthorized redistribution of the database by a malicious SP, Alice 

embeds unique fingerprints in all shared copies of the dbSNP. The 

fingerprint essentially changes different entries in R at different 

SNP positions (indicated by the yellow dots). The fingerprint (a 

binary bit-string) generated for the 𝑖th SP (
SP

𝑖) is 𝑓SP𝑖 , and the 

dbSNP received by SP𝑖 is eRSPi. Both 𝑓SP𝑖 and eR𝑖 are obtained using 

the proposed scheme (see Section 5). In Figure 1, if SP𝑖 forges a 
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pirated dbSNP, i.e., R, by changing some values (indicated by the 

red dots) in its received copy, i.e., eRSPi, Alice is able to accuse SP𝑖 

 

Figure 1: [Adapted from [23]] Alice adds a unique fingerprint in 

each copy of her dbSNP when sharing. The fingerprint changes 

entries at different locations (the yellow dots) in R. She can identify 

the malicious SP who pirates and redistributes her dbSNP using a 

distorted fingerprint. All shared dbSNP copies achieve LDP and 

fingerprint robustness. 

 

for data leakage with high probability by extracting 𝑓SP𝑖 from R. In 

addition to the copyright protection, Alice also preserves the 

privacy of SNP data and maintain high database utility. 

4.1.1 Properties of Gen-Scope. In general, a genomic database re- 

cipient (SP) can be any of the following: (1) an honest party who 

will use the received dbSNP to perform GWAS, (2) an attacker who 

wants to make illegal profits by changing some entries in its 

received dbSNP and making pirate copies of it, or (3) a curious 

party who tries to infer the original SNP values. Thus, our proposed 

Gen-Scope is designed to achieve the following properties 

• (i) high utility (measured in terms database accuracy and 

consistency of SNP-phenotype association) for the fingerprinted 

dbSNP in order to support accurate GWAS, 

• (ii) copyright protection to discourage illegal 

redistribution, 

i.e., to successfully extract a malicious SP’s fingerprint when Alice 

identifies a pirated version of the released dbSNP (even if the 

malicious SP tries to distort the fingerprint in its received dbSNP), 

• (iii) local differential privacy guarantee against attributes 

inference attacks, i.e., a data analyst cannot distinguish between r𝑖 

[𝑡] and r𝑖 [𝑡]′ by using its received copy of dbSNP. 

Although (ii) and (iii) are different properties, they can be 

achieved at the same time (by leveraging the intrinsic randomness 

during fingerprint insertion), however, at the cost of (i). Thus, in 

practice, the database owner needs to strike a balance between 

the requirements of (ii) (iii) and (i). In this paper, we assume that 

Alice is benign (i.e., she will not modify its own dbSNP to frame any 

SP). 

4.1.2 Threats to Gen-Scope. The objectives of malicious SPs are 

• (a) illegally redistribute received dbSNP (i.e., make 

pirated copies by launching various attacks targeting the inserted 

fingerprint bit-string) without being accused by Alice, and/or 

launch 

inference attack aiming to recover the original values of SNPs in its 

received dbSNP, 

• (b) preserve database utility to gain illegal profit. 

Malicious SPs will introduce extra utility loss while distorting the 

fingerprint in received dbSNPs. That is (a) and (b) are also 

conflicting objectives. We consider that all malicious SPs are 

rational (i.e., they 

will not over-distort a dbSNP, otherwise they cannot make illegal 

profit out of a pirated copy with poor utility). Thus, a rational SP 

will try to get away with making pirated copies of the dbSNP by 

changing as few SNP values as possible. 

Next, we discuss the threats to copyright and privacy separately. 

Threats to copyright. In this paper, we mainly focus on the fol- 

lowing attacks targeting on the inserted fingerprints. 

• Random Bit Flipping Attack [2]. To pirate a dbSNP, a 

malicious SP can select random bit positions in its received copy of 

the genomic database and flip their bit values, e.g., a SNP value 0 

(“00”) becomes 1 (“01”) after the attack. As will be shown in 

Section 8, Gen-Scope is robust against this threat even if the 

attacker flips more than 45% of the bits in its received copy. 

• Collusion Attack [8, 9, 38]. Via collusion, two or more 

malicious SPs combine their individual versions of fingerprinted 

dbSNP to forge a pirated copy in hope of that none of them can be 

traced back. In Section 6, we will show that by adopting the Tadros 

codes [48], Gen-Scope can be collusion-resistant. 

• Correlation Attacks [24]. By modifying the SNP values a 

dbSNP, the inserted fingerprints will make the correlations 

between genome sequence deviate from the original correlation 

models. Thus, an attacker can compare the publicly available 

correlation models (e.g., Mendel’s law and/or linkage 

disequilibrium) with the empirical correlations obtained from 

fingerprinted dbSNP to infer and compromise the fingerprinted 

entries. In Section 8.4, we will show that Gen-Scope is also robust 

against correlation attacks. Threats to privacy. Malicious SPs may 

also try to infer the original 

values of specific SNPs of individuals to compromise the privacy of 

sensitive information about individuals, e.g., the predisposition to 

diseases and family relationships [57]. In Gen-Scope, by leveraging 

the randomness in fingerprinting, we achieve plausible deniability 

for the individuals. 

In this paper, we only consider the attribute inference attack in 

privacy threat due to the constraint of the relational model of the 

genomic database, where each genomic data record can be 
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uniquely referred to by an immutable primary key (see Definition 

1). It is a hard requirement that the primary keys (i.e., pseudo IDs 

of data records) are immutable in relational databases, because 

they also serve as the foreign keys to link between different 

databases in DBMS (database management system). Such property 

is leveraged in all database fingerprinting schemes, e.g., [2, 24, 27]. 

As a direct consequence, it is no secret whether an individual’s 

genomic record is present in a dbSNP or not due to the uniqueness 

and immutability of the primary keys. Hence, the membership 

inference attack against differential privacy becomes an ill-posted 

problem in the scenario of fingerprinting a relational database 

(please refer to [23, Section III] for more elaboration). 

4.2 Fingerprint Robustness and Utility Metrics 
The primary goal of a malicious SP is to distort the fingerprint in its 

received dbSNP before redistribution to avoid being accused. 

Similar to [23–25, 27], we use the percentage of compromised 

fingerprint bits, i.e., Percmp, to measure the robustness of the 

fingerprint scheme. 

 1  

Percmp =  × 
Í𝐿 1𝑓 (𝑙) ≠ 𝑓 (𝑙)

 
, 

𝑙=1 

𝐿 
where 1{·} is the indicator function, 𝐿 is the length of the fingerprint 

 

bit-string, 𝑓 is the extracted fingerprint bit-string from R (i.e., a 

 

pirated dbSNP), and 𝑓 (𝑙) (or 𝑓 (𝑙)) is the𝑙th bit in 𝑓 (or 𝑓 ). In [24, 

27], 

the authors have shown that if Percmp > 50%, a malicious SP can 

cause the database owner to accuse other innocent SPs who also 

received the databases. In this paper, we only focus on Percmp, 

because other robustness metrics (e.g., the accusable ranking of a 

malicious SP) can be derived from 
Per

cmp [27]. 

Fingerprinting naturally changes the values of SNPs, and hence 

degrades the utility of the dbSNP. Similar to [24], we also quantify 

the utility of a fingerprinted dbSNP using the following metrics. 

Accuracy of the database, i.e., 𝐴𝑐𝑐. This calculates the percentage 

of matched SNP entries between the original dbSNP and the 

fingerprinted copy (or the pirated copy). In Section 7, we will 

present close-form relationships between accuracy (100% minus 

percentage of changed entries), fingerprinting robustness, and 

privacy guarantee. 

Consistency of SNP-phenotype association. GWAS quantifies 

the associations between a phenotype and each SNP in a dbSNP 

using a 𝑝-value with a confidence level of 95% [19, 44]. SNPs with 

low 𝑝-values (typically less than 0.05) are considered to have 

strong associations with the phenotype (i.e., the association is very 

unlikely to be due to chance). Generally, a larger utility loss in terms 

of accuracy degradation will lead to less accurate SNP-phenotype 

association. To evaluate the 𝑝-value of each SNP in a dbSNP, we 

first randomly divide the database into non-overlapping case 

(denoted as 𝑆) and control (denoted as 𝐶) groups, and then follow 

the steps listed in (1) to perform the calculations. 

𝐶0(𝑆1 + 𝑆2) 

 𝑂𝑅 = , 

𝑆0(𝐶1 + 𝐶2) 

 𝑆𝑡𝑑𝐸𝑟𝑟 (ln(𝑂𝑅)) , (1) 

ln(𝑂𝑅) 

𝑧 = , 

𝑆𝑡𝑑𝐸𝑟𝑟 (ln(𝑂𝑅)) 

𝑝 =Ψ(−𝑧) + 1 − Ψ(𝑧). 

Here 𝑂𝑅 is the odd ratio, 𝑆0, 𝑆1, and 𝑆2 (or 𝐶0, 𝐶1, and 𝐶2) are the 

numbers representing a specific SNP taking a value of 0, 1, and 2 in 

the case (or control) group. 𝑆𝑡𝑑𝐸𝑟𝑟 (ln(𝑂𝑅)) denotes the standard 

error of the logarithm of the odd ratio, and 𝑧 is the standard normal 

deviation (i.e., 𝑧-value). Finally, the 𝑝-value is the area (probability) 

of the normal distribution that falls outside ±𝑧, and it can be 

obtained using Ψ(·); the cumulative distribution function of the 

standard normal distribution. 

To evaluate the GWAS utility, we identify the top-𝐾 percentage 

SNPs (the 𝐾 percentage SNPs with the lowest 𝑝-values) from the 

original (non-fingerprinted) dbSNP (R). Then, we check the fraction 

such SNPs being preserved (i.e., remains to be the top-𝐾 

percentage SNPs) after fingerprinting or various attacks. Since 

GWAS utility depends on the dbSNP and the partition of 

case/control group, we will empirically evaluate it in Section 8.2.2. 

5 THE PROPOSED GEN-SCOPE SCHEME 
In this section, we first review the relational model of dbSNP. Then, 

we discuss how to leverage the randomness of fingerprinting to 

preserve privacy in dbSNP sharing; we derive a sufficient condition 

connecting fingerprinting to 𝜖-LDP. Next, we present Gen-Scope 

that complies with the sufficient condition and enables copyright 

protection and privacy-preservation simultaneously. 

5.1 Relational dbSNP and Privacy Model 

Definition 1 (Relational model of dbSNP [12, 24]). A dbSNP 

(R) is a collection of 𝑇-tuples. Each of these tuples represents the 

SNP sequence of a specific individual. Each SNP sequence is 

associated with a primary key, i.e., a pseudo-identifier used to 

uniquely identify that individual. The SNP sequence of the 𝑖th 

individual is denoted as r𝑖 and the primary key of that individual is 

r𝑖.𝑃𝑚𝑦𝐾𝑒𝑦. 
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It is noteworthy that in DBMS (database management system), 

the primary keys must be immutable [3, 13, 20] to support 

database operations, like union, intersection, and update. Primary 

keys also serve as foreign keys (a column that creates a relationship 

between two tables in DBMS). Thus, updating a primary key can 

mess up many other tables or rows in the DBMS. As a result, when 

fingerprinting a relational genomic database, the primary keys 

should not be changed if a dbSNP is fingerprinted or pirated [2, 31, 

32]. In other words, the fingerprint bit-string only changes the 

attributes (i.e., the 

SNP values) of individuals and keeps their pseudo-identifiers intact. 

If a malicious SP destroys all primary keys when redistributing a 

dbSNP, such dbSNP will be considered to have no utility, because 

its linkability to other genomic databases in DBMS is lost, thus, can 

hardly support a wide range of GWAS or biomedical research. 

Definition 2 (𝜖-LDP [14]). A randomized mechanism M with 

domain D satisfies 𝜖-LDP if the following holds for all pairs of single 

data entry 𝑥 and 𝑥 ′, 

Pr[M(𝑥) = 𝑦 ∈ Range(M)] ≤ 𝑒𝜖 Pr[M(𝑥 ′) = 𝑦 ∈ Range(M)], where 

Range(M) is the set of all possible outputs for a data entry. 

5.2 Connecting Fingerprinting to Privacy 

Similar to all database fingerprinting schemes [2, 18, 25, 27, 29, 32, 

33], which change randomly selected bits of encoded data using a 

certain probability, Gen-Scope also flips each of the two bits of a 

SNP with probability 𝑝 (𝑝 < 0.5). The change to bits (i.e., flipping) is 

performed by conducting an exclusive or (XOR) operation between 

that bit and a Bernoulli random variable 𝐵 ∼ Bernoulli(𝑝). The 

collections of selected SNP bits vary for different SPs, and their 

fingerprinted values (the results after the XOR operation) are 

decided by the unique fingerprint bit-strings of the SPs. Thus, 

database fingerprinting is a randomized mechanism, which is 

endowed with certain level of privacy guarantee. The following 

theorem shows that by calibrating the probability (𝑝), 

fingerprinting is able to achieve LDP for each SNP entry. 

Theorem 1. Given a dbSNP R, a fingerprinting scheme (denoted 

as M), that conducts the XOR operation between a bit of SNP and a 

Bernoulli random variable 𝐵 ∼ Bernoulli(𝑝), is said to achieve 𝜖-

local differential privacy with respect to each SNP, if 𝑝 2 . 
 𝑒 +1 

Theorem 1 can be proved by adapting the steps developed in 

[23]. Please refer to Appendix A.1 for the detailed proof. It is 

noteworthy that the achieved DP guarantee in Theorem 1 is 

different with the one in [23], because [23] only allows limited 

insignificant bits to be modified by the mark bits, thus, after 

perturbation, the output data entries cannot span the original 

input data domain. Whereas, since SNP data can be fully 

characterized by two bits, and the marked bits are applied to all 

bits of the SNP data, LDP can be achieved while fingerprinting the 

genomic relational database. 

5.3 dbSNP Fingerprinting meeting 𝜖-LDP 
This section provides an exposition of our proposed Gen-Scope, 

which satisfies the sufficient condition developed in Theorem 1; 

Gen-Scope fingerprints dbSNP with 𝜖-LDP guarantee. 

5.3.1 Fingerprint Insertion. First, we collect all bits in R in a set 

P: P = r𝑖 [𝑡,𝑘]
 

, where 𝑁 is the 

number of individuals in R, and 𝑇 is the total number of SNPs for 

each individual. When the database owner (Alice) wants to share 

a fingerprinted copy of R with an SP which has a publicly known ID 

denoted as 𝐼𝐷, she generates the unique fingerprint for this SP via 

f = 𝐻𝑀𝐴𝐶(Y|𝐼𝐷), which is a message authentication code (MAC) 

involving a cryptographic hash function and a secret cryptographic 

key (Y is the secret key of Alice and | represents the 

concatenation operator). 

Alice also has a cryptographic pseudorandom sequence 

generator U, which selects the SNP entries and their bits, and 

determines the mask bit 𝑥 and fingerprint bit 𝑓 (which is an 

element of the fingerprint bit-string f) to obtain the Bernoulli 

random variable (i.e., 𝐵 = 𝑥 ⊕ 𝑓 ). To be more specific, for each r𝑖 

[𝑡,𝑘] (the 𝑘th to last bit of the 𝑡th SNP of individual 𝑖) in P, Alice sets 

the initial seed 

 1 1 

as 𝑠 = {Y|r𝑖.𝑃𝑚𝑦𝐾𝑒𝑦|𝑡|𝑘}. If U1(𝑠) mod 
⌊ 

2𝑝 ⌋ = 0 (𝑝 > 𝑒 𝜖/2+1), 

then r𝑖 [𝑡,𝑘] is fingerprinted using the following steps. The steps to 

generate a fingerprinted dbSNP eR for SP, 𝐼𝐷, is summarized in 

Algorithm 1. In particular, the subroutine of fingerprinting a 

specific SNP bit is shown in (2). 

Algorithm 1: Fingerprint insertion. 

Input :dbSNP R, privacy budget 𝜖, Bernoulli distribution parameter 

𝑝 > 1/(𝑒𝜖/2 + 1), pseudorandom number sequence generator U, 

database owner’s secret key Y Output:𝜖-LDP fingerprinted dbSNP, 

i.e., M (R) = eR. 

1 Construct the fingerprintable set 

P = r𝑖 [𝑡,𝑘] . 
2 Generate the fingerprint string, i.e., f = 𝐻𝑀𝐴𝐶 (Y |𝐼𝐷). 

3 forall r𝑖 [𝑡,𝑘] ∈ P do 

 

Set mask bit 𝑥 = 0, if U2(𝑠) is even; otherwise 𝑥 = 1. 
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Set fingerprint index 𝑙 = U3(𝑠) mod 𝐿. 

 Let fingerprint bit 𝑓 = f(𝑙). (2) 

Obtain mark bit 𝐵 = 𝑥 ⊕ 𝑓 . 

Set r𝑖 [𝑡,𝑘] = r𝑖 [𝑡,𝑘] ⊕ 𝐵. 

Now, we arrive at the following LDP guarantee on the 

fingerprinting scheme on dbSNP. This privacy guarantee is a 

specialization of the entry-level privacy guarantee on general 

relational database. 

Its proof can be adapted from [23] and is shown in Appendix A.2. 

Theorem 2. Algorithm 1 is 𝜖-local differentially-private. 

Post-processing. After fingerprinting the genomic database (R), 

some entries may have values that are outside the domain of the 

SNP (i.e., {0,1,2}). Thus, we also need to post-process the resulting 

database (M(R)) to eliminate entries that are not in the original 

domain. Otherwise, the database recipient can understand that 

these entries are changed due to fingerprinting. Due to the post-

processing im- 

munity property of DP, there is no privacy degradation in this step. 

Even though the post-processing may alter some fingerprinted 

entries, it has negligible impact on the fingerprint robustness, 

because it only changes a small fraction of fingerprinted entries, 

and in the fingerprint extraction phase, we determine the value of 

each bit in the fingerprint by counting how many times it has 

been extracted as 1 or 0 followed by majority voting, i.e., each bit 

of the fingerprint is recovered by the majority voting on the 

positions marked by this fingerprint bit (i.e., Line 8 in Algorithm 

2). 

Generally, post-processing steps are able to make a 

fingerprinted database meet the domain requirements so as to 

achieve better utility in downstream applications. In [27], the 

authors show that post-processing steps can make a fingerprinted 

database preserve the column- and row-wise data correlations and 

the covariance matrix of the database, which are frequently 

utilized to establish predictive models, e.g., regression and 

probability fitting. 

5.3.2 Fingerprint Extraction. When Alice observes a leaked (or 

 

pirated) dbSNP denoted as R, she will try to identify the traitor 

 

(malicious SP) by extracting the fingerprint from R and comparing 

it with the fingerprints of SPs who have received her database. 

 

Input :The original dbSNP R, the leaked dbSNP R, the Bernoulli 

distribution parameter 𝑝, Alice’s secret key Y, 

pseudorandom number sequence generator U, and a 

fingerprint template. 

Output:Extracted fingerprint from R. 

1 Initialize c0 (𝑙) = c1 (𝑙) = 0, ∀𝑙 ∈ [1,𝐿]. 

2 Construct the fingerprintable set P. 

 

We show the fingerprint extraction procedure in Algorithm 2. In 

particular, Alice first initiates a fingerprint template (𝑓1, · · · , 𝑓𝐿) = 

(?, ?, · · · , ?). Here, “?” means that the fingerprint bit at that 

position remains to be determined. Then, Alice locates the 

positions of the fingerprinted bits exactly as in Algorithm 1, and fills 

in each “?” using majority voting. To be more precise, she first 

constructs the fingerprintable sets P from R, i.e., P = r𝑖 [𝑡,𝑘] [1, 

𝑁 ],𝑡 ∈ [1,𝑇],𝑘 ∈ [1, 2]
 

, where 𝑁 is the number of records 

in R. Note that, in general, 𝑁 ≠ 𝑁, because a malicious SP may 

conduct the subset attack to remove some SNP sequences from 

the received dbSNP before leaking it. Then, Alice selects the same 

bit positions, mask bit 𝑥, fingerprint index 𝑙 using the 

pseudorandom seed 𝑠 = {Y|r𝑖.𝑃𝑚𝑦𝐾𝑒𝑦|𝑡|𝑘}, and recover (extract) 

𝑓𝑙 using steps in (3), which is exactly the reverse of (2). 

Set mask bit 𝑥 = 0, if U2(𝑠) is even; else 𝑥 = 1. 

Set fingerprint index 𝑙 = U3(𝑠) mod 𝐿. 

(3) 

Recover mark bit 𝐵 = r𝑖 [𝑡,𝑘] ⊕ r𝑖 [𝑡,𝑘]. 

Recover fingerprint bit 𝑓𝑙 = 𝑥 ⊕ 𝐵. 

Since the value of 𝑓 may be changed due to various attacks, Alice 
𝑙 

will maintain and update two counting arrays c0 and c1, where c0(𝑙) 

and c1(𝑙) record the number of times 𝑓𝑙 is recovered as 0 and 1, 

respectively. Finally, Alice sets f(𝑙) = 1 if c1(𝑙)/(c1(𝑙) + c0(𝑙)) ≥ 𝜏, and 

f(𝑙) = 0 if c0(𝑙)/(c1(𝑙) + c0(𝑙)) ≥ 𝜏, otherwise she keeps f(𝑙) =? (i.e., 

this fingerprint bit cannot be determined due to low confidence), 

where 𝜏 ∈ (0.5, 1] is the parameter that quantifies Alice’s 

confidence in the fingerprint recovery phase. 

6 AUGMENTING GEN-SCOPE AGAINST COLLUSION 
ATTACK USING TARDOS CODE 

When fingerprinted copies of dbSNP are shared with multiple SPs, 

two or more malicious SPs can combine their individual versions 

of dbSNP to forge a pirated copy in hope that none of them can 

be traced back, which is known as the collusion attack [8, 48]. 

In the literature, several works have proposed collusion-resistant 
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fingerprinting schemes for relational databases, e.g., Boneh-Shaw 

(BS) codes [8, 9] and Tardos codes [45, 48] (refinement of BS 

codes by reducing the length of code-word). Robustness of a 

fingerprinting scheme is crucial against such attacks in case 

different copies of the dbSNP is breached at the same time or 

multiple SPs holding different copies of the dbSNP collude. Our 

proposed Gen-Scope is readily to be incorporated with the Tardos 

codes [48] to achieve dbSNP fingerprinting with privacy guarantee 

and robustness against collusion attack. In particular, Alice (the 

dbSNP owner) only needs to replace the fingerprint generation 

step (Line 2 of Algorithm 1) with the Tardos codes [48] shown as 

in Algorithm 3, where 𝑝 is the probability of changing one bit of a 

SNP entry, which is also the probability of a specific element in 

Tardos codes taking value 1. The PDF of 𝑝 is parameterized by 𝑡 ∈ 

(0, 0.5). As will be clear later, the value of 𝑡 determines whether 

Gen-Scope can achieve 𝜖-LDP and robustness against collusion 

attacks at the same time. 

 

1 Sample a random variable 𝑝 from probability density function 

𝑓 (𝑝;𝑡) ,𝑡 ∈ (0, 0.5). 

2 Generate the Tardos fingerprint string, i.e., f ∼ Bernoulli(𝑝). 

 

After generating a customized Tardos code for a specific SP, Alice 

can embed the code into the dbSNP by following the same 

procedure in the proposed algorithm (i.e., applying (2) while 

switching f with the Tardos code). For completeness, we 

summarize the steps to generate privacy-preserving fingerprinted 

dbSNP copies with collusion resistance in Algorithm 4. 

 

 Input :dbSNP R, privacy budget 𝜖, Bernoulli distribution 

/(𝑒𝜖/2 + 1), pseudorandom number 
parameter 𝑝 > 1 sequence generator U, database 

owner’s secret key Y Output:𝜖-local differentially-private 

fingerprinted dbSNP with robustness against collusion attacks. 

1 Construct the fingerprintable set 

P = r𝑖 [𝑡,𝑘] , 𝑁 ] . 
2 Generate the Tardos fingerprint string using Algorithm 3. 

3 forall r𝑖 [𝑡,𝑘] ∈ P do 

 

Once having spotted a pirated copy of the shared dbSNP, Alice 

will first use the same steps discussed in Algorithm 2 to extract 
′ 

the fingerprint bit-string (denoted as f ), and then perform the 

accusation steps presented in [48] to hold one or more colluders 

(malicious SPs) responsible. To be more specific, for each SP with 

public 𝐼𝐷, Alice computes the accusation sum via 

 ∑︁|f′ | ′ √︃1−𝑝 f𝑙 = 1 

 𝑆𝐼𝐷external = f𝑙 𝑈 (f𝑙, 𝑝), 𝑈 (f𝑙, 𝑝) = 𝑝 , (4) 

 𝑙 
− 

1−𝑝 f𝑙 = 0 

 

and finally accuses this SP as guilty if 𝑆 > 𝑍 (𝑍 is a predetermined 

𝐼𝐷 
accusation threshold). 

To defend against collusion attack, the goal of the database 

owner is to identity at least one pirate of the guilty coalition [48]. 

Thus, 

the robustness against collusion attack is usually quantified using 

the desired probability of an innocent SP gets falsely accused, i.e., 

𝛽1, and the probability of failing to accuse any of the colluders (ma- 

licious SPs), i.e., 𝛽2. Before establishing the privacy guarantee using 

the Tardos codes, we first review its original robustness guarantee 

as follows, which is a restatement of Corollary 1 in [46]. 

Theorem 3 (Robustness of Tardos Codes [46]). Given at most 

𝑐0 colluders (𝑐0 ≥ 2), 𝑐0𝑡 < 1, 𝑡 ∈ (0, 0.5), 0 < 𝛽1 ≪ 𝛽2 ≪ 1. If the 

database owner uses Tardos codes with length 𝐿  

and 

accusation threshold 𝑍 = 20𝑐0⌈ln(𝛽−1)⌉, then the probability of an 

1 innocent SP being falsely accused is at most 𝛽1, and the 

probability of failing to accuse any of the colluders is at most 𝛽2. 

Now, we unify 𝜖-LDP guarantee and robustness against collusion 

attack by tuning 𝑡 (parameter of the Tardos codes, Line 1 of 

Algorithm 3). By adapting the theoretical results established in [46] 

(in particular Corollary 1 in [46], which improves the original Tardos 

codes in [48]), we can arrive at the following conclusion. 

Theorem 4. Given at most 𝑐0 colluders (𝑐0 ≥ 2), 𝑐0𝑡 < 1, 𝑡 ∈ 

(
0

, 
0

.
5

), 
0 

< 𝛽1 ≪ 𝛽2 ≪ 
1 

(here 𝑡 is the parameter of the 

probability density function used in Tardos code, and 𝛽1 and 𝛽2 

are probability of false accusation and miss accusation), if Gen-
Scope incorporating the Tardos codes satisfy the following 
conditions 

(1) Tardos codes with length 𝐿  and accusation 

threshold 𝑍 )⌉, 

and 𝑡 , 1 ), (2) 𝑐0 ≤ 𝑒𝜖/2 + 1 

 𝑒 +1 𝑐0 

then, the fingerprinted dbSNP provides the following guarantees 

(i) the probability of an innocent SP being falsely accused is at 

most 𝛽1, and probability of failing to accuse any of the 

colluders is at most 𝛽2, 
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(ii) 𝜖-local differential privacy with respect to each SNP entry. 

Proof. The pair of condition (1) and guarantee (i) is achieved by 

directly applying the theoretical results of Tardos codes (refer the 

proof to Corollary 1 in [46] for details). The pair of condition (2) and 

guarantee (ii) holds, because one can easily verify that 𝑓 (𝑝) (step 

1 of Tardos code generation) only spans the interval of [𝑡, 1 − 𝑡]. It 

1 

suggests 
𝑝 

≥ 
𝑡 ≥ 

𝑒 𝜖/2+1, which is a sufficient condition to invoke 

Theorem 1 and 2. □ 

 

Figure 2: Range of 𝑡 when 𝜖-LDP is attained (or not) by the Tardos 

codes with different parameter 𝑡. 

To better interpret the results of Theorem 3 and Theorem 4, we 

visualize the range of 𝑡 where 𝜖-LDP is attained or not by using the 

Tardos codes in Figure 2. To be more specific, the fingerprinted 

database can withstand collusion attack of at most 𝑐0 colluders as 

long as 𝑡  . Moreover, if the Tardos code parameter (i.e., 

𝑡) is cho- 

1 

i.e., 𝑡 ,sen appropriately, 

 ), the fingerprinted database 
1 𝑐0 

can also achieve 𝜖-LDP. However, the maximum collusion size is 

limited to ⌊𝑒𝜖/
2 +1⌋. On the contrary, if 𝑡 ∈ (0, 𝑒 �𝜖/  , the 

resulting fingerprinted database cannot achieve the 𝜖-LDP 

guarantee. 

Note that another challenge in practical use of DP is the 

cumulative privacy loss when the same statistics are repeatedly 

calculated and released using the same DP mechanism. This is 

also true for sharing a privacy-preserving dbSNP with multiple SPs. 

If the dbSNP is shared to 𝑐0 receipts, we consider the privacy 

leakage will compose linearly, e.g., each SNP is protected under 

𝜖𝑐0-LDP. 

7 QUANTIFYING PRIVACY AND COPYRIGHT 
ROBUSTNESS GUARANTEE 

As utility is one of the most important metrics in biomedical 

research, we compare the accuracy of fingerprinted dbSNP and 

GWAS statistics achieved by Gen-Scope and the naïve two-step 

approach (LDP followed by fingerprinting) in Section 8. To achieve 

a fair comparison, we require that both Gen-Scope and the two-

step approach provide an identical privacy and copyright 

protection guarantees. Same privacy guarantee. Since both Gen-

Scope and the two-step 

approach provide local differential privacy, to achieve the same 

privacy guarantee, we can set the same 𝜖 value for both of them. 

Now, we provide a novel approach to quantify the robustness 

(copyright protection guarantee) against random bit flipping 

attack and collusion attack at the same time. The robustness 

against correlation attacks will be empirically evaluated in 

Section 8. Same copyright protection guarantee. 
We require 

both Gen-
 

Scope and the two-step approach achieve the same robustness 

against random bit flipping attack (with flipping probability 1/2) 

and collusion attack (discussed in Section 4.1.2). This is because 

ran- 
2 

dom bit flipping attack is the most powerful among simple 

attacks , as the flipped SNP entries may create a fingerprint 

pattern that misleads Alice during the fingerprint extraction 

phase [24, 27]. We 

also consider the robustness against collusion attack, because it 

has become increasingly common in data sharing. Since the 

robustness of a fingerprinting scheme is related to the 

percentage (density) of fingerprinted bits (denoted as 𝛾), we 

need to derive a closed form expression connecting 𝛾 with 

robustness against random bit flipping attack and collusion 

attack. Note that the robustness against correlation attack 

depends on the specific correlation models and vary with the 

database [24, 27], thus, we only consider empirical study on 

correlation attacks followed by collusion attacks. 

We first discuss the robustness against random bit flipping 

attack. Given a specific value of 𝛾 (𝛾 ∈ (0, 1)), the number of 

fingerprinted bits in a dbSNP is 𝛾2𝑁𝑇 (𝑁 and 𝑇 are the number 

of rows and columns of dbSNP and each SNP is coded using 2 

bits). Suppose the length of the fingerprint bit-string is 𝐿, then, 

each bit of the fingerprint bit-string is used 𝛾2𝑁𝑇/𝐿 times 

approximately (because each fingerprint bit is randomly 

sampled from a length 𝐿 string). Thus, in order to compromise a 

particular fingerprint bit, a malicious SP needs to alter it for at 

least 𝜏𝛾2𝑁𝑇 /𝐿 times (where 𝜏 ∈ (0.5, 1) is 

Alice’s confidence in recovering a fingerprint bit via majority vote 

in Algorithm 2). Hence, the probability (denoted as 𝑝 ) that 

a marnd 

licious SP can successfully compromise a fingerprint bit via random 

bit flipping attack is 𝑝 = Í𝛾2𝑁𝑇 /𝐿 𝛾2𝑁𝑇 /𝐿
 1𝛾2𝑁𝑇 /𝐿. 

 
 rnd 𝑖=𝜏𝛾2𝑁𝑇 /𝐿 𝑖 2 



Privacy-Preserving Fingerprinting Against 
Collusion and Correlation Threats in Genomic Data Proceedings on Privacy Enhancing Technologies 2024(3) 

669 

To achieve identical robustness against random bit flipping 

attack, we require 𝑝 being upper bounded by a specific 

threshold rnd 

(Ω) for both Gen-Scope and the two-stage approach. Then, the 
∗ 

required percentage of fingerprinted bits (𝛾 ) can be achieved via 

 𝛾∗ = arg min 𝛾 𝛾2∑︁𝑁𝑇 /𝐿 𝛾2𝑁𝑇 /𝐿  1 𝛾2𝑁𝑇 /𝐿 ≤ Ω  . (5) 

 

  𝑖 2 

  𝑖=𝜏𝛾2𝑁𝑇 /𝐿  

   
∗ 
𝛾 can be interpreted as the smallest percentage of 

fingerprinted bits that can guarantee that random bit flipping 

attack succeeds with probability at most Ω (Ω ≪ 1). Clearly, it is 

computationally 

∗ 
prohibitive to directly solve for 𝛾 in (5). Here, we provide an 

approximate solution to (5). First, due to the symmetry of 

Binomial distribution, (5) is equivalent to 

  (1−𝜏)∑︁𝛾2𝑁𝑇 /𝐿 𝛾2𝑁𝑇 /𝐿
  

1 𝛾2𝑁𝑇 /𝐿 

∗ 

𝛾 = arg min 𝛾  

  𝑖 2 

   𝑖=0 

 

 

≤ Ω . 

 

 

(6) 

In particular, (6) is the cumulative density function (CDF) of the 

Binomial distribution with parameter 𝛾2𝑁𝑇/𝐿 (number of trials) 

and 

1 1 

(probability of each trial being successful), i.e., Binomial(𝛾2𝑁𝑇 /𝐿,

 ). 
2 2 

2Simple attacks are those that do not require additional information, e.g., data 

correlation or fingerprinted dbSNPs received by others. Examples of simple attacks 

include random bit flipping attack, subset (superset) attack, rounding attack [2]. 

Such CDF is evaluated at 𝛾2𝑁𝑇 /𝐿 − 𝜏𝛾2𝑁𝑇 /𝐿. On the other hand, 

(5) is the complementary CDF (i.e., the tail distribution) of the same 

distribution evaluated at 𝜏𝛾2𝑁𝑇/𝐿. Next, we approximate 

Binomial(𝛾2𝑁𝑇/𝐿, 1 ) using a Gaussian 

2 

distribution with mean 𝛾2𝑁𝑇 /𝐿 × 1  and variance 𝛾2𝑁𝑇/𝐿 × 1 × 1, 
 2 2 2 

i.e., N (𝛾𝑁𝑇/𝐿,𝛾𝑁𝑇 /2𝐿).3 Then, the value of Gaussian random 

variable leading to cumulative probability Ω can be calculated via 

𝑋 ∗ = Φ−1(Ω) × 
√︃
𝛾𝑁𝑇 /2𝐿 + 𝛾𝑁𝑇 /𝐿, where Φ−1(·) returns the 

inverse value of standard Gaussian CDF given a probability Ω. 

 ∗ √︃ 

Then, by letting 𝑋 ≥ (1 − 𝜏)𝛾2𝑁𝑇/𝐿, we can solve for 𝛾 as 𝛾 ≥ 

√︃∗ 
= 

2𝑁𝑇
𝐿 

Φ1−−1 (2Ω𝜏 ) 2. 

, which suggests 𝛾 

 𝑁𝑇 ) 

Based on Theorem 4, given a predetermined probability 𝛽1, we 

can achieve robustness against collusion attack involving at most 

𝑐0 colluders as long as the length of the fingerprint bit-sting satisfies 

𝐿 . Hence, to simultaneously achieve robustness 

(copyright guarantee) against random bit flipping attack and 

collusion attack, we require the percentage of fingerprinted bits 

satisfy 

  4𝜋2𝑐02 ln(𝛽1−1) ! Φ−1(Ω) 2 

 𝛾 ≥ × . (7) 

 2𝑁𝑇 1 − 2𝜏 

Then, we obtain the following claims about the privacy and 

copyright guarantees of Gen-Scope and the two-stage approach. 

Claim 1. For any 𝜖 > 0, Gen-Scope achieves 𝜖-LDP, robustness 

against random bit flipping attack (with failure probability at most 

Ω), and robustness against collusion attack with 𝑐0 colluders (with 

false accusation probability at most 𝛽1) if 𝑒 𝜖/  𝛾. To this 

end, 

 𝑒𝜖/2 2 

Gen-Scope will change 
1 

−𝑒 𝜖/2+1of the SNP entries. 

Proof. According to Theorem 1, Gen-Scope achieves 𝜖-LDP if the 

probability of a bit of SNP is changed due to fingerprint insertion 

satisfies 𝑝 
≥ 
𝑒 𝜖/

1 , i.e., the probability of a bit of SNP is xored 

by 

 
1 is larger than. Since there is equal probability that a bit 

𝑒𝜖/2+1 

of SNP is not changed due to fingerprint insertion (i.e., a bit of SNP 

is xored by 0), it implies the percentage of fingerprinted bits 

(a bit of SNP being either xored by 1 or 0) caused by Gen-Scope 
2 

is at least 2𝑝 
= 

𝜖/2+1. To satisfy the required robustness against 
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𝑒 
random flipping attack and collusion attack, it is 

sufficient to make 

 𝛾 (where 𝛾 is provided in (7)). Since Gen-Scope changes 
𝑒𝜖/ 

each SNP bit independently with probability 𝑝, the percentage of 

changed SNP entries in Gen-Scope is 1 − (1 − 𝑝)2. By plugging in 

𝑝 
= 

𝜖/12+1, we obtain the conclusion. □ 

𝑒 

Claim 2. For any 𝜖 > 0, the two-stage approach (LDP followed by 

fingerprinting) achieves 𝜖-LDP, robustness against random bit 

flipping attack (with failure probability at most Ω), and robustness 

against collusion attack with 𝑐0 colluders (with falsely accusation 

probability at most 𝛽1) if it first changes the value of each SNP with 
1 

probability 𝜖 and then fingerprints at least 𝛾 bits of the new SNPs, 𝑒 

+2 
where𝛾 is given in (7). To this end, the two-stage approach will 

change 1 𝛾 2 

 

approximately 𝑒𝜖+2 + 
1 

− 
1 

− 2 of the SNP entries. 

3N(𝑛𝑝,𝑛𝑝 (1 − 𝑝)) is a good approximation of Binomial(𝑛,𝑝) when both 𝑛𝑝 and 𝑛(1 − 

𝑝) is greater than 5 [34], which is the case for our considered experiments on dbSNP 

in Section 8. 

Proof. In the first step of the two-stage approach, to achieve 𝜖- 

LDP on SNP data, a random response scheme is applied [52], which 
1 

shares an incorrect value of a specific SNP with probability 

𝜖 , 𝑒 

+𝑚−1 

where 𝑚 = 3 is the number of possible values a SNP can take. Then, 

to further make the perturbed dbSNP satisfy the required 

robustness against random flipping attack and collusion attack, the 

two-stage approach needs to change at least 𝛾 bits of the SNPs. 

Since during fingerprinting insertion each selected bit will be xored 

by 1 or 0 with equal probability, the fingerprinting stage will change 

a bit 

 𝛾  𝛾 2 

of a SNP with probability , which leads to 1 − 1 −  changed 
 2 2 

SNP entries. □ 

8 EXPERIMENT RESULTS 
We evaluate the developed Gen-Scope using a real world large-

sclae dbSNP (i.e., the HapMap dataset [16, 22]), which is a 

collection of 

SNP sequences of 15,000 individuals. Each individual has 156 SNPs. 

8.1 Ethical Considerations 
Our research does not entail direct engagement with human 

participants, thereby minimizing ethical risks commonly 

associated with genomic data collection. The HapMap genomic 

dataset used in this study is a public dataset and its participants’ 

genomic data is collected with informed consent, privacy 

protection, transparency, and integrity [49]. 

The primary concern of using this HapMap dataset and genomic 

dataset in general is that the experiments may reveal information 

about individuals’ health risks, ancestry, or other sensitive traits, 

which could have significant implications for their well-being and 

rights. Our proposed Gen-Scope precisely addresses this concern 

by making sure that all experiment results are protected under 

local differential privacy. 

When utilizing genomic datasets, data curators, researchers, 

and service providers are obligated to uphold the trust of 

participants and possess mechanisms to trace the origins of data 

breaches. Our proposed Gen-Scope also addresses this concern by 

incorporating imperceptible fingerprints, preventing potential 

data leakage and facilitating the tracing of data provenance. 

8.2 Comparison with the Two-Stage Approach 
First, we compare Gen-Scope with the two-stage approach by 

evaluating the accuracy and GWAS statistics of the fingerprinted 

dbSNPs when they provide the same privacy and copyright 

guarantees. 

8.2.1 Comparing accuracy of dbSNPs. 
According to (7), the copy-

 

right guarantee of a fingerprinted dbSNP is determined by 4 

parameters, i.e., (i) Ω: the probability upper bound that random bit 

flipping attack can successfully compromise a fingerprint bit, (ii) 𝜏: 

Alice’s confidence when recovering a specific fingerprint bit in 

fingerprint extraction phase (Algorithm 2), (iii) 𝛽1: the probability 

of false accusation in collusion attack, and (iv) 𝑐0: the number of 

colluders. We investigate the impact of each parameter while 

keeping the others fixed. Particularly, for each obtained 𝛾, we first 

achieve 

2 

𝜖-LDP guarantee for Gen-Scope by solving 𝜖 2 = 𝛾 (Claim 1), 
/ 

 𝑒 +1 
2 

i.e., 𝜖 2 ln  − 1). Next, we generate Tardos codes 

that satisfy the 

𝛾 two conditions in Theorem 4, and finally insert Tardos code 

into a dbSNP by applying Algorithm 4. The obtained fingerprinted 

dbSNP will satisfy 𝜖-LDP and copyright guarantee (with provided Ω, 

𝜏, 

𝛽1, and 𝑐0). Then, to let the two-stage approach achieve the same 

LDP and copyright guarantee, we replace each SNP value with an 
 1 2 

incorrect value with probability 𝜖 , where 𝜖 = 2 ln(  − 1), and 
 𝑒 +2 𝛾 
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then apply a previously developed genomic database 

fingerprinting scheme to mark 𝛾 of the bits in the perturbed 

dbSNP (i.e., run Algorithm 1 in [24] with 𝛾 = 𝛾𝑟𝛾𝑙, where 𝛾𝑟 (or 𝛾𝑙) 

is the row-(or column-)wise fingerprint density). 

In Figure 3-6, we obtain the various privacy guarantees (𝜖) by 

varying Ω, 𝜏, 𝛽1, and 𝑐0, respectively, and also compare the accu- 

racy of Gen-Scope and the two-stage approach using the obtained 

 = = −5 = 

𝜖. Specifically, in Figure 3, we fix 𝜏 0.7, 𝛽1 10 , 𝑐0 5, and 

 Ω [ −13 −4] 

vary in 10 , 10 . On the left panel of Figure 3, we plot the LDP 

guarantee (𝜖) versus log (Ω). We see that privacy guaran- 

10 

tee becomes weaker (𝜖 increases) as Ω increases. This is because 

the larger the value of Ω, the less the robustness becomes against 

random flipping attack, which implies that the inserted fingerprint 

is sparse, i.e., 𝜖 has a larger value. On the right panel of Figure 3, 

given the obtained 𝜖, we plot the accuracy of fingerprinted dbSNPs 

obtained by both approaches when Ω increases. Clearly, Gen-

Scope always achieves higher accuracy than the two-stage 

approach, because it unifies privacy preservation and copyright 

protection into one step. For both approaches, accuracy increases 

with Ω, as higher 

Ω implies lower fingerprinted bits, i.e., smaller value of 𝛾 (see (7)). 

 Ω= = −5 = [ ] 

In Figure 4, we fix 𝛽1 10 , 𝑐0 5, and vary 𝜏 in 0.65, 0.8 (Alice’s 

confidence in majority voting in Algorithm 2). The left panel of 

Figure 4 shows that privacy guarantee becomes weaker when 𝜏 

increases. Since Ω quantifies the probability that random bit 

flipping attack successfully compromises 𝜏 of those dbSNP bits that 

are marked by a specific fingerprint bit, if 𝜏 increases for a fixed Ω, 

it implies that fingerprinting robustness decreases, which suggests 

weaker privacy. From the right panel of Figure 4, we observe as 𝜏 

increases (i.e., 𝜖 increases), Gen-Scope also outperforms the 

twostage approach. 

 = Ω= −5 = 

 In Figure 5, we fix 𝜏 0.75, 10 , 𝑐0 5, and vary 𝛽1 in 

[ −13 −4] 

10 , 10 . The left panel of Figure 5 shows that privacy guarantee 

becomes weaker when 𝛽1 increases. This is due to the reason that 

the higher value of 𝛽1 implies less fingerprinting robustness against 

collusion attack, which further suggests weaker privacy. From the 

right panel of Figure 5, we observe that Gen-Scope still 

outperforms the two-stage approach in terms of the accuracy of 

obtained dbSNP. 

 = Ω= = −5 

In Figure 6, we fix 𝜏 0.75, 𝛽1 10 , and vary 𝑐0 from 2 to 6. From 

the left panel of Figure 6, we can see privacy becomes stronger 

(i.e., 𝜖 decreases) as 𝑐0 increases. This is because higher value of 𝑐0 

means that the fingerprinted dbSNP is robust against collusion 

attack involving more colluders, which leads to a higher value of 𝛾 

and requires more bits to be fingerprinted. Thus, this also leads to 

decreasing accuracy of fingerprinted dbSNP obtained by the two 

approaches as shown in the right panel of Figure 6. However, Gen-

Scope still achieves higher accuracy, because it attains the required 

privacy preservation and copyright protection guarantee via one-

shot noise injection. 

From Figure 3-6, we observe that the privacy guarantee and fin- 

gerprinting robustness is limited under high 𝜖 regime. In particular, 

when 𝜖 > 4, the proposed Gen-Scope method leads to similar utility 

 

Figure 3: (1) Gen-Scope versus the two-stage approach under the 

same privacy and copyright guarantees. Fixing 𝜏 = 0.7, 

𝛽1 = 10−5, 𝑐0 = 5, varying Ω. 

 

 

Figure 4: (2) Gen-Scope versus the two-stage approach under the 

same privacy and copyright guarantees. Fixing Ω= 𝛽1 = −5, 𝑐0 = 5, 

varying 𝜏. 
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Figure 5: (3) Gen-Scope versus the two-stage approach under the 

same privacy and copyright guarantees. Fixing 𝜏 = 0.75, 

Ω= 10−5, 𝑐0 = 5, varying 𝛽1. 

Figure 6: (4) Gen-Scope versus the two-stage approach under the 

same privacy and copyright guarantees. Fixing 𝜏 = 0.75 

Ω= 𝛽1 = 10−5, varying 𝑐0. 

with the two-stage approach, and the shared genomic databases 

obtained using both methods will have poor privacy guarantees 

and fingerprinting robustness. Thus, to fulfill the three 

requirements (security, privacy, utility discussed in Section 4.1.1) 

when sharing genomic database, the database owner need to 

choose an appropriate 𝜖. For the database considered in this work, 

when 𝜖 is approximately 3, the proposed Gen-Scope has clear 

advantage over the two-stage approach in terms of all fingerprint 

robustness, privacy, and GWAS utility. We defer the task of 

determining the optimal 𝜖 that achieves a suitable balance 

between utility, privacy, and robustness to future research. 

8.2.2 Comparing GWAS statistics. 
To evaluate the utility of GWAS

 

statistics, we investigate the consistency of SNP-phenotype 

association of dbSNPs obtained using various methods and 

compare them with the SNP-phenotype association obtained from 

the original dbSNP. In particular, we first obtain the set of top-𝐾 

percentage of SNPs having strong associations with a phenotype 

(i.e., top-𝐾 percentage SNPs with the lowest 𝑝-values) from the 

original dbSNP and denote this set as the ground-truth set. Next, 

we get the new sets of top-𝐾 SNPs from (i) Gen-Scope, (ii) two-

stage approach (i.e., LDP followed by fingerprinting in [24]), (iii) 

only LDP perturbation of the original dbSNP (i.e., no copyright 

protection is attained), and (iv) only fingerprinting the original 

dbSNP (i.e., no privacy guarantee is attained). Finally, we evaluate 

the consistency by counting the fraction of overlapping between 

each of the new sets and the 

ground-truth set. 

 −
13 

−
4 

 In this experiment, we set 𝜏 = 0.85, Ω= 𝛽1 ∈ {10 , · · · , 10 }, 
2 

and obtain𝛾 using (7) and set 𝜖2 ln( −1). In Figure 7, we plot the 

𝛾 
fraction of consistent SNP-phenotype association when 𝐾 is 10, 20, 

and 30. Clearly, Gen-Scope can always achieve higher consistency 

frequency than the two-stage approach. For example, when we 

consider the top-10% of the SNPs having strong associations with 

a phenotype, Gen-Scope can preserve about more than 20% of 

those SNPs compared with the two-stage approach when 𝜖 is 

about 3.3. 

Additionally, we also present the Type 1 error (known as the 

false positives). It is the number of the SNPs erroneously identified 

as having strong associations by various mechanisms, when in 

reality, they have weak associations according to the ground-truth 

set. Specifically, these SNPs do not belong to the top-𝐾 percentage 

of SNPs with the lowest 𝑝-values. Note that for any fixed 𝐾, the 

number of strongly and weakly associated SNPs are also fixed. 

Thus, a false positive SNP must corresponds to a false negative SNP 

(the SNP erroneously identified as having weakly associated). As a 

result, Type 1 error equals to Type 2 error in our study. We show 

the experiment results in Figure 8 when 𝐾 is 10, 20, and 30. Clearly, 

Gen-Scope can always achieve lower Type 1 or (Type 2) error than 

the two-stage approach as it modifies less SNPs to achieve both 

privacy guarantee and fingerprinting robustness. 
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8.3 Robustness against Random Bit Flipping Attack 

and Collusion Attack 
Next, to verify the fingerprinting robustness of Gen-Scope, we 

launch random bit flipping attack and collusion attack on the 

obtained fingerprinted dbSNP. In particular, we let a malicious SP 

randomly flip a certain percentage of the bits in its received copy 

of dbSNP, and then extract the fingerprint bit-string from the 

compromised dbSNP, compare the extracted string with the 

original fingerprint bit-string that is generated for this SP, and 

finally compute the percentage of compromised fingerprint bits 

(Percmp in 

Section 4.2). In Figure 9(a), by selecting the privacy budget 𝜖 from 

{1, 2, 3, 4, 5}, we plot Percmp when the percentage of flipped bits 

increases from 10% to 45%. Clearly, even with the least guarantee 

on privacy and copyright protection (i.e., 𝜖 = 5), the malicious SP 

can only compromise less than 23% of the fingerprint bits even 

though it sacrifices the utility of the dbSNP by flipping 45% of the 

bits. This suggests a very high robustness against random bit 

flipping attack, because as long as less than half of the fingerprint 

bits are compromised, Alice is able hold the malicious SP 

responsible for the data leakage [24, 27]. 

= −5 

To test the robustness against collusion attack, we fix 𝛽1 10 (see 

Theorem 4) and let Alice generate Tardos code by only considering 

2, 4, or 6 colluders, i.e., 𝑐0 ∈ {2, 4, 6}, when there are actually 𝑐1 

colluders, and 𝑐1 ∈ {2, 3, · · · , 10}. We let the the coalition employ 

the majority strategy [9, 32], where colluding SPs compare their 

received dbSNPs and replace each bit with the majority of that bit 

in all the copies. Then, after extracting the fingerprint from the 

pirated dbSNP, we calculate the frequency of detecting at least one 

of the 𝑐1 colluders. The frequency is obtained by repeating the 

experiment 30 times. We plot the results in Figure 9(b). We 

observe that as long as 𝑐0 ≤ 𝑐1, Alice can always trace one of the 

colluders. 

Even when 𝑐1 > 𝑐0, the successful tracing frequency is still high, 

 

(a) Robustness against (b) Robustness against 

 

 (a) top 10% SNPs (b) top 20% SNPs (c) top 30% SNPs 

Figure 7: Comparison of the consistency of SNP–phenotype association achieved by Gen-Scope, the two-stage approach, LDP (without 
copyright guarantee), and fingerprinting in [24] (without privacy guarantee). 

 

 (a) top 10% SNPs (b) top 20% SNPs (c) top 30% SNPs 

Figure 8: Comparison of the Type 1 (or Type 2) error of the SNP–phenotype association achieved by Gen-Scope, the two-stage approach, 

LDP (without copyright guarantee), and fingerprinting in [24] (without privacy guarantee). 
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random bit flipping attack collusion attack 

Figure 9: Investigation of robustness of Gen-Scope against random 

bit flipping attack and collusion attack. (a): Robustness against 

random bit flipping when 𝜖 ∈ {1, 2, 3, 4, 5} and the percentage of 

random flipped bits increases from 10% to 45%. (b) Robustness 

against against Collusion attack consider 

2, 4, or 6 colluders, i.e., 𝑐0 ∈ {2, 4, 6}, when there are actually 𝑐1 

colluders, and 𝑐1 ∈ {
2

, 
3

, · · · , 
10

}. 

e.g., when there are 10 colluders actually, but Alice only consider 

𝑐0 = 4, she is still able to accuse one of the 10 colluders with chance 

larger than 90%. This suggests that the proposed Gen-Scope is also 

robust against the collusion attack. 

8.4 Robustness against Correlation Attacks Followed 
by Collusion Attack 

Now we empirically investigate the robustness of the proposed 

Gen-Scope against the most powerful attack combination, i.e., 

each malicious receipts independently perform correlation attacks 

on their own received fingerprinted dbSNP, and then forge a single 

copy via collusion. 

Since the added privacy-preserving fingerprint changes entries 

in the original dbSNP, which will lead to the change of statistical 

relationships among genome data at different locations, the 

malicious SP can leverage the auxiliary correlation models (which 

are usually publicly available) to more accurately infer the 

potentially fingerprinted SNPs, and then distort the fingerprint. In 

this work, we consider the recently proposed correlation attacks in 

[24], where a malicious SP utilizes the inherent linkage 

disequilibrium (i.e., the joint distributions) among SNPs to identify 

the fingerprinted positions in a genomic database. 

In favor of the attackers, we assume that the malicious SP has 

prior knowledge about the linkage disequilibrium (i.e., the joint 

distributions among each pair of the SNPs) that are directly 

calculated from the original dbSNP. Note that this is the most 

powerful correlation attack that could be launched against a given 

fingerprinted relational database [25]. We denote the knowledge 

set of joint distributions on the original dbSNP as J = {𝐽𝑝,𝑞|𝑝,𝑞 ∈ F, 

𝑝 ≠ 𝑞}, where 𝑝 and 𝑞 are the SNP sequences for all individuals in R 

at location 𝑝 and 𝑞. Once receiving a fingerprinted dbSNP R, the 

malicious SP e 

first calculates a new set of joint probability distributions (denoted 

as Je) based on eR. Then, it compares Je with its prior knowledge J, 

and flips the entries in eR that leads to large discrepancy between 

Je and J. Please refer to [24, 25] for the detailed correlation attacks. 

Scenario 1. We first release the entire dbSNP (all 156 SNPs of 

15,000 individuals), and let 𝑐0 = 𝑐1 = 3 (i.e., the Tardos code is 

generated by considering 3 colluders and the actual number of 

colluders is also 3), Alice’s confidence in recovering the fingerprint 

bits be 98%, random bit flipping attack can success with probability 

Ω= 10−
8, and false accusation happens with probability 𝛽1 = 10−

8. 

Under this setup, Gen-Scope changes about 2.4% of the entries in 

the original dbSNP. After letting each 3 malicious SPs perform 

correlation attacks independently and merge their compromised 

copies by majority voting, it is interesting to find that proposed 

Gen-Scope is still robust, i.e., 2 out of 3 colluders can still be 

identified, and the accusation score 𝑆𝐼𝐷external (defined in (4)) 

calculated for each SP is intact with or without the correlation 

attacks. This is because in this scenario, only 2.4% of the SNPs are 

modified by the Tardo code, and there are 156 columns in the 

dbSNP, thus the impact to the joint distributions among SNPs is 

negligible (i.e., the discrepancy between J and Je is small). Thus, 

the correlation attacks can hardly infer enough fingerprinted 

entries. In fact, according to the experiments in [24], it requires 

about 10% modifications in dbSNP to make the correlation attack 

successful. 

Scenario 2. To increase the discrepancy between J and Je, 

we now consider releasing the first 30 SNPs of all individuals. By 

keeping the same parameter setups with scenario 1, the Tardos 

code can change about 12% of the entries in each shared copy of 

the dbSNP. Since there are only 30 columns, the impact to the joint 

distributions among SNPs will be high. We find that the proposed 

Gen-Scope is still robust against correlation attacks followed by 

collusion attacks, even if the actual number of colluders is lager 

than 𝑐0. In Figure 10 we show the accusation score for one of the 

colluder identified by Alice when 𝑐0 = 3 and there are actual 𝑐1 ∈ 

{3, 4, 5, 6, 7} colluders. Clearly, the correlation attack can decrease 

the accusation scores (correlation attack only, blue bars) by some 

extent, yet, the new accusation scores (correlation attack followed 

by collusion, red bars) are still higher than the accusation threshold 

𝑍 = 20𝑐0⌈ln(𝛽−
1)⌉. Thus, Gen-Scope is also robust against the 

1 strong combination of correlation followed by 

collusion attack. 

 
actual number of colluders 

Figure 10: Accusation scores for the identified colluder with and 

without correaltion attack. 

7 3 4 5 6 
0 

500 

1000 

1500 

2000 

2500 
collusion attack only 
correlation followed by collusion attack 
accusation threshold Z 



Privacy-Preserving Fingerprinting Against 
Collusion and Correlation Threats in Genomic Data Proceedings on Privacy Enhancing Technologies 2024(3) 

675 

9 CONCLUSION 
In this paper, we have proposed Gen-Scope, which is the first 

genomic database fingerprinting scheme that can simultaneously 

achieve copyright protection, privacy preservation, and accurate 

value (utility) when sharing genomic databases. Gen-Scope attains 

LDP by leveraging the intrinsic randomness during fingerprint 

insertion. We also discussed how to improve Gen-Scope to defend 

against collusion attacks. We have theoretically showed that to 

achieve the identical privacy and copyright guarantee, Gen-Scope 

will change less SNPs than the two-stage approach (LDP followed 

by fingerprinting). The proposed Gen-Scope is also robust against 

correlation attacks. Experiments on a real world genomic database 

corroborated our theoretical findings, e.g., Gen-Scope can achieve 

GWAS statistics that is about 20% more accurate than the two-

stage approach. 
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A OMITTED PROOFS A.1 Proof of Theorem 1 

Proof. Let r𝑖 [𝑡] and r𝑖′[𝑡] be two possible values that the 𝑡th 

SNP of the 𝑖th individual can take in a dbSNP, i.e., r𝑖 [𝑡], r𝑖′[𝑡] ∈ 

{0, 1, 2} and r𝑖 [𝑡] ≠ r𝑖′[𝑡]. Denote the last bit of r𝑖 [𝑡] as r𝑖 [𝑡, 1] and 

the second to the last bit of r𝑖 [𝑡] as r𝑖 [𝑡, 2], and suppose after 

fingerprinting both r𝑖 [𝑡] and r𝑖′[𝑡] become re𝑖 [𝑡]. Moreover, let 

𝐵𝑖,𝑡,𝑘 
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′ (or 𝐵 ) denotes the Bernoulli random variable that is used to 

mark XORed by 1) with probability higher than 𝑝, and this satisfies 

the sufficient condition developed in Theorem 1. □ 

𝑖,𝑡,𝑘 

r𝑖 [𝑡,𝑘] or (r𝑖′[𝑡,𝑘]). Then, we have 

= 

Pr M(r𝑖′[𝑡]) = re𝑖 [𝑡] 𝑘 ∈{1,2} Pr r𝑖′[𝑡,𝑘] ⊕ 𝐵𝑖,𝑡,𝑘′ = re𝑖 [𝑡,𝑘]  

   

 Pr 𝐵 = r𝑖 [𝑡,𝑘] ⊕ r𝑖 [𝑡,𝑘] 
𝑖,𝑡,𝑘 

 Ö  e 

= 

𝑘 ∈{1,2} Pr 𝐵𝑖,𝑡,𝑘′re𝑖 [𝑡,𝑘] 

    r [𝑡,𝑘] ⊕r [𝑡,𝑘] 1−r [𝑡,𝑘] ⊕r [𝑡,𝑘] 

 Ö 𝑝

 𝑖 
e
𝑖 (1 − 𝑝) 𝑖 

e
𝑖 

= 

    

 𝑘 
∈{1,2} 𝑝 r𝑖′ [𝑡,𝑘] ⊕re𝑖 [𝑡,𝑘] (1 − 𝑝) e 

   

𝑝  (r𝑖 [𝑡,𝑘]−r𝑖′ [𝑡,𝑘]) (2re𝑖 [𝑡,𝑘]−1) (
𝑏

) Ö  1 − 

= 

𝑝 
𝑘 ∈{1,2} 

 1 − 𝑝 2 

≤ , 

𝑝 

′ 

where (𝑎) is because each bit of r𝑖 [𝑡] (or r𝑖 [𝑡]) is marked 

independently, and (𝑏) is obtained by applying 𝑢 ⊕ 

𝑣 = (1 − 𝑢)𝑣 + 𝑢(1 − 𝑣) 

𝜖 

for any binary 𝑢 and 𝑣. Then, by making𝑒 , we complete 
𝑝 

the proof. □ 

   

Pr M(r𝑖 [
𝑡
]) = r𝑖 [

𝑡] 
(𝑎) 

e Ö 

   

Pr r𝑖 [𝑡,𝑘] ⊕ 𝐵𝑖,𝑡,𝑘 = r𝑖 [𝑡,𝑘] 

e 
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A.2 Proof of Theorem 2 

Proof. Since the value of U𝑗 (𝑠) (the 𝑗th random value generated 

by U) is uniformly distributed for a given 𝑠 [10], we 

have 

  1  1 

Pr U1(𝑠) mod ⌊ ⌋ = 0 = 1/⌊ 2𝑝 ⌋ > 2𝑝. Similarly, Pr, 

2𝑝 

   

thus, for any fingerprint bit 𝑓 , Pr 𝐵 = 1, U 

1 

× 2𝑝 = 𝑝, which suggests that each r [𝑡,𝑘] will be changed (i.e., 

2 𝑖 


