Additive Manufacturing 87 (2024) 104214

journal homepage: www.elsevier.com/locate/addma

Contents lists available at ScienceDirect

AdditiveManufacturing

Research paper

Check for
updates

Statisticalparameterizedphysics-basedmachinelearningdigitalshadow

modelsforlaserpowderbedfusionprocess

Yangfan Li?, Satyajit Mojumder®, Ye Lu®¢, Abdullah Al Amin®9, Jiachen Guo®, Xiaoyu Xie?, Wei Chen?,

Gregory J. Wagner?, Jian Cao?, Wing Kam Liu®?

2 Department of Mechanical Engineering, Northwestern University, Evanston, 60208, IL, USA ° Theoretical and Applied
Mechanics Program, Northwestern University, Evanston, 60208, IL, USA © Department of Mechanical Engineering,
University of Maryland Baltimore County, Baltimore, 21250, MD, USA ° Department of Mechanical and Aerospace

Engineering, University of Dayton, Dayton, 45469, OH, USA

ARTICLE INFO

for predicting defects, such as surface roughness and lack-of-fusion porosity, in the laser powder bed fusion of metals (PBF-

Keywords:

Physics-based machine learning model
Stochastic calibration

Statistical prediction

Defects diagnostics

Laser powder bed fusion

ABSTRACT

LB/M) additive manufacturing process. The statistical physics-based model is calibrated and validated against controlled
singletrack experiments and used for statistical prediction for multi-layer and multi-track cases for PBF-LB/M defects. A
mechanistic reduced-order-based stochastic calibration process is introduced to capture the stochastic nature of the melt pool.
The calibrated physics-based digital shadow model is demonstrated for predicting the surface roughness of the National
Institute of Standards and Technology (NIST) overhang part X4, with a difference of 9.3% compared to the experimental results.
By leveraging data obtained from both the physics-based model and experiments, a machine learning model has been trained
for fast predictions (inference time of 0.4 ms) with high accuracy (error bound of 6.7%). This model can predict melt pool
geometries under various processing conditions, offering a control strategy for the PBF-LB/M process. Further, the trained
machine learning model is showcased to demonstrate a control application of melt pool geometries (width and depth) for
specific processing parameters. These developed models (physics-based and machine learning) serve as a digital shadow of

the PBF-LB/Mprocess, offering predictive capabitities to buitd-ardigital twin model for process control, optimization, and online

This paper presents a statistical
physics-based machine learning model

monitoring.

1. Introduction

Recent technological advancements, along with the rapid growth in
computational power, storage capacity, and data accessibility, have
significantly propelled the concept of digital engineering to the forefront
within the manufacturing domain [1]. Digital engineering includes the creation
of a digital model that integrates physical processes, forming what is known as
a digital shadow, and potentially evolving into a digital twin [2,3]. The digital
shadow facilitates an automatic, one-way data flow from the physical model
to its digital counterpart, thereby enabling real-time updates reflective of
changes in the physical world without the capacity for feedback to the physical
model. This unilateral data integration is crucial for real-time monitoring and
adapting to the changing conditions observed in the physical counterpart. In
contrast, a digital twin supports bidirectional, real-time data exchanges
between the physical and digital realms. This sophisticated interaction allows

the digital twin not only to receive data but also to send information back to
the physical system, thereby enabling control and optimization based on
continuous data analysis. Although the digital twin represents the ultimate
goal of digital integration, offering extensive control and optimization
capabilities, this paper focuses on developing a digital shadow model. We
prioritize statistical physics-based predictions and control, serving for future
advancement toward a comprehensive digital twin [4].

The Laser Powder Bed Fusion of Metals (PBF-LB/M) additive
manufacturing (AM) has achieved significant success and has found extensive
applications in the aerospace, automotive, and biomedical industries [5-8],
drawing considerable attention in the AM research community. The
performance of parts manufactured through PBF-LB/M, such as fatigue, relies
on selecting appropriate processing conditions to control structural defects.
Defects such as surface roughness and
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VA calibration parameter porosity generally originate from suboptimal melt pool formation, often linked to
inadequate energy absorption that results in partial melting, or the entrapment of
Ve calibration parameter gases due to the vaporization process [9-12]. Understanding the effects of
processing conditions on these structural defects is crucial for producing reliable
Ve calibration parameter AM parts. A digital shadow of PBF-LB/M process can provide predictions, diagnostic
capabilities for defects, and serve as a tool for online monitoring and defects
PPE- DS parameterized physics-based  digital mitigation by controlling the melt pool phenomena. Such a model can also help in
shadow comprehending the relationship between the manufacturing process and the
PPB—- ML - DS parameterized physics- machine |resulting part’s structure, which is essential for achieving the desired performance
based learning digital shadow in a wide range of applications.
laser heat (W) In the PBF-LB/M process, the solid powder undergoes a transformation into
source liquid state through the application of intense localized heat from a laser. This
75 laser source radius (m) process inherently carries uncertainty process due to variations in the process
parameters, such as laser power, scan speed, fluctuation in boundary temperatures
RHE residual heat factor [13-15]. The material parameters (e.g., powder conductivity and absorptivity) are
also a major source of uncertainty. As the laser travels through the scan path, the
Sa surface roughness (m) liquid cools and solidifies resulting in the formation of a bulk material with a distinct
microstructure. The formation of a melt pool during the laser scan is a crucial aspect
7 temperature (K) that governs the interactions between solid powder materials [16] and influences
structural defects such as surface roughness and porosity. The cross-sectional area
t time (s) of the melt pool, typically characterized by its width and depth, indicates the
formation of porosity, as inadequate overlap between melt pools can lead to
75 ambient temperature (K) increased porosity [17]. By modeling these uncertain processing conditions,
stochastic predictions of the melt pool geometries can provide a more informative
u velocity (m s™) estimation of surface roughness and porosity defects.
Previously, deterministic thermal models based on finite element and finite
14 scan speed (m s™) volume methods have been used to model the transient AM process. The predictive
accuracy of these models depends on the calibration of the heat source model, the
VED volumetric energy density (J m™) choice of the material properties, and also the fidelity of the geometry and scan
w melt pool width (m) path used. For instance, Ghosh et al. [18] developed a finite-volume-based
. . simulation model that effectively captures the melt pool geometries under various
we experiment melt pool width (m) o K K ‘
laser power and scan speed combinations and validated against experimental data.
ws simulation melt pool width (m) However, many of these models often overlook the fluid flow within the melt pool,
¥ x coordinates of local reference system (m) thereby neglecting the impact of cooling through fluid convection, resulting in
7 y coordinates of local reference system (m) reduced accuracy in predicting melt pool geometries compared to thermal-fluid
flow models that incorporate fluid dynamics, as highlighted by Yan et al. [19].
Zm;; z-coordinate of the top surface (m) Notably, Gan et al. introduced a well-tested transient three-dimensional thermal-
7 liquidus melting temperature (K) fluid computational model capable of predicting both the thermal field throughout
the entire part and the velocity field within the melt pool region [20]. Their model
75 solidus melting temperature (K) was calibrated using highly controlled experiments conducted during the Additive

Manufacturing (AM) Modeling Challenge Series in 2020 [21], ensuring its accuracy

and reliability. However, while this model has demonstrated accurate predictions of melt pool geometries, its limitation lies in the absence of stochastic
information which restricts the model’s ability to predict surface defects such as surface roughness [22] and volumetric structural defects like porosity [23]. Powder
scale simulations have also been considered to simulate surface roughness and porosity for a smaller region in a deterministic manner [24-26]. However, these
models are computationally expensive and hinder the inclusion of part scale effects, thereby preventing direct comparisons with experimental measurements
conducted at a part scale. Moreover, the deterministic nature of these models further restricts the accuracy of predictions, which require stochastic information
and calibration [27-30].

For online monitoring and control of the melt pool, a fast computational model is essential. While physics-based models can provide accurate predictions of
the melt pool geometries and defects, the time required for such predictions is often tens of seconds, while rapid predictions (in milliseconds) are needed between
printing each layer for control applications. Machine learning (ML) models, leveraging
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Fig. 1. Physics-based digital shadow model development process and applications.

computational algorithms to analyze and interpret data, can aid on satisfying
this fast prediction of melt pool dimensions by learning from an offline
database. Liao et al. trained a simulation-guided ML model for the control
application in the Directed Energy Deposition (DED) process [31]. Kozjek et al.
trained a random forest ML model for the PBF-LB/M process based solely on
experimental data [32]. Researchers have also explored Convolutional Neural
Networks (CNNs) to effectively and rapidly monitor melt pool dimensions due
to their capacity to autonomously and dynamically acquire spatial hierarchies
of features [33—35]. The PBF-LB/M AM process is inherently timedependent
and embodies a sequential nature. The state of melt pool at any given moment
relies on both the current processing parameter inputs and the historical data
leading up to that point. Therefore, an ML model that can capture both spatial
and the transient behavior of the melt pool following a process history is
critical for predicting the process. In this paper, we applied a deep
autoregressive network (DARN) for predicting melt pool dimensions [36].
DARNs excel when compared to traditional feed forward neural networks
(FFNNs) because they can capture not only the current state of the melt pool,
as represented by its width and depth, but also the short-term temporal
dependencies within the data that reflect the transient nature of the melt
pool. DARNs are specifically designed to handle such temporal dependencies
effectively, making them well-suited for predicting and controlling melt pool
parameters.

To address the necessity of modeling the stochastic nature of the PBF-LB/M
process, this paper introduces a statistical Parameterized Physics-Based Digital
Shadow (PPB-DS) model. It accomplishes this through a stochastic calibration
of the heat source model parameters, enabling statistical predictions of melt
pool geometries and defects such as Lack of Fusion (LOF) porosity and surface
roughness. The stochastic calibration of the heat source model of the PBF-
LB/M process uses Tensor Decomposition (TD) [37,38], for the learning of non-

intrusive data and construction of reduced-order surrogate models.
Experimental data [21], processed from melt pool measurements (see Section
2), is utilized to calibrate the stochastic heat source model parameters and
validate it. This PPB-DS model is applied for diagnosing NIST overhang part,
especially for LOF porosity and surface roughness. For online monitoring and
control applications, a machine learning digital shadow model is trained. This
physics-based machine learning digital shadow (PPB-ML-DS) offers predictive
capabilities for controlling the processing parameters for subsequent steps of
PBF-LB/M tracks.

This paper is organized as follows. In Section 2, we provide an introduction
to the two digital shadow models: PPB-DS and PPB-ML-DS, which encompass
methodologies of the stochastic calibration process and the DARNs machine
learning model. They are used for stochastic prediction, diagnosis of PBF-LB/M
defects and control of the melt pool geometries. Section 3 demonstrates the
capabilities of the PPB-DS model in statistically predicting melt pool
geometries and diagnosing defects such as LOF porosity and surface roughness
for part-scale samples. The control applications using the PPB-ML-DS model
are also demonstrated in this section. Section 4 provides the discussion of the
presented results. Finally, a conclusion and some possible future directions are
outlined in Section 5.

2. Digital shadow of laser powder bed fusion process

A digital shadow (DS) model updates its digital representation by
continuously receiving data from the physical model, without enabling
reciprocal updates. The experimental data can be used for calibrating and
validating the physics-based simulation model, and it can also be directly used
in conjunction with the simulation data to construct the DS. The calibrated and
validated computational model serves as a parameterized physics-based
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digital shadow (PPB-DS) model that is capable of predictive and diagnostic
applications, as illustrated in Fig. 1. However, certain applications, such as
online monitoring and control, demand rapid prediction from the model. The
PPB-DS model is not suitable for such predictions, as it requires significant
computational time, whereas the responses are needed in real-time. A
potential solution for such applications lies in a machine learning-based model
trained on the experimental and offline PPB-DS model generated data.
Utilizing the database developed through offline PPB-DS computation and
experiment, a physics-based machine learning digital shadow model (PPB-ML-
DS) is trained to provide rapid prediction of melt pool phenomena.

In this section, we will describe the experimental data available for
calibration and validation of our parameterized physics-based stochastic AM
model. Then, the methodology for the stochastic calibration process is
outlined, that enables the statistical predictions of the melt pool geometries,
including the prediction and validation of LOF porosity and surface roughness
for part-scale samples. Additionally, we will detail the process of developing
the parameterized database and introduce the PPB-ML-DS model along with
its training procedure.

2.1. Available experimental data for calibration and validation of physicsbased
stochastic AM model

Laser powder bed fusion of metals (PBF-LB/M) strongly trigger evaporation
with complex gas flow which causes non-uniformity in the printed structure
affecting the properties of the printed part. A validated computational model,
obtained through a well-designed experiment, is essential for understanding
the relationship between process, structure, and properties (PSP) and
achieving desired performance in parts. The United States Air Force Research
Laboratory: Materials and Manufacturing Directorate Structural Materials,
Metals Branch (AFRL/RXCM) and America Make publicly announced the
Additive Manufacturing Modeling Challenge Series in 2020. This initiative
provided a series of highly controlled additive manufacturing experiments for
validation and quantification of computational models [39].

In the AFRL experiment, different cases including single-layer singletrack,
single-layer multi-track, and multi-layer single-track (thin-wall) builds of IN625
powder are produced with an EOS M280 commercial PBF-LB/M system. Melt
pool dimensions were measured using an electron back-scatter diffraction for
top-down track description (Fig. 2a) and optical microscopy on etched cross
sections (Fig. 2b). Detailed descriptions of the experimental setup and
procedures can be found in the Ref. [21]. To accurately calibrate a stochastic
AM model, single-track experiments are utilized to collect statistical
measurements. Multi-track and multi-layer cases are then used to validate the
melt pool geometry using the single-track calibrated model. Further, surface
roughness and lack-of-fusion porosity are measured for the multi-track case
and validated against experiments.

To determine the impact of heat source parameters on the melt pool size,
it was crucial to analyze how these parameters affected the width (/") and
depth () of the single-track melt pool. The measured value of the width and
depth are shown in Tables 1 and 2, where #represents the mean value and o
denotes the standard deviation. Table 1 demonstrates the different
measurements of melt pool width taken at various locations. The fourth
column, representing 20 locations, shows the results of measurements
conducted by the AFRL AM Modeling Challenge Series. Meanwhile, the fifth to
seventh columns, covering 100 to 200 locations, display measurements taken
in this study based on the experimental images provided by the AFRL. Similarly,
Table 2 compares the melt pool depth between the AFRL measurements and
this study. The last column, labeled “Depth”, is the sum of the cross-section
depth and height.

Additive Manufacturing 87 (2024) 104214

2.2. Calibrated and validated parameterized physics-based digital shadow
(PPB-DS) model

2.2.1. Stochastic calibration of the heat source parameters of the
physicsbased AM model

A physics-based model of the PBF-LB/M process can capture relevant melt
pool phenomena, such as capillary and Marangoni flow, and keyhole
formation. While including all melt pool phenomena in a model is theoretically
possible, it is computationally prohibitive, making such comprehensive
modeling impractical for current applications. Calibration provides an effective
way to incorporate these unaccounted-for physics into the model and improve
predictions.

However, capturing all the melt pool physics in a model is not feasible and
is computationally challenging, and many of these parameters are uncertain.
Calibration provides an effective way to account for the unaccounted physics
in the model and improve predictions.

Developing a good calibration model requires controlled experiments, and
having a large experimental dataset can significantly enhance the model’s
accuracy in this regard. Predicting surface defects (e.g., surface roughness [40])
and volumetric defects (e.g., porosity [41]) can be improved using a calibrated
physics-based model. The accuracy of deterministic simulations in predicting
defects, such as surface roughness and porosity, is limited, as it heavily relies
on the quality of the model calibration.

To address this issue, we propose a stochastic calibration framework (see
Fig. 3) aimed at calibrating the heat source parameters of the physics-based
AM model using experimental observations of melt pool geometries.
Stochastic AM simulations also allow us to predict surface roughness and
porosity in as-built parts, facilitating comparisons with experimental
observations.

The stochastic physics-based AM modeling framework consists of the
following components: (i) analyzing experimental melt pool geometry (width
and depth) to develop a probabilistic model from observations, (ii) creating a
thermal-fluid simulation incorporating a statistical heat source model, (iii)
calibrating the stochastic heat source model parameters, and (iv) predicting
PBF-LB/M process melt pool phenomena and part-scale defects. The melt pool
geometries (depth, and width) are obtained by analyzing the controlled AFRL
experiment described above (see Section 2.1). Top-down and cross-section of
the melt pool images for various processing conditions are analyzed and
probability distribution model of the melt pool width (#) and depth (2) is
formulated from the experimental observations. The thermal-fluid analysis is
based on our in-house code called “AM-CFD”. The AM-CFD code has been
rigorously tested and confirmed for its accuracy through the 2022 NIST AM
Bench challenge, achieving three first-place awards [35,42]. Additionally, its
prowess was demonstrated in modeling challenges led by the Air Force
Research Laboratory (AFRL), where it secured another first-place award
[21,43]. Appendix A provides details about our stochastic physics-based AM-
CFD model [20,44].

In our framework as presented in Fig. 3, we introduce stochastic
parameters for the heat source model in AM-CFD. These parameters account
for the uncertainties caused by variations in real experimental conditions and
provide a stochastic prediction of the melt pool geometry. In stochastic
calibration process, Kernel density estimation [45] is used to develop a non-
parametric distribution of the melt pool geometry. The stochastic AM-CFD
predicted melt pool geometry is then statistically compared with the
experimental melt pool geometry using Kullback—Leibler divergence (KLD)
[46]. The Residual Heat Factor (RHF), as introduced by NIST, has been
integrated into our AM-CFD model to better account for variations in scan
paths. This integration has demonstrably improved the fidelity of our
numerical predictions, enhancing the accuracy of our simulations. For a more
comprehensive understanding of the RHF implementation, please refer to
Appendix A for a detailed description [44]. To significantly reduce the
computational cost for multi-parametric calibration, Tensor Decomposition
(TD) is used to handle the AM-CFD heat source model parameters
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b)

Fig. 2. AFRL experiment measurements [39]: (a) Top-down and (b) cross-section melt pool description. In the top-down description, the red lines are samples of melt pool width measurements. In

cross-section descriptions, /#is the width of melt pool, /#,,is the largest value of all widths, D and H are the depth and height of the deepest position of melt pool. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Width («772) measurement for 11 single-track cases (A11-A11). AFRL conducted measurements at the 20 locations, while the additional measurements for this study, ranging
from 100 to 200 locations, were based on the experimental images provided by AFRL.

Case Number Laser Power Scan Speed 20 locations 100 locations 150 locations 200 locations

(W) (mm/s) “ a “ 4 “ g “ g
Al 300 1230 112.0 + 111 111.8 + 113 112.0 + 109 1119 + 11.0
A2 300 1230 112.0 + 119 1115 + 125 111.7 + 12.2 111.8 + 12.1
A3 290 953 1276 = 7.0 1253 + 9.4 125.6 + 10.2 1255 + 9.9
A4 370 1230 1229 + 84 123.2 + 9.8 1229 + 10.2 123.1 + 10.2
A5 225 1230 96.0+13.9 94.1+13.5 93.1+13.7 93.9+133
A6 290 1588 97.9+14.0 94.2+14.3 93.8+13.7 94.1+13.5
A7 241 990 112.0+13.0 110.5+12.4 110.2 +11.4 109.8 +£10.9
A8 349 1430 110.7 £11.3 111.8 £11.9 1114 +£11.3 111.5+11.0
A9 300 1230 112.7 £12.7 111.9+11.8 111.8+12.3 112.2£12.2
Al10 349 1058 129.9+7.0 127.9+9.3 127.7£9.2 127.7+9.4
All 241 1529 89.3+12.8 88.6+13.2 88.3+13.5 88.3+134

Table 2

Depth measurements («772) for 11 single-track cases (A1-A11) were conducted in this work and compared with those from the AFRL. Measurements from AFRL and
this work are both presented, with the final column representing the ‘Depth’ as the sum of cross-section depth and height.

Case Laser Scan Cross Section Cross Section Cross Section Cross Section
Number Power Speed Height (AFRL) Height (this work) Depth (AFRL) Depth (this work) Sum Depth
(W) (mm/s) Vi a Vi o Y o Vi g u g

Al 300 1230 59.1 + 123 59.0 + 12.9 543 t 9.0 543 + 89 113.3 * 13.4
A2 300 1230 65.7 + 21.8 65.7 + 21.7 523 £ 9.0 525 + 8.6 1182 + 19.9
A3 290 953 68.1 + 9.2 68.1 + 9.1 720 £ 7.4 720 t 7.4 140.0 + 12.8
Ad 370 1230 66.0 * 15.5 66.2 + 15.3 759 £ 7.6 759 t 7.2 1421 + 17.4
A5 225 1230 60.3 + 14.9 60.3 * 14.9 250 £ 6.1 250 t 6.1 35.3113.6
A6 290 1588 622 + 183 622 + 18.4 269 t 5.4 27.1 + 56 39.3£19.9
A7 241 990 612 + 11.9 612 *+ 11.9 425 t 6.6 426 t 7.2 103.8 £13.2
A8 349 1430 60.1 * 15.9 60.1 * 16.1 585 t 4.6 585 + 4.6 118.5 £ 18.2
A9 300 1230 68.8 * 25.9 68.8  26.0 469 * 93 468 *+ 8.8 115.5 £ 30.6
A10 349 1058 63.5 + 17.8 633 t 17.6 84.0 + 8.9 83.8 + 8.6 147.1£19.4
A1l 241 1529 56.3 + 18.1 56.3 + 18.3 201 £ 7.1 201 £ 7.1 76.4+22.1

calibration problem. The calibrated stochastic AM-CFD can then simulate part- - Al

scale samples using a Markov chain Monte Carlo (MCMC) method [47] by n/z/.=1 %

sampling the calibrated heat source parameters in different time series, with Swd W) =1 z Z- Ly )

results better than deterministic models. Through this stochastic modeling YOVE A )

framework AM-CFD can predict the surface roughness and LOF porosity of the nh Y/

as-built parts by simulating multilayer-multitrack parts. <1

To calibrate the heat source model, probability density functions (PDF) of 137 W-Wsy

experimental melt pool dimensions, width and depth, are calculated using JSwdAW)=K13) ( o

Kernel Density Estimation (KDE) [45]. KDE is a powerful method for estimating n/

the PDF of a random variable. The distributions of the experimental and /1

simulated melt pool width and depth are represented as follows: 15n D- Dy

150 W-We SokD) = Al )
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1
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1

where fiw o, fre, [ 5 /s represent distributions of experimental width (/7%),
experimental depth (2.), simulated width (/#5) and depth (2), respectively. A"
is the Gaussian kernel, /'is the index of the sample point, and 7 is the total
number of sample points. Bandwidth is represented as /. Detailed expression
can be found in the supplementary document along with a brief overview of
KDE. The KDE results are shown in Fig. 4 for the 11 single-track experiment
cases in PDF format. These experimental measurements will be used to
calibrate the stochastic parameters of the heat source model in AM-CFD in the
following section.

Determining the appropriate heat source model parameters is crucial for
achieving reliable simulation of the AM process. Multiple

Additive Manufacturing 87 (2024) 104214

this article.)

simulations are required to tune these calibration parameters in the model
which leads to a significant computational burden. Traditional methods like the
genetic algorithm [48] involve repeated calls to the computational model to
evaluate the model parameters. To minimize computational expenses, we have
integrated a surrogate model named as data-driven tensor decomposition (TD)
into our model [37,38]. Datadriven TD is a non-intrusive surrogate model that
utilizes a database. The database can be constructed either from simulations
or experiments, and the foundation behind TD is the separation of variables
technique. This approach accelerates the calibration (identification) process
for the heat source model parameters. For a n-dimensional
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function / sa,46, /6., tin that contains the quantity of interest as a
function of n parameters, TD separation form is given by:

M
Tendy

rm) o gl
P06 . fi) = AT T s (an) (5)

m=1

The function fis given by the finite sum of products of the separated
functions #/7(/ = 1,..,7). £/ identifies the variation of function /in the
parameter direction #;, which is also called mode function. 7 is the rank of
approximation and 7z defines the mode number of each component (and not
an exponent). #/ represents the total number of modes. The number of 7is a
priori unknown and can be obtained with a precomputed physics-based
simulation database [49-52]. TD seeks the projection of data for computing
the mode functions that can reproduce the original function. This enables TD
to serve as a surrogate model for efficient prediction. The surrogate model
reduces the computational cost since it only requires 1D interpolation to find
output at a given point using the computed mode functions #}”. The method
is suitable for high-dimensional problems due to parse sampling strategy. TD
has been applied successfully to accelerate the calibration of welding [50], AM
process [53], and microstructural [54] models under deterministic settings.

In this work, the TD method is extended to a stochastic calibration setting.
A cylindrical heat source model [12,44,53,55] is used to model the heat input
by the laser which is given by:

( )

( | -2 02+)2 <
{ 27y b b

Gsource= | mrasd €Xp 756 Ztop— Z a (6)
| kO Zip— 2> d

where 2Pdenotes the laser power, 7is the absorptivity, 7»is the laser beam
radius, Zis the depth of the heat source, and z,is the z-coordinate of the
top surface of the computational domain. xsand y»are the coordinates in the
local reference system attached to the moving heat source. Note that the
parameters, 7, 75 and &, are all unknown and uncertain heat source
parameters, which are highly correlated to the vapor depression
phenomenon in the PBF-LB/M process. During calibration, the minimum
value of absorptivity is limited to 0.28 [56]. According to the literature [56,57],
it has been observed that increasing laser power or decreasing scan speed
results in the formation of a vaporinduced depression and increases
absorptivity through deepening the keyhole region by multiple reflections of
the laser beam between the liquid and gas interface. Therefore, we assume
the three parameters, 7, 7sand Zare related to the laser power to scan speed
ratio 2V, as follows:

£ d= A7)
14
2 £ 7=max(~
,0.28) (8)
Va4
75= P3(9)

P, P, P are considered as random parameters and calibrated with the
information extracted from melt pool dimension data of AFRL experiments.
We assumed that the variation of melt pool reflects the characteristic length
of the surface roughness and lack of fusion porosity in the PBF-LB/M process.
In this case, the stochastic heat source parameters are assumed to satisfy a
tri-variate normal distribution:

[ 1

( ) 1 -2 (P-p) 7 ZA(P-p) (10)

pPLPz,Pe. = e
]
PHDAE
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where P=[A2, 7, A]”is the vector of heat parameters, g = [/A4,42,/3)”
a1 a2 asl

is the mean vector, and 2= | 21 22 (23 | is the covariance

Uz @2 sl

matrix. Due to the symmetry of 2, unknown coefficients are /4, /4, 1,

(11, (o, (33, (12, (33, C13. These are the final uncertain hyper-parameters that
need to be determined.

In the proposed stochastic AM model, we are trying to capture the
process stochasticity through a heat source model, which has proven to be
an effective way to account for the dimension and variability of the melt pool
in the LPBF process in our previous studies [12,44,55]. We calibrate the heat
source parameters to capture the unaccounted physics in the computational
model. These parameters: depth of the heat source, absorptivity, and beam
radius, are considered significant sources of uncertainty in the LPBF process.
The selection of these parameters is based on their substantial impact on the
heat distribution within the melt pool, directly affecting energy distribution
and material absorption. This, in turn, influences the thermal gradients and
solidification rates that are critical for determining the final part quality. Our
simulations involve numerous time steps, showing that transient processes
statistically converge to a quasi-steady-state distribution. This convergence,
where heat source parameters fluctuate within a narrow range, aligns closely
with steady-state conditions observed during calibration, thereby supporting
the effectiveness of our stochastic model in capturing process variability.

The TD model, which identifies the relationship between the heat source
model and key melt pool dimensions (width and depth), is presented below:

( b P = z Fi e 2 (PVRM P FM (R
¢ PF 1 2 (11)

m=1

V= F

where A, 7, Psare stochastic input heat source model parameters defined in

Eqg. (10), e= »"is the energy density. F;represents the simulated melt pool

dimensions width # sor depth Ds.

Here, the TD model is constructed using a set of sampling data of # sand
Dsfrom deterministic AM simulations for different samples of 2, 2, Aina
predefined parameter space. Then, the stochastic output for # sand Dscan
be obtained by giving random input of 2, 7, A. It should be noted that an
assumption is made here, positing that the width and depth are functions of
the heat source at that specific location. This procedure is similar to a surrogate
model based MonteCarlo approach for uncertainty propagation. Similar to
experimental data, the random output from TD model is estimated using KDE,
and denoted by fwsand /7.

Using the above TD model, the optimization problem for finding the
appropriate hyper-parameters 2@ = [/, 16,46, C11, (2, 33, (12, (33, (i3] can be
written as

[ ]

2. arg min \W s W & P) + (D5 Do P) (12) where W cand D.are statistical
experimental measurements with mean and variance. To define the distance /
between experimental and simulated melt pool geometry distributions, the
Kullback—Leibler Divergence (KLD) [46] is used. Alternatively, other statistical
tests [58] approaches can be considered to determine the discrepancy
between the experimental and simulated melt pool geometry distributions.
The KLD is a measure of the gap between two distributions, and its lowest
value indicates the optimal outcome of probability density estimation. A brief
description of the KLD can be found in the supplementary document. The
objective function in Eqg. (13) can further be defined with KLD:

= argminy fw s (W )log Jwel () (W)
)+ 11
~1 Jws) P, P2, P3
b= (13)
/a4y (D log
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/244 (D) (
)
£1 D) P, P2, P3where /[is the index of single-track
cases. fwe, /e, fws and fosare distributions of experimental width,
experimental depth, simulated width and depth that can all be calculated
from the KDE method discussed above.

Employing KL divergence is appropriate for assessing how closely the
probability distribution of the modeled output (melt pool dimensions)
matches the distribution observed in experimental data. KLD divergence
focuses on aligning these distributions overall but does not explicitly model the
temporal evolution of the process. This is suitable given our current modeling
framework, where the primary goal is not focusing on the melt pool shape at
a single time step but the overall statistical distribution.

The steps to solve the optimization problem in Eq. (13) are as follows:

1. Sample the parameter space with the adaptive sparse grid strategy
[50,54] and compute the simulated melt pool dimensions (# 5 Ds) with
the AM-CFD model for the selected data points.

2. Apply the kernel density estimation (KDE) to the experimental data to
obtain the melt pool width and depth distributions
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prediction of surface roughness and porosity for part scale simulations at very
reduced computation costs while maintaining a high-fidelity computational
model. The comparisons between experiment, deterministic simulation (with
constant heat source model), and stochastic simulation (with calibrated
stochastic heat source model) for the single-track case Al are illustrated in Fig.
5a. The settings for this experiment were a laser power of 300 W and a scan
speed of 1230 mm/s. Fig. 5b compares the distributions of width for the
experiment and simulation, which would beneficially demonstrate the
minimization of KL divergence and further substantiate the accuracy of our
stochastic AM model. The cross-section views in the figure show the variation
in the melt pool in stochastic simulations while the deterministic simulations
are unable to capture such uncertain information. To assess the accuracy of
the stochastic simulations, statistical melt pool geometry, including mean and
variance of the width and depth, is compared with experimental observations
[39] as shown in Figs. 6 and 7. The figures show energy density for 11 different
single-track cases are shown in x-coordinates, while y-coordinates present the
melt pool width and depth, respectively. The blue and red error bars represent
the mean and variance of the experimental and stochastic simulations,
respectively. The yellow line in the figure represents the melt pool dimensions
obtained from deterministic simulations. For cases with similar energy density,
a zoomed-in view is provided for detailed comparison. To calculate the mean

| 200 ——— Experimant Destribution
[ puan [ IExperimeant Histogram
’ 0.04 | [—— Simadaticn Distribution

[TSimaulation Histogram

Width { o m)
b)

Fig. 5. (a) Comparisons are made between the AFRL experiment [39], deterministic simulation (using a constant heat source model), and stochastic simulation (employing a calibrated stochastic heat
source model). The top-down view comparison is shown on the left, while the cross-section view is shown on the right. (b) Comparison of the

distributions for experimental and simulation melt pool widths.

3. Construct TD surrogate model and compute # sand Dswith Eq. (11)
for sample data.
4. Generate samples of heat source parameters 2, A, /s, and obtain

/ and”s

stochastic outputs” wsand” psbased on TD surrogate model.
5. Solve the optimization problem in Eq. (13) with KLD method to calibrate
the random heat source parameters and find the optimal hyper-

parameters of the stochastic models.

2.2.2. Validation for single track

The proposed stochastic AM simulation model provides the capability to
predict the variability of the PBF-LB/M melt pool using stochastic process
parameters. To predict the stochastic single-track melt pool, we employed the
Markov Chain Monte Carlo (MCMC) algorithm [47], which is used for sampling
from probability distributions based on time series data. This implies that the
sample we consider at any given point is influenced by the preceding samples.
Consequently, there is an inherent correlation in the heat source samples
across different time steps. MCMC is utilized to generate samples and conduct
statistical simulations to predict the relationships between process, structure,
and properties.

In each time step of the AM process simulation, MCMC-sampled heat
source parameters are imported into AM-CFD program. This approach enables

and variance of melt pool dimensions, 200 locations are measured from both
the experimental data and stochastic simulations. The stochastic simulations
closely match the experimental melt pool dimensions. In comparison to
deterministic simulation, the stochastic simulation captures the uncertainty in
melt pool geometry and provides more accurate predictions for most cases.

It is observed that the difference associated with melt width predictions
tends to increase at lower energy densities. This increased difference at lower
energy densities could be attributed to the model assumptions outlined in Egs.
(A.7) and (A.8) in Appendix A, which do not account for surface tension effects
along the z-direction. Including these effects would necessitate a more
complex heat source model, significantly increasing computational demands.
Our model is designed primarily for large-scale simulation capabilities,
balancing the need for computational efficiency with the fidelity of
predictions. While this decision has been effective in ensuring the model’s
applicability across various scenarios, it does introduce some limitations in
accurately predicting melt pool width at lower energy densities. However, our
model consistently delivers accurate results for melt pool depth across all
energy densities. Recognizing the simplifications made, we are considering
incorporating z-direction surface tension in future model iterations to enhance
accuracy.
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2.3. Parameterized physics-based machine learning digital shadow model
(PPB-ML-DS) model

The choice of a machine learning model over a physics-based simulation
model in laser powder bed fusion control is primarily driven by the need for
rapid prediction capabilities. In a control setting, where real-time predictions
are essential for making rapid adjustments, traditional physics-based
simulations can be prohibitively slow and computationally intensive. Machine
learning models, on the other hand, can quickly provide predictions by
learning patterns and relationships directly from data, allowing for significantly
faster inference times. This speed advantage enables actuators to respond
promptly to dynamic changes in the melt pool during the additive
manufacturing process, ensuring precise control and optimization of
parameters in real-time. To develop a rigorous machine learning model, we
take advantage of our calibrated and validated PPB-ML-DS model to generate
data for continuous training and update.

Among different machine learning tools, we utilize Deep AutoRegressive
Networks (DARNs) due to their ability to capture both the current state of the
melt pool, including its width and depth, and the short-term temporal
dependencies within the data. This capability
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Fig. 6. Statistical information of melt pool width between stochastic simulation, deterministic
simulation, and experiment. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 7. Statistical information of melt pool depth between stochastic simulation, deterministic
simulation, and experiment. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

makes DARNs particularly suited for predicting and controlling melt pool
parameters in laser powder bed fusion, where characteristics often depend
not just on present input values but also on recent historical information. By
effectively handling these temporal dependencies, DARNs facilitate more
accurate and responsive control, optimizing the management of critical heat
parameters like normalized energy density, heat source radius, and heat
source depth in the additive manufacturing process.

The dimensions of the melt pool, along with the associated heat source
parameters, serve as the datasets employed to train and evaluate the DARNSs.
This dataset encompasses paired observations, where the melt pool’s width
and depth constitute the input, while the output comprises heat source
parameters, specifically normalized energy density (NED), heat source depth,
and heat source radius. We utilized twenty-five distinct single-track
simulations, each with varying process parameters within the bounds of the
AFRL experiment, to generate our datasets. From each simulation, two
thousand melt pool dimensions were extracted, resulting in a comprehensive
dataset comprising fifty thousand data points. In terms of data distribution, we
allocated 70 percent for training, 10 percent for validation, and 20 percent for
testing purposes. All datasets were produced using the physics-based AM-CFD
solver, the specifics of which are detailed in Appendix A. To ensure the
network’s effective training, we preprocess the data by applying normalization
techniques to standardize the input and output data within a consistent range,
thereby preventing issues related to gradient problems during training. NED is
a dimensionless number that relates processing parameters and material
properties, such as material density, heat capacity, and liquidus temperature.
It can be expressed as follows [59]:

7P VVHL pCAT - 70)

NED= - (14)
where 7 stands for absorptivity, Zrepresents laser power, Zis the scan speed,
and #denotes the hatch spacing. Zis the layer thickness, p stands for material
density, and ¢ represents the specific heat. Liquidus and solidus are two
temperature denotes the transition of the melting. The solidus melting
temperature, denoted as 77, is the highest temperature at which an alloy is
completely solid—where melting begins. The liquidus melting temperature,
denoted as 77, is the temperature at which the alloy is completely melted. 77—
7o signifies the temperature difference between the liquidus melting
temperature and the ambient temperature.

The trained DARNs serve as a PPB-ML-DS model which can solve the
inverse problem of process control by controlling the process parameters for
melt pool geometry (depth and width). The autoregressive features of DARNs
consider the previous ‘k’ steps as input for each training instance in order to
capture the temporal dependencies inherent in melt pool dynamics, where ‘k’
is defined as the window size. Consider a sequence X= (19,41, 22,..., 7) Where
Zzdenotes the heat source input during AM process (NED, heat source depth
and heat source radius). We formulate the model in the following way:

The diagram of the DARN is shown in Fig. 8. Given a window size of £, at
time step 7 access is limited to historical observations of melt pool dimensions,
including melt pool width and depth, represented as €1, €z2, ..., €& along with
the expected width and depth at the current time step, denoted as cez The
goal is to establish a function, /%, such that the predicted heat parameters 2z
= fd €1, Cz2,..., ek €€:), which provides the most accurate prediction of heat
parameter #;for time step / aiming to closely match #zas much as possible.

/) can be any parameterized neural network function defined over 4.
Specifically, we use FFNN in our examples. FFNN is designed to extract features
layer-by-layer as defined in the following equations. We utilize /Z hidden layer
FFNN (for our model h = 3) where

aV'= Rel W+ input + Bh) (15)

10
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@)= RelUW 11+ ar1) + Bra) (16) output = Sigmoid W w1+ @*V +
Br1) (17)

Note that the learnable parameters in this networks & = {Wy,Bo,..., W
#Br}. W ;and Brare the weights and bias of the zth hidden layer.

In order to train f4-), we utilize maximum likelihood estimation to
construct the loss function and solve the following optimization problem:

b2

mine Log(P.n( Ui €1, Cr2, ..., Cok, CE50) (18)
;

The conditional distribution of #;achieve the maximum likelihood when z;
=1y i.e. the prediction equals the observation results. During the optimization
process, the likelihood of #7increase gradually until the likelihood is maximized
over all training data. In practices, we assume Zri~ Mxa; ) follows a Gaussian
distribution centered at .y with identity covariance matrix, therefore, the
optimization problem becomes to the following: ¥~

ming 22— fAcr1,cr2, .., ct-kceqb)|2 (19)

Window size k
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simulated result for case B1. For quantitative comparison, the wall is divided
into three measurement zones depending on positions (see Fig. 9b). The
average height (mean and standard deviation) above the substrate pad datum
and the total cross-sectional areas for the entire portion of the wall above the
substrate pad datum were measured for each zone as shown in Fig. 9b. Three
cross sections are collected within Zones 1 and 3, while approximately 20 cross
sections are collected in Zone 2. Fig. 10 presents the comparisons of the three
cross sectional area for three different zones between the experimentally
measured and computationally predicted values for B1 and B2 multi-track
cases. The simulated height and area closely match with the measurements in
the second and third zones, indicating the developed model can accurately
predict the steady-state melt pool geometry. However, in Zone 1, the
beginning region of each layer, the model underestimates the melt pool
geometry. This suggests that some transient behaviors occurring at the
beginning of each layer are not adequately captured by the model.

Further, the multi-layer case B1 (see Table 3) is simulated using the PPB-DS
model to predict the surface roughness and compare with the experiment.
Please note that the surface roughness mentioned in this paper specifically
refers to the roughness on the sides, which is influenced by the interactions
between layers. The laser power for this case was 300 W and scan speed was

DARNs
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Fig. 8. The DARNs framework is designed to manage the melt pool dimensions. It takes as input the historical dimensions of the melt pool from previous time steps (denoted as €4, €2, .., Cra1, Crt)

and the expected dimensions at the current moment (¢e,). The system outputs the forecasted heating parameters (#;) for the current time step. The objective of DARNs is to derive a function /)
that provides a close match between the predicted heat parameters (2,) and the actual observed values (x).

The Adam Optimizer is employed for the optimization of the parameter &, as
suggested in the work by Kingma and Ba [60]. The network was trained using
an initial learning rate of 1 x 107 across 2450 epochs. Batch training was
adopted to providing sufficient update frequency for stable convergence and
robust generalization during training, utilizing a batch size of 64.

3. Statistical predictions, defect diagnostics and control application
3.1. Statistical predictions applications of PPB-DS model

The PPB-DS model is a calibrated and validated physics-based model with
stochastic parameterized heat source model. The model is used to simulate
multi-layer (thin-wall) and multi-track cases and validate against the AFRL
experiment for surface roughness and LOF porosity. A part-scale
demonstration of the NIST overhang part is also presented in this section.

3.1.1. Predictions of surface roughness of thin-wall samples

Two thin-wall specimens, B1 and B2, are simulated, each consisting of 10
consecutive layers with a thickness of 40 um and unidirectional scanning track
length of 5 mm [39]. All statistical predictions in this section use Inconel 625
alloy. The process parameters for these multilayer specimen are summarized
in Table 3. Specimen B1 used a laser power of 300 W and scan speed of 1230
mm/s, and specimen B2 used 241 W and 1529 mm/s. Fig. 9a shows the

1230 mm/s which is a combination of high power and low scanning speed for
the Inconel 625 alloy. Fig. 11 presents the PPB-DS predictions of the multi-layer
case B1, which manifests the surface roughness due to the stochastic AM
process.

The primary roughness parameter reported is the arithmetic mean height
(S@) that evaluates the average standard deviation of the heights from the
mean plane (valleys and peaks) in a surface profile to compute the degree of
roughness. To compute Sz, first the fitting plane for the points collected from
the surface are calculated. Then, the height of a peak or valley is determined
by evaluating the height coordinate of each point in the dataset.

The equation of average roughness Szis given by [61]:

Sa=_1[[ | fANds (20)

4 swhere 4is the sampling area and /{) is height of the profile. The
simulated wall is equally divided into 10 regions, and the mean value and
variance for the surface roughness is calculated. The calculated surface
roughness for case B1 and B2 is 12.62 + 2.61 um, and Sz = 14.57 + 3.18 um,
respectively. To understand the effect of processing conditions on surface
roughness, we plot the surface roughness against the volumetric energy
density (VED) [62], which is defined as:
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PVast

VED= (21)
where Zis laser power, Vis scan speed, gsis the laser beam diameter, and £is
the thickness for a single layer. VEDs for B1 and B2 multi-layer cases are 97.56
J/mm?3 and 63.05 J/mm?3, respectively. The predicted surface roughness for
AFRL case B1 and B2, plotted against volumetric energy density, is shown in
Fig. 12. This figure compares the simulation results with experimental data on

Table 3
Multi-layer simulation process parameters [39].
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Inconel 625 [63], with experimental results depicted as dark blue dots. The
error bars with red centers represent the statistical variation in the simulated
surface roughness. Notably, both experimental and simulation data show
relative lower roughness values around a middle VED and have some good
alignment, and roughness levels fluctuate within a similar range across the
studied VED spectrum. The simulation data also displays larger variance at
lower VEDs, offering insights into the impact of energy density on surface
roughness.

Case Laser Scan Speed Layer thickness  Track length The number of
Number Power (W) (mm/s) (1um) (mm) layers
B1 300 1230 5 10
241 1529 5 10
=4.5-5 mm
EI] ¥=0.5-4.5 mm X _.|
¥=0-0.5 mm

Laser Direction

Zona 2

Lo 3

-\ Substrate Pad Dalum

L. ¥ Substrate

Pad Datum

Fig. 9. As-built multi-layer structure and its measurements for case B1. (a) Multi-layer simulation (b) A schematic of the height and cross section area measurements for three Zones [39].
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Fig. 10. Quantitative comparisons of cross-sectional area between experimental measurements and PPB-DS predictions.
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Melt pool surface
Surface
Roughness
Fig. 11. Surface roughness prediction for multi-layer simulation.
Table 4
Multi-track simulation process parameters [39].
Case Laser Scan Hatch Toolpath plane The number
Number Power (W) Speed (mm/s) Spacing (mm) dimensions (mm) of tracks
c1 300 1230 0.1 3*3 30
c2 300 1230 0.1 10*3 30
c3 300 1230 0.075 10*3 40
ca4 300 1230 0.125 10*3 24
cs 300 1230 0.1 10*3 30
c6 290 953 0.1 15*3 30
2 . surface roughness and LOF porosity at significantly reduced computation
® Experiment Roughness
costs.
4 Simulated Roughness
o 3.1.3. Predictions of LOF porosity for multi-layer and multi-track samples
- B3 The PPB-DS model is utilized to predict the surface roughness and LOF
E_ B1 porosity for the multi-layer and multi-track cases of AFRL experiments.
1
et i 3 . Additionally, we demonstrate the prediction of surface roughness and LOF
o . > e porosity for the multi-layer and multi-track cases. Markov chain Monte Carlo
i sampling is employed to generate timedependent sequences of the
1 . - .
Uow processing conditions to simulate the part scale.
For the multi-layer and multi-track cases are investigated for the LOF
. porosity through our stochastic AM simulation. Fig. 15 shows the multi-layer
T80 B0 70 B0 ) 100 case B1 (see Table 3) where the porosity is visible in between the layer and

Volumetric Energy Density :UED]{J:‘mma}

Fig. 12. Validation between simulated surface roughness and experimental data [63] under
different VEDs (unit: J/mm?). The dark blue dots are experiment measurements. The error bars
with a red center illustrate the statistical measurement of simulated surface roughness, in which
B1 and B2 have the same VED as the AFRL experiment. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

3.1.2. Predictions of melt pool geometries of multi-track samples

Six simulations of multi-track cases were conducted using a calibrated
stochastic AM-CFD model to predict the geometrical characteristic of the
melted multi-track cases in the PBF-LB/M process. Fig. 13 shows the substrate
geometries and tool paths used for these simulations, labeled as C1, C2, C3,
C4, C5, C6, corresponding to PBFLB/M experiments performed by AFRL. A
dwell time of 0.5 ms was set between the end of scan of one layer to the
beginning of the next layer. During this dwell time period, the laser beam was
turned off. The black frames show the substrate dimensions, and the arrows
represent the laser scan paths. Table 4 summarizes the process parameters
used for all six multi-track cases. Fig. 14(a) shows the quantitative comparisons
of melted track geometries at the middle of the toolpath (x=1.5 mm) for the
six multi-track simulations for the average and standard deviation of the melt
pool width (/) and depth (2). The multi-track simulations closely match with
experimental data, and demonstrate potential for high-precision AM
predictions. Additionally, these simulations can be used for prediction of

near the corner of the track. This porosity occurs due to the improper melting
of the powder and tracked in our model by tracking the melting temperature
of the scan. Fig. 15 also present the multi-track case, where the LOF porosity
is between the consecutive tracks. Also, the multi-track case simulated using
stochastic AM model reveals the non-uniform melt pool shape and size
distribution which cannot be captured in a deterministic model.

In Fig. 16, the variation of predicted LOF porosity with the volumetric
energy density is presented and compared with experimental cases [63]. The
LOF porosity decreases as the volumetric energy increases which means a
better powder melting scenario. It should be noted that, experimentally
measure porosity includes all mode of porosity; however, for the chosen VED
ranges, the LOF porosity is the dominant mode and other mechanism of
porosity formation is negligible.

3.2. Defect diagnostics for part-scale applications of the PPB-DS model

In this section, a part scale defects diagnostic application is demonstrated
using the PPB-DS model. For the demonstration, National Institute of
Standards and Technology (NIST) overhang part X4 [64,65] has been used.
Same geometry and scan strategy used by NIST for the part has been used in
our simulation. However, only 1/8 part of the sample is simulated due to the
expensive thermo-fluid simulation in our PPBDS model. The goal of this is to
show the defect diagnostic capability of the PPB-DS model for the surface
roughness and LOF porosity for a part-scale level.
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Track Number

4 mm

Ll mm

Fig. 13. Scan strategies for the multi-track cases [39]. The start and end points of each track are marked with green and red dots, respectively, and the arrows show the scan paths of the laser, color-
coded from violet for the first track to yellow for the last. The colorbar values indicate the track numbers. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Table 5
Process parameters of NIST overhang part.
P (W) (mm/s) Layer Hatch Layer number Volumetric energy
Thickness (mm) Spacing (mm) density
(J/mm?)
300 800 0.04 0.1 100 101.56

The NIST “Overhang Part X4” [64,65] is fabricated on the Additive
Manufacturing Metrology Testbed (AMMT) from nickel superalloy Inconel 625
(IN625). The part has a 9 mm x 5 mm x 5 mm rectangular prism shape with a
45° overhang feature and a horizontal cylindrical cutout. Three different view
orientations of the computer-aided design (CAD) part geometry is shown in
Fig. 17. For demonstration purpose, 1/8 part is simulated and compared with
experimental result qualitatively. The dimension of the 1/8 part is 4.5 mm x
2.5 mm x 2.5 mm, as demonstrated by the red region in Fig. 17. To enhance
the computational speed, we partitioned the entire 100 layers into distinct
groups and executed them through a parallel high-performance computing.

The process parameters of the overhang part are shown in Table 5. Fig. 18
presents the surface finish comparison between the NIST experiment and our
simulation. Both the experiment and stochastic simulation reveal an irregular
and uneven surface when viewed from the front, as well as a rough surface
with linear patterns along the top (aligned with the build direction). The
proposed stochastic AM simulation is thereby shown to possess the capability
of simulating additive manufacturing (AM) parts with defects. The part is
divided into five regions to compute the surface roughness of the front surface
(as shown in the orange dash lines in Fig. 17). The predicted roughness is S@sn
= 13.09 + 3.01 um, and it has been validated against the experimental
roughness measurement Sae.» = 14.44 + 3.59 pum, with a difference of 9.3
percent for the mean values. A distribution of the experimental surface
roughness is shown with the PPB-DS simulation predicted distribution. Both
the distribution matched closely for the mean and the standard deviation (see
Fig. 19).

The PPB-DS model can also predict the LOF porosity the NIST part. The
predicted LOF porosity is (0.52+0.24)%. The experimental porosity information
is not available for the NIST overhang part.

3.3. Online monitoring and control applications of PPB-ML-ds model

In PBF-LB/M process melt pool monitoring is a crucial aspect to maintain
part quality and certification. By controlling the processing parameters such as
laser power, speed, etc., desired melt pool geometries can be achieved which
can ensure desired performance. However, this is a challenging inverse
problem from the modeling perspective where we need to predict the
processing conditions for a desired melt pool phenomena. For a control
application, such predictions has to be made in real-time (in milliseconds) to
control the process for immediate layer. The real-time prediction ability of the
machine learning tool motivated us to further develop a machine learning-
based digital shadow model for control applications.

In the machine learning model, we set up an inverse problem to predict
heat parameters, namely, normalized energy density (NED), heat source
radius, and heat source depth for inputs of melt pool width and depth.
Specifically, we choose a DARNs model to capture the transient dynamics of
the melt pool.

Fig. 20 illustrates the relationship between the number of network epochs
and the corresponding loss function of the optimization problem defined in
Section 2.3. The loss function quantifies the likelihood across all training data
while considering the influence of adjacent data points based on a windowing
function. The training and testing data are generated with the physics-based
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AM-CFD solver. As depicted in Fig. 20, the training process of our model
demonstrates a notable reduction in loss over the course of the epochs.
Initially, from epoch 0 to 120, a substantial decrease in loss is observed,
followed by a gradual decline in the loss function. Remarkably, the model
exhibits ongoing improvement on the evaluation datasets, persisting until
epoch 2450.

Furthermore, Fig. 20 provides sub-figures depicting a comparative analysis
between the ground truth (represented by the blue line) and the network’s
predictions (illustrated by the orange line) for the test data sets at various
epochs (specifically, epochs 80, 500, and 2450). A clear trend emerges wherein
the network’s predictions increasingly align with the ground truth as the
training progresses. It is worth noting that the .vindex of the subplots for these
comparisons have been sorted by normalized NED in order to clearly represent
the results.

Fig. 20 illustrates the discrepancy between the ground truth and network
predictions for the test data. The error between the ground truth and
prediction is quantified using the following equation. It also demonstrates that
the errors remain consistently below 5% for the test data at epoch 2450,
employing a window size of 6. This highlights the model’s robust performance
in accurately predicting the target values, even when considering variations in
the input data. The equation for computing the relative error is as follows:

|
error = m— Xe| (22)
Xe

where £7,denotes the output from our machine learning model, and X.refers
to the ground truth data from the experimental measurements.
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To assess the control proficiency of our machine learning model, we
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prediction time is 0.4 ms, facilitating its real-time control application. Notably,
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Fig. 14. (a) Quantitative comparisons of melt pool dimensions width (/) and depth (£) between experimental and stochastic simulations at the middle of the toolpath (x=1.5 mm) for six multi-track
cases. The average and standard deviation of each quantity for different tracks are plotted (The error bar represents the standard deviation.) x label “‘Case number”” stands for six multi-track cases. (b)

Schematic image of the measurement of melt pool width (W) and depth (D).
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Fig. 15. Porosity prediction for multi-layer and multi-track simulation.

present the desired melt pool depth, which follows the Sigmoid function
profile, and we maintain the expected melt pool width at fixed values. The
expected aspect ratio of the melt pool, calculated as the width to depth ratio,
is represented by the red line in Fig. 21. The corresponding heat source
parameters were derived from the PPB-ML-DS model. These parameters were
then fed into our physics-based AM-CFD solver to obtain melt pool
dimensions. Following that, we derived the aspect ratio from the predicted
dimensions, which is depicted by the blue line on the graph, and contrasted
with our expected values. The heat source parameters generated by the
network, such as NED, are illustrated by the black curve in Fig. 21. The
controlled melt pool and width and depth are shown in Fig. 22. The model’s

our actual results align closely with the desired melt pool dimensions. The
melt pool control is particularly accurate during the steady stages (the initial
and final segments of the curve). However, sudden changes in the desired melt
pool dimension lead to a slight increase in discrepancies. Most of these
deviations remain under 5%, with the largest discrepancy being

6.7%.
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4. Discussion

The purpose of using a stochastic model for PPB-DS is to offer a
computationally efficient framework that statistically predicts potential
defects in the AM process at a specimen scale, such as surface roughness
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Fig. 16. Validation between simulated porosity and experimental data [63] under different VEDs
(unit: J/mm?). The blue dots are experiment measurements. The error bars with red center
represent the statistical measurement of simulated porosity, in which B1 and B2 have the same
VED as the AFRL experiment. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

and porosity. Indeed, the fluctuations of the melt pool observed in the
stochastic model might not always capture the real morphological changes
due to the simplified physical model and underlying assumptions.
Incorporating the time-dependency of melt pool evolution into the calibration
could enhance the model’s predictive accuracy, which is not considered in the
current work. The calibrated hyperparameters are taken as input for our AM-
CFD model, and the time dependency of the melt pool is considered as results
of the transient CFD analysis only in an implicit manner. Nonetheless, we
expect that calibrating hyperparameters using KL divergence will statistically
align with the experimentally observed melt pool evolution. The statistical
PPB-DS model, therefore, should propagate melt pool variations to other
output quantities and enable statistical predictions. Furthermore, this work
not focusing on the melt pool shape at a single time step but the overall
statistical distribution. The validation test cases confirmed the prediction
capability of our methodologies. In our future work, we will further explore
the representation of melt pool time dependency in a stochastic model,
possibly through a time correction matrix, to further refine the stochastic AM
model.

The PPB-DS model, with its stochastic calibration framework, significantly
reduces computational effort. In general, multiple-parameter calibration
poses a high-dimensional problem that necessitates numerous forward
simulations to formulate the optimization problem. Standard approaches such
as genetic algorithms [34] have previously been employed for high-
dimensional calibration problems, requiring the computational model to
repeatedly evaluate a trial set of parameters. This results in a computationally
expensive model. Conversely, the PPB-DS model constructs a powerful non-
intrusive data-driven TD model for the calibration scheme, accelerating the
evolution of the trial set of parameters. TD decomposes an n-dimensional
problem into a series of one-dimensional problems. It seeks an Z? projection
of data to compute mode functions capable of reproducing or extrapolating
the full parametric function. As a result, it serves as a potent surrogate model
in the stochastic calibration scheme and significantly reduces the degrees of
freedom and computational costs. Having access to more experimental data
for calibration can lead to higher prediction accuracy. However, the availability
of experimental data is limited, and there is a need for more open data
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sources, such as NIST AM Bench, to be contributed by the additive
manufacturing (AM) community.

In the current model, uncertainty in the additive manufacturing (AM)
process is primarily assumed to stem from the parameters of the heat source
model, which are modeled with Gaussian distributions. While the current
model demonstrates good predictive performance for melt pool dimensions
such as width and depth, it may lack the ability to accurately predict other
crucial AM indicators, such as solid cooling rate, liquid cooling rate, and time
above melting [55]. To address this limitation, a more intricate stochastic
model, such as a Bayesian model, can be employed to characterize the
uncertainty of the heat source model. Bayesian models have the advantage of
incorporating prior information about the AM process, resulting in more
precise estimations.

The proposed methodology has been validated with experimental data
from NIST and AFRL across a range of materials including IN625, IN718 [55],
Ti-6Al-4V, and SS316L [12], demonstrating its efficacy in predicting melt pool
dimensions, cooling rates, times above melting, surface roughness, and LOF
porosities. This validation underscores the generalizability of our framework
to different manufacturing processes and material systems, provided that
stochastic parameters are appropriately tailored based on relevant
experimental measurements. Specifically, the stochastic heat source model
may remain consistent across alloys if melt pool measurements exhibit similar
statistical behaviors. Otherwise, the heat source model should be recalibrated
against the measurements for a new material. The model’s applicability
extends to various geometries without recalibration, as geometric variations
do not significantly impact the core physical processes. Similarly, for different
toolpaths or build strategies, the existing calibrated parameters generally
suffice unless significant deviations in defect characteristics necessitate
adjustment. Future refinements may explore deeper integration of material-
specific dynamics to enhance the model’s predictive precision and reduce
recalibration needs.

The model implicitly accounts for machine variabilities through a
stochastic heat source model calibrated against diverse melt pool
measurements. While not directly targeting machine variability, the
framework facilitates recalibration for different conditions such as gas flow
rate, atmosphere, and material systems, ensuring adaptability across various
manufacturing settings. With additional experimental data, our model could
be able to consider effects like laser switch synchronization and mirror
positioning. The flexibility of our stochastic heat source model allows for
adaptation without recalibration across different alloys if melt pool data show
similar statistical behaviors. Furthermore, the AM-CFD physics model can
capture the effects of build orientations and cross-flow by leveraging
consistent physical processes, which can be proved by our other project [55].
Variations in build orientation can have a minor impact on defect predictions,
such as surface roughness, due to our statistical approach that averages
defects across large surfaces. Besides, our model handles changes in melt pool
width and depth, demonstrating its ability to integrate crossflow effects. This
adaptability underscores the model’s potential to provide reliable predictions
and reduce the need for recalibrations in diverse manufacturing
environments.

The PPB-ML-DS model enables us to make faster predictions for melt pool
phenomena. It is important to note that the accuracy of this model depends
on several factors, including the choice of machine learning techniques, the
quality of the training data, and proper training procedures. In this regard,
multi-fidelity data, derived from both experiments and simulations, can be
valuable. However, when using experimental data, caution is advised due to
the potential presence of noise, which can significantly impact the training
process. Using a sophisticated machine learning model may inadvertently
focus on fitting the noise rather than accurately representing the underlying
physics of the melt pool. In such cases, the PPB-DS model can prove useful, as
the data it provides tends to have less noise. However, it may lack certain
aspects of the physics if not explicitly considered in the model. To address
these challenges and find a balance between different datasets’ fidelity while
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capturing the essential physics for improved prediction, a transfer learning
approach can be a valuable tool.

«
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which significantly reduces the calibration time. We have validated the PPBDS
model using AFRL multi-layer and multi-track experiments and demonstrated

?

Fig. 17. Three view orientations geometry of overhang part (unit:mm), the red region defines the simulation part. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 18. Comparisons between experimental (a) and simulation (b) result of 1/8 part of Overhang
Part X4.
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Fig. 19. Comparisons surface roughness distribution and histogram between experimental and
simulation for 1/8 part of Overhang Part X4.

5. Conclusions and future directions

In summary, we have developed two digital shadow models, the PPB-DS
and PPB-ML-DS, for the laser powder bed fusion of metals. These models have
been demonstrated for stochastic melt pool prediction, defect diagnosis,
online monitoring, and control applications. The PPB-DS model is a calibrated
stochastic physics-based model capable of providing melt pool statistics and
offering improved accuracy in predicting surface roughness and LOF porosity.
In the stochastic calibration process, we have implemented a mechanistic
reduced-order TD model with Markov Chain Monte Carlo (MCMC) sampling,

its effectiveness in diagnosing defects in NIST overhang parts. The PPB-DS
model provides statistically predicted surface roughness and porosity for part-
scale simulations, aligning closely with experimental distributions, all achieved
at a considerably reduced computational cost while maintaining high-fidelity
computational modeling. The PPB-ML-DS model is employed for controlling
melt pool geometries, allowing real-time process control with rapid prediction
capabilities. Ultimately, these modeling and simulation tools enable us to
make part-scale predictions of defects and offer insights into control strategies
for an effective defect mitigation plan and control strategy for the desired
performance of the build parts.

While the current method uses the high-fidelity AM-CFD model to simulate
the laser powder bed fusion process, the efficiency of AMCFD is highly
constrained by the total number of DoFs (DoFs) in the system. The DoFs
increase exponentially as the number of elements in each domain increases.
As a result, direct numerical simulation (DNS) of part-scale structures with AM-
CFD can be exorbitant. Furthermore, if material parameters, process
parameters and boundary conditions are considered as extra-coordinates, the
problem will be extremely expensive to solve due to curse of dimensionality.
To solve these issues, the statistical space—time-parameter TD solver will be
developed in the future as a highly accurate reduced-order method to solve
spatial, temporal and parametric domains at the same time. It should be noted
here we use TD solver as an intrusive method to directly solve PDEs, which is
different from the data-driven TD we previously used in Section 2.2. Thanks to
TD, the DoFs grow linearly with respect to the number of elements in each
domain. As a result, we expect significant speedup for laser powder bed fusion
process simulation.

The current work represents the initial phase of our ongoing effort to
develop robust process modeling tools for laser powder bed fusion. In our
future endeavors, we plan to expand the stochastic calibration framework to
encompass more complex scenarios, including multilayer and multi-track
cases with intricate part geometries and tool paths. We have already
manufactured a build plate containing 480 samples with varying part shapes,
such as cylinders, squares, L-shapes, squares with holes, tapered L-shapes, and
overhangs, all of which were closely monitored during the melt pool
formation. This extensive dataset will play a crucial role in our future work,
enabling us to further enhance the PPB-DS model and train the PPB-ML-DS
model for controlling various melt pool parameters, including temperature,
depth, width, aspect ratio, and their influence on resulting microstructure. To
this aim, a robust process modeling and CA solver are required to be
developed.

In the future, we also plan to integrate our proposed stochastic process
modeling framework with microstructure modeling tools, such as cellular
automation (CA). The proposed stochastic calibration method in this paper
only focuses on process modeling. By connecting process modeling with
microstructure modeling using CA, we aim to propagate
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the uncertainty from process modeling to microstructure level. Additionally,
developing statistical process monitoring and control tools for metallic AM
systems is also promising although online monitoring and control still remains
to be a major challenge in AM field. For online control purposes, the proposed
statistical tool can be further improved in terms of speed for fast online
prediction. As a result, when combined with the help of online statistical
online monitoring tools from in situ experiments for temperature, porosity,
the proposed framework can be extended to an online statistical monitoring
and control system.
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Appendix A. Thermal-fluid analysis of PBF-LB/M process with stochastic
heat source model

To simulate the melted track geometries in the PBF-LB/M process, we
perform a thermal-fluid analysis using a stochastic heat source model. This
model is an extension of our well-tested AM-CFD code and takes into account
the thermal analysis of the entire part while the melt pool region is modeled
with fluid dynamics and heat transfer. The governing equations for mass,
momentum, and energy conservation were derived to solve the thermal-fluid
model [66]:

(oY - wdV'=0 (A1)
27
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where £is the time, #is the velocity, # denotes the viscosity, pis the pressure,
7 is the temperature, p is the density, and £ is the thermal expansion
coefficient. g is the acceleration of gravity and equals to 9.8 m/s%. mand 75
are density and temperature of reference material. /s the specific enthalpy,
and can be divided into the sum of sensible heat Zand the latent heat of fusion
AH. In this paper, xis set as a constant, cis the approximate primary dendritic
spacing, which is set to 1 um. Zis used to avoid division by zero and set as 107
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m. /2f;denotes the melt pool region and /2 is the whole domain. /7is the
volume fraction of the liquid phase, which is defined as:

7< 75 I {f/= 7TE-TTsslf Ts< I'< 77(A.4) I t//

727

(f=0 o

=1 —F

where 7sand 77are the solidus and liquidus melting temperature of materials,
respectively.

Considering ¢ on the surface boundary, heat flex g and its relation with
temperature 7’is

g=-k-V7 (A.5)

where £ is the thermal conductivity tensor. In isotropic cases, £ = 47 denotes
the second-order identity tensor. The heat source and boundary condition can
be written as:

n=h T =Ty = e =T+

1]
i 'source on i/]q
(A.6)
7=T on df,

where /-defines the convective heat transfer coefficient, oxis the Stefan—
Boltzmann constant, ¢ is the emissivity, 22 is the normal direction of heat
source surface.

The heat source gsourcefrom the laser, is described by a cylindrical shape
conjugated with Gaussian intensity distribution in AM-CFD program. There are
many different heat source models that can be implemented such as
cylindrical, semi-spherical, semi-ellipsoidal, conical, radiation heat transfer,
ray-tracing, linear decaying, and exponential decaying, which is summarized
comprehensively in Ref. [67]. The reason for the choice of cylindrical heat
source is due to its ability to appropriately match that of experimental melt
pool depth, width, cooling rates, and time above melting. There are also some
physical foundations behind such cylindrical heat sources. The depth of the
cylindrical heat source is based on the optical penetration depth (OPD).
Depending on the powder particle size and distribution, the OPD varies.
Usually, the OPD is defined as the depth where the intensity of the laser energy
reduces. As the analysis under investigation is on a bare plate, the penetration
of energy is assumed uniform along the OPD and related to the total amount
of energy that is going into the system. Based on this evidence, the cylindrical
heat source is chosen for the problem. The equation of the cylindrical heat
source model has been discussed in Section 2

The boundary condition for Eq. (A.2) at the top surface is equal to the main
driving force (i.e. Marangoni force):

durdy 0z ar

=y — = — V.7 (A7)
duy,  ay
=4 = __ VT (A.8)
dz d7" where y is the surface tension, which depends on both
temperature and materials, and #’is the temperature coefficient.
ar
The powder layer is treated as a continuous media, and it is distinguished
from the substrate through its material properties. A consolidated factor &
ranging from O to 1 is used to identify the material state. The value of 0 stands
for the material is in the original powder state (no consolidation), while 1
denotes a bulk state (fully consolidated). The definition of «is:

Tpeak— T's

a= — (A.9)
71-7s

where 7caxis the local peak energy.
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The thermo-physical properties of IN625 are summarized in Table A.6. The
densities at ambient and liquidus temperatures are used for solid and liquid
densities, respectively. Temperature-dependent polynomials were used for
the solid’s thermal conductivity and solid’s specific heat capacity.

In order to consider the influence of the localized preheating from adjacent
scan paths that leads to transient behavior of the vapor depression, the
residual heat factor (RHF) is considered into the heat source model [71]. RHF
at specific point /Zis defined as:

S(R- dik)2(7T- tik)

RHF = L (A.10)

Vs 7

KES)
The scan path consists of discrete points determined by the simulation’s
time step and the laser scan speed. Distance between the point 7 and £,
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point Z Similarly, the elapsed time since point £ was scanned is denoted as £
The normalized laser power at point £, denoted as Z, is 1 when the laser is on
and 0 when laser is off. Constants Zand 7 have values of 2x10*and 2x1073,
respectively. These constants act as thresholds to exclude points that have not
interacted with the laser for a sufficient amount of time. Points within the
threshold belong to set .5}, defined as Si= {¢u< 77U du< A, where i > £}. The
RHF is normalized as ##rrirl RHF equals to RHF sat the middle part of the
RHF=
toolpath and #4Fis greater than 1 at the corner of the toolpath, as shown in
Fig. A.23.

, Where

Considering the influence of residual heat, the heat source parameters can
be coupled with the RHF as:

denoted as @i, represents the preheating effect of point £Zon — Vi 2
_— - > A1l
: y RHF>1 (A.11)
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: : : : ' : : : : : The three uncalibrated parameters A, /2, 7 necessitate calibration. The
. & & @ I i 8 & & & methodology for calibrating these parameters is detailed in Section 2.2.
s & s s LI . . S . Appendix B. Calibration methods
* & s 8 8 & =8 = @
@ s ‘@—bse—ps s—bs s
t t There are multiple ways for optimal estimation of model parameters in
1 40 probabilistic frameworks. For example, maximum likelihood estimation (MLE),
Table A.6
Thermo-physical properties of IN625 and process constants [39,68—70].
Property/parameter Value Property/parameter Value
Solid density (kg m™) 8440 Convection coefficient (W m™K™) 10
Liquid density (kg m™) 7640 Latent heat of fusion (kJ kg™) 290
Powder density (kg m™) 4330 Dynamic viscosity (Pa s) 7x107
Solidus temperature (K) 1563 Thermal expansivity (1K) 5x107°
Liquidus temperature (K) 1623 Surface tension (N m™) 1.8
Solid specific heat capacity (J kg2 K™?) 0.24417 +338.39 Marangoni coefficient (N m™ K-1) -3,8x10™*
Liquid specific heat capacity () kg K™) 709.25 Emissivity 0.4
Powder specific heat capacity (J kg™ K™) 0.25087 +357.70 Ambient temperature (K) 295
Solid thermal conductivity (W m™K™) 0.01637 +4.5847 Reference temperature (K) 295
Liquid thermal conductivity (W m™K™) 30.078 Preheat temperature (K) 353
Powder thermal conductivity (W m™K™) 0.995 Stefan—Boltzmann constant (W mm™2K™) 5.67x107

Fig. A.23. A diagram illustrating a discrete scanning path along with the residual heat factor (RHF)
[71].

maximum a-Posteriori (MAP) and Bayesian calibration [72]. Denote the

stochastic AM model as 72, s) where g is the model parameters, scan be the
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initial and boundary conditions. InR calibration processes, we have some

observations from experiment and the goal is find the optimal parameters 2.

In MLE, the optimal parameters are obtained through maximizing® the

likelihood functions : 2* = argmax@(#) = argmax prob x;| z(B.1)

m ( )

V4 72 xil
In MAP, the optimal parameters are obtained through maximizing the
posterior probability using the Bayes’ rule, where prob(p) is the prior

probability of parameters.R

prob( | 2) prob(#)
prob(z|) = (B.2)
prob()
The optimal parameter can be obtained by maximizing the nominator as:
’ m ( )
2P = argmax prob X,| g prob(p) (B.3)

? XERQ

As can be seen from the equation above, the difference between MLE and
MAP is MAP leverages prior probabilities prob(z).

In both MLE and MAP, the calibrated parameter is a constant vector instead
of a probability distribution. However, Bayesian calibration can obtain the
distribution of the posterior probability of z2via analyzing the denominator in
Eq. (B.2). However, the denominator is generally very expensive to compute if
2is high dimensional and Monte-Carlo integration is required.

In the proposed approach, the uncertainty of the stochastic AM model
originates from the heat source parameters. As shown in Section 2.2, the
model parameter @ of the stochastic AM simulation is a vector of heat source
parameters: [¢a, 46,46, (11, (o, (33, (12, €3, (13). As a result, the calibration of our
stochastic model aims to find optimal model parameter 2* such that our
stochastic model agrees with observations (evidence) from AFRL experiments.
In the proposed approach, the discrepancy /between the experimental and
simulated melt pool geometry distributions is defined as the K-L divergence
(KLD). The
KLD is a measure of the gap between two distributions, and its lowest value
indicates the optimal outcome of probability density estimation. As a result,
the optimal parameter 2 can be obtained by minimizing

Eq. (B.4).
. [ ]
4 W W o P+ [\ D5, Do, P) (B.4)

It has been proved minimizing KLD is equivalent to maximizing the
likelihood function in Eq. (B.1) [73]. As a result, our calibration method belongs
to the family of MLE. The current calibration framework can be extended to
MAP and Bayesian by incorporating the prior knowledge of heat source
parameters. It should be highlighted that most of current Bayesian calibration
methods suffer from curse of dimensionality if the dimension of parameter 2
is high. This poses challenges for integration in the denominator of Eq. (B.2)
since sampling in a high dimensional space can be very expensive. However,
since our methods use a separable TD reduced order model, we can easily
circumvent curse of dimensionality by using TD.

= arg min

Appendix C. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.addma.2024.104214.
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