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A B S T R A C T 

 

This paper presents a statistical 

physics-based machine learning model 

for predicting defects, such as surface roughness and lack-of-fusion porosity, in the laser powder bed fusion of metals (PBF-

LB/M) additive manufacturing process. The statistical physics-based model is calibrated and validated against controlled 

singletrack experiments and used for statistical prediction for multi-layer and multi-track cases for PBF-LB/M defects. A 

mechanistic reduced-order-based stochastic calibration process is introduced to capture the stochastic nature of the melt pool. 

The calibrated physics-based digital shadow model is demonstrated for predicting the surface roughness of the National 

Institute of Standards and Technology (NIST) overhang part X4, with a difference of 9.3% compared to the experimental results. 

By leveraging data obtained from both the physics-based model and experiments, a machine learning model has been trained 

for fast predictions (inference time of 0.4 ms) with high accuracy (error bound of 6.7%). This model can predict melt pool 

geometries under various processing conditions, offering a control strategy for the PBF-LB/M process. Further, the trained 

machine learning model is showcased to demonstrate a control application of melt pool geometries (width and depth) for 

specific processing parameters. These developed models (physics-based and machine learning) serve as a digital shadow of 

the PBF-LB/M process, offering predictive capabilities to build a digital twin model for process control, optimization, and online 

monitoring. 

1. Introduction 

Recent technological advancements, along with the rapid growth in 

computational power, storage capacity, and data accessibility, have 

significantly propelled the concept of digital engineering to the forefront 

within the manufacturing domain [1]. Digital engineering includes the creation 

of a digital model that integrates physical processes, forming what is known as 

a digital shadow, and potentially evolving into a digital twin [2,3]. The digital 

shadow facilitates an automatic, one-way data flow from the physical model 

to its digital counterpart, thereby enabling real-time updates reflective of 

changes in the physical world without the capacity for feedback to the physical 

model. This unilateral data integration is crucial for real-time monitoring and 

adapting to the changing conditions observed in the physical counterpart. In 

contrast, a digital twin supports bidirectional, real-time data exchanges 

between the physical and digital realms. This sophisticated interaction allows 

the digital twin not only to receive data but also to send information back to 

the physical system, thereby enabling control and optimization based on 

continuous data analysis. Although the digital twin represents the ultimate 

goal of digital integration, offering extensive control and optimization 

capabilities, this paper focuses on developing a digital shadow model. We 

prioritize statistical physics-based predictions and control, serving for future 

advancement toward a comprehensive digital twin [4]. 

The Laser Powder Bed Fusion of Metals (PBF-LB/M) additive 

manufacturing (AM) has achieved significant success and has found extensive 

applications in the aerospace, automotive, and biomedical industries [5–8], 

drawing considerable attention in the AM research community. The 

performance of parts manufactured through PBF-LB/M, such as fatigue, relies 

on selecting appropriate processing conditions to control structural defects. 

Defects such as surface roughness and 

Received 29 January 2024; Received in revised form 18 April 2024; Accepted 17 May 2024 Available online 19 May 

2024 
2214-8604/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

 
1

 Corresponding author. 

E-mail address: w-liu@northwestern.edu (W.K. Liu). 

https://doi.org/10.1016/j.addma.2024.104214 

   

 

   

 

https://doi.org/10.1016/j.addma.2024.104214
https://doi.org/10.1016/j.addma.2024.104214
https://www.elsevier.com/locate/addma
https://www.elsevier.com/locate/addma


Y. Li et al. Additive Manufacturing 87 (2024) 104214 

2 

Nomenclature 

𝛼 consolidation factor 

𝛽 thermal expansion coefficient (K−1) 

𝜮 covariance matrix  

𝜂 absorptivity  

𝛾 surface tension (N m−1)  

𝜇 dynamic viscosity (Pa s)  

𝜌 material density (kg m−3)  

𝜎𝑠 Stefan–Boltzmann constant (W m−2 K−4) 

𝜀 emissivity  

𝐵 numerical parameter  

𝐶𝑝 specific heat (J kg−1 K−1)  

𝐷 melt pool depth (m)  

𝑑 laser source depth (m)  

𝐷𝑒 experiment melt pool depth (m)  

𝐷𝑠 simulation melt pool depth (m)  

𝑒 linear energy density (J m−1)  

𝐹 mode function  

𝑓𝑙 volume fraction of liquid  

𝑔 gravitational acceleration (m s−2)  

𝐻 hatch spacing (m)  

ℎ bandwidth  

𝑖 variable index  

𝑗 variable index  

𝐾 Gaussian kernel  

𝑘 thermal conductivity (W m−1 K−1)  

𝐿 layer thickness (m)  

𝑀 number of modes  

𝑚 mode index  

𝑛 number of sample points  

𝑁𝐸𝐷 normalized energy density  

𝑃 laser power (W)  

𝑝 pressure (Pa)  
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porosity generally originate from suboptimal melt pool formation, often linked to 

inadequate energy absorption that results in partial melting, or the entrapment of 

gases due to the vaporization process [9–12]. Understanding the effects of 

processing conditions on these structural defects is crucial for producing reliable 

AM parts. A digital shadow of PBF-LB/M process can provide predictions, diagnostic 

capabilities for defects, and serve as a tool for online monitoring and defects 

mitigation by controlling the melt pool phenomena. Such a model can also help in 

comprehending the relationship between the manufacturing process and the 

resulting part’s structure, which is essential for achieving the desired performance 

in a wide range of applications. 

In the PBF-LB/M process, the solid powder undergoes a transformation into 

liquid state through the application of intense localized heat from a laser. This 

process inherently carries uncertainty process due to variations in the process 

parameters, such as laser power, scan speed, fluctuation in boundary temperatures 

[13–15]. The material parameters (e.g., powder conductivity and absorptivity) are 

also a major source of uncertainty. As the laser travels through the scan path, the 

liquid cools and solidifies resulting in the formation of a bulk material with a distinct 

microstructure. The formation of a melt pool during the laser scan is a crucial aspect 

that governs the interactions between solid powder materials [16] and influences 

structural defects such as surface roughness and porosity. The cross-sectional area 

of the melt pool, typically characterized by its width and depth, indicates the 

formation of porosity, as inadequate overlap between melt pools can lead to 

increased porosity [17]. By modeling these uncertain processing conditions, 

stochastic predictions of the melt pool geometries can provide a more informative 

estimation of surface roughness and porosity defects. 

Previously, deterministic thermal models based on finite element and finite 

volume methods have been used to model the transient AM process. The predictive 

accuracy of these models depends on the calibration of the heat source model, the 

choice of the material properties, and also the fidelity of the geometry and scan 

path used. For instance, Ghosh et al. [18] developed a finite-volume-based 

simulation model that effectively captures the melt pool geometries under various 

laser power and scan speed combinations and validated against experimental data. 

However, many of these models often overlook the fluid flow within the melt pool, 

thereby neglecting the impact of cooling through fluid convection, resulting in 

reduced accuracy in predicting melt pool geometries compared to thermal-fluid 

flow models that incorporate fluid dynamics, as highlighted by Yan et al. [19]. 

Notably, Gan et al. introduced a well-tested transient three-dimensional thermal-

fluid computational model capable of predicting both the thermal field throughout 

the entire part and the velocity field within the melt pool region [20]. Their model 

was calibrated using highly controlled experiments conducted during the Additive 

Manufacturing (AM) Modeling Challenge Series in 2020 [21], ensuring its accuracy 

and reliability. However, while this model has demonstrated accurate predictions of melt pool geometries, its limitation lies in the absence of stochastic 

information which restricts the model’s ability to predict surface defects such as surface roughness [22] and volumetric structural defects like porosity [23]. Powder 

scale simulations have also been considered to simulate surface roughness and porosity for a smaller region in a deterministic manner [24–26]. However, these 

models are computationally expensive and hinder the inclusion of part scale effects, thereby preventing direct comparisons with experimental measurements 

conducted at a part scale. Moreover, the deterministic nature of these models further restricts the accuracy of predictions, which require stochastic information 

and calibration [27–30]. 

For online monitoring and control of the melt pool, a fast computational model is essential. While physics-based models can provide accurate predictions of 

the melt pool geometries and defects, the time required for such predictions is often tens of seconds, while rapid predictions (in milliseconds) are needed between 

printing each layer for control applications. Machine learning (ML) models, leveraging 

𝑃1 calibration parameter  

𝑃2 calibration parameter  

𝑃3 calibration parameter  

𝑃𝑃𝐵 − 𝐷𝑆 parameterized physics-based 

shadow 

digital 

𝑃𝑃𝐵 − 𝑀𝐿 − 𝐷𝑆 parameterized physics-

based learning digital shadow 

machine 

𝑞
𝑠𝑜𝑢𝑟𝑐𝑒 

laser heat (W)  

𝑟𝑏 laser source radius (m)  

𝑅𝐻𝐹 residual heat factor  

𝑆𝑎 surface roughness (m)  

𝑇 temperature (K)  

𝑡 time (s)  

𝑇0 ambient temperature (K)  

𝑢 velocity (m s−1)  

𝑉 scan speed (m s−1)  

𝑉 𝐸𝐷 volumetric energy density (J m−3) 

𝑊 melt pool width (m) 

𝑊 𝑒 experiment melt pool width (m) 

𝑊 𝑠 simulation melt pool width (m) 

𝑥𝑏 x coordinates of local reference system (m) 

𝑦𝑏 y coordinates of local reference system (m) 

𝑧
𝑡𝑜𝑝 

z-coordinate of the top surface (m) 

𝑇𝑙 liquidus melting temperature (K) 

𝑇𝑠 solidus melting temperature (K) 
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Fig. 1. Physics-based digital shadow model development process and applications. 

computational algorithms to analyze and interpret data, can aid on satisfying 

this fast prediction of melt pool dimensions by learning from an offline 

database. Liao et al. trained a simulation-guided ML model for the control 

application in the Directed Energy Deposition (DED) process [31]. Kozjek et al. 

trained a random forest ML model for the PBF-LB/M process based solely on 

experimental data [32]. Researchers have also explored Convolutional Neural 

Networks (CNNs) to effectively and rapidly monitor melt pool dimensions due 

to their capacity to autonomously and dynamically acquire spatial hierarchies 

of features [33–35]. The PBF-LB/M AM process is inherently timedependent 

and embodies a sequential nature. The state of melt pool at any given moment 

relies on both the current processing parameter inputs and the historical data 

leading up to that point. Therefore, an ML model that can capture both spatial 

and the transient behavior of the melt pool following a process history is 

critical for predicting the process. In this paper, we applied a deep 

autoregressive network (DARN) for predicting melt pool dimensions [36]. 

DARNs excel when compared to traditional feed forward neural networks 

(FFNNs) because they can capture not only the current state of the melt pool, 

as represented by its width and depth, but also the short-term temporal 

dependencies within the data that reflect the transient nature of the melt 

pool. DARNs are specifically designed to handle such temporal dependencies 

effectively, making them well-suited for predicting and controlling melt pool 

parameters. 

To address the necessity of modeling the stochastic nature of the PBF-LB/M 

process, this paper introduces a statistical Parameterized Physics-Based Digital 

Shadow (PPB-DS) model. It accomplishes this through a stochastic calibration 

of the heat source model parameters, enabling statistical predictions of melt 

pool geometries and defects such as Lack of Fusion (LOF) porosity and surface 

roughness. The stochastic calibration of the heat source model of the PBF-

LB/M process uses Tensor Decomposition (TD) [37,38], for the learning of non-

intrusive data and construction of reduced-order surrogate models. 

Experimental data [21], processed from melt pool measurements (see Section 

2), is utilized to calibrate the stochastic heat source model parameters and 

validate it. This PPB-DS model is applied for diagnosing NIST overhang part, 

especially for LOF porosity and surface roughness. For online monitoring and 

control applications, a machine learning digital shadow model is trained. This 

physics-based machine learning digital shadow (PPB-ML-DS) offers predictive 

capabilities for controlling the processing parameters for subsequent steps of 

PBF-LB/M tracks. 

This paper is organized as follows. In Section 2, we provide an introduction 

to the two digital shadow models: PPB-DS and PPB-ML-DS, which encompass 

methodologies of the stochastic calibration process and the DARNs machine 

learning model. They are used for stochastic prediction, diagnosis of PBF-LB/M 

defects and control of the melt pool geometries. Section 3 demonstrates the 

capabilities of the PPB-DS model in statistically predicting melt pool 

geometries and diagnosing defects such as LOF porosity and surface roughness 

for part-scale samples. The control applications using the PPB-ML-DS model 

are also demonstrated in this section. Section 4 provides the discussion of the 

presented results. Finally, a conclusion and some possible future directions are 

outlined in Section 5. 

2. Digital shadow of laser powder bed fusion process 

A digital shadow (DS) model updates its digital representation by 

continuously receiving data from the physical model, without enabling 

reciprocal updates. The experimental data can be used for calibrating and 

validating the physics-based simulation model, and it can also be directly used 

in conjunction with the simulation data to construct the DS. The calibrated and 

validated computational model serves as a parameterized physics-based 
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digital shadow (PPB-DS) model that is capable of predictive and diagnostic 

applications, as illustrated in Fig. 1. However, certain applications, such as 

online monitoring and control, demand rapid prediction from the model. The 

PPB-DS model is not suitable for such predictions, as it requires significant 

computational time, whereas the responses are needed in real-time. A 

potential solution for such applications lies in a machine learning-based model 

trained on the experimental and offline PPB-DS model generated data. 

Utilizing the database developed through offline PPB-DS computation and 

experiment, a physics-based machine learning digital shadow model (PPB-ML-

DS) is trained to provide rapid prediction of melt pool phenomena. 

In this section, we will describe the experimental data available for 

calibration and validation of our parameterized physics-based stochastic AM 

model. Then, the methodology for the stochastic calibration process is 

outlined, that enables the statistical predictions of the melt pool geometries, 

including the prediction and validation of LOF porosity and surface roughness 

for part-scale samples. Additionally, we will detail the process of developing 

the parameterized database and introduce the PPB-ML-DS model along with 

its training procedure. 

2.1. Available experimental data for calibration and validation of physicsbased 

stochastic AM model 

Laser powder bed fusion of metals (PBF-LB/M) strongly trigger evaporation 

with complex gas flow which causes non-uniformity in the printed structure 

affecting the properties of the printed part. A validated computational model, 

obtained through a well-designed experiment, is essential for understanding 

the relationship between process, structure, and properties (PSP) and 

achieving desired performance in parts. The United States Air Force Research 

Laboratory: Materials and Manufacturing Directorate Structural Materials, 

Metals Branch (AFRL/RXCM) and America Make publicly announced the 

Additive Manufacturing Modeling Challenge Series in 2020. This initiative 

provided a series of highly controlled additive manufacturing experiments for 

validation and quantification of computational models [39]. 

In the AFRL experiment, different cases including single-layer singletrack, 

single-layer multi-track, and multi-layer single-track (thin-wall) builds of IN625 

powder are produced with an EOS M280 commercial PBF-LB/M system. Melt 

pool dimensions were measured using an electron back-scatter diffraction for 

top-down track description (Fig. 2a) and optical microscopy on etched cross 

sections (Fig. 2b). Detailed descriptions of the experimental setup and 

procedures can be found in the Ref. [21]. To accurately calibrate a stochastic 

AM model, single-track experiments are utilized to collect statistical 

measurements. Multi-track and multi-layer cases are then used to validate the 

melt pool geometry using the single-track calibrated model. Further, surface 

roughness and lack-of-fusion porosity are measured for the multi-track case 

and validated against experiments. 

To determine the impact of heat source parameters on the melt pool size, 

it was crucial to analyze how these parameters affected the width (𝑊 ) and 

depth (𝐷) of the single-track melt pool. The measured value of the width and 

depth are shown in Tables 1 and 2, where 𝜇 represents the mean value and 𝜎 

denotes the standard deviation. Table 1 demonstrates the different 

measurements of melt pool width taken at various locations. The fourth 

column, representing 20 locations, shows the results of measurements 

conducted by the AFRL AM Modeling Challenge Series. Meanwhile, the fifth to 

seventh columns, covering 100 to 200 locations, display measurements taken 

in this study based on the experimental images provided by the AFRL. Similarly, 

Table 2 compares the melt pool depth between the AFRL measurements and 

this study. The last column, labeled ‘‘Depth’’, is the sum of the cross-section 

depth and height. 

2.2. Calibrated and validated parameterized physics-based digital shadow 

(PPB-DS) model 

2.2.1. Stochastic calibration of the heat source parameters of the 

physicsbased AM model 

A physics-based model of the PBF-LB/M process can capture relevant melt 

pool phenomena, such as capillary and Marangoni flow, and keyhole 

formation. While including all melt pool phenomena in a model is theoretically 

possible, it is computationally prohibitive, making such comprehensive 

modeling impractical for current applications. Calibration provides an effective 

way to incorporate these unaccounted-for physics into the model and improve 

predictions. 

However, capturing all the melt pool physics in a model is not feasible and 

is computationally challenging, and many of these parameters are uncertain. 

Calibration provides an effective way to account for the unaccounted physics 

in the model and improve predictions. 

Developing a good calibration model requires controlled experiments, and 

having a large experimental dataset can significantly enhance the model’s 

accuracy in this regard. Predicting surface defects (e.g., surface roughness [40]) 

and volumetric defects (e.g., porosity [41]) can be improved using a calibrated 

physics-based model. The accuracy of deterministic simulations in predicting 

defects, such as surface roughness and porosity, is limited, as it heavily relies 

on the quality of the model calibration. 

To address this issue, we propose a stochastic calibration framework (see 

Fig. 3) aimed at calibrating the heat source parameters of the physics-based 

AM model using experimental observations of melt pool geometries. 

Stochastic AM simulations also allow us to predict surface roughness and 

porosity in as-built parts, facilitating comparisons with experimental 

observations. 

The stochastic physics-based AM modeling framework consists of the 

following components: (i) analyzing experimental melt pool geometry (width 

and depth) to develop a probabilistic model from observations, (ii) creating a 

thermal-fluid simulation incorporating a statistical heat source model, (iii) 

calibrating the stochastic heat source model parameters, and (iv) predicting 

PBF-LB/M process melt pool phenomena and part-scale defects. The melt pool 

geometries (depth, and width) are obtained by analyzing the controlled AFRL 

experiment described above (see Section 2.1). Top-down and cross-section of 

the melt pool images for various processing conditions are analyzed and 

probability distribution model of the melt pool width (𝑊 ) and depth (𝐷) is 

formulated from the experimental observations. The thermal-fluid analysis is 

based on our in-house code called ‘‘AM-CFD’’. The AM-CFD code has been 

rigorously tested and confirmed for its accuracy through the 2022 NIST AM 

Bench challenge, achieving three first-place awards [35,42]. Additionally, its 

prowess was demonstrated in modeling challenges led by the Air Force 

Research Laboratory (AFRL), where it secured another first-place award 

[21,43]. Appendix A provides details about our stochastic physics-based AM-

CFD model [20,44]. 

In our framework as presented in Fig. 3, we introduce stochastic 

parameters for the heat source model in AM-CFD. These parameters account 

for the uncertainties caused by variations in real experimental conditions and 

provide a stochastic prediction of the melt pool geometry. In stochastic 

calibration process, Kernel density estimation [45] is used to develop a non-

parametric distribution of the melt pool geometry. The stochastic AM-CFD 

predicted melt pool geometry is then statistically compared with the 

experimental melt pool geometry using Kullback–Leibler divergence (KLD) 

[46]. The Residual Heat Factor (RHF), as introduced by NIST, has been 

integrated into our AM-CFD model to better account for variations in scan 

paths. This integration has demonstrably improved the fidelity of our 

numerical predictions, enhancing the accuracy of our simulations. For a more 

comprehensive understanding of the RHF implementation, please refer to 

Appendix A for a detailed description [44]. To significantly reduce the 

computational cost for multi-parametric calibration, Tensor Decomposition 

(TD) is used to handle the AM-CFD heat source model parameters 
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calibration problem. The calibrated stochastic AM-CFD can then simulate part-

scale samples using a Markov chain Monte Carlo (MCMC) method [47] by 

sampling the calibrated heat source parameters in different time series, with 

results better than deterministic models. Through this stochastic modeling 

framework AM-CFD can predict the surface roughness and LOF porosity of the 

as-built parts by simulating multilayer-multitrack parts. 

To calibrate the heat source model, probability density functions (PDF) of 

experimental melt pool dimensions, width and depth, are calculated using 

Kernel Density Estimation (KDE) [45]. KDE is a powerful method for estimating 

the PDF of a random variable. The distributions of the experimental and 

simulated melt pool width and depth are represented as follows: 

 1 ∑𝑛 𝑊 − 𝑊𝑒𝑗 

𝑓𝑊 𝑒(𝑊 ) = ) (1) 

𝑓𝐷𝑒(𝐷) = 𝐾( ) (2) 

 𝑛ℎ ℎ 
𝑗=1 

 1 ∑𝑛 𝑊 − 𝑊𝑠𝑗 

𝑓𝑊 𝑠(𝑊 ) =𝐾(3) 

𝑛ℎ 
𝑗=1 

 1 ∑𝑛 𝐷 − 𝐷𝑠𝑗 

𝑓𝐷𝑠(𝐷) = 𝐾( ) (4) 

 

Fig. 2. AFRL experiment measurements [39]: (a) Top-down and (b) cross-section melt pool description. In the top-down description, the red lines are samples of melt pool width measurements. In 

cross-section descriptions, 𝑊 is the width of melt pool, 𝑊𝑚 is the largest value of all widths, D and H are the depth and height of the deepest position of melt pool. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Width (𝜇𝑚) measurement for 11 single-track cases (A11-A11). AFRL conducted measurements at the 20 locations, while the additional measurements for this study, ranging 

from 100 to 200 locations, were based on the experimental images provided by AFRL. 

Case Number Laser Power Scan Speed 20 locations 100 locations 150 locations 200 locations 

 (W) (mm/s) 𝜇  𝜎 𝜇  𝜎 𝜇  𝜎 𝜇  𝜎 

A1 300 1230 112.0 ± 11.1 111.8 ± 11.3 112.0 ± 10.9 111.9 ± 11.0 

A2 300 1230 112.0 ± 11.9 111.5 ± 12.5 111.7 ± 12.2 111.8 ± 12.1 
A3 290 953 127.6 ± 7.0 125.3 ± 9.4 125.6 ± 10.2 125.5 ± 9.9 
A4 370 1230 122.9 ± 8.4 123.2 ± 9.8 122.9 ± 10.2 123.1 ± 10.2 
A5 225 1230 96.0 ± 13.9 94.1 ± 13.5 93.1 ± 13.7 93.9 ± 13.3 
A6 290 1588 97.9 ± 14.0 94.2 ± 14.3 93.8 ± 13.7 94.1 ± 13.5 
A7 241 990 112.0 ± 13.0 110.5 ± 12.4 110.2 ± 11.4 109.8 ± 10.9 
A8 349 1430 110.7 ± 11.3 111.8 ± 11.9 111.4 ± 11.3 111.5 ± 11.0 
A9 300 1230 112.7 ± 12.7 111.9 ± 11.8 111.8 ± 12.3 112.2 ± 12.2 
A10 349 1058 129.9 ± 7.0 127.9 ± 9.3 127.7 ± 9.2 127.7 ± 9.4 
A11 241 1529 89.3 ± 12.8 88.6 ± 13.2 88.3 ± 13.5 88.3 ± 13.4 

Table 2 
Depth measurements (𝜇𝑚) for 11 single-track cases (A1-A11) were conducted in this work and compared with those from the AFRL. Measurements from AFRL and 

this work are both presented, with the final column representing the ‘Depth’ as the sum of cross-section depth and height. 

Case Laser Scan Cross Section Cross Section Cross Section Cross Section  

Number Power Speed Height (AFRL) Height (this work) Depth (AFRL) Depth (this work) Sum Depth 

 (W) (mm/s) 𝜇  𝜎 𝜇  𝜎 𝜇  𝜎 𝜇  𝜎 𝜇  𝜎 

A1 300 1230 59.1 ± 12.3 59.0 ± 12.9 54.3 ± 9.0 54.3 ± 8.9 113.3 ± 13.4 

A2 300 1230 65.7 ± 21.8 65.7 ± 21.7 52.3 ± 9.0 52.5 ± 8.6 118.2 ± 19.9 
A3 290 953 68.1 ± 9.2 68.1 ± 9.1 72.0 ± 7.4 72.0 ± 7.4 140.0 ± 12.8 
A4 370 1230 66.0 ± 15.5 66.2 ± 15.3 75.9 ± 7.6 75.9 ± 7.2 142.1 ± 17.4 
A5 225 1230 60.3 ± 14.9 60.3 ± 14.9 25.0 ± 6.1 25.0 ± 6.1 85.3 ± 13.6 
A6 290 1588 62.2 ± 18.3 62.2 ± 18.4 26.9 ± 5.4 27.1 ± 5.6 89.3 ± 19.9 
A7 241 990 61.2 ± 11.9 61.2 ± 11.9 42.5 ± 6.6 42.6 ± 7.2 103.8 ± 13.2 
A8 349 1430 60.1 ± 15.9 60.1 ± 16.1 58.5 ± 4.6 58.5 ± 4.6 118.5 ± 18.2 
A9 300 1230 68.8 ± 25.9 68.8 ± 26.0 46.9 ± 9.3 46.8 ± 8.8 115.5 ± 30.6 
A10 349 1058 63.5 ± 17.8 63.3 ± 17.6 84.0 ± 8.9 83.8 ± 8.6 147.1 ± 19.4 
A11 241 1529 56.3 ± 18.1 56.3 ± 18.3 20.1 ± 7.1 20.1 ± 7.1 76.4 ± 22.1 
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 𝑛ℎ ℎ 
𝑗=1 

where 𝑓𝑊 𝑒,𝑓𝐷𝑒,𝑓𝑊 𝑠,𝑓𝐷𝑠 represent distributions of experimental width (𝑊𝑒), 

experimental depth (𝐷𝑒), simulated width (𝑊𝑠) and depth (𝐷𝑠), respectively. 𝐾 

is the Gaussian kernel, 𝑗 is the index of the sample point, and 𝑛 is the total 

number of sample points. Bandwidth is represented as ℎ. Detailed expression 

can be found in the supplementary document along with a brief overview of 

KDE. The KDE results are shown in Fig. 4 for the 11 single-track experiment 

cases in PDF format. These experimental measurements will be used to 

calibrate the stochastic parameters of the heat source model in AM-CFD in the 

following section. 

Determining the appropriate heat source model parameters is crucial for 

achieving reliable simulation of the AM process. Multiple 

this article.) 

simulations are required to tune these calibration parameters in the model 

which leads to a significant computational burden. Traditional methods like the 

genetic algorithm [48] involve repeated calls to the computational model to 

evaluate the model parameters. To minimize computational expenses, we have 

integrated a surrogate model named as data-driven tensor decomposition (TD) 

into our model [37,38]. Datadriven TD is a non-intrusive surrogate model that 

utilizes a database. The database can be constructed either from simulations 

or experiments, and the foundation behind TD is the separation of variables 

technique. This approach accelerates the calibration (identification) process 

for the heat source model parameters. For a n-dimensional 

 ( ) 

 

Fig. 3. Stochastic additive manufacturing simulation framework for PBF-LB/M process following a stochastic calibration of the heat source model parameters. 

 

Fig. 4. Experimental measurement (orange bar) and its probability density function generated by KDE (blue line) for melt pool width of single-track experiment case A1 to A11. x-axis represents width 

(μm), while y-axis is probability density. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
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function 𝑓 𝜇1,𝜇2, 𝜇3 …., 𝜇𝑛 that contains the quantity of interest as a 

function of n parameters, TD separation form is given by: 

∑𝑀 

𝑓(𝜇1,𝜇2,𝜇3 ….,𝜇𝑛) ≈ 𝐹 )….,𝐹𝑛(𝑚)(𝜇𝑛) (5) 
𝑚=1 

The function 𝑓 is given by the finite sum of products of the separated 

functions 𝐹𝑖
(𝑚)(𝑖 = 1,…,𝑛). 𝐹𝑖

(𝑚) identifies the variation of function 𝑓 in the 

parameter direction 𝜇𝑖, which is also called mode function. 𝑛 is the rank of 

approximation and 𝑚 defines the mode number of each component (and not 

an exponent). 𝑀 represents the total number of modes. The number of 𝑛 is a 

priori unknown and can be obtained with a precomputed physics-based 

simulation database [49–52]. TD seeks the projection of data for computing 

the mode functions that can reproduce the original function. This enables TD 

to serve as a surrogate model for efficient prediction. The surrogate model 

reduces the computational cost since it only requires 1D interpolation to find 

output at a given point using the computed mode functions 𝐹𝑖
(𝑚). The method 

is suitable for high-dimensional problems due to parse sampling strategy. TD 

has been applied successfully to accelerate the calibration of welding [50], AM 

process [53], and microstructural [54] models under deterministic settings. 

In this work, the TD method is extended to a stochastic calibration setting. 

A cylindrical heat source model [12,44,53,55] is used to model the heat input 

by the laser which is given by: 

 ( ( )) 

 ⎧⎪ −2 𝑥2+𝑦2 ≤ 
 2𝑃𝜂 𝑏 𝑏 

𝑞𝑠𝑜𝑢𝑟𝑐𝑒 = ⎨ 𝜋𝑟2𝑏𝑑 exp 𝑟2𝑏 𝑧𝑡𝑜𝑝 − 𝑧 𝑑; (6) 

 ⎪⎩0 𝑧𝑡𝑜𝑝 − 𝑧 > 𝑑 

where 𝑃 denotes the laser power, 𝜂 is the absorptivity, 𝑟𝑏 is the laser beam 

radius, 𝑑 is the depth of the heat source, and 𝑧𝑡𝑜𝑝 is the z-coordinate of the 

top surface of the computational domain. 𝑥𝑏 and 𝑦𝑏 are the coordinates in the 

local reference system attached to the moving heat source. Note that the 

parameters, 𝜂, 𝑟𝑏 and 𝑑, are all unknown and uncertain heat source 

parameters, which are highly correlated to the vapor depression 

phenomenon in the PBF-LB/M process. During calibration, the minimum 

value of absorptivity is limited to 0.28 [56]. According to the literature [56,57], 

it has been observed that increasing laser power or decreasing scan speed 

results in the formation of a vaporinduced depression and increases 

absorptivity through deepening the keyhole region by multiple reflections of 

the laser beam between the liquid and gas interface. Therefore, we assume 

the three parameters, 𝜂, 𝑟𝑏 and 𝑑 are related to the laser power to scan speed 

ratio 𝑃∕𝑉 , as follows: 

𝑑 = 𝑃1(7) 

𝜂 = max(𝑃

,0.28) (8) 

𝑃 𝑉 

𝑟𝑏 = 𝑃3(9) 

𝑃1,𝑃2,𝑃3 are considered as random parameters and calibrated with the 

information extracted from melt pool dimension data of AFRL experiments. 

We assumed that the variation of melt pool reflects the characteristic length 

of the surface roughness and lack of fusion porosity in the PBF-LB/M process. 

In this case, the stochastic heat source parameters are assumed to satisfy a 

tri-variate normal distribution: 
 [ ] 

( ) 1 −12 (𝑷−𝝁)𝑇 𝜮−1(𝑷−𝝁) (10) 

𝑝 𝑃1,𝑃2,𝑃3 = 𝑒 

(2𝜋)  |𝜮|  

where 𝑷 = [𝑃1,𝑃2,𝑃3]𝑇 is the vector of heat parameters, 𝝁 = [𝜇1,𝜇2,𝜇3]𝑇 

 ⎡𝐶11 𝐶12 𝐶13⎤ 

is the mean vector, and 𝜮 = ⎢𝐶21 𝐶22 𝐶23⎥ is the covariance 

 ⎣⎢𝐶31 𝐶32 𝐶33⎥⎦ 

matrix. Due to the symmetry of 𝛴, unknown coefficients are 𝜇1,𝜇2,𝜇3, 

𝐶11,𝐶22,𝐶33,𝐶12,𝐶23,𝐶13. These are the final uncertain hyper-parameters that 

need to be determined. 

In the proposed stochastic AM model, we are trying to capture the 

process stochasticity through a heat source model, which has proven to be 

an effective way to account for the dimension and variability of the melt pool 

in the LPBF process in our previous studies [12,44,55]. We calibrate the heat 

source parameters to capture the unaccounted physics in the computational 

model. These parameters: depth of the heat source, absorptivity, and beam 

radius, are considered significant sources of uncertainty in the LPBF process. 

The selection of these parameters is based on their substantial impact on the 

heat distribution within the melt pool, directly affecting energy distribution 

and material absorption. This, in turn, influences the thermal gradients and 

solidification rates that are critical for determining the final part quality. Our 

simulations involve numerous time steps, showing that transient processes 

statistically converge to a quasi-steady-state distribution. This convergence, 

where heat source parameters fluctuate within a narrow range, aligns closely 

with steady-state conditions observed during calibration, thereby supporting 

the effectiveness of our stochastic model in capturing process variability. 

The TD model, which identifies the relationship between the heat source 

model and key melt pool dimensions (width and depth), is presented below: 

( 

𝑌𝑠 = 𝐹

 𝑒,𝑃𝐹 1 2 (11) 
𝑚=1 

where 𝑃1, 𝑃2, 𝑃3 are stochastic input heat source model parameters defined in 

Eq. (10), 𝑒 = 𝑉 𝑃 is the energy density. 𝑌𝑠 represents the simulated melt pool 

dimensions width 𝑾 𝒔 or depth 𝑫𝒔. 

Here, the TD model is constructed using a set of sampling data of 𝑾 𝒔 and 

𝑫𝒔 from deterministic AM simulations for different samples of 𝑃1, 𝑃2, 𝑃3 in a 

predefined parameter space. Then, the stochastic output for 𝑾 𝒔 and 𝑫𝒔 can 

be obtained by giving random input of 𝑃1, 𝑃2, 𝑃3. It should be noted that an 

assumption is made here, positing that the width and depth are functions of 

the heat source at that specific location. This procedure is similar to a surrogate 

model based MonteCarlo approach for uncertainty propagation. Similar to 

experimental data, the random output from TD model is estimated using KDE, 

and denoted by 𝑓𝑊 𝑠 and 𝑓𝐷𝑠. 

Using the above TD model, the optimization problem for finding the 

appropriate hyper-parameters 𝒑∗ = [𝜇1,𝜇2,𝜇3,𝐶11,𝐶22,𝐶33,𝐶12,𝐶23,𝐶13] can be 

written as 

 [ ] 

𝒑∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐽(𝑾 𝒔,𝑾 𝒆,𝑷) + 𝐽(𝑫𝒔,𝑫𝒆,𝑷) (12) where 𝑾 𝒆 and 𝑫𝒆 are statistical 

experimental measurements with mean and variance. To define the distance 𝐽 

between experimental and simulated melt pool geometry distributions, the 

Kullback–Leibler Divergence (KLD) [46] is used. Alternatively, other statistical 

tests [58] approaches can be considered to determine the discrepancy 

between the experimental and simulated melt pool geometry distributions. 

The KLD is a measure of the gap between two distributions, and its lowest 

value indicates the optimal outcome of probability density estimation. A brief 

description of the KLD can be found in the supplementary document. The 

objective function in Eq. (13) can further be defined with KLD: 

𝑝∗ = 𝑎𝑟𝑔 min∑𝑓𝑊 𝑒(𝑖) (𝑊 )log 𝑓𝑊 𝑒( (𝑖) (𝑊 )

 )+ 11 

 𝑖=1 𝑓𝑊𝑠(𝑖) 𝑃1,𝑃2,𝑃3 

(13) 
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𝑓𝐷𝑒(𝑖) (𝐷) (

 ) 

𝑖=1 𝑓𝐷𝑠(𝑖) 𝑃1,𝑃2,𝑃3 where 𝑖 is the index of single-track 

cases. 𝑓𝑊 𝑒, 𝑓𝐷𝑒, 𝑓𝑊 𝑠, and 𝑓𝐷𝑠 are distributions of experimental width, 

experimental depth, simulated width and depth that can all be calculated 

from the KDE method discussed above. 

Employing KL divergence is appropriate for assessing how closely the 

probability distribution of the modeled output (melt pool dimensions) 

matches the distribution observed in experimental data. KLD divergence 

focuses on aligning these distributions overall but does not explicitly model the 

temporal evolution of the process. This is suitable given our current modeling 

framework, where the primary goal is not focusing on the melt pool shape at 

a single time step but the overall statistical distribution. 

The steps to solve the optimization problem in Eq. (13) are as follows: 

1. Sample the parameter space with the adaptive sparse grid strategy 

[50,54] and compute the simulated melt pool dimensions (𝑾 𝒔,𝑫𝒔) with 

the AM-CFD model for the selected data points. 

2. Apply the kernel density estimation (KDE) to the experimental data to 

obtain the melt pool width and depth distributions 

𝑓𝑊 𝑒(𝑊 ) and 𝑓𝐷𝑒(𝐷). 

distributions for experimental and simulation melt pool widths. 

3. Construct TD surrogate model and compute 𝑾 𝒔 and 𝑫𝒔 with Eq. (11) 

for sample data. 

4. Generate samples of heat source parameters 𝑃1, 𝑃2, 𝑃3, and obtain 

stochastic outputs 
𝑓
𝑊𝑠 and 

𝑓
𝐷𝑠 based on TD surrogate model. 

5. Solve the optimization problem in Eq. (13) with KLD method to calibrate 

the random heat source parameters and find the optimal hyper-

parameters of the stochastic models. 

2.2.2. Validation for single track 

The proposed stochastic AM simulation model provides the capability to 

predict the variability of the PBF-LB/M melt pool using stochastic process 

parameters. To predict the stochastic single-track melt pool, we employed the 

Markov Chain Monte Carlo (MCMC) algorithm [47], which is used for sampling 

from probability distributions based on time series data. This implies that the 

sample we consider at any given point is influenced by the preceding samples. 

Consequently, there is an inherent correlation in the heat source samples 

across different time steps. MCMC is utilized to generate samples and conduct 

statistical simulations to predict the relationships between process, structure, 

and properties. 

In each time step of the AM process simulation, MCMC-sampled heat 

source parameters are imported into AM-CFD program. This approach enables 

prediction of surface roughness and porosity for part scale simulations at very 

reduced computation costs while maintaining a high-fidelity computational 

model. The comparisons between experiment, deterministic simulation (with 

constant heat source model), and stochastic simulation (with calibrated 

stochastic heat source model) for the single-track case A1 are illustrated in Fig. 

5a. The settings for this experiment were a laser power of 300 W and a scan 

speed of 1230 mm/s. Fig. 5b compares the distributions of width for the 

experiment and simulation, which would beneficially demonstrate the 

minimization of KL divergence and further substantiate the accuracy of our 

stochastic AM model. The cross-section views in the figure show the variation 

in the melt pool in stochastic simulations while the deterministic simulations 

are unable to capture such uncertain information. To assess the accuracy of 

the stochastic simulations, statistical melt pool geometry, including mean and 

variance of the width and depth, is compared with experimental observations 

[39] as shown in Figs. 6 and 7. The figures show energy density for 11 different 

single-track cases are shown in x-coordinates, while y-coordinates present the 

melt pool width and depth, respectively. The blue and red error bars represent 

the mean and variance of the experimental and stochastic simulations, 

respectively. The yellow line in the figure represents the melt pool dimensions 

obtained from deterministic simulations. For cases with similar energy density, 

a zoomed-in view is provided for detailed comparison. To calculate the mean 

and variance of melt pool dimensions, 200 locations are measured from both 

the experimental data and stochastic simulations. The stochastic simulations 

closely match the experimental melt pool dimensions. In comparison to 

deterministic simulation, the stochastic simulation captures the uncertainty in 

melt pool geometry and provides more accurate predictions for most cases. 

It is observed that the difference associated with melt width predictions 

tends to increase at lower energy densities. This increased difference at lower 

energy densities could be attributed to the model assumptions outlined in Eqs. 

(A.7) and (A.8) in Appendix A, which do not account for surface tension effects 

along the z-direction. Including these effects would necessitate a more 

complex heat source model, significantly increasing computational demands. 

Our model is designed primarily for large-scale simulation capabilities, 

balancing the need for computational efficiency with the fidelity of 

predictions. While this decision has been effective in ensuring the model’s 

applicability across various scenarios, it does introduce some limitations in 

accurately predicting melt pool width at lower energy densities. However, our 

model consistently delivers accurate results for melt pool depth across all 

energy densities. Recognizing the simplifications made, we are considering 

incorporating z-direction surface tension in future model iterations to enhance 

accuracy. 

 

Fig. 5. (a) Comparisons are made between the AFRL experiment [39], deterministic simulation (using a constant heat source model), and stochastic simulation (employing a calibrated stochastic heat 

source model). The top-down view comparison is shown on the left, while the cross-section view is shown on the right. (b) Comparison of the 
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2.3. Parameterized physics-based machine learning digital shadow model 

(PPB-ML-DS) model 

The choice of a machine learning model over a physics-based simulation 

model in laser powder bed fusion control is primarily driven by the need for 

rapid prediction capabilities. In a control setting, where real-time predictions 

are essential for making rapid adjustments, traditional physics-based 

simulations can be prohibitively slow and computationally intensive. Machine 

learning models, on the other hand, can quickly provide predictions by 

learning patterns and relationships directly from data, allowing for significantly 

faster inference times. This speed advantage enables actuators to respond 

promptly to dynamic changes in the melt pool during the additive 

manufacturing process, ensuring precise control and optimization of 

parameters in real-time. To develop a rigorous machine learning model, we 

take advantage of our calibrated and validated PPB-ML-DS model to generate 

data for continuous training and update. 

Among different machine learning tools, we utilize Deep AutoRegressive 

Networks (DARNs) due to their ability to capture both the current state of the 

melt pool, including its width and depth, and the short-term temporal 

dependencies within the data. This capability 

 

Fig. 6. Statistical information of melt pool width between stochastic simulation, deterministic 

simulation, and experiment. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

 

Fig. 7. Statistical information of melt pool depth between stochastic simulation, deterministic 

simulation, and experiment. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

makes DARNs particularly suited for predicting and controlling melt pool 

parameters in laser powder bed fusion, where characteristics often depend 

not just on present input values but also on recent historical information. By 

effectively handling these temporal dependencies, DARNs facilitate more 

accurate and responsive control, optimizing the management of critical heat 

parameters like normalized energy density, heat source radius, and heat 

source depth in the additive manufacturing process. 

The dimensions of the melt pool, along with the associated heat source 

parameters, serve as the datasets employed to train and evaluate the DARNs. 

This dataset encompasses paired observations, where the melt pool’s width 

and depth constitute the input, while the output comprises heat source 

parameters, specifically normalized energy density (NED), heat source depth, 

and heat source radius. We utilized twenty-five distinct single-track 

simulations, each with varying process parameters within the bounds of the 

AFRL experiment, to generate our datasets. From each simulation, two 

thousand melt pool dimensions were extracted, resulting in a comprehensive 

dataset comprising fifty thousand data points. In terms of data distribution, we 

allocated 70 percent for training, 10 percent for validation, and 20 percent for 

testing purposes. All datasets were produced using the physics-based AM-CFD 

solver, the specifics of which are detailed in Appendix A. To ensure the 

network’s effective training, we preprocess the data by applying normalization 

techniques to standardize the input and output data within a consistent range, 

thereby preventing issues related to gradient problems during training. NED is 

a dimensionless number that relates processing parameters and material 

properties, such as material density, heat capacity, and liquidus temperature. 

It can be expressed as follows [59]: 

𝜂𝑃 1 𝑉 𝐻𝐿 𝜌𝐶𝑝(𝑇𝑙 − 𝑇0) 

𝑁𝐸𝐷 =  (14) 

where 𝜂 stands for absorptivity, 𝑃 represents laser power, 𝑉 is the scan speed, 

and 𝐻 denotes the hatch spacing. 𝐿 is the layer thickness, 𝜌 stands for material 

density, and 𝐶𝑝 represents the specific heat. Liquidus and solidus are two 

temperature denotes the transition of the melting. The solidus melting 

temperature, denoted as 𝑇𝑠, is the highest temperature at which an alloy is 

completely solid—where melting begins. The liquidus melting temperature, 

denoted as 𝑇𝑙, is the temperature at which the alloy is completely melted. 𝑇𝑙 − 

𝑇0 signifies the temperature difference between the liquidus melting 

temperature and the ambient temperature. 

The trained DARNs serve as a PPB-ML-DS model which can solve the 

inverse problem of process control by controlling the process parameters for 

melt pool geometry (depth and width). The autoregressive features of DARNs 

consider the previous ‘k’ steps as input for each training instance in order to 

capture the temporal dependencies inherent in melt pool dynamics, where ‘k’ 

is defined as the window size. Consider a sequence 𝑿 = (𝒙𝟎,𝒙𝟏,𝒙𝟐,…,𝒙𝑻 ) where 

𝒙𝒊 denotes the heat source input during AM process (NED, heat source depth 

and heat source radius). We formulate the model in the following way: 

The diagram of the DARN is shown in Fig. 8. Given a window size of 𝑘, at 

time step 𝑖, access is limited to historical observations of melt pool dimensions, 

including melt pool width and depth, represented as 𝒄𝒊−𝟏,𝒄𝒊−𝟐,…,𝒄𝒊−𝒌, along with 

the expected width and depth at the current time step, denoted as 𝒄𝒆𝒊. The 

goal is to establish a function, 𝑓𝜃, such that the predicted heat parameters 𝒖𝒊 

= 𝑓𝜃(𝒄𝒊−𝟏,𝒄𝒊−𝟐,…,𝒄𝒊−𝒌;𝒄𝒆𝒊), which provides the most accurate prediction of heat 

parameter 𝒖𝒊 for time step 𝑖, aiming to closely match 𝒙𝒊 as much as possible. 

𝑓𝜃(⋅) can be any parameterized neural network function defined over 𝜽. 

Specifically, we use FFNN in our examples. FFNN is designed to extract features 

layer-by-layer as defined in the following equations. We utilize ℎ hidden layer 

FFNN (for our model h = 3) where 

 𝒂(𝟏) = 𝑅𝑒𝐿𝑈(𝑾𝟎 ∗ input + 𝑩𝟎) (15) 
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𝒂(𝒍) = 𝑅𝑒𝐿𝑈(𝑾 𝒍−𝟏 ∗ 𝒂(𝒍−𝟏) + 𝑩𝒍−𝟏) (16) output = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑾 𝒉−𝟏 ∗ 𝒂(𝒉−𝟏) + 

𝑩𝒉−𝟏) (17) 

Note that the learnable parameters in this networks 𝜽 = {𝑾𝟎,𝑩𝟎,…, 𝑾 

𝒉,𝑩𝒉}. 𝑾 𝒊 and 𝑩𝒊 are the weights and bias of the 𝑖th hidden layer. 

In order to train 𝑓𝜃(⋅), we utilize maximum likelihood estimation to 

construct the loss function and solve the following optimization problem: 

∑ 

𝑚𝑖𝑛𝜽 Log(
P
𝒙𝒊(𝒖𝒊|𝒄𝒊−𝟏,𝒄𝒊−𝟐,…,𝒄𝒊−𝒌;𝒄𝒆𝒊;𝜽)) (18) 

𝑖 

The conditional distribution of 𝒖𝒊 achieve the maximum likelihood when 𝒖𝒊 

= 𝒙𝒊, i.e. the prediction equals the observation results. During the optimization 

process, the likelihood of 𝒖𝒊 increase gradually until the likelihood is maximized 

over all training data. In practices, we assume 𝑃𝒙𝒊 ∼ 𝑁(𝒙𝒊,𝑰) follows a Gaussian 

distribution centered at 𝒙𝒊 with identity covariance matrix, therefore, the 

optimization problem becomes to the following: ∑𝑛 

𝑚𝑖𝑛𝜽 ‖𝒙𝒊 − 𝑓𝜽(𝒄𝒊−𝟏,𝒄𝒊−𝟐,…,𝒄𝒊−𝒌;𝒄𝒆𝒊;𝜽)‖2 (19) 
𝑖 

The Adam Optimizer is employed for the optimization of the parameter 𝜽, as 

suggested in the work by Kingma and Ba [60]. The network was trained using 

an initial learning rate of 1 × 10−4 across 2450 epochs. Batch training was 

adopted to providing sufficient update frequency for stable convergence and 

robust generalization during training, utilizing a batch size of 64. 

3. Statistical predictions, defect diagnostics and control application 

3.1. Statistical predictions applications of PPB-DS model 

The PPB-DS model is a calibrated and validated physics-based model with 

stochastic parameterized heat source model. The model is used to simulate 

multi-layer (thin-wall) and multi-track cases and validate against the AFRL 

experiment for surface roughness and LOF porosity. A part-scale 

demonstration of the NIST overhang part is also presented in this section. 

3.1.1. Predictions of surface roughness of thin-wall samples 

Two thin-wall specimens, B1 and B2, are simulated, each consisting of 10 

consecutive layers with a thickness of 40 μm and unidirectional scanning track 

length of 5 mm [39]. All statistical predictions in this section use Inconel 625 

alloy. The process parameters for these multilayer specimen are summarized 

in Table 3. Specimen B1 used a laser power of 300 W and scan speed of 1230 

mm/s, and specimen B2 used 241 W and 1529 mm/s. Fig. 9a shows the 

simulated result for case B1. For quantitative comparison, the wall is divided 

into three measurement zones depending on positions (see Fig. 9b). The 

average height (mean and standard deviation) above the substrate pad datum 

and the total cross-sectional areas for the entire portion of the wall above the 

substrate pad datum were measured for each zone as shown in Fig. 9b. Three 

cross sections are collected within Zones 1 and 3, while approximately 20 cross 

sections are collected in Zone 2. Fig. 10 presents the comparisons of the three 

cross sectional area for three different zones between the experimentally 

measured and computationally predicted values for B1 and B2 multi-track 

cases. The simulated height and area closely match with the measurements in 

the second and third zones, indicating the developed model can accurately 

predict the steady-state melt pool geometry. However, in Zone 1, the 

beginning region of each layer, the model underestimates the melt pool 

geometry. This suggests that some transient behaviors occurring at the 

beginning of each layer are not adequately captured by the model. 

Further, the multi-layer case B1 (see Table 3) is simulated using the PPB-DS 

model to predict the surface roughness and compare with the experiment. 

Please note that the surface roughness mentioned in this paper specifically 

refers to the roughness on the sides, which is influenced by the interactions 

between layers. The laser power for this case was 300 W and scan speed was 

1230 mm/s which is a combination of high power and low scanning speed for 

the Inconel 625 alloy. Fig. 11 presents the PPB-DS predictions of the multi-layer 

case B1, which manifests the surface roughness due to the stochastic AM 

process. 

The primary roughness parameter reported is the arithmetic mean height 

(𝑆𝑎) that evaluates the average standard deviation of the heights from the 

mean plane (valleys and peaks) in a surface profile to compute the degree of 

roughness. To compute 𝑆𝑎, first the fitting plane for the points collected from 

the surface are calculated. Then, the height of a peak or valley is determined 

by evaluating the height coordinate of each point in the dataset. 

The equation of average roughness 𝑆𝑎 is given by [61]: 

𝑆𝑎 = 1 ∬ |𝑓(𝑦)|𝑑𝑆 (20) 

𝐴 𝑆 where 𝐴 is the sampling area and 𝑓(𝑦) is height of the profile. The 

simulated wall is equally divided into 10 regions, and the mean value and 

variance for the surface roughness is calculated. The calculated surface 

roughness for case B1 and B2 is 12.62 ± 2.61 μm, and 𝑆𝑎 = 14.57 ± 3.18 μm, 

respectively. To understand the effect of processing conditions on surface 

roughness, we plot the surface roughness against the volumetric energy 

density (VED) [62], which is defined as: 

 

Fig. 8. The DARNs framework is designed to manage the melt pool dimensions. It takes as input the historical dimensions of the melt pool from previous time steps (denoted as 𝒄𝒊−𝟏,𝒄𝒊−𝟐,…,𝒄𝒊−𝒌+𝟏,𝒄𝒊−𝒌) 

and the expected dimensions at the current moment (𝒄𝒆𝒊). The system outputs the forecasted heating parameters (𝒖𝒊) for the current time step. The objective of DARNs is to derive a function 𝑓𝜃(⋅) 
that provides a close match between the predicted heat parameters (𝒖𝒊) and the actual observed values (𝒙𝒊). 
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𝑃 𝑉 𝜎𝑏𝑡 

𝑉 𝐸𝐷 =  (21) 

where 𝑃 is laser power, 𝑉 is scan speed, 𝜎𝑏 is the laser beam diameter, and 𝑡 is 

the thickness for a single layer. VEDs for B1 and B2 multi-layer cases are 97.56 

J∕mm3 and 63.05 J∕mm3, respectively. The predicted surface roughness for 

AFRL case B1 and B2, plotted against volumetric energy density, is shown in 

Fig. 12. This figure compares the simulation results with experimental data on 

Inconel 625 [63], with experimental results depicted as dark blue dots. The 

error bars with red centers represent the statistical variation in the simulated 

surface roughness. Notably, both experimental and simulation data show 

relative lower roughness values around a middle VED and have some good 

alignment, and roughness levels fluctuate within a similar range across the 

studied VED spectrum. The simulation data also displays larger variance at 

lower VEDs, offering insights into the impact of energy density on surface 

roughness. 
Table 3 
Multi-layer simulation process parameters [39]. 

Case 
Number 

Laser 
Power (W) 

Scan Speed 
(mm/s) 

Layer thickness 

(μm) 
Track length 
(mm) 

The number of 
layers 

B1 300 1230 40 5 10 

B2 241 1529 40 5 10 

 

Fig. 9. As-built multi-layer structure and its measurements for case B1. (a) Multi-layer simulation (b) A schematic of the height and cross section area measurements for three Zones [39]. 

 

Fig. 10. Quantitative comparisons of cross-sectional area between experimental measurements and PPB-DS predictions. 
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Fig. 11. Surface roughness prediction for multi-layer simulation. 

Table 4 
Multi-track simulation process parameters [39]. 

Case 
Number 

Laser 
Power (W) 

Scan 
Speed (mm/s) 

Hatch 
Spacing (mm) 

Toolpath plane 

dimensions (mm) 
The number 

of tracks 

C1 300 1230 0.1 3*3 30 

C2 300 1230 0.1 10*3 30 
C3 300 1230 0.075 10*3 40 
C4 300 1230 0.125 10*3 24 
C5 300 1230 0.1 10*3 30 
C6 290 953 0.1 15*3 30 

 

Fig. 12. Validation between simulated surface roughness and experimental data [63] under 

different VEDs (unit: J∕mm3). The dark blue dots are experiment measurements. The error bars 

with a red center illustrate the statistical measurement of simulated surface roughness, in which 

B1 and B2 have the same VED as the AFRL experiment. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

3.1.2. Predictions of melt pool geometries of multi-track samples 

Six simulations of multi-track cases were conducted using a calibrated 

stochastic AM-CFD model to predict the geometrical characteristic of the 

melted multi-track cases in the PBF-LB/M process. Fig. 13 shows the substrate 

geometries and tool paths used for these simulations, labeled as C1, C2, C3, 

C4, C5, C6, corresponding to PBFLB/M experiments performed by AFRL. A 

dwell time of 0.5 ms was set between the end of scan of one layer to the 

beginning of the next layer. During this dwell time period, the laser beam was 

turned off. The black frames show the substrate dimensions, and the arrows 

represent the laser scan paths. Table 4 summarizes the process parameters 

used for all six multi-track cases. Fig. 14(a) shows the quantitative comparisons 

of melted track geometries at the middle of the toolpath (x=1.5 mm) for the 

six multi-track simulations for the average and standard deviation of the melt 

pool width (𝑊 ) and depth (𝐷). The multi-track simulations closely match with 

experimental data, and demonstrate potential for high-precision AM 

predictions. Additionally, these simulations can be used for prediction of 

surface roughness and LOF porosity at significantly reduced computation 

costs. 

3.1.3. Predictions of LOF porosity for multi-layer and multi-track samples 

The PPB-DS model is utilized to predict the surface roughness and LOF 

porosity for the multi-layer and multi-track cases of AFRL experiments. 

Additionally, we demonstrate the prediction of surface roughness and LOF 

porosity for the multi-layer and multi-track cases. Markov chain Monte Carlo 

sampling is employed to generate timedependent sequences of the 

processing conditions to simulate the part scale. 

For the multi-layer and multi-track cases are investigated for the LOF 

porosity through our stochastic AM simulation. Fig. 15 shows the multi-layer 

case B1 (see Table 3) where the porosity is visible in between the layer and 

near the corner of the track. This porosity occurs due to the improper melting 

of the powder and tracked in our model by tracking the melting temperature 

of the scan. Fig. 15 also present the multi-track case, where the LOF porosity 

is between the consecutive tracks. Also, the multi-track case simulated using 

stochastic AM model reveals the non-uniform melt pool shape and size 

distribution which cannot be captured in a deterministic model. 

In Fig. 16, the variation of predicted LOF porosity with the volumetric 

energy density is presented and compared with experimental cases [63]. The 

LOF porosity decreases as the volumetric energy increases which means a 

better powder melting scenario. It should be noted that, experimentally 

measure porosity includes all mode of porosity; however, for the chosen VED 

ranges, the LOF porosity is the dominant mode and other mechanism of 

porosity formation is negligible. 

3.2. Defect diagnostics for part-scale applications of the PPB-DS model 

In this section, a part scale defects diagnostic application is demonstrated 

using the PPB-DS model. For the demonstration, National Institute of 

Standards and Technology (NIST) overhang part X4 [64,65] has been used. 

Same geometry and scan strategy used by NIST for the part has been used in 

our simulation. However, only 1/8 part of the sample is simulated due to the 

expensive thermo-fluid simulation in our PPBDS model. The goal of this is to 

show the defect diagnostic capability of the PPB-DS model for the surface 

roughness and LOF porosity for a part-scale level. 
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The NIST ‘‘Overhang Part X4’’ [64,65] is fabricated on the Additive 

Manufacturing Metrology Testbed (AMMT) from nickel superalloy Inconel 625 

(IN625). The part has a 9 mm × 5 mm × 5 mm rectangular prism shape with a 

45◦ overhang feature and a horizontal cylindrical cutout. Three different view 

orientations of the computer-aided design (CAD) part geometry is shown in 

Fig. 17. For demonstration purpose, 1/8 part is simulated and compared with 

experimental result qualitatively. The dimension of the 1/8 part is 4.5 mm × 

2.5 mm × 2.5 mm, as demonstrated by the red region in Fig. 17. To enhance 

the computational speed, we partitioned the entire 100 layers into distinct 

groups and executed them through a parallel high-performance computing. 

The process parameters of the overhang part are shown in Table 5. Fig. 18 

presents the surface finish comparison between the NIST experiment and our 

simulation. Both the experiment and stochastic simulation reveal an irregular 

and uneven surface when viewed from the front, as well as a rough surface 

with linear patterns along the top (aligned with the build direction). The 

proposed stochastic AM simulation is thereby shown to possess the capability 

of simulating additive manufacturing (AM) parts with defects. The part is 

divided into five regions to compute the surface roughness of the front surface 

(as shown in the orange dash lines in Fig. 17). The predicted roughness is 𝑆𝑎𝑠𝑖𝑚 

= 13.09 ± 3.01 μm, and it has been validated against the experimental 

roughness measurement 𝑆𝑎𝑒𝑥𝑝 = 14.44 ± 3.59 μm, with a difference of 9.3 

percent for the mean values. A distribution of the experimental surface 

roughness is shown with the PPB-DS simulation predicted distribution. Both 

the distribution matched closely for the mean and the standard deviation (see 

Fig. 19). 

The PPB-DS model can also predict the LOF porosity the NIST part. The 

predicted LOF porosity is (0.52±0.24)%. The experimental porosity information 

is not available for the NIST overhang part. 

3.3. Online monitoring and control applications of PPB-ML-ds model 

In PBF-LB/M process melt pool monitoring is a crucial aspect to maintain 

part quality and certification. By controlling the processing parameters such as 

laser power, speed, etc., desired melt pool geometries can be achieved which 

can ensure desired performance. However, this is a challenging inverse 

problem from the modeling perspective where we need to predict the 

processing conditions for a desired melt pool phenomena. For a control 

application, such predictions has to be made in real-time (in milliseconds) to 

control the process for immediate layer. The real-time prediction ability of the 

machine learning tool motivated us to further develop a machine learning-

based digital shadow model for control applications. 

In the machine learning model, we set up an inverse problem to predict 

heat parameters, namely, normalized energy density (NED), heat source 

radius, and heat source depth for inputs of melt pool width and depth. 

Specifically, we choose a DARNs model to capture the transient dynamics of 

the melt pool. 

Fig. 20 illustrates the relationship between the number of network epochs 

and the corresponding loss function of the optimization problem defined in 

Section 2.3. The loss function quantifies the likelihood across all training data 

while considering the influence of adjacent data points based on a windowing 

function. The training and testing data are generated with the physics-based 

 

Fig. 13. Scan strategies for the multi-track cases [39]. The start and end points of each track are marked with green and red dots, respectively, and the arrows show the scan paths of the laser, color-

coded from violet for the first track to yellow for the last. The colorbar values indicate the track numbers. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Table 5 
Process parameters of NIST overhang part. 

P (W) (mm/s) Layer 
Thickness (mm) 

Hatch 
Spacing (mm) 

Layer number Volumetric energy 

density 
(J/mm3) 

300 800 0.04 0.1 100 101.56 
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AM-CFD solver. As depicted in Fig. 20, the training process of our model 

demonstrates a notable reduction in loss over the course of the epochs. 

Initially, from epoch 0 to 120, a substantial decrease in loss is observed, 

followed by a gradual decline in the loss function. Remarkably, the model 

exhibits ongoing improvement on the evaluation datasets, persisting until 

epoch 2450. 

Furthermore, Fig. 20 provides sub-figures depicting a comparative analysis 

between the ground truth (represented by the blue line) and the network’s 

predictions (illustrated by the orange line) for the test data sets at various 

epochs (specifically, epochs 80, 500, and 2450). A clear trend emerges wherein 

the network’s predictions increasingly align with the ground truth as the 

training progresses. It is worth noting that the 𝑥 index of the subplots for these 

comparisons have been sorted by normalized NED in order to clearly represent 

the results. 

Fig. 20 illustrates the discrepancy between the ground truth and network 

predictions for the test data. The error between the ground truth and 

prediction is quantified using the following equation. It also demonstrates that 

the errors remain consistently below 5% for the test data at epoch 2450, 

employing a window size of 6. This highlights the model’s robust performance 

in accurately predicting the target values, even when considering variations in 

the input data. The equation for computing the relative error is as follows: 

|𝑋 

error = 𝑚 − 𝑋𝑒| (22) 

𝑋𝑒 

where 𝑋𝑚 denotes the output from our machine learning model, and 𝑋𝑒 refers 

to the ground truth data from the experimental measurements. 
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To assess the control proficiency of our machine learning model, we 

present the desired melt pool depth, which follows the Sigmoid function 

profile, and we maintain the expected melt pool width at fixed values. The 

expected aspect ratio of the melt pool, calculated as the width to depth ratio, 

is represented by the red line in Fig. 21. The corresponding heat source 

parameters were derived from the PPB-ML-DS model. These parameters were 

then fed into our physics-based AM-CFD solver to obtain melt pool 

dimensions. Following that, we derived the aspect ratio from the predicted 

dimensions, which is depicted by the blue line on the graph, and contrasted 

with our expected values. The heat source parameters generated by the 

network, such as NED, are illustrated by the black curve in Fig. 21. The 

controlled melt pool and width and depth are shown in Fig. 22. The model’s 

prediction time is 0.4 ms, facilitating its real-time control application. Notably, 

our actual results align closely with the desired melt pool dimensions. The 

melt pool control is particularly accurate during the steady stages (the initial 

and final segments of the curve). However, sudden changes in the desired melt 

pool dimension lead to a slight increase in discrepancies. Most of these 

deviations remain under 5%, with the largest discrepancy being 

6.7%. 

 

Fig. 14. (a) Quantitative comparisons of melt pool dimensions width (𝑊 ) and depth (𝐷) between experimental and stochastic simulations at the middle of the toolpath (x=1.5 mm) for six multi-track 

cases. The average and standard deviation of each quantity for different tracks are plotted (The error bar represents the standard deviation.) x label ‘‘Case number’’ stands for six multi-track cases. (b) 

Schematic image of the measurement of melt pool width (W) and depth (D). 

 

Fig. 15. Porosity prediction for multi-layer and multi-track simulation. 
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4. Discussion 

The purpose of using a stochastic model for PPB-DS is to offer a 

computationally efficient framework that statistically predicts potential 

defects in the AM process at a specimen scale, such as surface roughness 

 

Fig. 16. Validation between simulated porosity and experimental data [63] under different VEDs 

(unit: J∕mm3). The blue dots are experiment measurements. The error bars with red center 

represent the statistical measurement of simulated porosity, in which B1 and B2 have the same 

VED as the AFRL experiment. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

and porosity. Indeed, the fluctuations of the melt pool observed in the 

stochastic model might not always capture the real morphological changes 

due to the simplified physical model and underlying assumptions. 

Incorporating the time-dependency of melt pool evolution into the calibration 

could enhance the model’s predictive accuracy, which is not considered in the 

current work. The calibrated hyperparameters are taken as input for our AM-

CFD model, and the time dependency of the melt pool is considered as results 

of the transient CFD analysis only in an implicit manner. Nonetheless, we 

expect that calibrating hyperparameters using KL divergence will statistically 

align with the experimentally observed melt pool evolution. The statistical 

PPB-DS model, therefore, should propagate melt pool variations to other 

output quantities and enable statistical predictions. Furthermore, this work 

not focusing on the melt pool shape at a single time step but the overall 

statistical distribution. The validation test cases confirmed the prediction 

capability of our methodologies. In our future work, we will further explore 

the representation of melt pool time dependency in a stochastic model, 

possibly through a time correction matrix, to further refine the stochastic AM 

model. 

The PPB-DS model, with its stochastic calibration framework, significantly 

reduces computational effort. In general, multiple-parameter calibration 

poses a high-dimensional problem that necessitates numerous forward 

simulations to formulate the optimization problem. Standard approaches such 

as genetic algorithms [34] have previously been employed for high-

dimensional calibration problems, requiring the computational model to 

repeatedly evaluate a trial set of parameters. This results in a computationally 

expensive model. Conversely, the PPB-DS model constructs a powerful non-

intrusive data-driven TD model for the calibration scheme, accelerating the 

evolution of the trial set of parameters. TD decomposes an n-dimensional 

problem into a series of one-dimensional problems. It seeks an 𝐿2 projection 

of data to compute mode functions capable of reproducing or extrapolating 

the full parametric function. As a result, it serves as a potent surrogate model 

in the stochastic calibration scheme and significantly reduces the degrees of 

freedom and computational costs. Having access to more experimental data 

for calibration can lead to higher prediction accuracy. However, the availability 

of experimental data is limited, and there is a need for more open data 

sources, such as NIST AM Bench, to be contributed by the additive 

manufacturing (AM) community. 

In the current model, uncertainty in the additive manufacturing (AM) 

process is primarily assumed to stem from the parameters of the heat source 

model, which are modeled with Gaussian distributions. While the current 

model demonstrates good predictive performance for melt pool dimensions 

such as width and depth, it may lack the ability to accurately predict other 

crucial AM indicators, such as solid cooling rate, liquid cooling rate, and time 

above melting [55]. To address this limitation, a more intricate stochastic 

model, such as a Bayesian model, can be employed to characterize the 

uncertainty of the heat source model. Bayesian models have the advantage of 

incorporating prior information about the AM process, resulting in more 

precise estimations. 

The proposed methodology has been validated with experimental data 

from NIST and AFRL across a range of materials including IN625, IN718 [55], 

Ti-6Al-4V, and SS316L [12], demonstrating its efficacy in predicting melt pool 

dimensions, cooling rates, times above melting, surface roughness, and LOF 

porosities. This validation underscores the generalizability of our framework 

to different manufacturing processes and material systems, provided that 

stochastic parameters are appropriately tailored based on relevant 

experimental measurements. Specifically, the stochastic heat source model 

may remain consistent across alloys if melt pool measurements exhibit similar 

statistical behaviors. Otherwise, the heat source model should be recalibrated 

against the measurements for a new material. The model’s applicability 

extends to various geometries without recalibration, as geometric variations 

do not significantly impact the core physical processes. Similarly, for different 

toolpaths or build strategies, the existing calibrated parameters generally 

suffice unless significant deviations in defect characteristics necessitate 

adjustment. Future refinements may explore deeper integration of material-

specific dynamics to enhance the model’s predictive precision and reduce 

recalibration needs. 

The model implicitly accounts for machine variabilities through a 

stochastic heat source model calibrated against diverse melt pool 

measurements. While not directly targeting machine variability, the 

framework facilitates recalibration for different conditions such as gas flow 

rate, atmosphere, and material systems, ensuring adaptability across various 

manufacturing settings. With additional experimental data, our model could 

be able to consider effects like laser switch synchronization and mirror 

positioning. The flexibility of our stochastic heat source model allows for 

adaptation without recalibration across different alloys if melt pool data show 

similar statistical behaviors. Furthermore, the AM-CFD physics model can 

capture the effects of build orientations and cross-flow by leveraging 

consistent physical processes, which can be proved by our other project [55]. 

Variations in build orientation can have a minor impact on defect predictions, 

such as surface roughness, due to our statistical approach that averages 

defects across large surfaces. Besides, our model handles changes in melt pool 

width and depth, demonstrating its ability to integrate crossflow effects. This 

adaptability underscores the model’s potential to provide reliable predictions 

and reduce the need for recalibrations in diverse manufacturing 

environments. 

The PPB-ML-DS model enables us to make faster predictions for melt pool 

phenomena. It is important to note that the accuracy of this model depends 

on several factors, including the choice of machine learning techniques, the 

quality of the training data, and proper training procedures. In this regard, 

multi-fidelity data, derived from both experiments and simulations, can be 

valuable. However, when using experimental data, caution is advised due to 

the potential presence of noise, which can significantly impact the training 

process. Using a sophisticated machine learning model may inadvertently 

focus on fitting the noise rather than accurately representing the underlying 

physics of the melt pool. In such cases, the PPB-DS model can prove useful, as 

the data it provides tends to have less noise. However, it may lack certain 

aspects of the physics if not explicitly considered in the model. To address 

these challenges and find a balance between different datasets’ fidelity while 
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capturing the essential physics for improved prediction, a transfer learning 

approach can be a valuable tool. 

legend, the reader is referred to the web version of this article.) 

 

Fig. 18. Comparisons between experimental (a) and simulation (b) result of 1/8 part of Overhang 

Part X4. 

 

Fig. 19. Comparisons surface roughness distribution and histogram between experimental and 

simulation for 1/8 part of Overhang Part X4. 

5. Conclusions and future directions 

In summary, we have developed two digital shadow models, the PPB-DS 

and PPB-ML-DS, for the laser powder bed fusion of metals. These models have 

been demonstrated for stochastic melt pool prediction, defect diagnosis, 

online monitoring, and control applications. The PPB-DS model is a calibrated 

stochastic physics-based model capable of providing melt pool statistics and 

offering improved accuracy in predicting surface roughness and LOF porosity. 

In the stochastic calibration process, we have implemented a mechanistic 

reduced-order TD model with Markov Chain Monte Carlo (MCMC) sampling, 

which significantly reduces the calibration time. We have validated the PPBDS 

model using AFRL multi-layer and multi-track experiments and demonstrated 

its effectiveness in diagnosing defects in NIST overhang parts. The PPB-DS 

model provides statistically predicted surface roughness and porosity for part-

scale simulations, aligning closely with experimental distributions, all achieved 

at a considerably reduced computational cost while maintaining high-fidelity 

computational modeling. The PPB-ML-DS model is employed for controlling 

melt pool geometries, allowing real-time process control with rapid prediction 

capabilities. Ultimately, these modeling and simulation tools enable us to 

make part-scale predictions of defects and offer insights into control strategies 

for an effective defect mitigation plan and control strategy for the desired 

performance of the build parts. 

While the current method uses the high-fidelity AM-CFD model to simulate 

the laser powder bed fusion process, the efficiency of AMCFD is highly 

constrained by the total number of DoFs (DoFs) in the system. The DoFs 

increase exponentially as the number of elements in each domain increases. 

As a result, direct numerical simulation (DNS) of part-scale structures with AM-

CFD can be exorbitant. Furthermore, if material parameters, process 

parameters and boundary conditions are considered as extra-coordinates, the 

problem will be extremely expensive to solve due to curse of dimensionality. 

To solve these issues, the statistical space–time-parameter TD solver will be 

developed in the future as a highly accurate reduced-order method to solve 

spatial, temporal and parametric domains at the same time. It should be noted 

here we use TD solver as an intrusive method to directly solve PDEs, which is 

different from the data-driven TD we previously used in Section 2.2. Thanks to 

TD, the DoFs grow linearly with respect to the number of elements in each 

domain. As a result, we expect significant speedup for laser powder bed fusion 

process simulation. 

The current work represents the initial phase of our ongoing effort to 

develop robust process modeling tools for laser powder bed fusion. In our 

future endeavors, we plan to expand the stochastic calibration framework to 

encompass more complex scenarios, including multilayer and multi-track 

cases with intricate part geometries and tool paths. We have already 

manufactured a build plate containing 480 samples with varying part shapes, 

such as cylinders, squares, L-shapes, squares with holes, tapered L-shapes, and 

overhangs, all of which were closely monitored during the melt pool 

formation. This extensive dataset will play a crucial role in our future work, 

enabling us to further enhance the PPB-DS model and train the PPB-ML-DS 

model for controlling various melt pool parameters, including temperature, 

depth, width, aspect ratio, and their influence on resulting microstructure. To 

this aim, a robust process modeling and CA solver are required to be 

developed. 

In the future, we also plan to integrate our proposed stochastic process 

modeling framework with microstructure modeling tools, such as cellular 

automation (CA). The proposed stochastic calibration method in this paper 

only focuses on process modeling. By connecting process modeling with 

microstructure modeling using CA, we aim to propagate 

 

Fig. 17. Three view orientations geometry of overhang part (unit:mm), the red region defines the simulation part. (For interpretation of the references to color in this figure 
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Fig. 22. Controlled melt pool (a) width and (b) depth. 

the uncertainty from process modeling to microstructure level. Additionally, 

developing statistical process monitoring and control tools for metallic AM 

systems is also promising although online monitoring and control still remains 

to be a major challenge in AM field. For online control purposes, the proposed 

statistical tool can be further improved in terms of speed for fast online 

prediction. As a result, when combined with the help of online statistical 

online monitoring tools from in situ experiments for temperature, porosity, 

the proposed framework can be extended to an online statistical monitoring 

and control system. 
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Fig. 20. Loss during the optimization epochs. Each epoch denotes a full iteration over all the training data. 

 

Fig. 21. Comparison of the expected melt pool aspect ratio with the controlled one. The expected aspect ratio are traced by red curves, whereas the blue curves depict the simulations controlled by 

the heat source parameters produced by the DARNs model. The laser power controlling parameter NED is plotted in black. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Appendix A. Thermal-fluid analysis of PBF-LB/M process with stochastic 

heat source model 

To simulate the melted track geometries in the PBF-LB/M process, we 

perform a thermal-fluid analysis using a stochastic heat source model. This 

model is an extension of our well-tested AM-CFD code and takes into account 

the thermal analysis of the entire part while the melt pool region is modeled 

with fluid dynamics and heat transfer. The governing equations for mass, 

momentum, and energy conservation were derived to solve the thermal-fluid 

model [66]: 

 (𝜌∇ ⋅ 𝒖)𝑑𝑉 = 0 (A.1) 
𝛺𝑓𝑙 

( 

𝜕(𝜌𝒖) 

+ ∇ ⋅ 𝜌𝒖𝒖 − 𝜇∇2𝒖 + ∇𝑝 

𝛺𝑓𝑙 𝜕(𝑡) 

) 

2 

180𝜇(1 − 𝑓𝑙) 

𝜕(𝜌ℎ + 𝜌𝛥𝐻) 

 + ∇ ⋅ (𝜌𝒖ℎ + 𝜌𝒖𝛥𝐻 + ∇ ⋅ 𝒒) 𝑑𝑉 = 0 (A.3) 𝛺

 𝜕𝑡 

where 𝑡 is the time, 𝒖 is the velocity, 𝜇 denotes the viscosity, 𝑝 is the pressure, 

𝑇 is the temperature, 𝜌 is the density, and 𝛽 is the thermal expansion 

coefficient. 𝑔 is the acceleration of gravity and equals to 9.8 m/s2. 𝜌0 and 𝑇0 

are density and temperature of reference material. 𝐻 is the specific enthalpy, 

and can be divided into the sum of sensible heat ℎ and the latent heat of fusion 

𝛥𝐻. In this paper, 𝜇 is set as a constant, 𝑐 is the approximate primary dendritic 

spacing, which is set to 1 μm. 𝐵 is used to avoid division by zero and set as 10−6 

m. 𝛺𝑓𝑙 denotes the melt pool region and 𝛺 is the whole domain. 𝑓𝑙 is the 

volume fraction of the liquid phase, which is defined as: 

⎧𝑓𝑙 = 0 𝑖𝑓 𝑇 ≤ 𝑇𝑠 ⎪⎨𝑓𝑙 = 𝑇𝑇𝑙−−𝑇𝑇𝑠𝑠 𝑖𝑓 𝑇𝑠 < 𝑇 < 𝑇𝑙 (A.4) ⎪⎩𝑓𝑙 
= 1 𝑖𝑓 𝑇 ≥ 𝑇𝑙 

where 𝑇𝑠 and 𝑇𝑙 are the solidus and liquidus melting temperature of materials, 

respectively. 

Considering 𝒒 ̄ on the surface boundary, heat flex 𝒒 and its relation with 

temperature 𝑇 is 

𝒒 = −𝒌 ⋅ ∇𝑇 (A.5) 

where 𝒌 is the thermal conductivity tensor. In isotropic cases, 𝒌 = 𝑘𝑰 denotes 

the second-order identity tensor. The heat source and boundary condition can 

be written as: 

{ 

 𝒒̄𝑞𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑛 𝜕𝛺𝑞 

(A.6) 

 𝑇 = 𝑇 ̄ 𝑜𝑛 𝜕𝛺𝑞 

where ℎ𝑐 defines the convective heat transfer coefficient, 𝜎𝑠 is the Stefan–

Boltzmann constant, 𝜀 is the emissivity, 𝒏 is the normal direction of heat 

source surface. 

The heat source 𝑞𝑠𝑜𝑢𝑟𝑐𝑒 from the laser, is described by a cylindrical shape 

conjugated with Gaussian intensity distribution in AM-CFD program. There are 

many different heat source models that can be implemented such as 

cylindrical, semi-spherical, semi-ellipsoidal, conical, radiation heat transfer, 

ray-tracing, linear decaying, and exponential decaying, which is summarized 

comprehensively in Ref. [67]. The reason for the choice of cylindrical heat 

source is due to its ability to appropriately match that of experimental melt 

pool depth, width, cooling rates, and time above melting. There are also some 

physical foundations behind such cylindrical heat sources. The depth of the 

cylindrical heat source is based on the optical penetration depth (OPD). 

Depending on the powder particle size and distribution, the OPD varies. 

Usually, the OPD is defined as the depth where the intensity of the laser energy 

reduces. As the analysis under investigation is on a bare plate, the penetration 

of energy is assumed uniform along the OPD and related to the total amount 

of energy that is going into the system. Based on this evidence, the cylindrical 

heat source is chosen for the problem. The equation of the cylindrical heat 

source model has been discussed in Section 2 

The boundary condition for Eq. (A.2) at the top surface is equal to the main 

driving force (i.e. Marangoni force): 

𝜕𝑢𝑥 𝑑𝛾 𝜕𝑧 𝑑𝑇 

𝜏𝑥 = 𝜇 = ∇𝑥𝑇 (A.7) 

 𝜕𝑢𝑦 𝑑𝛾 

𝜏𝑦 = 𝜇 = ∇𝑦𝑇 (A.8) 

𝜕𝑧 𝑑𝑇 where 𝛾 is the surface tension, which depends on both 

temperature and materials, and 𝑑𝛾 is the temperature coefficient. 

𝑑𝑇 
The powder layer is treated as a continuous media, and it is distinguished 

from the substrate through its material properties. A consolidated factor 𝛼 

ranging from 0 to 1 is used to identify the material state. The value of 0 stands 

for the material is in the original powder state (no consolidation), while 1 

denotes a bulk state (fully consolidated). The definition of 𝛼 is: 

𝑇𝑝𝑒𝑎𝑘 − 𝑇𝑠 

𝛼 =  (A.9) 

𝑇𝑙 − 𝑇𝑠 

where 𝑇𝑝𝑒𝑎𝑘 is the local peak energy. 

+ 3 + 𝐵) 𝒖 − 𝜌0𝑔𝛽(𝑇 − 𝑇0)𝑰 

𝑐2(𝑓 
𝑙 

𝑑𝑉 = 0 (A.2) 

( )  
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The thermo-physical properties of IN625 are summarized in Table A.6. The 

densities at ambient and liquidus temperatures are used for solid and liquid 

densities, respectively. Temperature-dependent polynomials were used for 

the solid’s thermal conductivity and solid’s specific heat capacity. 

In order to consider the influence of the localized preheating from adjacent 

scan paths that leads to transient behavior of the vapor depression, the 

residual heat factor (RHF) is considered into the heat source model [71]. RHF 

at specific point 𝑖 is defined as: 

∑ (𝑅 − 𝑑𝑖𝑘 )2 (𝑇 − 𝑡𝑖𝑘 ) 

𝑅𝐻𝐹 𝑖 =  𝐿𝑘 (A.10) 

 𝑅 𝑇 
𝑘∈𝑆𝑖 

The scan path consists of discrete points determined by the simulation’s 

time step and the laser scan speed. Distance between the point 𝑖 and 𝑘, 

denoted as 𝑑𝑖𝑘, represents the preheating effect of point 𝑘 on 

 

Fig. A.23. A diagram illustrating a discrete scanning path along with the residual heat factor (RHF) 

[71]. 

point 𝑖. Similarly, the elapsed time since point 𝑘 was scanned is denoted as 𝑡𝑖𝑘. 

The normalized laser power at point 𝑘, denoted as 𝐿𝑘, is 1 when the laser is on 

and 0 when laser is off. Constants 𝑅 and 𝑇 have values of 2×10−4 and 2×10−3, 

respectively. These constants act as thresholds to exclude points that have not 

interacted with the laser for a sufficient amount of time. Points within the 

threshold belong to set 𝑆𝑖, defined as 𝑆𝑖 = {𝑡𝑖𝑘 < 𝑇 ∪ 𝑑𝑖𝑘 < 𝑅, 𝑤ℎ𝑒𝑟𝑒 𝑖 > 𝑘}. The 

RHF is normalized as 𝑅𝐻𝐹𝑅𝐻𝐹𝑐𝑖 𝑅𝐻𝐹 𝑐 equals to 𝑅𝐻𝐹 𝑖 at the middle part of the 

𝑅𝐻𝐹 = , where 

toolpath and 𝑅𝐻𝐹 is greater than 1 at the corner of the toolpath, as shown in 

Fig. A.23. 

Considering the influence of residual heat, the heat source parameters can 

be coupled with the RHF as: 

 𝑃 2

 (A.11) 

𝑑 = 𝑃1 RHF 

𝑉 

 𝑃 2,0.28)

 (A.12) 

𝜂 = max(𝑃2 RHF 

𝑉 

𝑃 

𝑟 

𝑏 = 𝑃3 𝑉 RHF2 (A.13) 

The three uncalibrated parameters 𝑃1,𝑃2,𝑃3 necessitate calibration. The 

methodology for calibrating these parameters is detailed in Section 2.2. 

Appendix B. Calibration methods 

There are multiple ways for optimal estimation of model parameters in 

probabilistic frameworks. For example, maximum likelihood estimation (MLE), 

maximum a-Posteriori (MAP) and Bayesian calibration [72]. Denote the 

stochastic AM model as 𝑚(𝒑,𝒔) where 𝒑 is the model parameters, 𝒔 can be the 

Table A.6 
Thermo-physical properties of IN625 and process constants [39,68–70]. 

Property/parameter Value  Property/parameter Value 

Solid density (kg m−3) 8440  Convection coefficient (W m−1 K−1) 10 

Liquid density (kg m−3) 7640  Latent heat of fusion (kJ kg−1) 290 

Powder density (kg m−3) 4330  Dynamic viscosity (Pa s)  7×10−3 

Solidus temperature (K) 1563  Thermal expansivity (1∕K)  5×10−5 

Liquidus temperature (K) 1623  Surface tension (N m−1)  1.8 

Solid specific heat capacity (J kg−1 K−1) 0.2441𝑇 +338.39 Marangoni coefficient (N m−1 K−1) −3.8×10−4 
Liquid specific heat capacity (J kg−1 K−1) 709.25  Emissivity  0.4 

Powder specific heat capacity (J kg−1 K−1) 0.2508𝑇 +357.70 Ambient temperature (K)  295 

Solid thermal conductivity (W m−1 K−1) 0.0163𝑇 +4.5847 Reference temperature (K)  295 

Liquid thermal conductivity (W m−1 K−1) 30.078  Preheat temperature (K)  353 

Powder thermal conductivity (W m−1 K−1) 0.995  Stefan–Boltzmann constant (W mm−2 K−4) 5.67×10−14 
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initial and boundary conditions. In  calibration processes, we have some 

observations from experiment and the goal is find the optimal parameters 𝒑∗. 

In MLE, the optimal parameters are obtained through maximizing  the 

likelihood functions : 𝒑∗ = argmax (𝒑) = argmax prob 𝐱𝑖 ∣ 𝒑 (B.1) 

 ∏ ( ) 

 𝒑 𝒑 𝐱𝑖∈  

In MAP, the optimal parameters are obtained through maximizing the 

posterior probability using the Bayes’ rule, where prob(𝒑) is the prior 

probability of parameters.  

 prob( ∣ 𝒑) prob(𝒑) 

prob(𝒑 ∣) =  (B.2) 

prob( ) 

The optimal parameter can be obtained by maximizing the nominator as: 
∗ ∏ ( ) 

𝒑 = argmax prob 𝐱𝑖 ∣ 𝒑 prob(𝒑) (B.3) 

 𝒑 𝐱𝑖∈  

As can be seen from the equation above, the difference between MLE and 

MAP is MAP leverages prior probabilities prob(𝒑). 

In both MLE and MAP, the calibrated parameter is a constant vector instead 

of a probability distribution. However, Bayesian calibration can obtain the 

distribution of the posterior probability of 𝒑 via analyzing the denominator in 

Eq. (B.2). However, the denominator is generally very expensive to compute if 

𝒑 is high dimensional and Monte-Carlo integration is required. 

In the proposed approach, the uncertainty of the stochastic AM model 

originates from the heat source parameters. As shown in Section 2.2, the 

model parameter 𝒑 of the stochastic AM simulation is a vector of heat source 

parameters: [𝜇1,𝜇2,𝜇3,𝐶11,𝐶22,𝐶33,𝐶12,𝐶23,𝐶13]. As a result, the calibration of our 

stochastic model aims to find optimal model parameter 𝒑∗ such that our 

stochastic model agrees with observations (evidence) from AFRL experiments. 

In the proposed approach, the discrepancy 𝐽 between the experimental and 

simulated melt pool geometry distributions is defined as the K-L divergence 

(KLD). The 

KLD is a measure of the gap between two distributions, and its lowest value 

indicates the optimal outcome of probability density estimation. As a result, 

the optimal parameter 𝒑∗ can be obtained by minimizing 

Eq. (B.4). 

∗ [ ] 

𝒑 
= 𝑎𝑟𝑔 𝑚𝑖𝑛 𝐽(𝑾 𝒔,𝑾 𝒆,𝑷) + 𝐽(𝑫𝒔,𝑫𝒆,𝑷) (B.4) 

It has been proved minimizing KLD is equivalent to maximizing the 

likelihood function in Eq. (B.1) [73]. As a result, our calibration method belongs 

to the family of MLE. The current calibration framework can be extended to 

MAP and Bayesian by incorporating the prior knowledge of heat source 

parameters. It should be highlighted that most of current Bayesian calibration 

methods suffer from curse of dimensionality if the dimension of parameter 𝒑 

is high. This poses challenges for integration in the denominator of Eq. (B.2) 

since sampling in a high dimensional space can be very expensive. However, 

since our methods use a separable TD reduced order model, we can easily 

circumvent curse of dimensionality by using TD. 

Appendix C. Supplementary data 

Supplementary material related to this article can be found online at 

https://doi.org/10.1016/j.addma.2024.104214. 
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