A preliminary study of neural signals of Motor
Imagery task of Arm movements through

Electroencephalography data Classification with
Machine Learning

Kazi Farzana Firoz
Department of Industrial and Systems
Engineering
North Carolina A& T State University
Greensboro, NC, USA
email address: kfiroz@aggies.ncat.edu
Abstract In this study, we aimed to observe whether the neural
signal of Motor Imagery (MI) tasks of different major and subtle
movements of an arm is possible to be distinguished through
classification analysis of Electroencephalography (EEG) so that they
can be used for controlling Robotic Arm or Exoskeletons in a humanoid
arm way. We also aim to observe whether this distinguishing procedure
can be done through live data using current technology, bypassing
lengthygreprocessing and costly computation of traditional EEG data
usage. We considered a total of 20 movements of one arm, including
severalmsubtle movements. We collected the EEG data while
participants were performing the MI task of these chosen arm
moven@nts upon instructed by visual presentation. For this preliminary
study, We performed analysis for only the dominant hand and used the
non-in@sive technique of EEG to collect neural signals from the
cortex. We performed multi-class classification analysis on the EEG
data to%identify the movements using the Machine-Learning (ML)
techniqf{!e. We used seven widely used supervised classification
algorith?us of ML to check accuracy through 10-fold cross-validation
and cotﬁpare their efficacy for this model. We used K Nearest Neighbor
(KNN)S'Random Forest (RF) classifier, Decision Tree (DT), Support
Vector Machine (SVM), Logistic Regression (LR), Linear Discriminant
Analyséﬁ (LDA), and Naive Bayes (NB) algorithms to find out the most
appropgrate one and found that KNN and RF can provide the highest
averaggaccuracy up to 99 percent. We also compared the model overall
(across3ll participants) as well as individual levels to compare which
way wegan achieve better accuracy.
Keygvords Human-Robot Interaction, Brain-Computer Interface,
Electro(%”ﬂcephalography (EEG), Motor Imagery (MI),
Maching Learning (ML)
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I. INTRODUCTION

Mac

Huélanoid Robots have become a topic of research interest
recently with the advancement of Robot technology. As human
and bi&-inspired designs and models are providing more and
more giccess for practical purposes, researchers are more
penchaglt to designing robots and machines that are more
similar§to humans or human-friendly animals (e.g., dogs),
which Belps
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to build better teaming with the human partner. Intelligent
robotic limbs can be considered as one kind of robot as they
have their own intelligent system. When it comes to the use of
an intelligent humanoid limb, such as automated robotic arms,
intelligent  prosthetics, exoskeleton augmentation, or
rehabilitation devices, the (human)user-system interaction
should be as smooth as possible. When we mention "smooth,"
we refer to ease of usage and avoiding heavy calculation, which
can lead to time lag and reduced complexity of the process.
Because, in most cases, these external robotic limbs are used by
vulnerable users or are in a challenging situation. Intelligent
machines are usually self-learning and thus can improve the
performance of the model by continuously re-assessing and
adding training data. This gives a huge opportunity for
BrainComputer Interface (BCI) technology to be integrated
with Human Robot (or Robotic limb) interaction. In the BCI
area, neural signals or brain signals are used to control the
external computerized systems by bypassing the use of external
communication techniques or peripheral nerves, such as
moving one's own limb, voice, or muscle movements.
Therefore, BCI technology offers a huge opportunity in
rehabilitation and distance operations. But to fully use the
potential of live learning (of the system) with continuous input
of data, the system needs to be fast and robust enough to cope
with the speed and complexity of human brain functions
because, in terms of neural signal, the brain generates huge
amounts of data in each milli(/micro) seconds. In this paper, we
are addressing the issue by investigating the less complex
process that bypasses the common preprocessing steps of neural
signals.

BCI (Brain Computer Interface) controlled health support
systems (e.g., wheelchairs), robotic arms, and exoskeletons,
which are more likely used by a single human for frequent and
prompt use, require fine-tuning with their human counterpart.
A number of ways are being delved into to improve the
communication between humans and machines in these kinds
of situations. Numerous techniques, including different
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physiological responses such as heart rate, muscle response,
and eye gaze signals, are being used to invent and improve these
human and humanoid machines. Using human brain signals to
operate machines or devices is comparatively a new domain

where bypassing limbs of extremities and peripheral nerves is
possible; therefore, it has the potential to offer many advantages
in rehabilitation fields and as assistive tools for people who
have a motor impairment. For BCI technology, one of the most
preferred techniques is Motor Imagery (MI), which is, as its
name indicates, an imagination task and thus does not need
external limbs or nerves.

Motor Imagery is a technique where a human imagines
moving limbs without actually moving them [1]. This has been
used as a method to improve performance in athletics and
rehabilitation by introducing neuroplasticity. One significant
benefit of motor imagery is that its performance can be
improved through training [2], [3]. The MI technique is
considered to have so much potential in this field that numerous
studies are addressing how the performance of MI can be
improved by employing different methods of training as well as
by different classification techniques. Also, it is found that the
neural phenomenon associated with actual motor movement
and imaginary movement is very similar, which makes it more
useful for controlling the robotic limbs. Motor imagery is
specifically associated with the imagination of motor functions
(that is, moving limbs), while there are other kinds of "Mental
Imagery" techniques where humans can imagine moving other
objects (other than their own limbs). One such technique can be
mentioned here, which is "Object Movement Imagery," which
is another kind of mental imagery. In this technique, people
imagine moving objects directly, such as imagining a box
moving from left to right direction. This technique is also being
investigated for controlling BCI devices.

To use Motor Imagery for controlling robots, we need to get
information about the "imagination," which means we have to
do "mind-reading" of the user. Though the term "mind-reading"
sounds really charming and exciting, it is not so straightforward
when it comes to using it in advanced technological situations,
such as commanding a robot or moving a wheelchair. To make
the "mind-reading" magic real, we have to go through quite a
number of technical procedures, and the outcome is not so
magical yet. Researchers are working to delve into the full
potential of using human brain signals for commanding robots
from every possible perspective, as it has so much usefulness in
the practical world. In the following sections, we will discuss
our approach to using brain signals to command humanoid
robotic arms. Our approach targets moving a whole robotic arm
using brain signals. We will use Motor Imagery for different
arm movements and collect the corresponding brain signal as
EEG data. Our goal is to develop a model suitable for practical
purposes in the future; keeping that in mind, we are considering
only brain signals, i.e., without the assistance of other
neurophysiological signal collection methods, which will help
to reduce complexity. We are also considering using this model
in a live scenario, where the brain data will be collected and
directly fed to the machine without further lengthy
preprocessing.

This study is a preliminary step toward that goal. Here, we
considered 20 major movements of one arm, including some

finer movements. We considered the dominant arm of the
participants here. We collected the motor imagery neural signal
of those movements as EEG data and used the machine learning
technique to observe whether these movements were
identifiable by the classification analysis by machine learning
algorithms and observed which algorithm provided better
accuracy. We observed the efficacy of the model for seven
popularly used algorithms for different instances, such as
overall and individual scenarios. We achieved satisfactory
accuracy and are considering this model for future study, as it
has great potential to command a humanoid robotic arm with
brain signals.

II. LITERATURE REVIEW AND BACKGROUND

Utilizing neural signals in brain-computer interface or
human-machine interaction is no longer an avant-garde topic.
Numerous studies are addressing this topic from different
perspectives and finding new discoveries that are presenting
new opportunities and, in turn, new challenges. There are
different ways to collect and image brain signals, but among
them, electroencephalography has become popular due to its
low cost, better resolution, better usability in laboratory
environments, and, of course, its non-invasive nature. In
particular, the advancement and commercialization of EEG
made it more possible to capture human brain signals with
better readability and classifiability [4], [5],[6], which made it
feasible to use it in HRI technology [7]. To achieve better
performance, sometimes EEG is combined with other modes,
such as Electromyography (EMG), for purposes like
rehabilitation; one such study was conducted for hemiplegia
patients with a fusion of EEG and EMG to control the Human-
exoskeleton and found up to 88.44% accuracy with lower limbs
[8]. Another study, including EEG and EOG
(Electrooculography), used human vision and coordination
along with motor-imagery evoked brain signals to manipulate
wheelchairs [9]. EEG data-driven robotic arm movement is also
under development, though in the preliminary stage [10].
Human brain signal is also used combined with a gaze-tracking
system to control semiautonomous robotic arm [11]. The use of
immersive virtual reality in neural applications provides a better
scope to explore human brain performance and, thus, better
interpretability to use the brain signal to connect with the
machine [12].

As brain signals are being used to command robots and
machines, Mental Imagery or Motor Imagery is considered to
have a high potential as a technique to command humanoid
robots or humanoid robotic limbs. Mental imagery can be
described as a multimodal simulation process by which the
human mind can experience perceptual information in the
absence of real sensory input [13]. In this domain of mental
imagery, Motor Imagery is another construct in which motor
movement is imagined using working memory without actually
executing a physical movement [14]. This process of Motor
Imagery is well accepted as a technique to practice and thus
enhance performance in athletics, clinical rehabilitation, and
music [1]. It also introduces neural plasticity, which allows the
human brain to reshape its structure in a better way as a result
of repeated and systematic experience [15]. Neural studies
through fMRI and TMS data found similarities in brain signals
and activation in motor imagery and motor execution;
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particularly, these studies found primary motor cortex
activation during motor imagery [13]. A graph theory study
found differences in ME and MI in terms of brain area
activation, such as, for Motor

Execution, the supplementary motor area is the main key node,
while for Motor Imagery, the right premotor area is the main
key node [16].

Due to the popularity of the EEG method, commercial
companies are coming forward to offer advanced and less
complex options for EEG devices. These advantages of EEG
have made it feasible to understand the brain even for novel and
complex cognitive issues like trust or decision-making [17],
[18]. Different studies are focusing on how EEG data
classification performance can be improved by different
preprocessing techniques; one such study developed a two-
stage filtering method to improve Ml-based EEG data by 3%
[18].

Along with understanding the brain, EEG signals are also
being used for more practical purposes, such as the
identification of mental commands through the classification of
neural signals collected by EEG. Researchers are working on
how classification accuracy can be improved in EEG data [19].
Best channel selection for data optimization and discomfort (of
the user) reduction is being considered for EEG data
classification of MI data; different kinds of features such as
band power, entropy, statistical features, and wavelet features
are delved into to find out the maximum performance measure
with reduced features and could reach up to 94.28% accuracy
for left and right hand MI classification using statistical feature
[20].

Motor-imagery-based EEG data has been considered for
rehabilitation purposes for the last few years. A study
considering features like band power and autoregressive
parameters of EEG data has been able to achieve 100%
accuracy for the classification of two functions- left and right-
after a few days of training of a tetraplegic patient [3]. Another
study conducted a comparison between neural signals of Motor
Imagery and Object Movement Imagery and found that
accuracy for two-class classification is higher with Object
Movement Imagery [21]. This can be fuel for thought if we can
properly classify motor imagery signals of movements of a
whole limb and use them to command humanoid robotic limbs;
maybe object movement imagery will provide better accuracy
for that task.

However, in our study, based on the current literature
findings, we are approaching the development of a system with
motor imagery for an arm addressing major movements,
including some finer movements. We observe the performance
of some machine learning algorithms; we investigate the
distinguishability of the movements; we also tap into whether
we can reduce the number of electrodes without losing
significant accuracy.

III. METHODOLOGY

A. Participants

The participants took part in the study in a voluntary
manner. Informed consent was taken from them as per IRB
approval, explaining the study. The participants had normal or

corrected to normal vision, were free of current or past
neurological and psychiatric disorders, and were in a stable
mental state during the study. The 5 participants' age ranges are
19 years to 59 years. Among them, three are male, and two are
female by their selfidentification. Two are South Asian, one is
Asian, one is Caucasian, and one is African American. All of
them acknowledged the right hand as their dominant hand.
They were free to quit participation at any point in the study.

B. Tools and technique

In this study, we used the Emotiv EpocFlex device, which
consists of a head cap that is to be fitted to the participant's head
to collect the neural signal and EmotivPro Software to record
the neural signal as Electroencephalography (EEG) data. We
used 30 channels that follow 10-20 systems of electrode
management, as shown in Fig 1(a), and used saline/gel solution
to maintain conductivity between the scalp and the electrode.
The data sampling rate was 128 Hz. The collected signal is
recorded as voltage in a microvolt unit for each sampling point.
The participants were seated on a chair in front of a computer
monitor, where visual instruction was presented on the screen,
as shown in Fig 1(b).

C. Procedure

The participants have clearly explained the procedure first.
There was a training session prior to the recording session so
that the participants could perform it properly during their
Motor Imagery Task.

, @) (b)

Fig. 1(a). Extended 10-20 electrodes system with highlighted
electrodes that are used in this study, (b) A participant is performing
Motor Imagery task according to instruction presented in front of him,
wearing an EEG head cap.

There is a total of 20 movements of one hand, as described
in Table I. The instructions for movements are presented on a
computer monitor screen in front of the participant with images
and text, examples shown in Fig 2. Each slide consists of
instructions for one movement. Each slide appears for 5
seconds, and then immediately, another instruction slide
appears.

TABLE 1. MOTOR IMAGERY TASK ID AND TEXT INSTRUCTION
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1D Movement Instruction (text form)

M1 Please lift your right arm at the side (90 degrees with body) as
shown in the picture, palm relaxed.

M2 please do grip (still arm extended)

M3 please release vour grip (still arm extended and palm relaxed)
M4 | please do arm flexion (palm relaxed)

M35 please do arm Extension (palm relaxed)

M6 please keep your wrist straight and palm facing upward (still
arm extended)

M7 | Please rotate vour wrist so the palm goes downward. facing.
Please rotate your palm so fingertips point upward, still palm

M8 .
facing downward.

MO Please rotate vour palm so fingertips point downward, still
palm facing downward.

M10 please put vour hand down straight at your side (palm
relaxed)

M1l please put your right hand up position as in the below

pictures, palm relaxed

M12 | please put your right hand down, hanging straight at your side
M3 | please put vour right hand forward at 90-degree, palm relaxed
M14 | please do grip (still arm forward)

please bring the fist to your chest (like you are pulling or
bringing something to you)

please extend your gripped arm forward as you are giving sth
away

M17 | Please release your grip.

MI8 | Please extend your arm to the side.

M19 | bring your arm forward

M20 | please bring your hand beside vou in a relaxed position

MI5

M16

There is no blank screen or break between consecutive
instruction slides. Participants are to remain in the same
position (according to the movement) until the next instruction
appears. Participants are asked about their dominant hand, and
instructions are given for that specific hand. In this study, all the
participants were right-handed. There are several training
sessions that consist of real movements to make sure the
participants understand the movement instructions properly and
can perform properly with their actual motor movement.

please do arm flexion (palm relaxed)

A
0

|

please do arm Extension (palm relaxed)

s A

Fig 2. Instruction slides for S4 and S5 movements are shown as
examples

Once the participants are able to do it properly in real
movement in the training session, the recording session is
conducted for the Motor Imagery tasks. In this recording
session, the participants were seated in front of the computer
monitor and asked to minimize their physical movement. Then,
they were instructed to perform the same movements using
their imagination without moving their physical arm in reality.
For each participant, two runs were conducted at the recording
session.

D. Data Analysis

After collecting the recording, we marked the signal data for
each movement in the associated timeframe. Then, we used the
data directly for classification analysis without any cleaning or
artifact removal. The purpose of avoiding cleaning and
preprocessing is to reduce computational cost and make the
processing time efficient, as well as to mimic the practical
world scenario, where a lengthy routine of preprocessing might
not be feasible in all situations. We considered each movement
as a class and all 30 channels as individual features. All the
sampled data in the corresponding timeframe is considered as
data points. Therefore, as we have 5 seconds of data for each
movement, two runs for each participant (and all the
movements), the sampling rate is 128 Hz (which means 128
data points for every second), we have 1280 data points for each
movement of each individual and for total 20 movements, we
have 25,600 data points for each participant and for all 4
participants we are to have 97,280 datapoints ideally. However,
due to some connection error issues during the recording
(which can happen in practical scenarios, too), we have a
smaller number of data points than that.

We used these datasets for classification analysis using the
Machine Learning technique. We have used six commonly used
algorithms, which are also considered the best algorithms of
ML, to compare their accuracy in our model; those six
algorithms are Support Vector Machine (SVM), K Nearest
Neighbor (KNN), Decision Tree (DT), Logistic Regression
(LR), Linear Discriminant Analysis (LDA) and Naive Bayes
(NB) [22]. We used 80% of the data for training and 20% of the
data for testing. 10-fold cross-validation is performed [23], to
calculate the average accuracy over the training dataset.

e Logistics Regression is a widely used tool for binary
classification scenarios. For multi-class problems, such
as ours, it performs classification for each class as a
binary problem, whether the outcome belongs to the
class or not [22].

e Linear Discriminant Analysis uses the technique of
feature selection and reduction before classification
analysis and has the limitation of being better suitable
for linearly solvable problems and normally distributed
datasets [22].

o KNN is a non-parametric approach that works well with
multi-class datasets and works well with noisy data.
That is why we consider this algorithm highly suitable
for our model, as our data is not preprocessed; it
certainly consists of some noise [22].

e The Decision Tree classifier can use different feature
subsets as well as decision rules for classification. It also
works well with multi-class and non-linear problems,
which makes it another potential good algorithm for our
datasets [22].

e Gaussian Naive Bayes algorithm assumes normal or
Gaussian distribution for the dataset. Still, the
nonexpensiveness nature encouraged us to explore this
algorithm's performance [22]. Which sometimes also
can be referred as Naive Bayes.
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o Support Vector Machine is another widely used algorithm
for supervised Machine Learning problems and is
suitable for multi-class problems. However, we had to
select the parameters to get better performance
carefully. As our focus of this study is not machine
learning, we are not discussing this in more detail [22].

e Random Forest (RF) is another algorithm suitable for
large datasets with noise, but it takes a longer time to
train; therefore, it needs to assess the context of interest
and whether it would fit the model [22].

We performed the analysis for all 5 participants individually
as well as for the overall dataset. As per our findings, as we
observed that the individualistic approach provides better
results, we delved more into individuals' data. We identified the
15 best features (i.e., channels) for all the participants and
compared the results to how much it affected the accuracy. To
identify the best channels, we used a Univariate Statistical test.

IV. RESULT

The classification analysis results are shown in Table II.

TABLE II CLASSIFICATION RESULT AS AVERAGE ACCURACY (IN %) OF 10FOLD
CROSS-VALIDATION OF THE SELECTED ALGORITHMS

All
Participant ;.
partici
ID pants P1 P2 P3 P4 P5
Gender(Age) F(27) M(19) | M(@22) F(59) M(30)
96.6
KNN 90.8 99.3 952 | 99.8 68.5
96.9
RF 90.9 98.9 94.6 | 99.7 71.9
80.1
SVM 59.5 98.8 879 | 945 78.1
78.3
DT 67.4 83.6 69.9 | 929 37.8
66.9
LR 21.7 63.2 523 | 47.1 57.0
42.8
LDA 21.0 57.1 49.1 | 45.1 56.5
84.7
NB 15.8 39.3 449 | 36.0 18.3

We can find that the K-Nearest Neighbor algorithm provides
the best accuracy in most cases, providing more than 90%
accuracy except for one participant (P4). Random Forest
classifier provides slightly better accuracy in the overall
scenario and for one individual scenario. The Support Vector
Machine algorithm provides good accuracy, too, in most cases,
though it is not as good for the overall scenario as it is for
individualistic scenarios. Another good algorithm is the
Decision Tree algorithm.

Four of the best algorithms are shown in the graph in Fig 3.

—m—Knearest Neigh e —E—Suppon Vscior Mac

Fig. 3. Visualization of four best algorithms

We also identified the best features (i.e., channels) for every
individual and performed classification analysis with the best
four algorithms as identified and stated in the previous section
with the best 15 channels the classification accuracy with the
15 best channels presented in Table III. The 15 best features of
each individual participant are presented in Table IV.

TABLE III THE CLASSIFICATION ACCURACY WITH THE 15 BEST CHANNELS OF

INDIVIDUAL SCENARIOS.

Pl P2 P3 P4 P35
KNN 89.5% 85.2% 99.6% 38.8% 94.5%
RF 87.1% 84.2% 99.7% 49.3% 95.1%
DT 66.7% 61.0% 92.6% 26.7% 79.7%
SVM 80.0% 66.9% 82.1% 50.9% 67.2%

V. DISCUSSION

From the result presented in the previous section, we can
notice that our aim for the classification of neural signals
elicited by Motor Imagery action corresponding to detailed arm
movements is well achieved in this preliminary study. In most
cases, we have been able to achieve more than 90% accuracy.
If we consider the individualistic approach, we can observe that
the classification accuracy can reach up to 99.8% or more than
95% in most cases. So we can state that as per this study,
individualistic approach provided better result than the
generalistic (using pooled data) approach. In one case, for P3,
we received fewer data points than others; the reason was a
connection interruption while recording the neural signal. As
the data is collected 128 times in a second, disruption of
connection for the split of a second can cause a loss of a number
of data points, which makes this system very sensitive. But we
can still achieve good accuracy with that dataset as presented.
This proves that in real-life scenarios, this method will be able
to handle minor connection issues.

TABLE IV SHOWS THE 15 BEST FEATURES OF INDIVIDUALS
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Pl P2 P3 P4 P5S
FC6 FC5 T8 P3 Fpl
02 P3 C3 Fp2 Fp2
T7 T8 P7 T7 C3
Cz 01 P3 PO10 I8
F3 Cz FCI ci FC2
CP5 PO9 CP5 CP6 CP5
CPI cP2 Cz FCS c4
P7 Pz Pz P8 CP6
FCI Fz T7 F3 Pz
C3 0z c4 o2 F8§
P8 F7 FC6 FCI T7
Fz P8 F8 Pz cpl
PO9 FC2 FC5 P4 02
CP2 Fpl P4 T8 cP2
FC5 C4 CP6 Fz FC6

In another case, for P4, the accuracy is not as good (still, it
is 78.1% with SVM) as others. It can be a subject of further
study whether any specific factor (e.g., age) is affecting the MI
performance of that individual. As previous studies found that
training can improve MI performance, we can expect that this
classification method will perform better once the MI
performance is improved. For the overall approach, we have
achieved 91% accuracy with KNN and RF, which can be
accepted as well enough, but to confirm that this model is robust
enough to provide this good accuracy for all cases, we will need
more training data collected from a good number of
participants. Also, to confirm that this model can provide nearly
100% accuracy for most individuals, we will need to test this
model with more individuals.

As we worked on reducing the number of channels, we
observed that the best channels are different across individuals.
And if we reduce the number of channels, we also lose some
accuracy. Yet, in some cases, we can achieve as good accuracy
as all the channels. As an example, we can say that for P3, we
barely lose any accuracy. However, what accuracy is reasonable
and what number of channels can be employed would totally
depend on the usage environment and scenario.

One strength of this approach is that it works for both
individualistic and generalistic scenarios, as this preliminary
study found. Therefore, we will be able to use this method
where individual team-up with machines is needed and
possible, such as exoskeleton and robotic arm, etc.; and we
can also use it where individual adjustment and training is not
possible by using previously trained model (with other
people's data).

This study is limited to only right-handed people and also
has only five participants, which is why we cannot draw any
solid conclusion here. Also, this study conducts a procedure
where people perform MI tasks followed by a training session
where they perform real hand movements. Further
investigation will be needed to ensure whether this training
session is providing better accuracy of classification, and if
so, what the alternate procedure for people who are unable to
perform real movements will be. Will this method perform as

well as this study for them? Further study is needed to confirm
these factors.

The extension of this study will investigate more about
this study with more participants; the future study will address
the above-asked questions as well as other factors to increase
the efficiency of the method, such as the possibility of further
reducing the number of electrodes to lessen the discomfort.
Also, it can be another topic of further study whether cleaning
and preprocessing data can increase the accuracy; if so,
whether it can be included in a live model.

VI. CONCLUSION

This preliminary study presents a strong potential to use
human brain signals of Motor Imagery to use humanoid limbs,
which can be beneficial for rehabilitation issues, medical
purposes, remote operation, and so on. To make this approach
more robust and usable for practical purposes, an extended
study is planned, including the selection of the reduced
number of electrodes without losing much accuracy, data
presentation, or stimuli for Motor Imagery. With the current
finding of this study and future plan, we hope to develop a
system to use the humanoid robotic arm by brain signal.
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