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Abstract In this study, we aimed to observe whether the neural 

signal of  Motor Imagery (MI) tasks of different major and subtle 

movements of an arm is possible to be distinguished through 

classification analysis of Electroencephalography (EEG) so that they 

can be used for controlling Robotic Arm or Exoskeletons in a humanoid 

arm way. We also aim to observe whether this distinguishing procedure 
can be done through live data using current technology, bypassing 

lengthy preprocessing and costly computation of traditional EEG data 

usage. We considered a total of 20 movements of one arm, including 

several subtle movements. We collected the EEG data while 

participants were performing the MI task of these chosen arm 

movements upon instructed by visual presentation. For this preliminary 

study, we performed analysis for only the dominant hand and used the 

non-invasive technique of EEG to collect neural signals from the 

cortex. We performed multi-class classification analysis on the EEG 
data to identify the movements using the Machine-Learning (ML) 

technique. We used seven widely used supervised classification 

algorithms of ML to check accuracy through 10-fold cross-validation 

and compare their efficacy for this model. We used K Nearest Neighbor 

(KNN), Random Forest (RF)  classifier, Decision Tree (DT), Support  
Vector Machine (SVM), Logistic Regression (LR), Linear Discriminant 

Analysis (LDA), and Naïve Bayes (NB) algorithms to find out the most 

appropriate one and found that KNN and RF can provide the highest 

average accuracy up to 99 percent. We also compared the model overall 
(across all participants) as well as individual levels to compare which 

way we can achieve better accuracy.   

Keywords Human-Robot Interaction, Brain-Computer Interface, 

Electroencephalography (EEG), Motor Imagery (MI),  
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I. INTRODUCTION  

Humanoid Robots have become a topic of research interest 
recently with the advancement of Robot technology. As human 
and bio-inspired designs and models are providing more and 
more success for practical purposes, researchers are more 
penchant to designing robots and machines that are more 
similar to humans or human-friendly animals (e.g., dogs), 
which helps  
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to build better teaming with the human partner. Intelligent 
robotic limbs can be considered as one kind of robot as they 
have their own intelligent system. When it comes to the use of 
an intelligent humanoid limb, such as automated robotic arms, 
intelligent prosthetics, exoskeleton augmentation, or 
rehabilitation devices, the (human)user-system interaction 
should be as smooth as possible. When we mention "smooth," 
we refer to ease of usage and avoiding heavy calculation, which 
can lead to time lag and reduced complexity of the process. 
Because, in most cases, these external robotic limbs are used by 
vulnerable users or are in a challenging situation. Intelligent 
machines are usually self-learning and thus can improve the 
performance of the model by continuously re-assessing and 
adding training data. This gives a huge opportunity for 
BrainComputer Interface (BCI) technology to be integrated 
with Human Robot (or Robotic limb) interaction. In the BCI 
area, neural signals or brain signals are used to control the 
external computerized systems by bypassing the use of external 
communication techniques or peripheral nerves, such as 
moving one's own limb, voice, or muscle movements. 
Therefore, BCI technology offers a huge opportunity in 
rehabilitation and distance operations. But to fully use the 
potential of live learning (of the system) with continuous input 
of data, the system needs to be fast and robust enough to cope 
with the speed and complexity of human brain functions 
because, in terms of neural signal, the brain generates huge 
amounts of data in each milli(/micro) seconds. In this paper, we 
are addressing the issue by investigating the less complex 
process that bypasses the common preprocessing steps of neural 
signals.  

BCI (Brain Computer Interface) controlled health support 
systems (e.g., wheelchairs), robotic arms, and exoskeletons, 
which are more likely used by a single human for frequent and 
prompt use, require fine-tuning with their human counterpart. 
A number of ways are being delved into to improve the 
communication between humans and machines in these kinds 
of situations. Numerous techniques, including different 
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physiological responses such as heart rate, muscle response, 
and eye gaze signals, are being used to invent and improve these 
human and humanoid machines. Using human brain signals to 
operate machines or devices is comparatively a new domain  

where bypassing limbs of extremities and peripheral nerves is 
possible; therefore, it has the potential to offer many advantages 
in rehabilitation fields and as assistive tools for people who 
have a motor impairment. For BCI technology, one of the most 
preferred techniques is Motor Imagery (MI), which is, as its 
name indicates, an imagination task and thus does not need 
external limbs or nerves.   

Motor Imagery is a technique where a human imagines 
moving limbs without actually moving them [1]. This has been 
used as a method to improve performance in athletics and 
rehabilitation by introducing neuroplasticity. One significant 
benefit of motor imagery is that its performance can be 
improved through training [2], [3]. The MI technique is 
considered to have so much potential in this field that numerous 
studies are addressing how the performance of MI can be 
improved by employing different methods of training as well as 
by different classification techniques. Also, it is found that the 
neural phenomenon associated with actual motor movement 
and imaginary movement is very similar, which makes it more 
useful for controlling the robotic limbs. Motor imagery is 
specifically associated with the imagination of motor functions  
(that is, moving limbs), while there are other kinds of "Mental 
Imagery" techniques where humans can imagine moving other 
objects (other than their own limbs). One such technique can be 
mentioned here, which is "Object Movement Imagery," which 
is another kind of mental imagery. In this technique, people 
imagine moving objects directly, such as imagining a box 
moving from left to right direction. This technique is also being 
investigated for controlling BCI devices.   

To use Motor Imagery for controlling robots, we need to get 
information about the "imagination," which means we have to 
do "mind-reading" of the user. Though the term "mind-reading" 
sounds really charming and exciting, it is not so straightforward 
when it comes to using it in advanced technological situations, 
such as commanding a robot or moving a wheelchair. To make 
the "mind-reading" magic real, we have to go through quite a 
number of technical procedures, and the outcome is not so 
magical yet. Researchers are working to delve into the full 
potential of using human brain signals for commanding robots 
from every possible perspective, as it has so much usefulness in 
the practical world. In the following sections, we will discuss 
our approach to using brain signals to command humanoid 
robotic arms. Our approach targets moving a whole robotic arm 
using brain signals. We will use Motor Imagery for different 
arm movements and collect the corresponding brain signal as 
EEG data. Our goal is to develop a model suitable for practical 
purposes in the future; keeping that in mind, we are considering 
only brain signals, i.e., without the assistance of other 
neurophysiological signal collection methods, which will help 
to reduce complexity. We are also considering using this model 
in a live scenario, where the brain data will be collected and 
directly fed to the machine without further lengthy 
preprocessing.  

This study is a preliminary step toward that goal. Here, we 
considered 20 major movements of one arm, including some 

finer movements. We considered the dominant arm of the 
participants here. We collected the motor imagery neural signal 
of those movements as EEG data and used the machine learning 
technique to observe whether these movements were 
identifiable by the classification analysis by machine learning 
algorithms and observed which algorithm provided better 
accuracy. We observed the efficacy of the model for seven 
popularly used algorithms for different instances, such as 
overall and individual scenarios. We achieved satisfactory 
accuracy and are considering this model for future study, as it 
has great potential to command a humanoid robotic arm with 
brain signals.  

II. LITERATURE REVIEW AND BACKGROUND  

Utilizing neural signals in brain-computer interface or 
human-machine interaction is no longer an avant-garde topic. 
Numerous studies are addressing this topic from different 
perspectives and finding new discoveries that are presenting 
new opportunities and, in turn, new challenges. There are 
different ways to collect and image brain signals, but among 
them, electroencephalography has become popular due to its 
low cost, better resolution, better usability in laboratory 
environments, and, of course, its non-invasive nature. In 
particular, the advancement and commercialization of EEG 
made it more possible to capture human brain signals with 
better readability and classifiability [4], [5],[6], which made it 
feasible to use it in HRI technology [7]. To achieve better 
performance, sometimes EEG is combined with other modes, 
such as Electromyography (EMG), for purposes like 
rehabilitation; one such study was conducted for hemiplegia 
patients with a fusion of EEG and EMG to control the Human-
exoskeleton and found up to 88.44% accuracy with lower limbs 
[8]. Another study, including EEG and EOG 
(Electrooculography), used human vision and coordination 
along with motor-imagery evoked brain signals to manipulate 
wheelchairs [9]. EEG data-driven robotic arm movement is also 
under development, though in the preliminary stage [10]. 
Human brain signal is also used combined with a gaze-tracking 
system to control semiautonomous robotic arm [11]. The use of 
immersive virtual reality in neural applications provides a better 
scope to explore human brain performance and, thus, better 
interpretability to use the brain signal to connect with the 
machine [12].  

As brain signals are being used to command robots and 
machines, Mental Imagery or Motor Imagery is considered to 
have a high potential as a technique to command humanoid 
robots or humanoid robotic limbs. Mental imagery can be 
described as a multimodal simulation process by which the 
human mind can experience perceptual information in the 
absence of real sensory input [13]. In this domain of mental 
imagery, Motor Imagery is another construct in which motor 
movement is imagined using working memory without actually 
executing a physical movement [14]. This process of Motor 
Imagery is well accepted as a technique to practice and thus 
enhance performance in athletics, clinical rehabilitation, and 
music [1]. It also introduces neural plasticity, which allows the 
human brain to reshape its structure in a better way as a result 
of repeated and systematic experience [15]. Neural studies 
through fMRI and TMS data found similarities in brain signals 
and activation in motor imagery and motor execution; 
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particularly, these studies found primary motor cortex 
activation during motor imagery [13]. A graph theory study 
found differences in ME and MI in terms of brain area 
activation, such as, for Motor  
Execution, the supplementary motor area is the main key node, 
while for Motor Imagery, the right premotor area is the main 
key node [16].  

Due to the popularity of the EEG method, commercial 
companies are coming forward to offer advanced and less 
complex options for EEG devices. These advantages of EEG 
have made it feasible to understand the brain even for novel and 
complex cognitive issues like trust or decision-making [17], 
[18]. Different studies are focusing on how EEG data 
classification performance can be improved by different 
preprocessing techniques; one such study developed a two-
stage filtering method to improve MI-based EEG data by 3% 
[18].  

Along with understanding the brain, EEG signals are also 
being used for more practical purposes, such as the 
identification of mental commands through the classification of 
neural signals collected by EEG. Researchers are working on 
how classification accuracy can be improved in EEG data [19]. 
Best channel selection for data optimization and discomfort (of 
the user) reduction is being considered for EEG data 
classification of MI data; different kinds of features such as 
band power, entropy, statistical features, and wavelet features 
are delved into to find out the maximum performance measure 
with reduced features and could reach up to 94.28% accuracy 
for left and right hand MI classification using statistical feature 
[20].  

Motor-imagery-based EEG data has been considered for 
rehabilitation purposes for the last few years. A study 
considering features like band power and autoregressive 
parameters of EEG data has been able to achieve 100% 
accuracy for the classification of two functions- left and right- 
after a few days of training of a tetraplegic patient [3]. Another 
study conducted a comparison between neural signals of Motor 
Imagery and Object Movement Imagery and found that 
accuracy for two-class classification is higher with Object 
Movement Imagery [21]. This can be fuel for thought if we can 
properly classify motor imagery signals of movements of a 
whole limb and use them to command humanoid robotic limbs; 
maybe object movement imagery will provide better accuracy 
for that task.  

However, in our study, based on the current literature 
findings, we are approaching the development of a system with 
motor imagery for an arm addressing major movements, 
including some finer movements. We observe the performance 
of some machine learning algorithms; we investigate the 
distinguishability of the movements; we also tap into whether 
we can reduce the number of electrodes without losing 
significant accuracy.   

III. METHODOLOGY  

A. Participants  

The participants took part in the study in a voluntary 
manner. Informed consent was taken from them as per IRB 
approval, explaining the study. The participants had normal or 

corrected to normal vision, were free of current or past 
neurological and psychiatric disorders, and were in a stable 
mental state during the study. The 5 participants' age ranges are 
19 years to 59 years. Among them, three are male, and two are 
female by their selfidentification. Two are South Asian, one is 
Asian, one is Caucasian, and one is African American. All of 
them acknowledged the right hand as their dominant hand. 
They were free to quit participation at any point in the study.  

B. Tools and technique  

In this study, we used the Emotiv EpocFlex device, which 
consists of a head cap that is to be fitted to the participant's head 
to collect the neural signal and EmotivPro Software to record 
the neural signal as Electroencephalography (EEG) data. We 
used 30 channels that follow 10-20 systems of electrode 
management, as shown in Fig 1(a), and used saline/gel solution 
to maintain conductivity between the scalp and the electrode. 
The data sampling rate was 128 Hz. The collected signal is 
recorded as voltage in a microvolt unit for each sampling point. 
The participants were seated on a chair in front of a computer 
monitor, where visual instruction was presented on the screen, 
as shown in Fig 1(b).  

C. Procedure  

The participants have clearly explained the procedure first. 
There was a training session prior to the recording session so 
that the participants could perform it properly during their 
Motor Imagery Task.  

  

Fig. 1(a). Extended 10-20 electrodes system with highlighted 

electrodes that are used in this study, (b) A participant is performing 

Motor Imagery task according to instruction presented in front of him, 

wearing an EEG head cap.  

There is a total of 20 movements of one hand, as described 
in Table I. The instructions for movements are presented on a 
computer monitor screen in front of the participant with images 
and text, examples shown in Fig 2. Each slide consists of 
instructions for one movement. Each slide appears for 5 
seconds, and then immediately, another instruction slide 
appears.   

TABLE I. MOTOR IMAGERY TASK ID AND TEXT INSTRUCTION  
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There is no blank screen or break between consecutive 
instruction slides. Participants are to remain in the same 
position (according to the movement) until the next instruction 
appears. Participants are asked about their dominant hand, and 
instructions are given for that specific hand. In this study, all the 
participants were right-handed. There are several training 
sessions that consist of real movements to make sure the 
participants understand the movement instructions properly and 
can perform properly with their actual motor movement.   

  

Fig 2. Instruction slides for S4 and S5 movements are shown as 

examples  

Once the participants are able to do it properly in real 
movement in the training session, the recording session is 
conducted for the Motor Imagery tasks. In this recording 
session, the participants were seated in front of the computer 
monitor and asked to minimize their physical movement. Then, 
they were instructed to perform the same movements using 
their imagination without moving their physical arm in reality. 
For each participant, two runs were conducted at the recording 
session.  

D. Data Analysis  

After collecting the recording, we marked the signal data for 
each movement in the associated timeframe. Then, we used the 
data directly for classification analysis without any cleaning or 
artifact removal. The purpose of avoiding cleaning and 
preprocessing is to reduce computational cost and make the 
processing time efficient, as well as to mimic the practical 
world scenario, where a lengthy routine of preprocessing might 
not be feasible in all situations. We considered each movement 
as a class and all 30 channels as individual features. All the 
sampled data in the corresponding timeframe is considered as 
data points. Therefore, as we have 5 seconds of data for each 
movement, two runs for each participant (and all the 
movements), the sampling rate is 128 Hz (which means 128 
data points for every second), we have 1280 data points for each 
movement of each individual and for total 20 movements, we 
have 25,600 data points for each participant and for all 4 
participants we are to have 97,280 datapoints ideally. However, 
due to some connection error issues during the recording 
(which can happen in practical scenarios, too), we have a 
smaller number of data points than that.  

We used these datasets for classification analysis using the 
Machine Learning technique. We have used six commonly used 
algorithms, which are also considered the best algorithms of 
ML, to compare their accuracy in our model; those six 
algorithms are Support Vector Machine (SVM), K Nearest  
Neighbor (KNN), Decision Tree (DT), Logistic Regression  

(LR), Linear Discriminant Analysis (LDA) and Naïve Bayes 
(NB) [22]. We used 80% of the data for training and 20% of the 
data for testing. 10-fold cross-validation is performed [23], to 
calculate the average accuracy over the training dataset.  

  Logistics Regression is a widely used tool for binary 
classification scenarios. For multi-class problems, such 
as ours, it performs classification for each class as a 
binary problem, whether the outcome belongs to the 
class or not [22].  

  Linear Discriminant Analysis uses the technique of 
feature selection and reduction before classification 
analysis and has the limitation of being better suitable 
for linearly solvable problems and normally distributed 
datasets  [22].  

 KNN is a non-parametric approach that works well with 
multi-class datasets and works well with noisy data. 
That is why we consider this algorithm highly suitable 
for our model, as our data is not preprocessed; it 
certainly consists of some noise  [22].  

  The Decision Tree classifier can use different feature 
subsets as well as decision rules for classification. It also 
works well with multi-class and non-linear problems, 
which makes it another potential good algorithm for our 
datasets [22].  

  Gaussian Naïve Bayes algorithm assumes normal or 
Gaussian distribution for the dataset. Still, the 
nonexpensiveness nature encouraged us to explore this 
algorithm's performance  [22]. Which sometimes also 
can be referred as Naïve Bayes.   
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 Support Vector Machine is another widely used algorithm 
for supervised Machine Learning problems and is 
suitable for multi-class problems. However, we had to 
select the parameters to get better performance 
carefully. As our focus of this study is not machine 
learning, we are not discussing this in more detail  [22].  

  Random Forest (RF) is another algorithm suitable for 
large datasets with noise, but it takes a longer time to 
train; therefore, it needs to assess the context of interest 
and whether it would fit the model  [22].  

We performed the analysis for all 5 participants individually 
as well as for the overall dataset. As per our findings, as we 
observed that the individualistic approach provides better 
results, we delved more into individuals' data. We identified the 
15 best features (i.e., channels) for all the participants and 
compared the results to how much it affected the accuracy. To 
identify the best channels, we used a Univariate Statistical test.   

IV. RESULT  

The classification analysis results are shown in Table II.  

TABLE II CLASSIFICATION RESULT AS AVERAGE ACCURACY (IN %) OF 10FOLD 

CROSS-VALIDATION OF THE SELECTED ALGORITHMS  

  
          

     
          

            
96.6  

            
96.9  

            
80.1  

            
78.3  

            
66.9  

            
42.8  

            
84.7  

  

We can find that the K-Nearest Neighbor algorithm provides 
the best accuracy in most cases, providing more than 90% 
accuracy except for one participant (P4). Random Forest 
classifier provides slightly better accuracy in the overall 
scenario and for one individual scenario. The Support Vector 
Machine algorithm provides good accuracy, too, in most cases, 
though it is not as good for the overall scenario as it is for 
individualistic scenarios. Another good algorithm is the 
Decision Tree algorithm.  

Four of the best algorithms are shown in the graph in Fig 3.   

  

Fig. 3. Visualization of four best algorithms  

We also identified the best features (i.e., channels) for every 
individual and performed classification analysis with the best 
four algorithms as identified and stated in the previous section 
with the best 15 channels the classification accuracy with the 
15 best channels presented in Table III. The 15 best features of 
each individual participant are presented in Table IV.  

TABLE III THE CLASSIFICATION ACCURACY WITH THE 15 BEST CHANNELS OF 

INDIVIDUAL SCENARIOS.  

 
V. DISCUSSION  

From the result presented in the previous section, we can 
notice that our aim for the classification of neural signals 
elicited by Motor Imagery action corresponding to detailed arm 
movements is well achieved in this preliminary study. In most 
cases, we have been able to achieve more than 90% accuracy. 
If we consider the individualistic approach, we can observe that 
the classification accuracy can reach up to 99.8% or more than 
95% in most cases. So we can state that as per this study, 
individualistic approach provided better result than the 
generalistic (using pooled data) approach. In one case, for P3, 
we received fewer data points than others; the reason was a 
connection interruption while recording the neural signal. As 
the data is collected 128 times in a second, disruption of 
connection for the split of a second can cause a loss of a number 
of data points, which makes this system very sensitive. But we 
can still achieve good accuracy with that dataset as presented. 
This proves that in real-life scenarios, this method will be able 
to handle minor connection issues.   

TABLE IV SHOWS THE 15 BEST FEATURES OF INDIVIDUALS  
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In another case, for P4, the accuracy is not as good (still, it 
is 78.1% with SVM) as others. It can be a subject of further 
study whether any specific factor (e.g., age) is affecting the MI 
performance of that individual. As previous studies found that 
training can improve MI performance, we can expect that this 
classification method will perform better once the MI 
performance is improved. For the overall approach, we have 
achieved 91% accuracy with KNN and RF, which can be 
accepted as well enough, but to confirm that this model is robust 
enough to provide this good accuracy for all cases, we will need 
more training data collected from a good number of 
participants. Also, to confirm that this model can provide nearly 
100% accuracy for most individuals, we will need to test this 
model with more individuals.    

As we worked on reducing the number of channels, we 
observed that the best channels are different across individuals. 
And if we reduce the number of channels, we also lose some 
accuracy. Yet, in some cases, we can achieve as good accuracy 
as all the channels. As an example, we can say that for P3, we 
barely lose any accuracy. However, what accuracy is reasonable 
and what number of channels can be employed would totally 
depend on the usage environment and scenario.  

One strength of this approach is that it works for both 
individualistic and generalistic scenarios, as this preliminary 
study found. Therefore, we will be able to use this method 
where individual team-up with machines is needed and 
possible, such as exoskeleton and robotic arm, etc.; and we 
can also use it where individual adjustment and training is not 
possible by using previously trained model (with other 
people's data).  

This study is limited to only right-handed people and also 
has only five participants, which is why we cannot draw any 
solid conclusion here. Also, this study conducts a procedure 
where people perform MI tasks followed by a training session 
where they perform real hand movements. Further 
investigation will be needed to ensure whether this training 
session is providing better accuracy of classification, and if 
so, what the alternate procedure for people who are unable to 
perform real movements will be. Will this method perform as 

well as this study for them? Further study is needed to confirm 
these factors.  

The extension of this study will investigate more about 
this study with more participants; the future study will address 
the above-asked questions as well as other factors to increase 
the efficiency of the method, such as the possibility of further 
reducing the number of electrodes to lessen the discomfort. 
Also, it can be another topic of further study whether cleaning 
and preprocessing data can increase the accuracy; if so, 
whether it can be included in a live model.  

VI. CONCLUSION  

This preliminary study presents a strong potential to use 
human brain signals of Motor Imagery to use humanoid limbs, 
which can be beneficial for rehabilitation issues, medical 
purposes, remote operation, and so on. To make this approach 
more robust and usable for practical purposes, an extended 
study is planned, including the selection of the reduced 
number of electrodes without losing much accuracy, data 
presentation, or stimuli for Motor Imagery. With the current 
finding of this study and future plan, we hope to develop a 
system to use the humanoid robotic arm by brain signal.  
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