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Abstract: This paper describes a sample partitioning approach to retain or reject samples from an initial 

distribution of stability maps using milling test results. The stability maps are calculated using distributions 

of uncertain modal parameters that represent the tool tip frequency response functions and cutting force 

model coefficients. Test points for sample partitioning are selected using either (1) the combination of 

spindle speed and mean axial depth from the available samples that provides the high material removal 

rate, or (2) a spindle speed based on the chatter frequency and mean axial depth at that spindle speed. The 

latter is selected when an unstable (chatter) result is obtained from a test. Because the stability model input 

parameters are also partitioned using the test results, their uncertainty is reduced using a limited number of 

tests and the milling stability model accuracy is increased. A case study is provided to evaluate the 

algorithm. 
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1. Introduction 

For discrete part production by milling, the optimum combination of spindle speed and axial 

depth is desired to maximize material removal rate (MRR) and minimize cost. To identify the 

optimal {spindle speed, axial depth} combination that provides maximum MRR without chatter (a 

self-excited vibration), analytical and numerical milling models are available [1]. These models 

have two primary inputs: (1) the tool tip frequency response function, FRF; and (2) a cutting force 

model that relates the cutting force to the commanded chip area using mechanistic coefficients. 

The tool tip FRF may be measured using tap testing, where an instrumented hammer is used to 

excite the tool tip and a linear transducer, such as a low-mass accelerometer, is used to measure 

the response [2–4]. The measured tool tip FRF can then be represented by a discrete number of 

vibration modes, each of which is described by a natural frequency, modal stiffness, and modal 

damping ratio. The cutting force model coefficients may be identified experimentally by measuring 

the cutting force for known milling parameters and determining the least-squares best fit 

coefficients using the force model and measured force [3,5]. 

The objective of this research is to increase milling stability model accuracy when the inputs 

are initially uncertain. Uncertainties in two inputs are considered: the modal parameters that 

represent the tool tip FRFs and the cutting force model coefficients. This paper is organized as 

follows. The sample partitioning approach is described that reduces uncertainty in the modal 

parameters and cutting force model coefficients using stability tests. Next, a case study is 

presented to evaluate the approach where the changes in initial model input distributions and 

corresponding stability boundaries are reported. Then, a discussion of the results is provided. 

Finally, conclusions are presented. 

2. Sample Partitioning 

A sample partitioning approach is proposed to reduce uncertainty in (1) the modal 

parameters that represent the tool tip FRF; and (2) the cutting force model coefficients using 

milling stability tests. The approach is to partition stability maps that agree with 
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sequential stability tests completed at selected {spindle speed, axial depth} combinations from 

those that disagree. The stability maps are generated using the zero-order frequency domain 

stability model [6]. Tests are performed using time domain simulation, where the time-delay 

differential equations of motion that represent the milling system are solved numerically [3,7–9]. 

Because the zero-order frequency domain stability model inputs (i.e., the modal parameters and 

cutting force coefficients) are uncertain, Monte Carlo simulation is applied to randomly sample 

distributions of the inputs to predict many potential stability maps [10–12]. Each stability map 

represents one sample that may or may not be the true map; all samples have an equal 

probability of being the true stability map. 

The selection of test points is based on the outcome of the previous test (i.e., stable or 

unstable/chatter behavior is exhibited). If the previous test was stable, the next test is selected 

where maximum expected MRR is obtained. To determine the test point in this case, the mean 

axial depth from all available stability maps (after partitioning based on the previous stable result) 

is identified for each spindle speed. The MRR is then calculated using the mean axial depth at the 

selected spindle speed. After repeating the calculation for each spindle speed, the {spindle speed, 

axial depth} combination that gives the maximum MRR is chosen as the next test point. 

If the previous test is unstable, the chatter frequency is determined by converting a time 

domain milling signal, such as force or displacement, to the frequency domain. In the frequency 

domain, chatter is identified when content appears at frequencies other than the tooth passing 

frequency, ftooth, and its multiples (harmonics); see Equation (1), where Ω is the spindle speed (rpm) 

and Nt is the number of teeth on the endmill. The chatter frequency, fc (Hz), is applied to calculate 

the next spindle speed, Ω (rpm), using Equation (2) [13]. By comparing Equations (1) and (2), it is 

observed that the spindle speed for the next test is selected by setting the new tooth passing 

frequency equal to the chatter frequency from the previous test. 

ΩNt 

ftooth =(1) 

60 

 Ω= 60fc (2) 

Nt 

After partitioning the maps based on stability tests (i.e., a binary stable or unstable result is 

obtained), those maps that agree with the tests are used to identify the most likely input values 

and reduce the associated uncertainty since there is a one-to-one correspondence between the 

maps and the modal parameters and cutting force model coefficients. The approach is 

summarized in Figure 1. 

 

Figure 1. Sample partitioning using stability testing. 

2.1. Frequency Domain Stability Model 

Altintas and Budak transform the dynamic milling equations into a time-invariant, radial 

immersion-dependent system [6]. They approximate the time-dependent cutting forces with an 

average value by expanding the time-varying coefficients of the dynamic milling equations, which 
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depend on the angular orientation of the tool as it rotates through the cut, into a Fourier series. 

They then truncate the series to include only the average component and obtain an analytical 

solution for the limiting axial depth of cut to avoid chatter as a function of spindle speed. As noted, 

the two primary inputs to the analysis are the tool tip FRFs in the x (feed) and y directions and the 

coefficients for the mechanistic cutting force model. 

2.2. Modal Parameters 

The tool tip FRFs can be represented as a discrete number of vibration modes using modal 

analysis, where each mode is represented as a single-degree-of-freedom spring– mass–damper 

system [2,3,14–16]. The dynamic behavior of the spring–mass–damper system may be described 

using a natural frequency, fn (Hz), modal stiffness, k (N/m), and modal damping ratio, ζ (-). Any 

number of modes may be modeled using this approach. 

2.3. Cutting Force Model 

The resultant cutting force, F, and the tangential, Ft, and normal, Fn, direction components 

are shown in Figure 2 [3,5,17–20]. The expressions for Ft and Fn are given by Equations (3) and (4), 

where kt and kn are the cutting force coefficients, b is the axial depth (chip width), and h is the chip 

thickness. 

Ft = ktbh (3) 

Fn = knbh (4) 

 

Figure 2. Cutting force model. 

2.4. Sample Partitioning Algorithm 

The sample partitioning algorithm is described by Figure 3, which displays many potential 

stability boundaries (i.e., the family of blue curves) generated by Monte Carlo simulation. Consider 

the test at the {spindle speed, axial depth} pair labeled {Ωu, bu}. As indicated by the u subscript and 

the red ×, the test result is unstable. The stability boundaries are partitioned using this test result. 

Those that predict an unstable result (agree) are separated from those that predict a stable result 

(disagree). Only those sample boundaries that agree are retained. This means that all boundaries 

with a limiting axial depth greater than bu are eliminated from the distribution. 

Next, consider the test at {Ωs, bs}. As indicated by the s subscript and the green circle, the test 

result is stable. In this case, all boundaries with a limiting axial depth greater than bs at Ωs are 

retained (agree) and boundaries with a limiting axial depth less than bs at Ωs are eliminated 

(disagree) from the distribution. The sample partitioning is repeated sequentially for all tests, both 

stable and unstable, to refine the initial distributions of not only the stability maps, but also the 

modal parameters and cutting force model coefficients. Specifically, each map that disagrees with 

the test result and is eliminated also eliminates the corresponding values of the modal parameters 

and cutting force model coefficients used to produce that map. This enables the initial distributions 

of these uncertain parameters (stability model inputs) to be refined and, subsequently, the 

uncertainty in the parameters and stability predictions to be reduced. 
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Figure 3. Sample partitioning algorithm description. A red × indicates an unstable result and a green circle 

indicates a stable result. 

2.5. Case Study 

To evaluate the proposed sample partitioning algorithm and test selection approach, a 

numerical study was completed where the stability maps were predicted using the frequency 

domain stability model [6] and test data were collected using the results of milling time domain 

simulation [3]. For the milling stability tests, a 12.7 mm diameter, four-tooth endmill with a 30 deg 

helix angle and uniform teeth spacing was selected. The radial depth was 3 mm and the feed per 

tooth was 0.1 mm for the down milling, x-direction milling tests; the spindle speed and axial depth 

were varied to partition the predicted stability maps using the test results (labeled stable or 

unstable). The true modal parameters are provided in Table 1; two modes were selected and the 

FRFs were symmetric in the x and y directions. The true cutting force coefficients are also listed in 

Table 1; these are representative of a 6061-T6 aluminum workpiece material. 

Table 1. True values for stability model inputs. 

 Modal Parameters  

fn1 (Hz) 1000 fn2 (Hz) 1200 

1 (N/m) 

5 × 106

 
2 (N/m) 

7 × 106 

 Cutting force model coefficients  

kt (N/mm2) 700  

kn (N/mm2) 200  

Stability was determined using the x-direction displacement predicted by the time domain 

simulation. The time-dependent displacement was converted to the frequency domain and the 

chatter frequency was identified, if present. As noted, the frequency content from each test was 

compared to the tooth passing frequency (i.e., the spindle speed multiplied by the number of 

flutes) and its integer multiples (harmonics). A test was labeled as stable if content appeared only 

at these frequencies. A test was labeled as unstable if frequency content was observed at a 

different frequency and the chatter frequency was recorded for the selection of the next test point 

[21]. 

For the two-mode system, chatter can occur either in the 1000 Hz mode or the 1200 Hz 

depending on which portion of the stability boundary is exceeded. This is demonstrated in Figure 

4, where it is observed that exceeding the stability boundary to the right of the peak at 15,620 

rpm results in a different chatter frequency than exceeding the boundary to the left [22]. 
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Figure 4. Variation in chatter frequency with spindle speed and portion of the stability boundary that is 

exceeded. The stability map is shown at the bottom, where blim is the limiting axial depth to avoid chatter, 

and the insets show the frequency-dependent magnitude of the x-direction displacement for the two 

spindle speeds. The tooth passing frequency and its harmonics are identified by the open red circles. 

The initial uniform distributions for the Monte Carlo simulation were defined in the range 

from 90% of the input variable true value, T, to 130% of T, or U(0.9T, 1.3T) [23]. This approach was 

selected so that (1) each sample was equally likely to represent the true input value and (2) the 

true value was not located at the center of the distribution range. See Figures 5 and 6, where the 

horizontal axis ranges from 0.9T to 1.3T in each case and the true value is identified. 

The six modal parameter distributions were randomly sampled to generate the symmetric 

tool tip FRFs; see Equation (5), where f is the excitation frequency (Hz) and Fx is the cutting force 

in the x direction [3]. The cutting force coefficient distributions were then sampled and combined 

with the tool tip FRFs to generate 1 × 104 stability maps using the zero-order frequency domain 

model [6]. The eight input parameters were assumed to be uncorrelated. The distributions of 10 

FRFs and stability maps are shown in Figure 7 to observe the variation obtained from the Monte 

Carlo simulation. 

X  



J. Manuf. Mater. Process. 2024, 8, 109 6 of 15 

 Fx k  k  

 

Figure 5. Initial distributions of (a) fn1; (b) k1; (c) ζ1; (d) fn2; (e) k2; and (f) ζ2. The histograms include 50 bins 

with 1 × 104 samples, so there are approximately 200 samples per bin. The magenta lines identify the true 

values. 

Given the 1 × 104 initial stability maps obtained by Monte Carlo simulation, the first test point 

was selected using the maximum MRR criterion [24]. The result is displayed in Figure 8, where the 

spindle speed is 17,547 rpm and the axial depth is 3.5082 mm. This maximum expected MRR test 

point is marked by a white square. The stability map obtained from the true model input values 

(Table 1) is also indicated by a magenta curve. This is provided as a reference because it is not 

known at the time of testing and, therefore, does not influence the test point selection. 
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Figure 6. Initial distributions of (a) kt and (b) kn. The magenta lines identify the true values. 

 

Figure 7. Distributions of 10 (a) FRFs and (b) stability maps. The real and imaginary parts of the FRF and the 

stability map obtained from the true values in Table 1 are identified by magenta curves. 

 

Figure 8. Initial distribution of stability maps (blue curves) and first test point (white square). The stability 

map obtained from the true model input values is included as the magenta curve. 

The first test point identified in Figure 8 is unstable. The corresponding chatter frequency of 

1002.4 Hz is identified in Figure 9. The sample partitioning result is displayed in Figure 10, where 

it is observed that all stability boundaries below the test point are eliminated. In Figure 8, 5933 

samples remain after partitioning. The new distributions in fn1 and fn2 are displayed in Figure 11. 

Because chatter occurred in the 1000 Hz mode, the fn1 distribution accuracy was increased 

significantly (i.e., those natural frequencies that were far from the true value were effectively 

eliminated). No appreciable change was observed for the other six distributions (i.e., they 

remained approximately uniform). 
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Figure 9. Frequency content of the x-direction tool displacement for the {17,547 rpm, 3.5082 mm} test 

point. The test is unstable and the chatter frequency is 1002.4 Hz. 

 

Figure 10. Remaining stability maps (5933) after the unstable test at {17,547 rpm, 3.5082 mm}; the test 

point is marked by the red ×. The second test point is identified by a white square. 

 

Figure 11. Distribution of 5933 remaining natural frequencies after the first test: (a) fn1 and (b) fn2. The 

horizontal axis ranges are identical to Figure 5. 

Given the unstable test and corresponding chatter frequency of 1002.4 Hz, the spindle speed 

for the second test was calculated using Equation (2). Specifically, Ω=  = 15,036 rpm. The 

mean limiting axial depth at the selected spindle speed from the remaining stability maps was 

2.8313 mm. The second test point is marked by a white square in Figure 10. 

This test and partition sequence was repeated 14 times until only a single stability map 

remained. The test points, number of samples remaining after each test, and the chatter frequency, 

if present, are reported in Table 2. The corresponding mean values of the stability model input 
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parameters after each test are provided in Table 3 and displayed in Figure 12 as a function of the 

test number. 

Table 2. Testing and sample partitioning results. 

 

 Test Spindle Speed Number of Samples Result (Stable or Chatter Frequency 
Axial Depth (mm) 

 Number (rpm) Remaining Unstable) (Hz) 

1 17,547 3.5082 5933 U 1002.4 

2 15,036 2.8313 2284 S - 

3 15,652 4.3462 996 S - 

4 15,823 5.7928 579 U 990.6 

5 14,859 4.1948 202 S - 

6 15,356 6.3741 117 U 1297 

7 19,455 1.3065 61 U 1002.3 

8 15,035 5.2794 39 U 1287 

9 19,305 1.1535 17 U 1001.4 

10 15,021 4.8373 9 U 1289.5 

11 19,343 1.0234 6 S - 

12 15,496 5.6584 5 S - 

13 15,497 5.7520 2 U 1306.6 

14 19,599 1.0305 1 S - 

  

Table 3. Mean values of the stability model input parameters after each test. 

 

Test 
Number fn1 (Hz) k1 × 106 ζ1 (-) fn2 (Hz) k2 × 106 ζ2 (-) kt (N/mm2) 

(N/m) (N/m) 

kn 
(N/mm2) 
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 Figure 12. Mean values of the stability model input parameters as a function of test number 

(a) natural frequency (b) stiffness (c) damping ratio (d) cutting force coefficients. The true values are 

indicated by the horizontal dashed lines. 

The sample portioning progression over all 14 tests is summarized in Figure 13. It is seen how 

the limited test results quickly refine the initial stability map distribution. The final map (blue) in 

panel 14 closely resembles the stability map (magenta) determined using the true values from 

Table 1. The final values of the stability map input parameters are listed in Table 4. A comparison 

to the true values is provided. 

Table 4. Comparison of stability model inputs after sample partitioning (14 tests) and the true values. 

Stability 

Model Input 
Post-Partitioning True Percent 

Difference 
fn1 

(Hz) 
1015.1 100

0 
1.51 

1 (N/m) 5.5233 × 106 5 × 

106 
10.4

7 

2 (Hz) 1143.1 
120

0 −4.74 
2 (N/m) 8.3542 × 106 7 × 

106 
19.3 
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kt 

(N/mm2

) 

872.75 700 24.7 

kn 

(N/mm2

) 

232.71 200 16.4 
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Figure 13. Sample partitioning results for each test. The remaining maps after each test are shown where the 

green circle or red × indicates if the test was stable or unstable. The next test point is identified by a square 

(white or black to provide the best visibility). The numerals 1–14 indicate the test number. 

3. Discussion 

As seen in Figure 13, the sample partitioning approach effectively reduces the initial 

1 × 104 stability maps to a single sample using only 14 tests. Furthermore, the remaining map 

accurately represents the map obtained from the true model input values. In practice, however, 

all 14 tests may not be required. The user could elect to discontinue testing at any point using an 

appropriate stopping criterion. The criterion could be based on the remaining number of samples, 

changes to the distribution, or test cost, for example. In an ad hoc sense, a review of Figure 13 

suggests that test 8 or test 9 could serve as a stopping point since the basic shape of the stability 

boundary has been identified. 

A second observation is that the chatter frequency-based spindle speed selection enabled 

the domain to be explored and the uncertainty to be reduced. For the case study, the two-mode 

system caused the chatter frequency to vary between spindle speeds near 15,000 rpm and 19,000 

rpm (see Table 2 and Figure 13). The presence of the two modes did not limit the algorithm 

efficiency. 

An interesting result was obtained for test 12 as shown in Figure 14. Although the selected 

test point exceeded the stability boundary defined by the true stability model input parameters, 

the test point was stable as determined by time domain simulation. This highlights that 

approximations are applied to obtain the time-invariant, radial-immersiondependent milling 

model [6]. Although the model is generally accurate, discrepancies with tests may occur. The 

sample partitioning therefore serves to select those stability maps that best agree with the test 

results, not necessarily those that are generated from input parameters that best match the true 

values. This is emphasized by the results in Table 4, where disagreement between the final and 

true stability model inputs is observed, but the final stability map provides good agreement with 

both the test results and the stability map obtained from the true input values. 

 

Figure 14. Point 12 from Table 2 is identified by a black square. Although the result is predicted to be 

unstable using the stability map predicted from the true model inputs (magenta), it was observed to be 

stable in the time domain simulation, which provided the test result for this study. 

After testing is concluded, the remaining stability maps represent the model for parameter 

selection. If multiple maps are retained (e.g., 39 samples would remain if testing was discontinued 

after test 8), then multiple values for each model parameter would remain. The mean values of 

the modal parameters and cutting force model coefficients at each spindle speed could be 

calculated, for example, and then used to define the stability map. The final milling parameters 

would then be based on the user’s risk preference. 
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Most likely, combinations of {spindle speed, axial depth} at the stability boundary would not be 

selected since it is understood that uncertainty remains, even though it has been reduced by the 

testing and sample partitioning. It is important to note that the stability map input values 

identified by testing and sample partitioning can be applied to other milling conditions. For 

example, the milling direction could be switched from down- to up-milling and the radial depth 

could be changed. In this way, the method is generalizable to other milling conditions. 

To evaluate the parameters from Table 4, the time domain simulation results are compared 

for up milling with a 5 mm radial depth of cut and 0.15 mm feed per tooth. Recall that the model 

was developed using a 3 mm radial depth of cut for down milling with a 0.1 mm feed per tooth. To 

choose the {spindle speed, axial depth} combinations for testing, the stability map was calculated 

using the frequency domain model [6] and post-partitioning input values from Table 4. Tests were 

then performed at the spindle speed corresponding to the maximum allowable axial depth from 

the predicted stability map. 

A comparison of the results using the true and post-partitioning values is shown in Figure 15, 

where the test spindle speed was 15,663 rpm. The axial depths were 3 mm and 4 mm. The stability 

map for the true values (magenta) predicts the 3 mm axial depth to be stable and the 4 mm axial 

depth to the unstable. The post-partitioning stability map (blue) predicts both axial depths to be 

stable; the local peak in this map is located at {15,663 rpm, 4.41 mm}. The left inset shows that the 

3 mm axial depth is stable for both parameters set. Due to the larger cutting force coefficients for 

the post-partitioning results, the corresponding x-direction force, Fx, is larger (blue). Because the 

force is larger, the x-direction vibration response (blue) is also larger. The circles represent the 

once-per-tooth samples. Because they repeat from one tooth passage to the next, forced vibration 

is present and the cutting conditions are stable [25]. 

  

Figure 15. Comparison of results using the true (magenta) and post-partitioning (blue) values. 

The right inset shows that the 4 mm axial depth is unstable for both parameters set. Due to 

the larger stiffness values for the post-partitioning results, the behavior is only marginally unstable 

(blue). This is demonstrated by the variation in the force profile from one tooth to the next, but 

only a small variation in the once-per-tooth samples. The behavior for true values exhibits fully 

developed chatter (magenta). 
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4. Conclusions 

This paper described a milling modeling approach that implemented sample partitioning to 

retain or reject samples from an initial distribution of stability maps using milling test results. 

Because the stability model input parameters are also partitioned using the test results, their 

uncertainty is reduced using the test results and the milling stability model accuracy is increased. 

In a case study, the stability maps were calculated from distributions of uncertain: (1) modal 

parameters that represent the tool tip frequency response functions, and (2) cutting force model 

coefficients. Test points were selected based on the previous test result. If the previous test was 

stable, the combination of spindle speed and mean axial depth from the remaining samples that 

provides the high material removal rate was selected. If the previous test was unstable, the spindle 

speed for the next test was calculated using the chatter frequency, where the tooth passing 

frequency was set equal to the chatter frequency. The mean axial depth at that spindle speed was 

then selected to fully define the test point. 

A case study validated the approach. For a selected milling system, defined by a two-mode 

symmetric frequency response function and mechanistic cutting force model, initial uniform 

distributions for the stability model input parameters were reduced from 1 × 104 samples to a 

single final sample in only 14 tests. The remaining stability map provided good agreement to the 

stability map produced from the true model input values. A discussion was provided that explored 

stopping criteria, multiple chatter frequencies, disagreement between the time domain simulation 

(used for testing here) and the frequency domain stability model, and final milling parameter 

selection given the reduced uncertainty model after testing, including generalizability. 
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