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A R T I C L E I N F O A B S T R A C T 

As new AI technologies such as Large Language Models (LLM) quickly evolve, the need for enhancing generalpurpose LLMs 

with physical knowledge to better serve the manufacturing community has been increasingly recognized. This paper presents a 

method that tailors GPT-3.5 with domain-specific knowledge for intelligent 
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aircraft maintenance. Specifically, aircraft ontology is investigated to curate maintenance logs with encoded component 

hierarchical structure to fine-tune GPT-3.5. Experimental results demonstrate the effectiveness of the developed method in 

accurately identifying defective components and providing consistent maintenance action recommendations, outperforming 

general-purpose GPT-3.5 and GPT-4.0. The method can be adapted to other domains in manufacturing and beyond. 

© 2024 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

 
1. Introduction 

Over the past few years, the field of Artificial Intelligence (AI) has 

undergone a significant transformation enabled by Large Language Models 

(LLMs). Examples include the Large Language Model Meta AI by Meta [1], 

Generative Pre-trained Transformer 3 (GPT-3) and the subsequent ChatGPT 

(GPT-3.5) and GPT-4.0 by OpenAI [2], and Bidirectional Encoder 

Representations from Transformers (BERT) and Gemini by Google [3]. These 

models are predominantly built upon the transformer architecture and 

drastically advanced the field of Natural Language Processing (NLP) by 

enabling models to be pre-trained on extensive datasets from the Internet, and 

to learn language structures and nuances without explicitly labelled data 

through self-supervised learning [4]. After meta-training, the pre-trained models 

can be aligned to human preferences to enhance their relevance and 

applicability across a broad spectrum of language-based tasks. 

As an example, LLM models are widely recognized for their text-generation 

capabilities, making them advantageous in content creation from drafting news 

articles to generating creative fictions. Their proficiency in understanding 

languages has been leveraged for developing chatbots and virtual assistants, 

enhancing customer services and interactive experiences [5]. With a foundation 

in deep learning, LLMs have shown effectiveness in tackling diverse, complex 

tasks such as information extraction, summarization, and coding assistance 

[6,7], further highlighting their pivotal in accelerating the evolution of general-

purpose AI. 

With their increasing popularity, the limitations of LLMs in performing 

domain-specific tasks, such as predictive maintenance and 
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automation, have also been increasingly noted. This is because LLMs are 

trained on broad-based datasets that do not necessarily cover specialized 

technical data pertinent to manufacturing [8]. The lack of domain knowledge in 

general-purpose LLMs can lead to difficulty in proper contextual 

understanding, which is a prerequisite for correctly interpreting the nuances of 

domain-specific terminologies and processes. For example, in predictive 

maintenance, if a machine contains multiple components with the same part 

name (e.g., Seal), these components must be correctly associated with the 

machine’s hierarchical structure to avoid confusion for reliable performance 

analysis and maintenance decisions. This requires the LLMs to understand the 

component hierarchical structure and correctly interpret the maintenance logs. 

The issue is exacerbated by the fact that the description of the same component 

recorded in the maintenance logs may vary from worker to worker, leading to 

erroneous analysis and maintenance recommendations based on the reasoning 

of general-purpose LLMs. To bridge this gap, using domain knowledge to fine-

tune LLMs has emerged as a solution. 

The process of fine-tuning involves training the existing LLMs on datasets 

that are curated for the target domain, allowing maximizing domain-specific 

performance while retaining the reasoning capability of the initial model. For 

example, BERT has been fine-tuned with climate data, resulting in 

ClimateBERT that has improved BERT’s performance in climate-related tasks 

[9]. Also, GPT has been tailored to KAI-GPT, a language model for transparent, 

accurate, and safe customer banking service [10]. 

This study investigates LLMs for manufacturing by fine-tuning GPT3.5 and 

converting it to an intelligent maintenance assistant for aircraft (see Fig. 1). 

Towards this end, the ontology of aircraft structure is first investigated to curate 

the original maintenance logs into conversational data. The goal is to alleviate 

the constraints of typical LLM fine-tuning 
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Fig. 1. Ontology-integrated tuning of LLM for predictive maintenance. 

approaches from overly reliant on structured data that limits model 

generalizability and adaptivity. The conversational data is used as inputs to fine-

tune the GPT-3.5 model, achieving contextual understanding of components’ 

hierarchical structure. This sets the technological basis for pinpointing defective 

components and recommending consistent maintenance actions. Results from a 

case study using aircraft have shown that the finetuned GPT-3.5 model 

outperforms both the general-purpose GPT-3.5 and GPT-4.0 models in effectively 

identifying defective components, thereby better supporting predictive aircraft 

maintenance. The developed method holds significant promise beyond aviation, 

extendable to various manufacturing scenarios where maintenance and 

production systems share similar challenges and requirements. 

2. Ontology-integrated tuning of LLM 

Central to the developed approach is the ontology of the aircraft, which plays 

a crucial role in enabling maintenance log curation and domain-specific fine-

tuning of the LLMs. 

2.1. Aircraft structure ontology 

To realize ontology-integrated LLM tuning as illustrated in Fig. 1, a tree 

structure representing a segment of an aircraft’s ontology is developed, with a 

top-level concept of the ontology shown in Fig. 2. This hierarchical organization 

is crucial to curating the maintenance logs and enhancing LLMs’ comprehension 

of aircraft-specific issues, for two reasons. First, it addresses ambiguity when the 

same type of components appears in different branches of the structure. For 

instance, the component “Seal” is found not only in the engine cylinder baffle but 

also in the engine cylinder intake. Through the process of learning to describe 

each component within its hierarchical context, LLMs acquire the ability to 

distinguish and correctly identify these components, thereby resolving the 

ambiguity. Second, the structure aids in reducing the impact of inconsistencies 

commonly found in maintenance logs that are created by multiple workers. 

Depending on their training, personal choice, and company preference, variation 

may occur when the logs are entered. A common cause is the use of abbreviated 

descriptions, which omits the full hierarchical chain of a component. For 

example, references to "engine" and "cylinder" are often left out when 

mentioning related 

 

Fig. 2. Aircraft ontology in a hierarchical structure. 

sub-components. This leads to inaccurate interpretations by LLMs when not 

trained with knowledge of the hierarchical structure, and consequently, 

unreliable analysis. Furthermore, incorporating additional domain-specific 

relationships like component-wear mechanism-maintenance triplets into the 

LLM is envisioned to enable causal reasoning underlying the maintenance 

recommendation. For this purpose, comprehensive domain knowledge 

collection is needed and will constitute part of future research. 

2.2. GPT fine-tuning 

In this work, GPT-3.5 (containing 175 billion parameters) instead of the 

state-of-the-art GPT-4.0 (containing 1 trillion parameters) is selected as the 

foundational LLM model for fine-tuning, due to its demonstrated performance 

in general-purpose NLP task handling and user-friendly access to its fine-

tuning resources through OpenAI’s Application Programming Interface (API) 

[11]. Central to the fine-tuning effort is the preparation of domain-specific data 

and iterative refinement of the fine-tuning hyperparameters such that the 

tailored optimization of GPT-3.5 ensures reliable maintenance actions. 

Finetuning GPT-3.5 requires the training data to be prepared in a specific 

conversational format where each conversation sample contains three 

messages, and each message specifies a role (system, user, or assistant) and 

the related content. For example, the system’s message specifies the purpose 

of fine-tuning, while the user’s message simulates the questions/messages 

asked by human users. Finally, the assistant’s message indicates the responses 

generated by the fine-tuned model. In Fig. 3a conversation sample used for 

model fine-tuning is illustrated. 

 

Fig. 3. Sample fine-tuning system, user, and assistant message. 

Domain-specific knowledge is typically organized in a tree-structure and 

has been extracted from historical data using a similarity measure [12]. In the 

presented work, historical maintenance logs have been explored to provide 

the basis for developing an aircraft ontology, which is subsequently verified 

by domain experts. The ontology is then incorporated into the training data 

for fine-tuning GPT-3.5 by curating the original maintenance log into a 

conversational format, where a new content “component of interest” that 

pinpoints the hierarchical structure of the defective component is added, as 

illustrated in Fig. 3. The ground truth “component of interest” is first generated 

from “in-order traversal” algorithm-based depth-first search operations [13], 

which compare the problem description to full hierarchical ontology structure. 

The outcome is then examined by a domain expert to remove the ambiguities. 

Compared to other options of incorporating ontology into training data, e. 

g., decomposing the entire ontology into conversational forms to indicate the 

hierarchical structural organization of the components and mixing them with 

maintenance log conversations, the presented approach is advantageous in 

implicitly integrating ontology into conversation samples that iteratively 

reinforce the GPT-3.5 model’s understanding of the aircraft structural 

composition. 

The process of fine-tuning GPT-3.5 primarily utilizes a variant of the 

cross-entropy loss function, which is used in training LLMs based on the 

transformer architecture. In the context of language models, the cross-entropy 

loss function quantifies how well the model’s predicted probability 

distribution over the next word qðxÞ aligns with the actual word pðxÞ that 

appears in the training data: 

H pð ; qÞ ¼ X p xð Þlogq xð Þ ð1Þ 

x 



One-hot encoding is used for calculating the true distribution pðxÞ when 

fine-tuning GPT-3.5. The actual next word is set with a probability of 1 

whereas all other words are set with a probability of 0. Three hyperparameters 

for GPT-3.5 fine-tuning are provided by the OpenAI API: number of epochs, 

learning rate, and batch size. Selection of proper values of these 

hyperparameters depends on the size and quality of the fine-tuning dataset, as 

well as the complexity of the domain-specific applications. Due to the lack of 

advanced options for fine-tuning and overfitting mitigation such as early stop 

of model tuning, these hyperparameters are empirically determined during the 

fine-tuning process in this study. 

2.3. Evaluation of fine-tuned LLM model 

To evaluate the quality of the fine-tuned GPT-3.5 in extracting the 

component of interest from the problem description, the Intersection over 

Union (IoU) score is used, which quantifies the degree of word matching 

between the ground truth and model response. The IoU score is suited for 

evaluating structured outputs when constrained to a limited number of 

vocabularies. The IoU score ranges from 0 to 1, where 0 indicates complete 

irrelevancy of the extracted information and 1 denotes perfect extraction. 

To quantify the performance of the fine-tuned GPT-3.5 in predicting 

recommended maintenance actions given a problem description, the 

semantics of the output must be considered, rather than relying on word 

matching only. The potential large variation in describing the same actions 

makes it difficult to predetermine a constrained list of candidates. To 

overcome this challenge, BERTScore is investigated. BERTScore leverages 

the contextual embedding from BERT [3], which is a special transformation 

that maps language vocabularies into a highdimensional space such that 

semantically similar words are clustered together while words with little 

semantic similarity are separated [14]: 
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where C and G can be intuitively considered as the list of words in the 

predicted text and the reference ground truth, respectively. BERTemb is the 

function to compute the embedding of each entry in C and G. 

cos½BERTembðcÞ; BERTembðgÞ refers to the cosine similarity between the 

embeddings from the predicted and the reference texts. P and R are analogous 

to precision and recall, which average the maximum cosine similarities for 

each entry in the predicted text over the entries in the reference text, and vice 

versa, leading to the final calculation of BERTScore in (4). 

In addition to the BERTScore, BLEU (Bilingual Evaluation Understudy) 

[14] is considered for evaluating how the LLM-recommended maintenance 

action follows similar vocabulary as the referenced ground truth. BLEU 

examines the frequency of n-grams (sequential groups of n words), which 

appear in both the prediction and the ground truth. The metric calculates a 

score based on the matches of the n-grams as [15]: 

BLEU ¼ BPexp
 
Xwn logpn! ð5Þ N 
n¼1 

where pn is the ratio of the number of n-grams in the predicted text that 

matches the ground truth to the total number of n-grams in the predicted text, 

wn is the weight assigned to each n-gram (set uniformly in this study), and N 

denotes the maximum length of n-grams used. Brevity Penalty (BP) is 

designed to penalize predicted texts that are too short compared to the 

reference, ensuring that shorter texts don’t unfairly receive higher scores due 

to a higher likelihood of n-gram matching [15]. BERTScore and BLEU range 

from 1 to 1 and 0 to 1, respectively, with higher values indicating higher 

similarity between the predicted and the reference texts. 

3. Experimental evaluation and results 

The developed method is evaluated using a publicly available aviation 

maintenance dataset [16]. The dataset contains 6169 maintenance logs, each is 

represented by a triplet of problem identification number (IDENT), problem 

description (PROBLEM), and maintenance action that has been taken (ACTION) 

(see Fig. 3 for an example). Upon examination, significant repetitions are 

identified after the first 2000 logs. As a result, the first 2000 logs were chosen for 

this study. Among the 2000 logs, 1500 were randomly selected to fine-tune the 

GPT 3.5 model while the remaining 500 logs were reserved for testing. 

Considering the generative nature of GPT, each testing log is evaluated five times 

when evaluating the performance of the fine-tuned GPT3.5 in terms of 

randomness in its response generation. 

3.1. GPT 3.5 fine-tuning 

Restricted by the fine-tuning API, only three hyperparameters (i. 

e., epoch, batch size, and learning rate) are tuneable, and no advanced training 

mechanisms (e.g., early stopping) are provided. Iterative hyperparameter 

refinement has been conducted, and a combination of default batch size, learning 

rate and one training epoch has yielded the most satisfactory performance, as 

shown in Fig. 4. Beyond the 1st training epoch, severe overfitting is observed, as 

reflected in the divergence between training and validation losses. The fast 

convergence indicates that the structure ontology as formulated in this study are 

relatively straightforward to learn by GPT-3.5, which was pretrained using a large 

dataset. This highlights the advantage of leveraging a general-purpose LLM for 

specific problem-solving in manufacturing. 

 

Fig. 4. Progression of GPT-3.5 fine-tuning. 

3.2. Results and discussions 

To evaluate the performance of the fine-tuned GPT-3.5 on generating domain-

specific responses to airplane maintenance logs, three LLMs are compared: fine-

tuned GPT-3.5 (GPT-3.5 FT), non-fine-tuned GPT-3.5 (GPT-3.5 NFT), and non-

fine-tuned GPT-4.0 (GPT-4.0 NFT). Shown in Fig. 5 are sample responses from 

these 3 LLMs. Each response contains two parts: component of interest and 

recommended maintenance actions. It is noted qualitatively that GPT-3.5 FT 

outperforms both GPT-3.5 NFT and GPT-4.0 NFT in general, especially in 

identifying which component the maintenance log was referring to. This is 

 

Fig. 5. Sample responses from GPT-3.5 NFT, GPT-4.0 NFT, and GPT-3.5 FT, and their evaluation 

scores. 
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because the non-fine-tuned GPTs use the keywords directly from the original 

problem description to output their responses. For example, they extracted “Right 

Engine #4 Air Baffle” from the problem description “RIGHT ENG#4 AIR 

BAFFLE IS CRACKED” only, whereas GPT-3.5 FT is able to trace back the 

entire hierarchical structure for improved accuracy in defective component 

identification. 

To quantitively assess the LLMs’ performance, IoU score is first calculated to 

evaluate the models’ response in determining component of interest. 

Subsequently, BERTScore and BLEU are computed to quantify the models’ 

performance on recommending actions. Considering the generative nature of the 

LLM models, each metric is computed five times to evaluate the consistency and 

variation of the models’ responses. 

As shown in Fig. 6(a), GPT-3.5 FT achieves a mean IoU score of 

0.88, whereas the IoU scores of GPT-3.5 NFT and GPT-4.0 NFT are 0.43 and 

0.40, respectively. The good match with the ground truth achieved by GPT-3.5 is 

particularly noteworthy given the more sophisticated architecture of GPT-4.0 as 

compared to GPT-3.5. The result further highlights the importance of fine-tuning 

of generalpurpose LLM models in adaptation to manufacturing applications. 

 

Fig. 6. Comparison among GPT-3.5 FT, GPT-3.5 NFT, and GPT-4.0 NFT: a) IoU scores for 

extraction of component of interest, b) BERTScore and BLEU for prediction of recommended 

maintenance actions. 

The effectiveness of model fine-tuning is further substantiated by the mean 

BERTScore and BLEU of GPT-3.5 FT for predicting recommended actions, as 

seen in Fig. 6(b). The mean BERTScore of 0.46 indicates robust consistency 

between the predicted actions and reference ground truth in terms of the text 

semantics, whereas the BLEU metric, at 0.20, reflects a reasonable n-gram 

overlap with the reference texts. In comparison, both non-fine-tuned models have 

shown less favorable predictions for recommended maintenance actions. 

The small error bars observed across all three models indicate a high level of 

consistency in the models’ performance across the five different tests conducted. 

This aspect is critical to predictive maintenance for manufacturing, where 

reliability and repeatability of performance are essential. Given the consistency 

demonstrated by all model variants, the development of LLM architectures 

provides a potentially stable foundation for predictive maintenance tasks. 

4. Conclusions 

This paper introduced an innovative approach to transforming general-

purpose LLMs into a domain-specific tool for intelligent aircraft maintenance. 

Incorporating an aircraft structure ontology into the fine-tuning process of GPT-

3.5 enhances the model’s performance in identifying aircraft components of 

interest and recommending maintenance actions. The enhanced performance of 

the fine-tuned GPT-3.5 over GPT-3.5 and GPT-4.0 in maintenance log analysis, 

e.g., 0.88 vs. 0.43 and 0.40 in identifying components of interests, not only 

demonstrates the feasibility of tailoring LLMs for enhanced operations in 

manufacturing because of the similarities in maintenance activities across 

different domains, but also sheds light on their continued evolution and roader 

applications in other fields of interest. 

Future research will explore fine-tuning of LLMs with expanded domain 

knowledge (including both ontology and domain-specific relationships and 

attributes as represented by knowledge graphs), and further investigate topics 

such as data bias and interpretability to facilitate transfer learning and domain 

generalization across multiple industrial sectors and more effectively integrate 

LLM into the existing digital manufacturing platform for more 

comprehensive and versatile AI-enhanced applications. 
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