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As new Al technologies such as Large Language Models (LLM) quickly evolve, the need for enhancing generalpurpose LLMs
with physical knowledge to better serve the manufacturing community has been increasingly recognized. This paper presents a
method that tailors GPT-3.5 with domain-specific knowledge for intelligent

aircraft maintenance. Specifically, aircraft ontology is investigated to curate maintenance logs with encoded component
hierarchical structure to fine-tune GPT-3.5. Experimental results demonstrate the effectiveness of the developed method in
accurately identifying defective components and providing consistent maintenance action recommendations, outperforming
general-purpose GPT-3.5 and GPT-4.0. The method can be adapted to other domains in manufacturing and beyond.

© 2024 The Author(s). Published by Elsevier Ltd on behalf of CIRP. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Over the past few years, the field of Artificial Intelligence (AI) has
undergone a significant transformation enabled by Large Language Models
(LLMs). Examples include the Large Language Model Meta Al by Meta [1],
Generative Pre-trained Transformer 3 (GPT-3) and the subsequent ChatGPT
(GPT-3.5) and GPT-4.0 by OpenAl [2], and Bidirectional Encoder
Representations from Transformers (BERT) and Gemini by Google [3]. These
models are predominantly built upon the transformer architecture and
drastically advanced the field of Natural Language Processing (NLP) by
enabling models to be pre-trained on extensive datasets from the Internet, and
to learn language structures and nuances without explicitly labelled data
through self-supervised learning [4]. After meta-training, the pre-trained models
can be aligned to human preferences to enhance their relevance and
applicability across a broad spectrum of language-based tasks.

As an example, LLM models are widely recognized for their text-generation
capabilities, making them advantageous in content creation from drafting news
articles to generating creative fictions. Their proficiency in understanding
languages has been leveraged for developing chatbots and virtual assistants,
enhancing customer services and interactive experiences [5]. With a foundation
in deep learning, LLMs have shown effectiveness in tackling diverse, complex
tasks such as information extraction, summarization, and coding assistance
[6,7], further highlighting their pivotal in accelerating the evolution of general-
purpose Al

With their increasing popularity, the limitations of LLMs in performing
domain-specific tasks, such as predictive maintenance and
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automation, have also been increasingly noted. This is because LLMs are
trained on broad-based datasets that do not necessarily cover specialized
technical data pertinent to manufacturing [8]. The lack of domain knowledge in
general-purpose LLMs can lead to difficulty in proper contextual
understanding, which is a prerequisite for correctly interpreting the nuances of
domain-specific terminologies and processes. For example, in predictive
maintenance, if a machine contains multiple components with the same part
name (e.g., Seal), these components must be correctly associated with the
machine’s hierarchical structure to avoid confusion for reliable performance
analysis and maintenance decisions. This requires the LLMs to understand the
component hierarchical structure and correctly interpret the maintenance logs.
The issue is exacerbated by the fact that the description of the same component
recorded in the maintenance logs may vary from worker to worker, leading to
erroneous analysis and maintenance recommendations based on the reasoning
of general-purpose LLMs. To bridge this gap, using domain knowledge to fine-
tune LLMs has emerged as a solution.

The process of fine-tuning involves training the existing LLMs on datasets
that are curated for the target domain, allowing maximizing domain-specific
performance while retaining the reasoning capability of the initial model. For
example, BERT has been fine-tuned with climate data, resulting in
ClimateBERT that has improved BERT’s performance in climate-related tasks
[9]. Also, GPT has been tailored to KAI-GPT, a language model for transparent,
accurate, and safe customer banking service [10].

This study investigates LLMs for manufacturing by fine-tuning GPT3.5 and
converting it to an intelligent maintenance assistant for aircraft (see Fig. 1).
Towards this end, the ontology of aircraft structure is first investigated to curate
the original maintenance logs into conversational data. The goal is to alleviate
the constraints of typical LLM fine-tuning
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Fig. 1. Ontology-integrated tuning of LLM for predictive maintenance.

approaches from overly reliant on structured data that limits model
generalizability and adaptivity. The conversational data is used as inputs to fine-

tune the GPT-3.5 model, achieving contextual understanding of components’
hierarchical structure. This sets the technological basis for pinpointing defective
components and recommending consistent maintenance actions. Results from a
case study using aircraft have shown that the finetuned GPT-3.5 model
outperforms both the general-purpose GPT-3.5 and GPT-4.0 models in effectively
identifying defective components, thereby better supporting predictive aircraft
maintenance. The developed method holds significant promise beyond aviation,
extendable to various manufacturing scenarios where maintenance and
production systems share similar challenges and requirements.

2. Ontology-integrated tuning of LLM

Central to the developed approach is the ontology of the aircraft, which plays
a crucial role in enabling maintenance log curation and domain-specific fine-

tuning of the LLMs.

2.1. Aircraft structure ontology

To realize ontology-integrated LLM tuning as illustrated in Fig. 1, a tree
structure representing a segment of an aircraft’s ontology is developed, with a
top-level concept of the ontology shown in Fig. 2. This hierarchical organization
is crucial to curating the maintenance logs and enhancing LLMs’ comprehension
of aircraft-specific issues, for two reasons. First, it addresses ambiguity when the
same type of components appears in different branches of the structure. For
instance, the component “Seal” is found not only in the engine cylinder baffle but
also in the engine cylinder intake. Through the process of learning to describe
each component within its hierarchical context, LLMs acquire the ability to
distinguish and correctly identify these components, thereby resolving the
ambiguity. Second, the structure aids in reducing the impact of inconsistencies
commonly found in maintenance logs that are created by multiple workers.
Depending on their training, personal choice, and company preference, variation
may occur when the logs are entered. A common cause is the use of abbreviated

descriptions, which omits the full hierarchical chain
example, references to "engine" and "cylinder" are
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Fig. 2. Aircraft ontology in a hierarchical structure.
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sub-components. This leads to inaccurate interpretations by LLMs when not
trained with knowledge of the hierarchical structure, and consequently,
unreliable analysis. Furthermore, incorporating additional domain-specific
relationships like component-wear mechanism-maintenance triplets into the

LLM is envisioned to enable causal reasoning underlying the maintenance
recommendation. For this purpose, comprehensive domain knowledge
collection is needed and will constitute part of future research.

2.2. GPT fine-tuning

In this work, GPT-3.5 (containing 175 billion parameters) instead of the
state-of-the-art GPT-4.0 (containing 1 trillion parameters) is selected as the
foundational LLM model for fine-tuning, due to its demonstrated performance
in general-purpose NLP task handling and user-friendly access to its fine-
tuning resources through OpenAl’s Application Programming Interface (API)
[11]. Central to the fine-tuning effort is the preparation of domain-specific data
and iterative refinement of the fine-tuning hyperparameters such that the
tailored optimization of GPT-3.5 ensures reliable maintenance actions.
Finetuning GPT-3.5 requires the training data to be prepared in a specific
conversational format where each conversation sample contains three
messages, and each message specifies a role (system, user, or assistant) and
the related content. For example, the system’s message specifies the purpose
of fine-tuning, while the user’s message simulates the questions/messages
asked by human users. Finally, the assistant’s message indicates the responses
generated by the fine-tuned model. In Fig. 3a conversation sample used for
model fine-tuning is illustrated.

IDENT PROBLEM ACTION
101223 #2 & 4 ROCKER COVERS LEAKING TIGHTENED ALL ROCKER
- ON R/H ENGINE COVERS |
\
{"role": "system", "content": "You are an aircraft service technician. Please reply to

the logged issue in a fixed format: component of interest:, recommended action:."},
{"role": "user", "conmtemnt": "#2 & 4 ROCKER COVERS LEAKING ON R/H
ENGINE"},

{"role": "assistant”, "content": "Component of interest: Engine Cylinder Rocker

\(Eover‘ Solution: TIGHTENED ALL ROCKER COVERS"} y

Fig. 3. Sample fine-tuning system, user, and assistant message.

Domain-specific knowledge is typically organized in a tree-structure and

has been extracted from historical data using a similarity measure [12]. In the
presented work, historical maintenance logs have been explored to provide
the basis for developing an aircraft ontology, which is subsequently verified
by domain experts. The ontology is then incorporated into the training data
for fine-tuning GPT-3.5 by curating the original maintenance log into a
conversational format, where a new content “component of interest” that
pinpoints the hierarchical structure of the defective component is added, as
illustrated in Fig. 3. The ground truth “component of interest” is first generated
from “in-order traversal” algorithm-based depth-first search operations [13],
which compare the problem description to full hierarchical ontology structure.
The outcome is then examined by a domain expert to remove the ambiguities.
Compared to other options of incorporating ontology into training data, e.
g., decomposing the entire ontology into conversational forms to indicate the
hierarchical structural organization of the components and mixing them with
maintenance log conversations, the presented approach is advantageous in
implicitly integrating ontology into conversation samples that iteratively
reinforce the GPT-3.5 model’s understanding of the aircraft structural
composition.

The process of fine-tuning GPT-3.5 primarily utilizes a variant of the
cross-entropy loss function, which is used in training LLMs based on the
transformer architecture. In the context of language models, the cross-entropy
loss function quantifies how well the model’s predicted probability
distribution over the next word qdxp aligns with the actual word pdxp that
appears in the training data:

Hpd; qb % X p x3 blogq xd b alp
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One-hot encoding is used for calculating the true distribution pdxp when

fine-tuning GPT-3.5. The actual next word is set with a probability of 1

whereas all other words are set with a probability of 0. Three hyperparameters
for GPT-3.5 fine-tuning are provided by the OpenAl API: number of epochs,
learning rate, and batch size. Selection of proper values of these
hyperparameters depends on the size and quality of the fine-tuning dataset, as
well as the complexity of the domain-specific applications. Due to the lack of
advanced options for fine-tuning and overfitting mitigation such as early stop
of model tuning, these hyperparameters are empirically determined during the
fine-tuning process in this study.

2.3. Evaluation of fine-tuned LLM model

To evaluate the quality of the fine-tuned GPT-3.5 in extracting the
component of interest from the problem description, the Intersection over
Union (IoU) score is used, which quantifies the degree of word matching
between the ground truth and model response. The IoU score is suited for
evaluating structured outputs when constrained to a limited number of
vocabularies. The IoU score ranges from 0 to 1, where 0 indicates complete
irrelevancy of the extracted information and 1 denotes perfect extraction.

To quantify the performance of the fine-tuned GPT-3.5 in predicting
recommended maintenance actions given a problem description, the
semantics of the output must be considered, rather than relying on word
matching only. The potential large variation in describing the same actions
makes it difficult to predetermine a constrained list of candidates. To
overcome this challenge, BERTScore is investigated. BERTScore leverages
the contextual embedding from BERT [3], which is a special transformation
that maps language vocabularies into a highdimensional space such that
semantically similar words are clustered together while words with little
semantic similarity are separated [14]:

1

1,
P % _Xc ¢ maxgzG cos BERTYembd bc ; BERTembd bg

C:

a°p
1 ap

4
1,
R % _—gXG maxca€ cos BERT% embd bPc ; BERT b0 Pg G op

BERTScore 42 P

R
b¢ R

P

where C and G can be intuitively considered as the list of words in the
predicted text and the reference ground truth, respectively. BERT ¢y is the
function to compute the embedding of each entry in C and G.
cos¥%BERTem,dcP; BERT.my0gP refers to the cosine similarity between the
embeddings from the predicted and the reference texts. P and R are analogous
to precision and recall, which average the maximum cosine similarities for
each entry in the predicted text over the entries in the reference text, and vice
versa, leading to the final calculation of BERTScore in (4).

In addition to the BERTScore, BLEU (Bilingual Evaluation Understudy)
[14] is considered for evaluating how the LLM-recommended maintenance
action follows similar vocabulary as the referenced ground truth. BLEU
examines the frequency of n-grams (sequential groups of n words), which
appear in both the prediction and the ground truth. The metric calculates a
score based on the matches of the n-grams as [15]:

BLEU % BPexp Xw,logp,! 05PN
k%l
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wi is the weight assigned to each n-gram (set uniformly in this study), and N
denotes the maximum length of n-grams used. Brevity Penalty (BP) is
designed to penalize predicted texts that are too short compared to the
reference, ensuring that shorter texts don’t unfairly receive higher scores due
to a higher likelihood of n-gram matching [15]. BERTScore and BLEU range
from 1 to 1 and O to 1, respectively, with higher values indicating higher
similarity between the predicted and the reference texts.

3. Experimental evaluation and results

The developed method is evaluated using a publicly available aviation
maintenance dataset [16]. The dataset contains 6169 maintenance logs, each is
represented by a triplet of problem identification number (IDENT), problem
description (PROBLEM), and maintenance action that has been taken (ACTION)
(see Fig. 3 for an example). Upon examination, significant repetitions are
identified after the first 2000 logs. As a result, the first 2000 logs were chosen for
this study. Among the 2000 logs, 1500 were randomly selected to fine-tune the
GPT 3.5 model while the remaining 500 logs were reserved for testing.
Considering the generative nature of GPT, each testing log is evaluated five times
when evaluating the performance of the fine-tuned GPT3.5 in terms of
randomness in its response generation.

3.1. GPT 3.5 fine-tuning

Restricted by the fine-tuning API, only three hyperparameters (i.
e., epoch, batch size, and learning rate) are tuneable, and no advanced training
mechanisms (e.g., early stopping) are provided. Iterative hyperparameter
refinement has been conducted, and a combination of default batch size, learning
rate and one training epoch has yielded the most satisfactory performance, as
shown in Fig. 4. Beyond the st training epoch, severe overfitting is observed, as
reflected in the divergence between training and validation losses. The fast
convergence indicates that the structure ontology as formulated in this study are
relatively straightforward to learn by GPT-3.5, which was pretrained using a large
dataset. This highlights the advantage of leveraging a general-purpose LLM for
specific problem-solving in manufacturing.

Training = Validation
2 8
k]
g 5 Training loss: 0.1344
= Validation loss: 0.1927
T 4]
% \
2 2
0 o \ LAV , Y ~ -
0 50 100 150 201 250 300 350

Fine-tuning steps

Fig. 4. Progression of GPT-3.5 fine-tuning.

3.2. Results and discussions

To evaluate the performance of the fine-tuned GPT-3.5 on generating domain-
specific responses to airplane maintenance logs, three LLMs are compared: fine-
tuned GPT-3.5 (GPT-3.5 FT), non-fine-tuned GPT-3.5 (GPT-3.5 NFT), and non-
fine-tuned GPT-4.0 (GPT-4.0 NFT). Shown in Fig. 5 are sample responses from
these 3 LLMs. Each response contains two parts: component of interest and
recommended maintenance actions. It is noted qualitatively that GPT-3.5 FT
outperforms both GPT-3.5 NFT and GPT-4.0 NFT in general, especially in
identifying which component the maintenance log was referring to. This is

IDENT
100035

PROBLEM
RIGHT ENG, ALL VALVE COVERS ARE LEAKING

COMPONENT OF INTEREST

ACTION
Engine Cylinder Rocker Cover Gasket ~ REMOVED & REPLACED ALL ROCKER GASKETS J

Camponent of interest: “Engine Cylinder Rocker

EMOVED & REPLACED
VE COVER GASKETS"

IoU ssors: 0.17: BERT sors: 0.24, BLEU: 0
IDENT
100032

Companent of interest “Righ
Recommended action; “Rep!

Toll score: 0,29 BERT score: 0.25, BLEU. 0 ToU score: 1.0; BERT score: 0.7; BLEU: 31.56
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where p, is the ratio of the number of n-grams in the predicted text that
matches the ground truth to the total number of n-grams in the predicted text,

Fig. 5. Sample responses from GPT-3.5 NFT, GPT-4.0 NFT, and GPT-3.5 FT, and their evaluation
Scores.



because the non-fine-tuned GPTs use the keywords directly from the original
problem description to output their responses. For example, they extracted “Right
Engine #4 Air Baffle” from the problem description “RIGHT ENG#4 AIR
BAFFLE IS CRACKED” only, whereas GPT-3.5 FT is able to trace back the
entire hierarchical structure for improved accuracy in defective component
identification.

To quantitively assess the LLMs’ performance, IoU score is first calculated to
evaluate the models’ response in determining component of interest.
Subsequently, BERTScore and BLEU are computed to quantify the models’
performance on recommending actions. Considering the generative nature of the
LLM models, each metric is computed five times to evaluate the consistency and
variation of the models’ responses.

As shown in Fig. 6(a), GPT-3.5 FT achieves a mean IoU score of
0.88, whereas the IoU scores of GPT-3.5 NFT and GPT-4.0 NFT are 0.43 and
0.40, respectively. The good match with the ground truth achieved by GPT-3.5 is
particularly noteworthy given the more sophisticated architecture of GPT-4.0 as
compared to GPT-3.5. The result further highlights the importance of fine-tuning
of generalpurpose LLM models in adaptation to manufacturing applications.

a) 1 0.88
08
& g‘; 043 0.40
E 4 .
2 0 0 0
GPT-3.5 FT GPT-3.5 NFT GPT-4.0 NFT
LLM Models
b) 06
0.46 7 BERTScore 2BLEU
%
e 04 =T
2 020
) / \ / /
0.04 0.05
00 & /M\\ o /f\\\\i\ N
GPT-3.5 FT GPT-3.5 NFT GPT-4.0 NFT

LLM Models

Fig. 6. Comparison among GPT-3.5 FT, GPT-3.5 NFT, and GPT-4.0 NFT: a) IoU scores for
extraction of component of interest, b) BERTScore and BLEU for prediction of recommended
maintenance actions.

The effectiveness of model fine-tuning is further substantiated by the mean
BERTScore and BLEU of GPT-3.5 FT for predicting recommended actions, as
seen in Fig. 6(b). The mean BERTScore of 0.46 indicates robust consistency
between the predicted actions and reference ground truth in terms of the text
semantics, whereas the BLEU metric, at 0.20, reflects a reasonable n-gram
overlap with the reference texts. In comparison, both non-fine-tuned models have
shown less favorable predictions for recommended maintenance actions.

The small error bars observed across all three models indicate a high level of
consistency in the models’ performance across the five different tests conducted.
This aspect is critical to predictive maintenance for manufacturing, where
reliability and repeatability of performance are essential. Given the consistency
demonstrated by all model variants, the development of LLM architectures
provides a potentially stable foundation for predictive maintenance tasks.

4. Conclusions

This paper introduced an innovative approach to transforming general-

purpose LLMs into a domain-specific tool for intelligent aircraft maintenance.
Incorporating an aircraft structure ontology into the fine-tuning process of GPT-
3.5 enhances the model’s performance in identifying aircraft components of
interest and recommending maintenance actions. The enhanced performance of
the fine-tuned GPT-3.5 over GPT-3.5 and GPT-4.0 in maintenance log analysis,
e.g., 0.88 vs. 0.43 and 0.40 in identifying components of interests, not only
demonstrates the feasibility of tailoring LLMs for enhanced operations in
manufacturing because of the similarities in maintenance activities across
different domains, but also sheds light on their continued evolution and roader
applications in other fields of interest.
Future research will explore fine-tuning of LLMs with expanded domain
knowledge (including both ontology and domain-specific relationships and
attributes as represented by knowledge graphs), and further investigate topics
such as data bias and interpretability to facilitate transfer learning and domain
generalization across multiple industrial sectors and more effectively integrate
LLM into the existing digital manufacturing platform for more
comprehensive and versatile Al-enhanced applications.
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