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Abstract—Deep learning has been widely used in intelligent ve-
hicle driving perception systems, such as 3D object detection. One
promising technique is Cooperative Perception, which leverages
Vehicle-to-Vehicle (V2V) communication to share deep learning-
based features among vehicles. However, most cooperative percep-
tion algorithms assume ideal communication and do not consider
the impact of Lossy Communication (L.C), which is very common
in the real world, on feature sharing. In this paper, we explore
the effects of LC on Cooperative Perception and propose a novel
approach to mitigate these effects. Our approach includes an
LC-aware Repair Network (LCRN) and a V2V Attention Module
(V2VAM) with intra-vehicle attention and uncertainty-aware inter-
vehicle attention. We demonstrate the effectiveness of our approach
on the public OPV2V dataset (a digital-twin simulated dataset)
using point cloud-based 3D object detection. Our results show
that our approach improves detection performance under lossy
V2V communication. Specifically, our proposed method achieves
a significant improvement in Average Precision compared to the
state-of-the-art cooperative perception algorithms, which proves
the capability of our approach to effectively mitigate the negative
impact of LC and enhance the interaction between the ego vehicle
and other vehicles.

Index Terms—Deep learning, vehicle-to-vehicle cooperative
perception, 3D object detection, lossy communication, digital twin.

I. INTRODUCTION

OW to perceive the surrounding objects precisely in com-

plex real-world scenarios is critical for modern intelligent
vehicle research. The accurate perception system (e.g., 3D object
detection) is the fundamental base for the next motion planning
and control of the intelligent vehicles, which implies tremendous
impacts on the driving safety of intelligent vehicles [1], [2], [3],
(4], [5], [6].

Because of the perception limitation of the current individual
intelligent vehicle [7], [8], [9], the cooperative perception of
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Connected Automated Vehicles (CAV) recently attracted much
attention in this research community. Compared to the percep-
tion of individual intelligent vehicles, recent studies [10], [11],
[12] show that cooperative perception of CAV can significantly
improve the perception performance by leveraging Vehicle-
to-Vehicle (V2V) communication technology for information
sharing. Information sharing through V2V communication is an
important technology for CAV cooperative perception, which is
utilized to observe a wider range and perceive more occluded
objects in the complex traffic environment [13], [14]. There are
three ways for information sharing during V2V communication:
(1) sharing raw sensor data as early fusion, (2) sharing interme-
diate features of the deep learning based detection networks as
intermediate fusion, (3) sharing detection results as late fusion.
Recent state-of-the-art studies [10], [15] show that interme-
diate fusion is the best trade-off between detection accuracy
and bandwidth requirement. This paper also focuses on the
intermediate fusion during communication for V2V cooperative
perception.

Many intermediate fusion methods have been recently pro-
posed for the V2V cooperative perception [10], [11], [12], [13];
however, all of them assume the ideal communication. The only
V2V cooperative perception study that considered non-ideal
communication focused solely on communication delays [15].
To date, no existing work has explored the impact of Lossy Com-
munication (LC) on V2V cooperative perception in complex
real-world driving environments. In urban traffic scenarios, V2V
communication is susceptible to a range of factors that can result
in lossy communication, such as multi-path effects from obsta-
cles (e.g., buildings and vehicles) [17], Doppler shift introduced
by fast-moving vehicles [18], interference generated by other
communication networks [19], and dynamic topology caused
by routing failures [20], as well as various weather conditions.
Incomplete or inaccurate shared intermediate features resulting
from lossy communication could compromise the effectiveness
and efficiency of V2V cooperative perception, as shown in Fig. 1.
Failure to address LC in cooperative perception could lead to
degraded perception performance, increased collision risk, and
reduced traffic efficiency.

This paper first studies the negative effect of lossy com-
munication in the V2V cooperative perception and then pro-
poses a novel intermediate LC-aware feature fusion method to
address the issue. Specifically, the proposed method includes
an LC-aware Repair Network (LCRN) to recover the incom-
plete shared features by lossy communication and a specially
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Fig. 1. Tllustration of the V2V cooperative perception pipeline and its de-
tection performance drop suffering from lossy communication on the public
digital-twin CARLA simulator [16] based OPV2V dataset [10], where three in-
termediate fusion methods all trained under ideal communication are displayed:
CoBEVT [11], F-Cooper [12], and V2X-ViT [15].

designed V2V Attention Module (V2VAM) to enhance the
interaction between the ego vehicle and other vehicles. The
V2VAM includes the intra-vehicle attention of ego vehicle and
uncertainty-aware inter-vehicle attention. It is challenging to
collect the authentic CAV perception data with lossy communi-
cation in real-world driving, and considering the advantage of
the digital twin in many application [21], [22], [23], [24], [25],
[26], this paper evaluates the proposed method in a digital-twin
CARLA simulator [16] based public cooperative perception
dataset OPV2V [10]. The contributions of this paper are sum-
marized as follows.

® We propose the first research on V2V cooperative percep-
tion (point cloud-based 3D object detection) under lossy
communication and study the side effect of lossy commu-
nication on cooperative perception, specifically the impact
on detection performance.

e This paper proposes a novel intermediate LC-aware feature
fusion method to relieve the side effect of lossy commu-
nication by a LC-aware Repair Network and enhance the
interaction between the ego vehicle and other vehicles by a
specially designed V2V Attention Module including intra-
vehicle attention of ego vehicle and uncertainty-aware
inter-vehicle attention.

® We evaluate the proposed method on the public cooperative
perception dataset OPV2V, which is based on the digital-
twin CARLA simulator [16].

The rest of this paper is organized as follows. Section II briefly
reviews the related literature to this work, Section III presents
the details of the proposed V2V cooperative perception method
under lossy communication, Section IV provides the experi-
ments and analysis with two scenarios: Ideal Communication
and Lossy Communication, and the final conclusion are given
in Section V.
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II. RELATED WORK

A. 3D Perception for Autonomous Driving

3D object detection is one of the most critical ways to the
success of autonomous driving perception. Based on recently
available sensor modality [27], 3D detection method can be
roughly divided into three categories: (1) Camera-based de-
tection methods where approaches detect 3D objects using a
single or multiple RGB images [28], [29], [30]. For example,
CaDDN [28] utilizes the depth distributions combined with the
image features to generate bird’s-eye-view representations for
3D object detection. ImVoxelNet [29] constructs a 3D volume
in 3D space and samples multi-view features to obtain the
voxel representation for 3D object detection. DETR3D [30]
uses queries to index into extracted 2D multi-camera features to
directly estimate 3D bounding boxes in 3D spaces. (2) LIDAR-
based detection methods where these methods typically con-
vert LiDAR points into voxels or pillars, leading in voxel-
based [31], [32] or pillar-based object detection methods [33],
[34], [35]. PointRCNN [36] proposes a two-stage strategy based
on raw point clouds, which learns rough estimation first and then
refines it with semantic attributes. Some methods [31], [32] pro-
pose to split the space into voxels and produce features per voxel.
However, 3D voxels are usually expensive to process. To address
this issue, PointPillars [37] propose to compress all the voxels
along the z-axis into a single pillar, then predict 3D boxes in
the bird’s-eye-view space. Moreover, some recent methods [38],
[39] combine voxel-based and point-based approaches to de-
tect 3D objects jointly. (3) Camera-LiDAR fusion detection
method where it presents an approach fusing information from
both image and LiDAR points, which is a trend in 3D object
detection. How to align the image features with point clouds
is challenging in multimodal fusion. To solve this challenge,
some methods [40], [41], [42] use a two-step framework, where
detecting the object in 2D images in the first stage, then using
the obtained information to further process point clouds for
3D detection. While other works [43], [44] develop end-to-end
fusion pipelines and leverage cross-attention mechanisms to
perform feature alignment. Our work in this paper focuses on the
cooperative point cloud based 3D object detection to achieve fast
processing and real-time performance [33], [34]; pillar-based
approach would be used in our following experiments.

B. Vehicle-to-Vehicle Cooperative Perception

The performance of a 3D perception method highly depends
on the accuracy of 3D point clouds. However, LiDAR cameras
suffer from refraction, occlusion, and long-range distance, so
the single-vehicle system could become unreliable under some
challenging situations [10]. In recent years, Vehicle-to-Vehicle
(V2V) / vehicle-to-infrastructure (V2X) cooperating system has
been proposed to overcome the disadvantages of the single-
vehicle system by using multiple vehicles. The collaboration
among different vehicles enables the 3D perception network to
fuse information from different sources.

Some former methods use Early fusion to share raw data
among different vehicles. For example, Cooper [45] fused the
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point clouds from different connected autonomous vehicles and
made predictions based on the aligned data. AUTOCAST [46]
exchanged sensor readings from different sensors to broaden
the perceptive field for a single vehicle. Other methods use
Late fusion to integrate the 3D detection results from each
vehicle. Rawashdeh et al. [47] proposed a machine learning
based method that shares the dimension and the location of
the center point for each tracked object. Some other late fusion
methods [48], [49] also adopt point clouds as sensor data from
both vehicle and infrastructure. While early fusion requires large
bandwidth and data transfer speed, late fusion may generate
undesirable results due to the biased individual prediction. In
order to find the balance between data load and accuracy, recent
methods focus on Intermediate fusion by sharing intermediate
representations. F-cooper [12] applied voxel features fusion and
spatial feature fusion from two cars. V2VNet [13] employed a
graph neural network to aggregate features extracted by LiDAR
from each vehicle. V2X-ViT [15] proposed a vision Trans-
former architecture to fuse features from vehicles and infras-
tructures. Cui et al. [50] proposed a Point-based Transformer
for point cloud processing, which can integrate collaborative
perception with control decisions. Tu et al. [S1] proposed an
efficient and practical online attack network in a multi-agent
deep learning system based on intermediate representations. Luo
et al. [52] utilized attention modules to fuse the intermediate
feature and enhance feature complementarity. Lei et al. [53]
proposed a latency compensation module to realize intermediate
feature-level synchronization. Hu et al. [54] proposed a spatial
confidence-aware communication strategy to use less commu-
nication to improve performance by focusing on perceptually
critical areas. OPV2V [10] utilized a self-attention module to
fuse the received intermediate features. COBEVT [11] proposed
local-global sparse attention that captures complex spatial in-
teractions across views and agents to improve the performance
of cooperative perception. However, these fusion methods are
all with the assumption of ideal communication, which would
suffer dramatic performance drop with lossy communication in
the real world. To address this issue, we design a special V2V
Attention Module (V2VAM), including intra-vehicle attention
of ego vehicle and uncertainty-aware inter-vehicle attention to
enhance the V2V interaction.

C. Communication Issue in V2V Perception

V2V and V2X communication can improve the safety and
reliability of autonomous vehicles by exchanging information
with surrounding vehicles. However, communication among
vehicles may bring new issues to this research field [55]. Due to
the nature of the connectivity, lossy communication is inevitable
in wireless channels. Some factors like channel errors, network
congestion, and delay deadline violation can cause packet losses
during the transmission of data in the wireless network [56].
Low latency and high reliability are two common challenges
for V2V communication. For example, in the pre-crash sensing
scene, the maximum latency is only 20 ms, and data delivery
reliability must be greater than 99% [55], [57]. Several works
have proposed specific resource allocation schemes to ensure
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latency and reliability of V2V communication systems by using
Lagrange dual decomposition and binary search [58], greedy
link selection [59], or federated learning [60]. Some studies
also aim to improve the V2V communication security from
different aspects such as authentication, data integrity, and data
protection [61].

Lossy Communication (LC) is also a critical issue in V2V
communication. According to studies on single-hop broadcast-
ing, the obstacle (vehicles, buildings, etc.) between transmitter
and receiver will result in signal power fluctuations, thus causing
packet loss [21], [55], [62], [63]. The shared data could also be
interfered with by other signals or modified by attackers before
arriving at its destination, thus leading to lossy data. In this work,
we aim to eliminate the lossy communication by proposing an
LC-aware repair network and improving the robustness of the
V2V perception network.

III. METHODOLOGY

In this paper, we focus on the cooperative LIDAR-based 3D
object detection task for autonomous driving and consider a
realistic scenario where communication loss exists in collab-
oration. Since we focus on the lossy communication challenge
during data transmission in this paper, we assume there are no
communication delays or localization errors in the V2V system.
To handle lossy communication challenges in the real world
and enhance CAV’s cooperative perception capability, inspired
by [10], this paper proposes a novel intermediate LC-aware fea-
ture fusion framework. The overall architecture of the proposed
framework is illustrated in Fig. 2, which includes five compo-
nents: 1) V2V metadata sharing, 2) LIDAR feature extraction, 3)
Feature sharing, 4) LC-aware repair network and V2V Attention
module, 5) classification and regression headers.

A. Overview of Architecture

V2V metadata sharing: We select one of the CAVs as the
ego vehicle to construct a spatial graph around it where each
node is a CAV within the communication range, and each edge
represents a directional V2V communication channel between
a pair of nodes. Upon receiving the relative pose and extrinsic
of the ego vehicle, all the other CAVs nearby will project their
own LiDAR point clouds to the ego vehicle’s coordinate frame
before feature extraction, which could be simply formulated as

t
Peavyrojectea

- Tcav—)ego . pZmn (1)

where p’,,, is the CAV pose [z, y, z, 1]T in i-th CAV at the time t,
and T,qp—ego € R4 is coordinate transformation matrix from
CAV to ego.

LIDAR feature extraction: The anchor-based PointPillar
method [37] is selected as the 3D detection backbone to extract
visual features from point clouds. Since it can be deployed in
the real world easily than other 3D detection backbones (e.g.
SECOND [31], PIXOR [64], and VoxelNet [32]) thanks to its
low inference latency and optimized memory usage [10]. This
method converts the raw point clouds to a stacked pillar tensor,
then scattered to a 2D pseudo-image and fed to the PointPillar
backbone. Finally, the backbone extracts informative visual
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Fig. 2. The architecture of LC-aware feature fusion framework. The proposed
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model includes five components: 1) V2V Metadata Sharing, 2) LiDAR Feature

Extraction, 3) Feature Sharing, 4) LC-aware Repair Network (LCRN) and V2V Attention Module (V2VAM), 5) Classification and Regression header.

TABLE 1
3D OBJECT DETECTION PERFORMANCE COMPARISON ON TWO TESTING SETS
OF OPV2V BASED THE TRAINING OF SCHEME I. WE SHOW AVERAGE
PRECISION (AP) AT IoU=0.5, 0.7. NOTE THAT V2VAM 1s ONLY OUR
PROPOSED V2V ATTENTION MODULE WHILE V2VAM+LCRN 1s OUR FULL
PROPOSED METHOD

Method Com. V2V CARLA Towns V2V Culver City

Type AP@ 05 AP@ 0.7 AP@ 0.5 AP@ 0.7

O Fust Ideal | 0.679 0.602 0.557 0471

USIOn  possy | 0.679 0.602 0.557 0.471

Ideal | 0.844 0.743 0.874 0.715

F-Cooper [12] 1 (i | 0.036 0.029 0.196 0.146

Ideal | 0874 0.712 0.855 0.630

V2VNet [3] 1 ossy | 0.024 0.014 0.102 0.061

Ideal | 0871 0.793 0.868 0.745

OPVZVIIOL oy | 0.015 0.011 0.010 0.006

Ideal | 0914 0.836 0.877 0.748

CoBEVT Iy iy | 0.089 0.069 0.272 0.202

. Ideal | 0.840 0.726 0.877 0.720

VEX-VITUST oy | 0.083 0.054 0.107 0.067

Ideal | 0.926 0.861 0.885 0.785

V2VAM sy | 0085 0.075 0.095 0.070

feature maps. Each CAV has its own LIDAR feature extraction
module.

Feature sharing: In this component, the ego vehicle will
receive the neighboring CAV feature maps after each CAV
feature extraction, and these received intermediate features will
be fed into the remaining detection networks in the ego vehicle.
In the real-world scenario (e.g. urban building and unpredictable
occlusion), the transmission of the feature maps usually suffers
inevitable damage that leads to lossy communication. As aresult,
existing 3D object detectors would suffer a dramatic perfor-
mance drop with the lossy features collected from surrounding
CAVs, as shown in Table 1.

LC-aware Repair Network and V2V Attention Module: The
intermediate features aggregated from other surrounding CAVs

are fed into the major component of our framework i.e., LC-
Aware Repair Network for recovering the intermediate feature
map in lossy communication by using tensor-wise filtering, and
V2V Attention module for iterative inter-vehicle as well as
intra-vehicle feature fusion utilizing attention mechanisms. The
proposed LC-aware repair network and V2V attention module
will be revealed with details in Section III-B and Section III-C,
respectively.

Classification and regression headers: After receiving the
final fused feature maps, two prediction headers are utilized for
box regression and classification.

B. LC-Aware Repair Network

Image denoising is one of the longstanding challenging tasks
in computer vision. The primary sources of noise [65] are shot
noise, where a Poisson process with variance equal to the signal
level, and read noise, where an approximately Gaussian process
is caused by diverse sensor readout effects. To denoise them,
some deep learning-based methods [66], [67], [68] use denoising
networks that generate a filter for every pixel in the desired output
to constrain the output space and thereby prevent the impact of
artifacts. Inspired by these architectures, to handle the common
V2V communication challenges i.e., lossy communication, we
design a customized LC-aware repair network for intermediate
feature recovering from other CAVs.

The framework of the LC-aware repair network is shown
in Fig. 3, which is an encoder-decoder architecture with skip
connections. This network generates a specific per-tensor filter
kernel to jointly align and recover the input damaged feature to
produce a recovered version of the output feature. The input
feature for LC-aware repair network is S € Re*h>*w then a
tensor-wise kernel K is generated and applied to S to produce the
recovered output feature S e ROhxw the specific tensor-wise
filter kernel could be simply formulated as

K = Conv(S), (2)
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Fig. 3. Tllustration of LC-aware Repair Network. The LC-aware Repair archi-
tecture for feature recovery is based on the encoder-decoder structure, which
outputs per-tensor feature kernels. These kernels then are applied to the input
lossy features.

and the value at each tensor ¢ in our output feature Sis
St=K'® S, 3)

where ® denotes the matrix dot product. K € R(F*k)xhxw jq 5
tensor-wise kernel, and each tensor in channel dimension Kt €
R¥** is a per-tensor kernel and can be applied to the k x k
neighborhood region of each tensor ¢ in the input feature S €
R*h*why multiplication. The C'onv(.) denotes the tensor-wise
network and is used to perceive the input feature and generate
the suitable kernel for each tensor.

To acquire the repaired output feature S, the tensor-wise
filtering ® of the input damaged feature could largely preserve
the feature detailed without corruption. Therefore, a large kernel
size k is desired to leverage the rich neighborhood information
of each tensor fully. In our experiment, the kernel size k is set
to 5 due to memory limitations.

The LC-aware repair loss function £7,c(5, 59) is the tensor-
wise L1 distance between the ground truth original feature S9
before suffering lossy communication and the repaired feature
S. The repair loss can be defined as

Lrc(S,99) =99 -S| 4)

C. V2V Attention Module

Self-attention mechanism [69] has emerged as a recent
advance to capture long-range interaction; The key idea of
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convolution operation.

self-attention is to calculate the response at a position as a
weighted sum of the features at all locations, with the interaction
between features determined by the features themselves rather
than their relative location, as in convolutions. In this paper,
after receiving the recovered intermediate feature, we aim to
leverage the intermediate deep learning features from multiple
nearby CAVs to improve perception performance based on
V2V communication. We design a customized intra-vehicle and
inter-vehicle attention fusion method by considering the lossy
communication situation to enhance interaction between ego
CAV and other CAVs. Moreover, we adopt a criss-cross attention
module in our proposed V2V attention method, which can be
leveraged to capture contextual information from full-feature
dependencies more efficiently and effectively.

Intra-Vehicle Attention: For the ego vehicle only, the intra-
vehicle attention module can enable features from any position
to perceive globally, thus enjoying full-image contextual infor-
mation to better capture the representative feature. Formally,
let H® € RE*H*W be an input feature map of an ego vehicle,
which is perfect data generated by self-vehicle without suffering
any lossy communication. In the intra-vehicle attention mod-
ule, the feature map H® would be calculated by three 1 x 1
convolutional layers to produce three feature vectors Q¢, K¢,
and V¢, respectively, where all of them have the same size,
{Q°, K¢, Ve} € ROH*W Following the scaled dot-product
attention in [69], we compute the dot products of the Q¢ and K¢,
then divide them using a scaling factor i.e. dimension of feature
vectors, and apply a softmax function to obtain the weights on
the V. The intra-vehicle attention as shown in Fig. 4 is defined
as follows,

eKeT
QW Ve, &)
k

where df, is the dimension of K°, and the standard softmax()
function is used as the activated function here. A"*"® denotes

AMre — goftmax
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the output feature map of ego vehicle with considering all spatial
information of the feature map.

Uncertainty-Aware Inter-Vehicle Attention: In V2V coopera-
tive perception, the intermediate feature maps H® € RC>*H>xW
aggregated from other CAVs are shared to the ego vehicle.
The shared feature maps H® with lossy communication would
be recovered by LC-aware repair network, as introduced in
Section III-B, but they are still noisy to some extent, while
the ego feature maps H€¢ are prefect without any lossy trans-
mission. Fusing these uncertain feature maps with a certain
ego feature map directly could be risky in the cooperative
perception interaction process. To address this issue, we propose
an uncertainty-aware inter-vehicle attention fusion method by
considering the uncertainty of the recovered feature maps. In
this module, the shared feature maps would be calculated by
two 1 x 1 convolutional layers to produce two feature vectors
K?, and V?, respectively, where all of them have the identical
size, {K*, V*} € RO*H*W and the other feature vector Q° is
directly obtained from ego self-vehicle instead of other vehicles,
as shown in Fig. 4. Similar to the intra-vehicle attention in
Section III-C, the uncertainty-aware inter-vehicle attention can
be defined as

N T

. Q°K?
Amter — N Cgoftmax | ——— | V¥, 6
% ( 0 i (6)

where dj, is the dimension of K¢, and N is the number of the
neighboring CAVs. A" denotes the sum of the output feature
map considering the interaction between the ego vehicle and
other vehicles.

Efficient Implementation: Inspired by [70], we adopt two
consecutive criss-cross (CC) attention modules to implement
V2V attention in point cloud data rather than scaled dot-product
attention. The latter generates huge attention maps to measure
the relationships for each point-pair, resulting in a very high
complexity of O((H x W)?), where H x W is the size of
input features H® and H®. The CC attention module [70]
aggregates contextual information in horizontal and vertical
directions, collecting contextual information from all pixels by
serially stacking two CC attention modules. Each position has
sparse connections to other positions in the feature map, with a
total of (H + W — 1) connections per position. This approach
greatly reduces the complexity from O((H x W) x (H x W))
to O((H x W) x (H + W — 1)) while still effectively captur-
ing the relevant context from all vehicles through V2V commu-
nication.

After obtaining the intra-vehicle attention and inter-vehicle
attention, all of them would be fed into the max pooling and
average pooling layers separately to obtain abundant spatial
information, then they are concatenated as the input for the 2D
convolutional layer with ReLU activation function. Therefore,
the final fusion feature output A°“! in V2V attention module is

Aout _ F(Aintra <i>‘Aimfer)7 (7)

where F' denotes a set of max pooling, average pooling, and
convolution layers. For 3D object detection, we use the smooth
L1 loss for bounding box regression and focal loss [71] for
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classification. The final loss is the combination of detection and
LC-aware repair loss L1,¢ as follows,

»Ctotal - ,U/['det + )\“CLCU (8)

where 1 and A are the balance coefficients within range [0, 1].

IV. EXPERIMENT
A. Dataset

Due to the difficulties of collecting the real-world CAV per-
ception data for cooperative perception with lossy communica-
tion in realistic scenes, we use the digital-twin-based simula-
tion dataset to validate the proposed method. The experiments
are conducted on the public cooperative perception dataset
OPV2V [10]. OPV2V is a large-scale open-source simulated
dataset for V2V perception, which contains 73 divergent scenes
with various numbers of connected vehicles, 11,464 frames, and
232,913 annotated 3D vehicle bounding boxes. These data are
collected from 8 digital towns in CARLA [16], and a digital
town of Culver City, Los Angeles with the same road topology.
Following the default setting of OPV2V [10], we use 3,382
frames and 1,920 frames from OPV2V as the training set and
validation set, respectively, and 2,170 frames in CARLA Towns
and 594 frames in Culver City are used as testing set for all
methods.

B. Experiments Setup

Evaluation metrics: We evaluate the performance of our pro-
posed framework by the final 3D vehicle detection accuracy. Fol-
lowing [10], [15], we set the evaluationrange as - € [—140, 140)
meters, y € [—40, 40] meters, where all CAVs are included in
this spatial range, whose number is in the range of [1,5] in
the experiment. and we measure the accuracy with Average
Precisions (AP) at Intersection — over—Union (IoU) threshold
of 0.5 and 0.7.

Experiment details: In this work, we focus on LiDAR-based
vehicle detection and assess models under two scenarios: 1)
Ideal Communication, where all data transmissions are under
perfect communication; 2) Lossy Communication, where all
intermediate features from other CAVs suffer from the lossy
communication except the ego vehicle feature. To simulate
the lossy communication, the shared intermediate features are
randomly selected by a uniform distributed random probability
p € [0, 1], then replaced by a uniform distributed random noise,
which is generated by a uniform distribution within the range of
original intermediate features. Statistically, the range of original
intermediate features is [0, 29.5] in our experiment.

In the training stage, we adopt two schemes to observe the
impact of different training data on V2V 3D object detection
models. The Scheme I uses only ideal communication-based
data for training, while the other Scheme I uses simulated lossy
communication-based data as described above for training. The
training parameter settings for both schemes are identical, and
the only difference between them is the training data, which
considers lossy communication in Scheme II All trained models
are evaluated on V2V CARLA Towns and Culver City testing
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sets under both Ideal Communication and Lossy Communication
scenarios. Specifically, all models use the PointPillar [37] as the
backbone with the voxel resolution of 0.4 m for both height and
width. We adopt Adam optimizer [72] with an initial learning
rate of 102 and steadily decay it every 10 epochs using a factor
of 0.1. The coefficient of detection loss L . is set to 1.0, and that
of LC-aware repair loss L1 ¢ is set to 0.1. We follow the same
hyperparameters in V2X-ViT [15], and all models are trained
on two RTX 3090 GPUs.

Compared methods: We consider No fusion as the baseline,
which only uses the ego vehicle’s LiDAR point clouds. In
addition, we evaluate five state-of-the-art methods in this paper,
which use Intermediate Fusion as the main fusion strategy:
CoBEVT [11], F-Cooper [12], V2VNet [13], OPV2V [10], and
V2X-ViT [15](see Sectionll-B for detailed descriptions). To
demonstrate the significant effect of Lossy Communication, we
first train these methods under two scenarios: Ideal Communi-
cation and Lossy Communication. We then test these methods
under the same two scenarios to assess their performance. To
show the effectiveness of two critical components in our frame-
work, namely LCRN, and V2VAM, we design a simple feature
averaging fusion method with a 1 x 1 convolutional layer called
AveFuse. This method averages all intermediate features from
ego-vehicle and other vehicles, and then the averaged feature is
passed through a 1 x 1 convolutional layer.

C. Experimental Results

Table I shows the performance comparisons of all models that
are trained with Scheme I, then tested on two communication
types e.g., Ideal Communication and Lossy Communication,
respectively. Under Ideal communication, all the cooperative
perception methods significantly surpass NO Fusion baseline.
In V2V CARLA Town testing set, our proposed V2VAM out-
performs the other five advanced fusion methods to achieve
92.6%/86.1% for AP@0.5/0.7, which is highlighted as bold text
in Table I. In V2V Culver City testing set, COBEVT [11] gets
87.7%/74.8% for AP@0.5/0.7, while the V2VAM achieves the
88.5%/78.5% for AP@0.5/0.7 as the best performance, which is
higher than the second best fusion method CoOBEVT [11] with an
AP@0.5/0.7 improvement of 1.6%/3.7%. These results indicate
cooperative perception methods can improve the perception
performance than a single vehicle perception system under Ideal
Communication, and our proposed fusion method V2VAM can
enhance the interaction between ego vehicle and other vehi-
cles efficiently, which achieves the best performance. However,
under Lossy Communication testing scenario, all intermediate
fusion methods have a drastic performance drop on two testing
sets, and the accuracy of these methods is even less than NO Fu-
sion. In V2V CARLA Town testing set, the cooperative percep-
tion performance of F-Cooper [12], V2VNet [13], OPV2V [10],
and CoBEVT[11] decrease by 80.8%, 85.0%, 85.6%, and 82.5%
in AP@0Q.5, respectively. Obviously, all intermediate fusion
methods without considering the lossy communication are not
practical for deployment in the real world.

The result of 3D object detection on two OPV2V testing sets
based on the training of Scheme II is presented in Table II.

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 8, NO. 4, APRIL 2023

TABLE I
3D DETECTION PERFORMANCE COMPARISON ON TWO TESTING SETS OF
OPV2V BASED ON THE TRAINING OF SCHEME I1

Method Com. V2V CARLA Towns V2V Culver City
Type AP@05 AP@0.7 AP@05 AP@0.7

O Fusi Ideal | 0679 0602 | 0557 0471

usion Lossy | 0.679 0.602 0.557 0.471

FCooper 127 1deal | 0677 0404 | 078 0523

P Lossy | 0.677 0492 | 0656 0440

ldeal | 0713 0465 | 0702 0408

V2VNet [B3] 1 ossy | 0714 0.465 0702 0.409

Ideal | 0804 0645 | 0742 0576

OPVZVIIIOL oy | 0730 0603 0718 0561

Ideal | 0871 0740 | 0866  0.688

CoBEVT [ v | 0768 0.582 0795  0.586

. Ideal | 0793 0619 | 0731 0520

VEXVITISE - oie | 0770 0.599 0717 0511

Ideal | 0.887 0783 | 0871 0709

VZVAMHLCRN -y (o0 | 0.841 0705 | 0846  0.663

Under Lossy Communication, although all intermediate fusion
methods have a better performance than Table I, which learned
the lossy intermediate feature in the training stage. They still fail
to handle lossy communication data resulting in the poor per-
ception performance in II. In V2V CARLA Town testing set, F-
Cooper [12] got 49.2%, V2VNet [13] got 46.5%, CoOBEVT [11]
got 58.2%, and V2X-ViT [15] got 59.9% in AP@0(.7. These
four fusion methods are even worse than single-vehicle baseline
NO Fusion, which indicates the highly negative impacts by
lossy communication. While our proposed method can reach
the best performance of 84.1%/70.5% for AP@0.5/0.7 on V2V
CARLA town testing set, and 84.6%/66.3% for AP@0.5/0.7
on Culver City testing sets, respectively. The proposed method
achieves the best performance under both Ideal Communication
and Lossy Communication, which is highlighted in Table I.
Obviously, our proposed LCRN module efficiently maintains
the benefits of collaborations under lossy communication. The
proposed method can also diminish the impact of lossy V2V
communication to achieve excellent cooperative perception per-
formance. Further, we visualize some 3D object detection results
on V2V Culver City testing set under Lossy Communication,
as shown in Fig. 5. Intuitively, these five comparison methods
cannot handle loss communication appropriately, thus leading to
some false negative proposals. While the proposed method im-
proves the perception performance under lossy communication
significantly.

D. Discussion: Different Lossy Communication Types in V2V

As explained in [56], [73], several random issues such as
the occurrence of obstacles, fast and changing vehicle speeds,
distance between vehicles might result in lossy communication
when sharing a set of communication data. To simulate the
complex lossy communication in the real world, the sharing
data is randomly selected by a uniformly distributed random
probability p € [0, 1] and then replaced by random noise within
the range of original shared feature values. We design two ways
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(a) F-Cooper [12]

(d) CoBEVT [11]

Fig. 5. 3D object detection visualization.

(e) V2X-ViT [15]

and red 3D bounding boxes represent the
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(c) OPV2V [10]

(f) Proposed Method

and prediction respectively. The detection results of

the proposed method are clearly more accurate. Some false detection examples are highlighted using blue arrow.

Feature Map Sharing

0 I )
.’)) ass ’ (((.

CxHxW

(a) V2V Metadata Sharing

H Reshape
AL L

w
CxH*xW

(b) Reshaping Operation

Fig. 6.

(d;) Ch-Lossy with p = 0.3

(d;) Ch-Lossy with p = 0.7

(d,) Ch-Lossy with p = 0.5

Tllustration of different lossy communication types in V2V communication. (a) V2V Metadata Sharing, (b) Reshaping Operation, (ci-c3) Lossy

Communication (named as “Lossy”) on the reshaped feature (b) with a global random selection probability p of 0.3, 0.5, 0.7 respectively, (d1)—(d3) Channelwise
Lossy Communication (named as “C'h-Lossy”) on the feature (b) with a channelwise random selection probability p of 0.3, 0.5, 0.7 respectively. We use
C =9,H =10,W = 10 and normalized feature values for illustration in this example.

of random selection to simulate different lossy communication
types in the real-world V2V communication.

Lossy Communication (named as “Lossy” ) on global feature:
The shared feature after V2V metadata sharing is reshaped
from 3D tensor to 2D matrix first (Fig. 6(b)). Then, as shown
in Fig. 6(cy-c3), the reshaped feature is randomly selected by
the global random probability p and replaced by random noise
within the range of original shared feature values.

Channelwise Lossy Communication (named as “C'h-Lossy”):
Different with the “Lossy” type to simulate lossy communi-
cation on the reshaped global feature, “Ch-Lossy” type is to

simulate lossy communication on different channels. As shown
in as Fig. 6(dy)—(ds), given a shared feature C' x H x W,
|p* C]| channels are randomly selected by the channelwise
random probability p and replaced by random noise within the
range of original shared feature values.

Finally, the simulated lossy feature is reshaped back to its
original shape of C' x H x W and then received by ego vehicle.
In our experiment, Scheme II utilizes the simulated lossy com-
munication data by the “Lossy” type to train models, and then
we use the models trained in Scheme II to test both “Lossy” and
“C'h-Lossy” simulated data. Table IV shows the performance
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TABLE III
ABLATION STUDY FOR 3D OBJECT DETECTION ON TWO TESTING SETS OF
OPV2V BASED ON TRAINING OF SCHEME II. NOTE THAT V2VAM+LCRN 1s
OUR PROPOSED METHOD

V2V CARLA Towns V2V Culver City

Method AP@05 AP@0.7 AP@05 AP@0.7
NO Fusion | 0.679 0.602 | 0.557 0.471
AveFuse (Baseline) | 0.632 0325 | 0.697 0.374
V2VAM w/o Intra | 0.613 0490 | 0.637 0.458
V2VAM w/o Tnter | 0.641 0494 | 0.681 0.504
V2VAM | 0.709 0583 | 0761 0.541
AveFuse+LCRN | 0.698 0472 | 0714 0.558
V2VAM+LCRN | 0.841 0.705 | 0.846 0.663

TABLE IV

3D DETECTION PERFORMANCE COMPARISON ON TWO TESTING SETS OF
OPV2V BASED ON THE TRAINING OF SCHEME Il WITH TWO DIFFERENT TYPES
OF LOSSY COMMUNICATION

Method Com. V2V CARLA Towns V2V Culver City

Type ~ AP@ 05 AP@07 AP@ 0.5 AP@ 0.7

Lossy 0739 0603 | 0718 0.6l

OPVIVIIOL oy possy ‘ 0711 0582 ‘ 0737 0582

Lossy 0768 058 | 0795 0586

CoBEVT I o, Lossy ‘ 0742 0615 ‘ 0.767 0.588

. Lossy 0770 0599 | 0717 0511

V2XVITISL - o possy ‘ 0.793 0.619 ‘ 0.731 0.520

Pronosed Lossy 0841 0705 | 0846  0.663

ropose Ch-Lossy | 0.852 0.723 0.851 0.675

comparisons of several methods with the two lossy communica-
tion types. The proposed method achieves the best performance
under both “Lossy” and “Ch-Lossy” communication types.

E. Ablation Study

The effectiveness of the two proposed components, V2VAM
and LCRN, is investigated here. Based on training Scheme
11, all methods are evaluated under Lossy Communication on
V2V CARLA Town and Culver City testing sets, respectively.
AveFuse is used as the baseline fusion method, which just
averages all intermediate features. As shown in Table III, the
proposed V2VAM obtains 70.9% in AP@0.5 and 58.3% in
AP@0.7 on V2V CARLA Town testing set, which is 7.7% and
25.8% higher than AveFusion in AP@0.5 and AP@0.7 respec-
tively. Both Intra-vehicle attention and Inter-vehicle attention
modules are quite effective for V2VAM if we remove one of
them in V2VAM during the ablation study. By adding LCRN
to the baseline method, AveFuse+LCRN achieves 69.8% in
AP@0.5 and 47.2% in AP@0.7 on V2V CARLA Town testing
set, with the improvement of 6.6% in AP@0.5, and 14.7% in
AP@Q.7. Furthermore, our proposed method V2VAM+LCRN
achieves the best performance on both V2V CARLA Town and
Culver City testing set. Obviously, both V2VAM and LCRN
components are beneficial for improving the final performance
of 3D object detection in lossy communication scenarios.
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V. CONCLUSION

In this paper, the side effect of lossy communication in the
V2V cooperative perception is studied, and then we propose the
first intermediate LC-aware feature fusion method considering
lossy communication. An LC-aware Repair Network (LCRN)
is proposed to relieve the side effect of lossy communication
and a specially designed V2V Attention Module (V2VAM) is
designed to enhance the interaction between the ego vehicle
and other vehicles including intra-vehicle attention of ego vehi-
cle and uncertainty-aware inter-vehicle attention. The proposed
method is verified in the digital-twin CARLA simulator based
public cooperative perception dataset OPV2V, which is quite ef-
fective for the cooperative point cloud based 3D object detection
under lossy V2V communication and outperforms other V2V
point-cloud-based 3D object detection methods significantly.
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