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Abstract—Deep learning has been widely used in intelligent ve-
hicle driving perception systems, such as 3D object detection. One
promising technique is Cooperative Perception, which leverages
Vehicle-to-Vehicle (V2V) communication to share deep learning-
based features among vehicles. However, most cooperative percep-
tion algorithms assume ideal communication and do not consider
the impact of Lossy Communication (LC), which is very common
in the real world, on feature sharing. In this paper, we explore
the effects of LC on Cooperative Perception and propose a novel
approach to mitigate these effects. Our approach includes an
LC-aware Repair Network (LCRN) and a V2V Attention Module
(V2VAM) with intra-vehicle attention and uncertainty-aware inter-
vehicle attention. We demonstrate the effectiveness of our approach
on the public OPV2V dataset (a digital-twin simulated dataset)
using point cloud-based 3D object detection. Our results show
that our approach improves detection performance under lossy
V2V communication. Specifically, our proposed method achieves
a significant improvement in Average Precision compared to the
state-of-the-art cooperative perception algorithms, which proves
the capability of our approach to effectively mitigate the negative
impact of LC and enhance the interaction between the ego vehicle
and other vehicles.

Index Terms—Deep learning, vehicle-to-vehicle cooperative
perception, 3D object detection, lossy communication, digital twin.

I. INTRODUCTION

H
OW to perceive the surrounding objects precisely in com-

plex real-world scenarios is critical for modern intelligent

vehicle research. The accurate perception system (e.g., 3D object

detection) is the fundamental base for the next motion planning

and control of the intelligent vehicles, which implies tremendous

impacts on the driving safety of intelligent vehicles [1], [2], [3],

[4], [5], [6].

Because of the perception limitation of the current individual

intelligent vehicle [7], [8], [9], the cooperative perception of
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Connected Automated Vehicles (CAV) recently attracted much

attention in this research community. Compared to the percep-

tion of individual intelligent vehicles, recent studies [10], [11],

[12] show that cooperative perception of CAV can significantly

improve the perception performance by leveraging Vehicle-

to-Vehicle (V2V) communication technology for information

sharing. Information sharing through V2V communication is an

important technology for CAV cooperative perception, which is

utilized to observe a wider range and perceive more occluded

objects in the complex traffic environment [13], [14]. There are

three ways for information sharing during V2V communication:

(1) sharing raw sensor data as early fusion, (2) sharing interme-

diate features of the deep learning based detection networks as

intermediate fusion, (3) sharing detection results as late fusion.

Recent state-of-the-art studies [10], [15] show that interme-

diate fusion is the best trade-off between detection accuracy

and bandwidth requirement. This paper also focuses on the

intermediate fusion during communication for V2V cooperative

perception.

Many intermediate fusion methods have been recently pro-

posed for the V2V cooperative perception [10], [11], [12], [13];

however, all of them assume the ideal communication. The only

V2V cooperative perception study that considered non-ideal

communication focused solely on communication delays [15].

To date, no existing work has explored the impact of Lossy Com-

munication (LC) on V2V cooperative perception in complex

real-world driving environments. In urban traffic scenarios, V2V

communication is susceptible to a range of factors that can result

in lossy communication, such as multi-path effects from obsta-

cles (e.g., buildings and vehicles) [17], Doppler shift introduced

by fast-moving vehicles [18], interference generated by other

communication networks [19], and dynamic topology caused

by routing failures [20], as well as various weather conditions.

Incomplete or inaccurate shared intermediate features resulting

from lossy communication could compromise the effectiveness

and efficiency of V2V cooperative perception, as shown in Fig. 1.

Failure to address LC in cooperative perception could lead to

degraded perception performance, increased collision risk, and

reduced traffic efficiency.

This paper first studies the negative effect of lossy com-

munication in the V2V cooperative perception and then pro-

poses a novel intermediate LC-aware feature fusion method to

address the issue. Specifically, the proposed method includes

an LC-aware Repair Network (LCRN) to recover the incom-

plete shared features by lossy communication and a specially
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Fig. 1. Illustration of the V2V cooperative perception pipeline and its de-
tection performance drop suffering from lossy communication on the public
digital-twin CARLA simulator [16] based OPV2V dataset [10], where three in-
termediate fusion methods all trained under ideal communication are displayed:
CoBEVT [11], F-Cooper [12], and V2X-ViT [15].

designed V2V Attention Module (V2VAM) to enhance the

interaction between the ego vehicle and other vehicles. The

V2VAM includes the intra-vehicle attention of ego vehicle and

uncertainty-aware inter-vehicle attention. It is challenging to

collect the authentic CAV perception data with lossy communi-

cation in real-world driving, and considering the advantage of

the digital twin in many application [21], [22], [23], [24], [25],

[26], this paper evaluates the proposed method in a digital-twin

CARLA simulator [16] based public cooperative perception

dataset OPV2V [10]. The contributions of this paper are sum-

marized as follows.
� We propose the first research on V2V cooperative percep-

tion (point cloud-based 3D object detection) under lossy

communication and study the side effect of lossy commu-

nication on cooperative perception, specifically the impact

on detection performance.
� This paper proposes a novel intermediate LC-aware feature

fusion method to relieve the side effect of lossy commu-

nication by a LC-aware Repair Network and enhance the

interaction between the ego vehicle and other vehicles by a

specially designed V2V Attention Module including intra-

vehicle attention of ego vehicle and uncertainty-aware

inter-vehicle attention.
� We evaluate the proposed method on the public cooperative

perception dataset OPV2V, which is based on the digital-

twin CARLA simulator [16].

The rest of this paper is organized as follows. Section II briefly

reviews the related literature to this work, Section III presents

the details of the proposed V2V cooperative perception method

under lossy communication, Section IV provides the experi-

ments and analysis with two scenarios: Ideal Communication

and Lossy Communication, and the final conclusion are given

in Section V.

II. RELATED WORK

A. 3D Perception for Autonomous Driving

3D object detection is one of the most critical ways to the

success of autonomous driving perception. Based on recently

available sensor modality [27], 3D detection method can be

roughly divided into three categories: (1) Camera-based de-

tection methods where approaches detect 3D objects using a

single or multiple RGB images [28], [29], [30]. For example,

CaDDN [28] utilizes the depth distributions combined with the

image features to generate bird’s-eye-view representations for

3D object detection. ImVoxelNet [29] constructs a 3D volume

in 3D space and samples multi-view features to obtain the

voxel representation for 3D object detection. DETR3D [30]

uses queries to index into extracted 2D multi-camera features to

directly estimate 3D bounding boxes in 3D spaces. (2) LiDAR-

based detection methods where these methods typically con-

vert LiDAR points into voxels or pillars, leading in voxel-

based [31], [32] or pillar-based object detection methods [33],

[34], [35]. PointRCNN [36] proposes a two-stage strategy based

on raw point clouds, which learns rough estimation first and then

refines it with semantic attributes. Some methods [31], [32] pro-

pose to split the space into voxels and produce features per voxel.

However, 3D voxels are usually expensive to process. To address

this issue, PointPillars [37] propose to compress all the voxels

along the z-axis into a single pillar, then predict 3D boxes in

the bird’s-eye-view space. Moreover, some recent methods [38],

[39] combine voxel-based and point-based approaches to de-

tect 3D objects jointly. (3) Camera-LiDAR fusion detection

method where it presents an approach fusing information from

both image and LiDAR points, which is a trend in 3D object

detection. How to align the image features with point clouds

is challenging in multimodal fusion. To solve this challenge,

some methods [40], [41], [42] use a two-step framework, where

detecting the object in 2D images in the first stage, then using

the obtained information to further process point clouds for

3D detection. While other works [43], [44] develop end-to-end

fusion pipelines and leverage cross-attention mechanisms to

perform feature alignment. Our work in this paper focuses on the

cooperative point cloud based 3D object detection to achieve fast

processing and real-time performance [33], [34]; pillar-based

approach would be used in our following experiments.

B. Vehicle-to-Vehicle Cooperative Perception

The performance of a 3D perception method highly depends

on the accuracy of 3D point clouds. However, LiDAR cameras

suffer from refraction, occlusion, and long-range distance, so

the single-vehicle system could become unreliable under some

challenging situations [10]. In recent years, Vehicle-to-Vehicle

(V2V) / vehicle-to-infrastructure (V2X) cooperating system has

been proposed to overcome the disadvantages of the single-

vehicle system by using multiple vehicles. The collaboration

among different vehicles enables the 3D perception network to

fuse information from different sources.

Some former methods use Early fusion to share raw data

among different vehicles. For example, Cooper [45] fused the
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point clouds from different connected autonomous vehicles and

made predictions based on the aligned data. AUTOCAST [46]

exchanged sensor readings from different sensors to broaden

the perceptive field for a single vehicle. Other methods use

Late fusion to integrate the 3D detection results from each

vehicle. Rawashdeh et al. [47] proposed a machine learning

based method that shares the dimension and the location of

the center point for each tracked object. Some other late fusion

methods [48], [49] also adopt point clouds as sensor data from

both vehicle and infrastructure. While early fusion requires large

bandwidth and data transfer speed, late fusion may generate

undesirable results due to the biased individual prediction. In

order to find the balance between data load and accuracy, recent

methods focus on Intermediate fusion by sharing intermediate

representations. F-cooper [12] applied voxel features fusion and

spatial feature fusion from two cars. V2VNet [13] employed a

graph neural network to aggregate features extracted by LiDAR

from each vehicle. V2X-ViT [15] proposed a vision Trans-

former architecture to fuse features from vehicles and infras-

tructures. Cui et al. [50] proposed a Point-based Transformer

for point cloud processing, which can integrate collaborative

perception with control decisions. Tu et al. [51] proposed an

efficient and practical online attack network in a multi-agent

deep learning system based on intermediate representations. Luo

et al. [52] utilized attention modules to fuse the intermediate

feature and enhance feature complementarity. Lei et al. [53]

proposed a latency compensation module to realize intermediate

feature-level synchronization. Hu et al. [54] proposed a spatial

confidence-aware communication strategy to use less commu-

nication to improve performance by focusing on perceptually

critical areas. OPV2V [10] utilized a self-attention module to

fuse the received intermediate features. CoBEVT [11] proposed

local-global sparse attention that captures complex spatial in-

teractions across views and agents to improve the performance

of cooperative perception. However, these fusion methods are

all with the assumption of ideal communication, which would

suffer dramatic performance drop with lossy communication in

the real world. To address this issue, we design a special V2V

Attention Module (V2VAM), including intra-vehicle attention

of ego vehicle and uncertainty-aware inter-vehicle attention to

enhance the V2V interaction.

C. Communication Issue in V2V Perception

V2V and V2X communication can improve the safety and

reliability of autonomous vehicles by exchanging information

with surrounding vehicles. However, communication among

vehicles may bring new issues to this research field [55]. Due to

the nature of the connectivity, lossy communication is inevitable

in wireless channels. Some factors like channel errors, network

congestion, and delay deadline violation can cause packet losses

during the transmission of data in the wireless network [56].

Low latency and high reliability are two common challenges

for V2V communication. For example, in the pre-crash sensing

scene, the maximum latency is only 20 ms, and data delivery

reliability must be greater than 99% [55], [57]. Several works

have proposed specific resource allocation schemes to ensure

latency and reliability of V2V communication systems by using

Lagrange dual decomposition and binary search [58], greedy

link selection [59], or federated learning [60]. Some studies

also aim to improve the V2V communication security from

different aspects such as authentication, data integrity, and data

protection [61].

Lossy Communication (LC) is also a critical issue in V2V

communication. According to studies on single-hop broadcast-

ing, the obstacle (vehicles, buildings, etc.) between transmitter

and receiver will result in signal power fluctuations, thus causing

packet loss [21], [55], [62], [63]. The shared data could also be

interfered with by other signals or modified by attackers before

arriving at its destination, thus leading to lossy data. In this work,

we aim to eliminate the lossy communication by proposing an

LC-aware repair network and improving the robustness of the

V2V perception network.

III. METHODOLOGY

In this paper, we focus on the cooperative LIDAR-based 3D

object detection task for autonomous driving and consider a

realistic scenario where communication loss exists in collab-

oration. Since we focus on the lossy communication challenge

during data transmission in this paper, we assume there are no

communication delays or localization errors in the V2V system.

To handle lossy communication challenges in the real world

and enhance CAV’s cooperative perception capability, inspired

by [10], this paper proposes a novel intermediate LC-aware fea-

ture fusion framework. The overall architecture of the proposed

framework is illustrated in Fig. 2, which includes five compo-

nents: 1) V2V metadata sharing, 2) LIDAR feature extraction, 3)

Feature sharing, 4) LC-aware repair network and V2V Attention

module, 5) classification and regression headers.

A. Overview of Architecture

V2V metadata sharing: We select one of the CAVs as the

ego vehicle to construct a spatial graph around it where each

node is a CAV within the communication range, and each edge

represents a directional V2V communication channel between

a pair of nodes. Upon receiving the relative pose and extrinsic

of the ego vehicle, all the other CAVs nearby will project their

own LiDAR point clouds to the ego vehicle’s coordinate frame

before feature extraction, which could be simply formulated as

ptcavprojected
= Tcav→ego · p

t
cav, (1)

where ptcav is the CAV pose [x, y, z, 1]T in i-th CAV at the time t,

and Tcav→ego ∈ R
4×4 is coordinate transformation matrix from

CAV to ego.

LIDAR feature extraction: The anchor-based PointPillar

method [37] is selected as the 3D detection backbone to extract

visual features from point clouds. Since it can be deployed in

the real world easily than other 3D detection backbones (e.g.

SECOND [31], PIXOR [64], and VoxelNet [32]) thanks to its

low inference latency and optimized memory usage [10]. This

method converts the raw point clouds to a stacked pillar tensor,

then scattered to a 2D pseudo-image and fed to the PointPillar

backbone. Finally, the backbone extracts informative visual
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Fig. 2. The architecture of LC-aware feature fusion framework. The proposed model includes five components: 1) V2V Metadata Sharing, 2) LiDAR Feature
Extraction, 3) Feature Sharing, 4) LC-aware Repair Network (LCRN) and V2V Attention Module (V2VAM), 5) Classification and Regression header.

TABLE I
3D OBJECT DETECTION PERFORMANCE COMPARISON ON TWO TESTING SETS

OF OPV2V BASED THE TRAINING OF SCHEME I. WE SHOW AVERAGE

PRECISION (AP) AT IOU=0.5, 0.7. NOTE THAT V2VAM IS ONLY OUR

PROPOSED V2V ATTENTION MODULE WHILE V2VAM+LCRN IS OUR FULL

PROPOSED METHOD

feature maps. Each CAV has its own LIDAR feature extraction

module.

Feature sharing: In this component, the ego vehicle will

receive the neighboring CAV feature maps after each CAV

feature extraction, and these received intermediate features will

be fed into the remaining detection networks in the ego vehicle.

In the real-world scenario (e.g. urban building and unpredictable

occlusion), the transmission of the feature maps usually suffers

inevitable damage that leads to lossy communication. As a result,

existing 3D object detectors would suffer a dramatic perfor-

mance drop with the lossy features collected from surrounding

CAVs, as shown in Table I.

LC-aware Repair Network and V2V Attention Module: The

intermediate features aggregated from other surrounding CAVs

are fed into the major component of our framework i.e., LC-

Aware Repair Network for recovering the intermediate feature

map in lossy communication by using tensor-wise filtering, and

V2V Attention module for iterative inter-vehicle as well as

intra-vehicle feature fusion utilizing attention mechanisms. The

proposed LC-aware repair network and V2V attention module

will be revealed with details in Section III-B and Section III-C,

respectively.

Classification and regression headers: After receiving the

final fused feature maps, two prediction headers are utilized for

box regression and classification.

B. LC-Aware Repair Network

Image denoising is one of the longstanding challenging tasks

in computer vision. The primary sources of noise [65] are shot

noise, where a Poisson process with variance equal to the signal

level, and read noise, where an approximately Gaussian process

is caused by diverse sensor readout effects. To denoise them,

some deep learning-based methods [66], [67], [68] use denoising

networks that generate a filter for every pixel in the desired output

to constrain the output space and thereby prevent the impact of

artifacts. Inspired by these architectures, to handle the common

V2V communication challenges i.e., lossy communication, we

design a customized LC-aware repair network for intermediate

feature recovering from other CAVs.

The framework of the LC-aware repair network is shown

in Fig. 3, which is an encoder-decoder architecture with skip

connections. This network generates a specific per-tensor filter

kernel to jointly align and recover the input damaged feature to

produce a recovered version of the output feature. The input

feature for LC-aware repair network is S ∈ R
c×h×w, then a

tensor-wise kernelK is generated and applied toS to produce the

recovered output feature Ŝ ∈ R
c×h×w. the specific tensor-wise

filter kernel could be simply formulated as

K = Conv(S), (2)
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Fig. 3. Illustration of LC-aware Repair Network. The LC-aware Repair archi-
tecture for feature recovery is based on the encoder-decoder structure, which
outputs per-tensor feature kernels. These kernels then are applied to the input
lossy features.

and the value at each tensor t in our output feature Ŝ is

Ŝt = Kt
� St, (3)

where � denotes the matrix dot product. K ∈ R
(k×k)×h×w is a

tensor-wise kernel, and each tensor in channel dimension Kt ∈
R

k×k is a per-tensor kernel and can be applied to the k × k

neighborhood region of each tensor t in the input feature S ∈
R

c×h×wby multiplication. The Conv(�) denotes the tensor-wise

network and is used to perceive the input feature and generate

the suitable kernel for each tensor.

To acquire the repaired output feature Ŝ, the tensor-wise

filtering � of the input damaged feature could largely preserve

the feature detailed without corruption. Therefore, a large kernel

size k is desired to leverage the rich neighborhood information

of each tensor fully. In our experiment, the kernel size k is set

to 5 due to memory limitations.

The LC-aware repair loss function LLC(Ŝ, Ŝ
g) is the tensor-

wise L1 distance between the ground truth original feature Ŝg

before suffering lossy communication and the repaired feature

Ŝ. The repair loss can be defined as

LLC(Ŝ, Ŝ
g) = ‖Ŝg − Ŝ‖. (4)

C. V2V Attention Module

Self-attention mechanism [69] has emerged as a recent

advance to capture long-range interaction; The key idea of

Fig. 4. The architecture of V2V Attention Module includes the intra-vehicle
attention of ego vehicle and uncertainty-aware inter-vehicle attention. The final
output is a fusion feature with interaction between ego features and other shared
features from other CAVs. F denotes a set of max pooling, average pooling, and
convolution operation.

self-attention is to calculate the response at a position as a

weighted sum of the features at all locations, with the interaction

between features determined by the features themselves rather

than their relative location, as in convolutions. In this paper,

after receiving the recovered intermediate feature, we aim to

leverage the intermediate deep learning features from multiple

nearby CAVs to improve perception performance based on

V2V communication. We design a customized intra-vehicle and

inter-vehicle attention fusion method by considering the lossy

communication situation to enhance interaction between ego

CAV and other CAVs. Moreover, we adopt a criss-cross attention

module in our proposed V2V attention method, which can be

leveraged to capture contextual information from full-feature

dependencies more efficiently and effectively.

Intra-Vehicle Attention: For the ego vehicle only, the intra-

vehicle attention module can enable features from any position

to perceive globally, thus enjoying full-image contextual infor-

mation to better capture the representative feature. Formally,

let He ∈ R
C×H×W be an input feature map of an ego vehicle,

which is perfect data generated by self-vehicle without suffering

any lossy communication. In the intra-vehicle attention mod-

ule, the feature map He would be calculated by three 1× 1
convolutional layers to produce three feature vectors Qe, Ke,

and Ve, respectively, where all of them have the same size,

{Qe,Ke,Ve} ∈ R
C×H×W . Following the scaled dot-product

attention in [69], we compute the dot products of theQe andKe,

then divide them using a scaling factor i.e. dimension of feature

vectors, and apply a softmax function to obtain the weights on

the Ve. The intra-vehicle attention as shown in Fig. 4 is defined

as follows,

Aintra = softmax

(

QeKeT

√

dek

)

Ve, (5)

where dek is the dimension of Ke, and the standard softmax()
function is used as the activated function here. Aintra denotes
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the output feature map of ego vehicle with considering all spatial

information of the feature map.

Uncertainty-Aware Inter-Vehicle Attention: In V2V coopera-

tive perception, the intermediate feature maps Hs ∈ R
C×H×W

aggregated from other CAVs are shared to the ego vehicle.

The shared feature maps Hs with lossy communication would

be recovered by LC-aware repair network, as introduced in

Section III-B, but they are still noisy to some extent, while

the ego feature maps He are prefect without any lossy trans-

mission. Fusing these uncertain feature maps with a certain

ego feature map directly could be risky in the cooperative

perception interaction process. To address this issue, we propose

an uncertainty-aware inter-vehicle attention fusion method by

considering the uncertainty of the recovered feature maps. In

this module, the shared feature maps would be calculated by

two 1× 1 convolutional layers to produce two feature vectors

Ks, and Vs, respectively, where all of them have the identical

size, {Ks,Vs} ∈ R
C×H×W and the other feature vector Qe is

directly obtained from ego self-vehicle instead of other vehicles,

as shown in Fig. 4. Similar to the intra-vehicle attention in

Section III-C, the uncertainty-aware inter-vehicle attention can

be defined as

Ainter =

N
∑

i

softmax

(

QeKs
i

T

√

dsk

)

Vs
i , (6)

where dk is the dimension of Ks
i , and N is the number of the

neighboring CAVs.Ainter denotes the sum of the output feature

map considering the interaction between the ego vehicle and

other vehicles.

Efficient Implementation: Inspired by [70], we adopt two

consecutive criss-cross (CC) attention modules to implement

V2V attention in point cloud data rather than scaled dot-product

attention. The latter generates huge attention maps to measure

the relationships for each point-pair, resulting in a very high

complexity of O((H ×W )2), where H ×W is the size of

input features He and Hs. The CC attention module [70]

aggregates contextual information in horizontal and vertical

directions, collecting contextual information from all pixels by

serially stacking two CC attention modules. Each position has

sparse connections to other positions in the feature map, with a

total of (H +W − 1) connections per position. This approach

greatly reduces the complexity fromO((H ×W )× (H ×W ))
to O((H ×W )× (H +W − 1)) while still effectively captur-

ing the relevant context from all vehicles through V2V commu-

nication.

After obtaining the intra-vehicle attention and inter-vehicle

attention, all of them would be fed into the max pooling and

average pooling layers separately to obtain abundant spatial

information, then they are concatenated as the input for the 2D

convolutional layer with ReLU activation function. Therefore,

the final fusion feature output Aout in V2V attention module is

Aout = F (Aintra +Ainter), (7)

where F denotes a set of max pooling, average pooling, and

convolution layers. For 3D object detection, we use the smooth

L1 loss for bounding box regression and focal loss [71] for

classification. The final loss is the combination of detection and

LC-aware repair loss LLC as follows,

Ltotal = µLdet + λLLC , (8)

where µ and λ are the balance coefficients within range [0, 1].

IV. EXPERIMENT

A. Dataset

Due to the difficulties of collecting the real-world CAV per-

ception data for cooperative perception with lossy communica-

tion in realistic scenes, we use the digital-twin-based simula-

tion dataset to validate the proposed method. The experiments

are conducted on the public cooperative perception dataset

OPV2V [10]. OPV2V is a large-scale open-source simulated

dataset for V2V perception, which contains 73 divergent scenes

with various numbers of connected vehicles, 11,464 frames, and

232,913 annotated 3D vehicle bounding boxes. These data are

collected from 8 digital towns in CARLA [16], and a digital

town of Culver City, Los Angeles with the same road topology.

Following the default setting of OPV2V [10], we use 3,382

frames and 1,920 frames from OPV2V as the training set and

validation set, respectively, and 2,170 frames in CARLA Towns

and 594 frames in Culver City are used as testing set for all

methods.

B. Experiments Setup

Evaluation metrics: We evaluate the performance of our pro-

posed framework by the final 3D vehicle detection accuracy. Fol-

lowing [10], [15], we set the evaluation range asx ∈ [−140, 140]
meters, y ∈ [−40, 40] meters, where all CAVs are included in

this spatial range, whose number is in the range of [1,5] in

the experiment. and we measure the accuracy with Average

Precisions (AP) at Intersection − over−Union (IoU) threshold

of 0.5 and 0.7.

Experiment details: In this work, we focus on LiDAR-based

vehicle detection and assess models under two scenarios: 1)

Ideal Communication, where all data transmissions are under

perfect communication; 2) Lossy Communication, where all

intermediate features from other CAVs suffer from the lossy

communication except the ego vehicle feature. To simulate

the lossy communication, the shared intermediate features are

randomly selected by a uniform distributed random probability

p ∈ [0, 1], then replaced by a uniform distributed random noise,

which is generated by a uniform distribution within the range of

original intermediate features. Statistically, the range of original

intermediate features is [0, 29.5] in our experiment.

In the training stage, we adopt two schemes to observe the

impact of different training data on V2V 3D object detection

models. The Scheme I uses only ideal communication-based

data for training, while the other Scheme II uses simulated lossy

communication-based data as described above for training. The

training parameter settings for both schemes are identical, and

the only difference between them is the training data, which

considers lossy communication in Scheme II All trained models

are evaluated on V2V CARLA Towns and Culver City testing
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sets under both Ideal Communication and Lossy Communication

scenarios. Specifically, all models use the PointPillar [37] as the

backbone with the voxel resolution of 0.4 m for both height and

width. We adopt Adam optimizer [72] with an initial learning

rate of 10−3 and steadily decay it every 10 epochs using a factor

of 0.1. The coefficient of detection lossLdet is set to 1.0, and that

of LC-aware repair loss LLC is set to 0.1. We follow the same

hyperparameters in V2X-ViT [15], and all models are trained

on two RTX 3090 GPUs.

Compared methods: We consider No fusion as the baseline,

which only uses the ego vehicle’s LiDAR point clouds. In

addition, we evaluate five state-of-the-art methods in this paper,

which use Intermediate Fusion as the main fusion strategy:

CoBEVT [11], F-Cooper [12], V2VNet [13], OPV2V [10], and

V2X-ViT [15](see SectionII-B for detailed descriptions). To

demonstrate the significant effect of Lossy Communication, we

first train these methods under two scenarios: Ideal Communi-

cation and Lossy Communication. We then test these methods

under the same two scenarios to assess their performance. To

show the effectiveness of two critical components in our frame-

work, namely LCRN, and V2VAM, we design a simple feature

averaging fusion method with a 1× 1 convolutional layer called

AveFuse. This method averages all intermediate features from

ego-vehicle and other vehicles, and then the averaged feature is

passed through a 1× 1 convolutional layer.

C. Experimental Results

Table I shows the performance comparisons of all models that

are trained with Scheme I, then tested on two communication

types e.g., Ideal Communication and Lossy Communication,

respectively. Under Ideal communication, all the cooperative

perception methods significantly surpass NO Fusion baseline.

In V2V CARLA Town testing set, our proposed V2VAM out-

performs the other five advanced fusion methods to achieve

92.6%/86.1% for AP@0.5/0.7, which is highlighted as bold text

in Table I. In V2V Culver City testing set, CoBEVT [11] gets

87.7%/74.8% for AP@0.5/0.7, while the V2VAM achieves the

88.5%/78.5% for AP@0.5/0.7 as the best performance, which is

higher than the second best fusion method CoBEVT [11] with an

AP@0.5/0.7 improvement of 1.6%/3.7%. These results indicate

cooperative perception methods can improve the perception

performance than a single vehicle perception system under Ideal

Communication, and our proposed fusion method V2VAM can

enhance the interaction between ego vehicle and other vehi-

cles efficiently, which achieves the best performance. However,

under Lossy Communication testing scenario, all intermediate

fusion methods have a drastic performance drop on two testing

sets, and the accuracy of these methods is even less than NO Fu-

sion. In V2V CARLA Town testing set, the cooperative percep-

tion performance of F-Cooper [12], V2VNet [13], OPV2V [10],

and CoBEVT [11] decrease by 80.8%, 85.0%, 85.6%, and 82.5%

in AP@0.5, respectively. Obviously, all intermediate fusion

methods without considering the lossy communication are not

practical for deployment in the real world.

The result of 3D object detection on two OPV2V testing sets

based on the training of Scheme II is presented in Table II.

TABLE II
3D DETECTION PERFORMANCE COMPARISON ON TWO TESTING SETS OF

OPV2V BASED ON THE TRAINING OF SCHEME II

Under Lossy Communication, although all intermediate fusion

methods have a better performance than Table I, which learned

the lossy intermediate feature in the training stage. They still fail

to handle lossy communication data resulting in the poor per-

ception performance in II. In V2V CARLA Town testing set, F-

Cooper [12] got 49.2%, V2VNet [13] got 46.5%, CoBEVT [11]

got 58.2%, and V2X-ViT [15] got 59.9% in AP@0.7. These

four fusion methods are even worse than single-vehicle baseline

NO Fusion, which indicates the highly negative impacts by

lossy communication. While our proposed method can reach

the best performance of 84.1%/70.5% for AP@0.5/0.7 on V2V

CARLA town testing set, and 84.6%/66.3% for AP@0.5/0.7

on Culver City testing sets, respectively. The proposed method

achieves the best performance under both Ideal Communication

and Lossy Communication, which is highlighted in Table I.

Obviously, our proposed LCRN module efficiently maintains

the benefits of collaborations under lossy communication. The

proposed method can also diminish the impact of lossy V2V

communication to achieve excellent cooperative perception per-

formance. Further, we visualize some 3D object detection results

on V2V Culver City testing set under Lossy Communication,

as shown in Fig. 5. Intuitively, these five comparison methods

cannot handle loss communication appropriately, thus leading to

some false negative proposals. While the proposed method im-

proves the perception performance under lossy communication

significantly.

D. Discussion: Different Lossy Communication Types in V2V

As explained in [56], [73], several random issues such as

the occurrence of obstacles, fast and changing vehicle speeds,

distance between vehicles might result in lossy communication

when sharing a set of communication data. To simulate the

complex lossy communication in the real world, the sharing

data is randomly selected by a uniformly distributed random

probability p ∈ [0, 1] and then replaced by random noise within

the range of original shared feature values. We design two ways
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Fig. 5. 3D object detection visualization. Green and red 3D bounding boxes represent the ground truth and prediction respectively. The detection results of
the proposed method are clearly more accurate. Some false detection examples are highlighted using blue arrow.

Fig. 6. Illustration of different lossy communication types in V2V communication. (a) V2V Metadata Sharing, (b) Reshaping Operation, (c1-c3) Lossy
Communication (named as “Lossy”) on the reshaped feature (b) with a global random selection probability p of 0.3, 0.5, 0.7 respectively, (d1)–(d3) Channelwise
Lossy Communication (named as “Ch-Lossy”) on the feature (b) with a channelwise random selection probability p of 0.3, 0.5, 0.7 respectively. We use
C = 9,H = 10,W = 10 and normalized feature values for illustration in this example.

of random selection to simulate different lossy communication

types in the real-world V2V communication.

Lossy Communication (named as “Lossy”) on global feature:

The shared feature after V2V metadata sharing is reshaped

from 3D tensor to 2D matrix first (Fig. 6(b)). Then, as shown

in Fig. 6(c1-c3), the reshaped feature is randomly selected by

the global random probability p and replaced by random noise

within the range of original shared feature values.

Channelwise Lossy Communication (named as “Ch-Lossy”):

Different with the “Lossy” type to simulate lossy communi-

cation on the reshaped global feature, “Ch-Lossy” type is to

simulate lossy communication on different channels. As shown

in as Fig. 6(d1)–(d3), given a shared feature C ×H ×W ,

�p ∗ C� channels are randomly selected by the channelwise

random probability p and replaced by random noise within the

range of original shared feature values.

Finally, the simulated lossy feature is reshaped back to its

original shape of C ×H ×W and then received by ego vehicle.

In our experiment, Scheme II utilizes the simulated lossy com-

munication data by the “Lossy” type to train models, and then

we use the models trained in Scheme II to test both “Lossy” and

“Ch-Lossy” simulated data. Table IV shows the performance
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TABLE III
ABLATION STUDY FOR 3D OBJECT DETECTION ON TWO TESTING SETS OF

OPV2V BASED ON TRAINING OF SCHEME II. NOTE THAT V2VAM+LCRN IS

OUR PROPOSED METHOD

TABLE IV
3D DETECTION PERFORMANCE COMPARISON ON TWO TESTING SETS OF

OPV2V BASED ON THE TRAINING OF SCHEME II WITH TWO DIFFERENT TYPES

OF LOSSY COMMUNICATION

comparisons of several methods with the two lossy communica-

tion types. The proposed method achieves the best performance

under both “Lossy” and “Ch-Lossy” communication types.

E. Ablation Study

The effectiveness of the two proposed components, V2VAM

and LCRN, is investigated here. Based on training Scheme

II, all methods are evaluated under Lossy Communication on

V2V CARLA Town and Culver City testing sets, respectively.

AveFuse is used as the baseline fusion method, which just

averages all intermediate features. As shown in Table III, the

proposed V2VAM obtains 70.9% in AP@0.5 and 58.3% in

AP@0.7 on V2V CARLA Town testing set, which is 7.7% and

25.8% higher than AveFusion in AP@0.5 and AP@0.7 respec-

tively. Both Intra-vehicle attention and Inter-vehicle attention

modules are quite effective for V2VAM if we remove one of

them in V2VAM during the ablation study. By adding LCRN

to the baseline method, AveFuse+LCRN achieves 69.8% in

AP@0.5 and 47.2% in AP@0.7 on V2V CARLA Town testing

set, with the improvement of 6.6% in AP@0.5, and 14.7% in

AP@0.7. Furthermore, our proposed method V2VAM+LCRN

achieves the best performance on both V2V CARLA Town and

Culver City testing set. Obviously, both V2VAM and LCRN

components are beneficial for improving the final performance

of 3D object detection in lossy communication scenarios.

V. CONCLUSION

In this paper, the side effect of lossy communication in the

V2V cooperative perception is studied, and then we propose the

first intermediate LC-aware feature fusion method considering

lossy communication. An LC-aware Repair Network (LCRN)

is proposed to relieve the side effect of lossy communication

and a specially designed V2V Attention Module (V2VAM) is

designed to enhance the interaction between the ego vehicle

and other vehicles including intra-vehicle attention of ego vehi-

cle and uncertainty-aware inter-vehicle attention. The proposed

method is verified in the digital-twin CARLA simulator based

public cooperative perception dataset OPV2V, which is quite ef-

fective for the cooperative point cloud based 3D object detection

under lossy V2V communication and outperforms other V2V

point-cloud-based 3D object detection methods significantly.
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