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A B S T R A C T

For transportation hubs, leveraging pedestrian flows for commercial activities presents an
effective strategy for funding maintenance and infrastructure improvements. However, this
introduces new challenges, as consumer behaviors can disrupt pedestrian flow and efficiency. To
optimize both retail potential and pedestrian efficiency, careful strategic planning in store layout
and facility dimensions was done by expert judgement due to the complexity in pedestrian
dynamics in the retail areas of transportation hubs. This paper introduces an attention-based
movement model to simulate these dynamics. By simulating retail potential of an area through
the duration of visual attention it receives, and pedestrian efficiency via speed loss in pedestrian
walking behaviors, the study further explores how design features can influence the retail
potential and pedestrian efficiency in a bi-directional corridor inside a transportation hub.

1. Introduction

Pedestrian dynamics within public spaces have garnered significant attention in recent years due to their implications for
he planning of transportation facilities, commercial centers, and other urban infrastructures (Hoogendoorn et al., 2004). While
edestrian safety has been the focus for a long time, recent demands call for explorations about the pedestrian dynamics in retail
reas within high-density transportation hubs. As passenger growth increases the expenditure of transportation facility operations,
everaging such pedestrian flows to expand commercial activities becomes a practical way for the management to fund maintenance
nd asset improvements (Baron, 2019).
However, while increases in pedestrian flows provide financial benefits, research suggests consuming behaviors may introduce

low-down effects or turbulence to pedestrian flows (Zacharias, 2021). These conflicting outcomes create a challenge when
ncorporating retail areas into high-density transportation hubs. In order to maintain the efficiency requirements of transportation
ervices, architectural designers must strike a balance between retail potential and pedestrian efficiency through strategic store
ayout and facility dimensions (Hänseler, 2016). This process is currently done through intuition and expert judgement, in part due
o the difficulties in simulating the possible outcomes given modifications to the design and layout.
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One of the difficulties is the diversity of pedestrian interactions with environmental objects, which limits the applications of
revious studies. Most prior works follow an assumption that pedestrians tend to steer towards environmental objects when they
re attracted to them (Kwak et al., 2013; Zhou et al., 2022). However, Li (2023) shows that such a model does not impose the
ominant impact on the slowing-down effects in transportation hub retail areas. Instead, pedestrians who slow down to gaze at stores
ithout changing directions actually provide the major contributions (Li, 2023). Such a behavior, which we refer to as attention-based
ovement, differs from endogenous distracted movement in Kremer et al. (2021) because in our context agents will interact with
xogenous environmental objects rather than something they hold. Instead, our work is related to the attracted movement behaviors
escribed in Wang (2014). Since the modeling of attention-based movement remains largely unexplored, in this study we focus on
his subgroup to pave the way to the design optimization goal above.
Another challenge is to find metrics for pedestrian efficiency and retail potential, and then model them simultaneously. Retail

otential, often referred to as the probability of purchasing a product/item, is unable to directly inspect in our study, because we
ocus on attention-based movements where pedestrians do not enter the store to purchase. However, retail potential is found to be
orrelated with the time of looking at the products (the duration of visual attention) (Gidlöf et al., 2017). Such influence becomes
ven stronger in rapid decisions (Milosavljevic et al., 2012), which are often the cases in transportation hubs. Therefore, we consider
he average visual attention that pedestrians pay to a retail area as a reasonable measure for the retail potential of it. It can also be
een as the visual saliency of retail areas from an exocentric perspective (Kremer et al., 2021). Pedestrian efficiency, on the other
and, can be measured by the speed loss compared to pedestrians’ desired walking speed (Helbing et al., 2000; Kwak et al., 2013).
herefore, we need to simulate not only pedestrians’ visual attention but also their changes in walking behaviors when they are
nteracting with environmental objects.
In this paper, we propose a novel pedestrian model referred to as attention-based movement behaviors. Our model is a combination

f visual attention and locomotion, designed for simulating attention within retail transportation hubs. Section 2 provides an
verview of related work. Section 3 describes the dataset, models, and parameter settings. Section 4 compares its simulation results
o a real-world dataset and prior work. Then, our model is applied to a sensitivity analysis with regard to the architectural design
eatures in Section 5 to demonstrate its capability in design optimization. Finally, the paper ends with a discussion and conclusion
n Section 6.

. Related work

.1. Visual attention

In this paper, the visual attention of a pedestrian is a status when the pedestrian moves their eyes to a location and the
ocus of attention is in accordance with eye movements, referred to as spatial overt attention (compared to the attention that does
ot involve eye movements) (Carrasco, 2011). Visual attention can be triggered by not only internal factors (e.g., pedestrians’
references) (Gidlöf et al., 2017), but also external factors such as the physical feature (color, luminance, etc.) of environmental
bjects (Saunders and Gero, 2004), the presence of surrounding pedestrians (Gallup et al., 2012), and visual coverage (one of the
ost explored aspects) (Xie et al., 2007; Nassar, 2011; Chen, 2011; Wang et al., 2014; Kremer et al., 2021; Zhou et al., 2022).
Visual coverage is the state of environmental objects covering pedestrians’ visual perception fields. It describes not only the area

hey cover but also the location (i.e., the object is on the center of our retinal image or the fringe of that). In previous studies,
isual coverage has been represented in different ways. Xie et al. (2007) explored the boundary of visual perception fields (referred
o as visual catchment area) using angular separation of environmental objects. Chen (2011) and Wang et al. (2014) used distance
nd proportion of visual coverage, while (Nassar, 2011) used a piece-wise scaling term on the proportion of visual coverage and
ultiplied it by distance. Zhou et al. (2022) and Kremer et al. (2020) employed observation angles and distances. Some of their
epresentations of visual coverage are illustrated in Fig. 3. We found that not all of these prior works can fully describe the area
nd the location of visual coverage at the same time (summarized in Table 1).
Additionally, pedestrians continuously shift their visual attention among various objects in retail areas, resulting in a series of

ttention initiation and termination events. This differs from evacuation scenarios where we care about how people initiate their
ttention to a sign rather than how they terminate it. In our context, we study the attention transitions in both directions (i.e. the
nitiation and the termination of attention). Furthermore, the visual attention model should be calibrated by real-world data, and
ust easily fit to data. Importantly, this model must have fast execution times due to the large number of agents (typically hundreds)
nvolved in transportation hub simulations.
Our work is compared with prior literature in Table 1 across: (1) Visual coverage representation in area and location (2) State

ransitions (3) Performant execution (4) Limitations specific to the models. Our work addresses gaps in prior works required for
valuating retail in transportation hubs. Specifically, we will build a visual attention model that can fully describe visual coverage,
redict attention transitions in both directions calibrated by real-world data, and run fast.

.2. Locomotion in retail areas

Locomotion models describe how pedestrians move in space at a resolution approximately of the human body. In the narrowest
pplications, they are used in simple environments without consideration for visual attention. The most prolific of which is the
2

ocial Force Model (SFM) (Helbing and Molnár, 1995) and its subsequent variations (Johansson et al., 2007; Karamouzas et al.,
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Table 1
Visual attention module functionality comparison among previous work and ours.
Prior work Visual coverage

representation
All state
transitions

Fast running Other
limitations

Area Location

Xie et al. (2007) ✓ – ✓ ✓ Not considering pedestrian orientations
Nassar (2011) ✓ Partially – ✓ Not calibrated by real data
Wang et al. (2014) ✓ Partially – ✓ Not calibrated by real data
Kremer et al. (2020) ✓ ✓ – – Not calibrated by real data
Zhou et al. (2022) Partially ✓ ✓ ✓ Invariant to attraction sizes
Ours ✓ ✓ ✓ ✓

2009; Zanlungo et al., 2012). Generally, the SFM determines pedestrian positions using their second derivatives that are summed
by various hand-crafted forces. These forces represent the influences from walking goals, other pedestrians, the environment, etc.

Due to the popularity of the SFM, many previous studies that consider visual attention have built their models upon it. In Kwak
et al. (2013) and Zhou et al. (2022), additional forces pointing to environmental objects were implemented to reflect the trend of
pedestrians walking towards them. Nonetheless, as mentioned in Section 1, such a model design differs from the nature of attention-
based movements, where pedestrians maintain their walking direction, but simultaneously draw attention to environmental objects.
Such a model is therefore not considered in this paper.

Wang (2014) modeled attention-based movements by simply reducing walking speed to a fixed value when pedestrians draw
their visual attention to environmental objects. But such a design is not supported by others’ empirical findings, where pedestrians
with visual attention showed varying speed, such as a reduction in walking speed as they approached the environmental objects
(Li, 2023).

While there is little literature about the varying walking speed when visual attention is drawn, some cognitive science experiments
may provide insights. Warren and Fajen (2008) claimed that pedestrian locomotion is guided by optical flow. Specifically,
pedestrians try to maintain the angular position of their walking goals in their field of vision. We use this research as a reference
point to explore similar rules for attention-based movements.

Therefore, in this paper, we will build a locomotion model for attention-based movements upon the SFM, and reveal how visual
attention affects locomotion by the relative angular speed of the environmental objects.

2.3. Pedestrian-simulation-based design evaluation

Evaluating architectural design by crowd simulation has been a long-time practice (Hoogendoorn et al., 2004; Feng et al., 2016;
Hu et al., 2020). However, the types of models vary in three key aspects. First, while many studies focus on egress behaviors in
emergency scenarios (Hu et al., 2020), we consider normal daily scenarios (Feng et al., 2016) in which our evaluation metrics shift
from safety (such as pedestrian density) to efficiency and retail potential.

Second, compared to some prior works that evaluate the design on a large scale with a focus on the graphical configurations of
entire floor plans (Borgers and Timmermans, 1986; Feng et al., 2016), we adopt a micro-scale perspective focusing on the dimensions
of environmental objects, similar to (Shukla, 2009; Hu et al., 2020). This is because, for the majority of transportation hubs, their
floor plans are dominated by their main functions, leaving little configurational flexibility to retail spaces.

Finally, previous studies vary in the study of independent variables. While some researchers aim to find optimized sets of design
variables either by searching through continuous parameter space (summarized in Nguyen et al. (2014)) or by comparing several
designs that are drafted by experts (Pantano et al., 2021; Zhou et al., 2022), we want to get a more detailed understanding of the
impacts of several variables by local sensitivity analysis or factorial designs, as in the work (Zhang et al., 2017).

3. Method

The attention transitions and walking speed variations in attention-based movement behaviors are jointly simulated as follows.
For each virtual pedestrian, the simulation framework is a loop consisting of a visual attention module and a locomotion module
(see Fig. 1), which produce attention states and positions respectively at every time step. We define the attention state 𝑠𝑇 as a binary
value, where 𝑠𝑇 = 0 means the pedestrian’s attention is not drawn to the object and 𝑠𝑇 = 1 means the contrary.

The loop begins with the visual attention module (Section 3.2), where we derive the new visual attention state 𝑠𝑇+1 by calculating
the probability of state transition from its previous state 𝑠𝑇 . In other words, if the visual attention is not initiated (𝑠𝑇 = 0), we
calculate the probability of initiating it. Otherwise, we calculate the probability of terminating it. Both probabilities are functions
of position 𝑟𝑇 .

In the locomotion module (Section 3.3), we first calculate the desired walking speed of the pedestrian based on the visual
attention state. If the pedestrian is not drawing attention to the environmental object (𝑠𝑇+1 = 0), we set the desired walking speed
to a neutral value, which is fixed for each pedestrian. Otherwise, the desired walking speed is determined by the angular speed to
the environmental object (detailed in Section 3.3.2). Finally, the desired walking speed is used as an input of a Social Force Model,
3

where the new position 𝑟𝑇+1 is calculated (see Section 3.3.3).
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Fig. 1. Model Architecture: The simulation framework is a loop composed of two modules: visual attention and locomotion. The loop begins with a position
⃗𝑇 and a visual attention state 𝑠𝑇 at time step 𝑇 . Based on them, the probability of initiating or terminating the attention is calculated. From the probability,
e get the attention state at the next time step 𝑠𝑇+1. Then the new attention state determines the desired speed of a pedestrian, which is fed into a Social Force
odel to get a new position 𝑟𝑇+1.

Fig. 2. Field observation site and the camera installation. The study area covers the front of a convenience store. And the origin of the 𝑥-axis is set to the
middle point of the corridor section line.

3.1. Data collection

Our model is fit to empirical data by Tianchi Platform (2023). For clarity, we briefly describe the data collection process. Data
was collected from an underground bi-directional corridor at a metro station. A solitary convenience store is situated within the
corridor, devoid of additional stores, obstacles, or environmental objects that may get pedestrians’ visual attention. A camera was
positioned at the store entrance (see Fig. 2), unobtrusively recording 45-minute video segments during off-peak daytime hours.
After removing 97 pedestrians who went into the store, we captured the movements of 1,153 pedestrians. Due to the prevalence of
pedestrian occlusions, pedestrian positions were manually labeled every 15 frames (0.5 s), drawing upon methodologies employed
in prior research (Gallup et al., 2012). Then pedestrian trajectories were smoothed by cubic interpolation.

In this paper, a pedestrian’s head turning towards the store is treated as a surrogate of their visual attention to it. The dependent
variable – the visual attention state to the store – was manually labeled from video recordings every 0.5 s as:

𝑠𝑇 =

{

1, if pedestrian turns head towards store,
0, otherwise.

(1)

.2. Visual attention module

In this section, we firstly explain why we derive the visual attention state 𝑠𝑇+1 by calculating the probability of attention state
ransition from its previous state 𝑠𝑇 in Section 3.2.1. Then, we show how the position 𝑟𝑇 is converted to two variables that fully
escribe the visual coverage information, and how the variables constitute functions that represent the probabilities of attention
tate transitions in Section 3.2.2.

.2.1. Markov chain structure
Predicting attention states over time can be treated as a sequence prediction task, where some previous studies (Zhou et al.,

022; Wang et al., 2014) do not consider temporal dependency between prediction results. In those cases, the likelihood of a given
equence was formulated as 𝑝(𝑠1∶𝑇+1) = 𝑝(𝑠1)𝑝(𝑠2)⋯ 𝑝(𝑠𝑇 )𝑝(𝑠𝑇 + 1). While such models can successfully estimate the probability
f attention status at time 𝑇 , they fail to simulate the duration of behaviors as Markov chain does (Haldi and Robinson, 2009).
o overcome the limitation, a first-order Markov chain is applied in this paper as: 𝑝(𝑠1∶𝑇+1) = 𝑝(𝑠1)𝑝(𝑠2|𝑠1)⋯ 𝑝(𝑠𝑇 |𝑠𝑇−1)𝑝(𝑠𝑇+1|𝑠𝑇 ),
here we predict attention state sequences by modeling the probabilities of the state transitions. The transition probability is only
4

onditioned on the previous state.



Transportation Research Part C 162 (2024) 104583D. Li et al.

i

i

i
v
a
t

3

w
t

Fig. 3. Input variables in prior and our work. Generally, our model combines the observation angle 𝜙 in Zhou et al. (2022). with the angular separation 𝜑
n Xie et al. (2007), resulting in a representation that can deal with varying environmental object sizes and orientations.

When fitting this model, we only need to model two probabilities: the probability of initiating visual attention when a pedestrian
draws no attention to the object 𝑝(𝑠𝑇+1 = 1|𝑠𝑇 = 0), and that of the opposite event 𝑝(𝑠𝑇+1 = 0|𝑠𝑇 = 1). In simulations, the attention
state of a pedestrian at the next time step is determined by sampling from a single-trial binomial distribution:

𝑠𝑇+1 ∼ (𝑛 = 1, 𝑝 = 𝑝(𝑠𝑇+1 = 1|𝑠𝑇 )) (2)

3.2.2. The probability of attention state transition
To implement the relations between visual coverage information and visual attention, we convert the position 𝑟𝑇 into two input

variables below. Then, the probabilities of visual attention transitions are defined as functions of them.

Angular Separation 𝜑 Similar to the definition in Xie et al. (2007), the angular separation describes the size of coverage that the
environmental object applies to the visual field of a pedestrian. From a top-down view of the walking environment, If two
tangent lines are drawn from the pedestrian position to environmental object boundaries, the angle between the two is the
angular separation (Fig. 3).

Observation Angle 𝜙 Similar to the definition in Zhou et al. (2022), it is the angle between the walking direction and the direction
pointing from the pedestrian to the environmental object. In Zhou’s work, a point of interest represented an individual object
(e.g., a sign). In contrast, our use case is an entire store. To reduce the large footprint of a store to a representative point,
we select the mid-point of the store’s entryway as the point-of-interest (see Fig. 3(d)). We use such a representation in both
our model and our implementation of Zhou et al. (2022) in Section 3.4.

To keep the model in its possible simplest form but include the possible interaction effects between inputs, we choose polynomial
logistic regressions to predict the binary output (attention state). To avoid over-fitting, we limit the highest order to 2 and conduct
step-wise backward feature exclusion at the final step of the modeling. That is, starting from modeling visual attention with all
variables and their high-order combinations, we remove terms one by one until the prediction performance begins to drop. So we
have the probability of attention initiation (written in a form prior to step-wise backward feature exclusion):

𝑝𝜃(𝑠𝑇 = 1|𝑠𝑇−1 = 0) = 𝜎(𝜃0𝜑 + 𝜃1𝜙 + 𝜃2𝜑2 + 𝜃3𝜙2 + 𝜃4𝜑𝜙 + 𝜃5) (3)

and the probability of attention termination:

𝑝𝜃(𝑠𝑇 = 0|𝑠𝑇−1 = 1) = 1 − 𝑝𝜃(𝑠𝑇 = 1|𝑠𝑇−1 = 1) = 1 − 𝜎(𝜃6𝜑 + 𝜃7𝜙 + 𝜃8𝜑2 + 𝜃9𝜙2 + 𝜃10𝜑𝜙 + 𝜃11) (4)

where 𝜎(⋅) denotes the sigmoid function. And all 𝜃s ranging from 𝜃0 to 𝜃11 are parameters to be fit. By plugging Eqs. (3) and (4)
nto Eq. (2), the attention state is simulated as:

𝑠𝑇+1 ∼ (1, 𝑝) , where 𝑝 =
{

𝜎(𝜃0𝜑 + 𝜃1𝜙 + 𝜃2𝜑2 + 𝜃3𝜙2 + 𝜃4𝜑𝜙 + 𝜃5), if 𝑠𝑇 = 0,
𝜎(𝜃6𝜑 + 𝜃7𝜙 + 𝜃8𝜑2 + 𝜃9𝜙2 + 𝜃10𝜑𝜙 + 𝜃11), if 𝑠𝑇 = 1.

(5)

Finally, to speed up the simulation and align with prior observation, we cut 𝑠𝑇+1 down to zero when the angular separation 𝜑
s less than a small threshold. It means pedestrians will never draw attention to an object when it occupies a too-small area of their
ision fields. The threshold is chosen as 0.29 (in radian) from the empirical study in Xie et al. (2007). It should be noted that such
cut-off is only applied in simulation. And it imposes little impact on model fitting since the 𝜑 in most datapoints are larger than
he threshold.

.3. Locomotion module

This section describes the locomotion of attention-based movements. In the first two subsections, we analyze our empirical data
ith regard to direction and speed changes. In the third subsection, we demonstrate how the empirical findings are integrated into
5

he Social Force Model. Finally, we show the parameters, specifications, and boundary conditions in the simulation.
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Fig. 4. Walking direction change (lateral positional deviation) for pedestrians with visual attention. (a) The illustration of walking direction change
(lateral positional deviation) 𝛥𝑥. (b) The distribution of visual attention duration, shown in a histogram. Pedestrians without visual attention are not shown here.
(c) The average deviation of lateral position after the initiation of attention. The gray solid line represents the deviation of pedestrians without visual attention
after entering the camera.

3.3.1. Weak direction changes
Given the pedestrians with attention movement behaviors will finally continue their original routes rather than walking into

the store, we prefer measuring the accumulated impact of direction change instead of the difference between the first and the last
time step. Therefore, we define walking direction change as the lateral positional deviation 𝛥𝑥 of a pedestrian after the initiation
of visual attention. Fig. 4(a) depicts the definition.

We firstly explore how 𝛥𝑥 changes over time. Here we study all pedestrians who initiate their visual attention inside our camera
view with a duration ≥ 1.5 s. We set this threshold to lower the impacts of mislabeling attention states. As shown in Fig. 4(b),
after 2.5 s of the attention initiation, most pedestrians have terminated their attention. For remaining pedestrians, their average 𝛥𝑥
is significantly more than zero, but the value is only around 30 cm (see Fig. 4(c)). Therefore, for the majority of pedestrians with
visual attention, their lateral position deviation is small.

Secondly, we explore whether 𝛥𝑥 is affected by store proximity. We divide all pedestrians into 5 groups by their lateral positions
when attention is initiated. Then we compare how average 𝑥 changes across the groups. We observe no significant 𝛥𝑥 differences
between groups after 1.5 s of the attention initiation (F-test statistics=0.32 with the degrees of freedom (4, 112), p-value=0.866).
Also, we do not observe significant differences after 2.5 s of the attention initiation (F-test statistics=1.24 with the degrees of
freedom (3, 25), p-value=0.317). We are unable to compare groups with longer attention duration due to lack of data. While the
insignificant results do not suggest store proximity applies no impact on 𝛥𝑥 in the real world, they indicate that the impact is small
when attention duration is less than 2.5 s.

Such an observation demonstrates that direction changes are very weak in attention-based movement behaviors. However, prior
works (Kwak et al., 2013; Zhou et al., 2022) use additional SFM forces to describe similar behaviors. Additional forces are usually
pplied when pedestrians are assumed to steer towards environmental objects, and the steering effects increase (or decrease) with
roximity. Since it is not aligned with our observation, we conclude that attention-based movements cannot be well explained or
imulated by additional SFM forces in prior works.

.3.2. Capped walking speed
As direction changes do not play a key role in attention-based movement behaviors, speed changes are studied instead. Based

n the idea in Warren and Fajen (2008), the angular speed with regard to the store display is studied.
Here the store display refers to goods that are visible to pedestrians outside the store. Such items would be clothes in the window

isplay or food on shelves. While the layouts of store displays vary, the convenience store in our study adopts a simple strategy,
here items are stacked on rows of shelves that form a frontline to pedestrians outside (see Fig. 5(a)). In this way, we represent
he store display by a frontline. This representation can be extended to other displays such as window displays, where the display
epth (the distance from the frontline to the store entrance) is small. Next, the position of the store display is further defined as the
idpoint of the store display frontline (see Fig. 5(a)). It should be noted that this midpoint for store display is different from that
or the store in Fig. 3(d).
Then the angular speed to the store display is calculated in this way: firstly we construct a vector 𝑘⃗ pointing from the pedestrian

o the midpoint of the store display. Then a tangential velocity 𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡 is derived from projecting walking velocity 𝑣 onto the direction
hat is perpendicular to 𝑘⃗. Finally, the angular speed 𝜔 is the 𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡 divided by the length of 𝑘⃗.
To explore whether the angular speed is related to the proximity to the store, the average angular speeds stratified by pedestrian

ateral positions are compared. The average angular speed is calculated in this way: for a given lateral position stratum, we query
ll datapoints falling into the stratum. Then the datapoints are grouped by pedestrian IDs to get the average angular speeds for each
6

edestrian. Finally, the average angular speeds are averaged across all pedestrians.
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Fig. 5. Angular speed 𝝎 to store display. (a) The illustration of angular speed 𝜔 and tangential velocity 𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡. (b) How average angular speed 𝜔 varies
ith lateral position (𝑥 coordinate). 𝑥 = 0 represents the middle of the corridor section. 𝑥 = 270 represents the wall boundary of the corridor on the store side
nd 𝑥 = −270 represents the opposite boundary. The gray dotted line represents the angular speed of pedestrians without visual attention to the store. And the
haded areas represent 95% CIs of the metrics. (c) The average walking speed change after the initiation of attention. The gray solid line represents the speed
hange of pedestrians without visual attention after entering the camera. The shaded areas represent 95% CIs of the metrics.

The result shows that pedestrians with visual attention to the store differ from those without attention in their angular speed.
s shown in Fig. 5(b), while the average angular speed for pedestrians without attention increases with the proximity to the store
ntrance (gray dotted line), the angular speed for pedestrians with visual attention (blue line) is capped by a threshold value (its
ean 𝜇𝜔 and standard deviation 𝜎𝜔 are included in Table 3b). As a result, pedestrians whose attention is drawn to the store will
alk more slowly, with the speed decreasing more as their distance to the store reduces.
We also explore how walking speed varies over time after the attention initiation. However, we do not observe significant speed

ifferences for pedestrians who initiate visual attention inside camera view(see Fig. 5(c)) due to lack of data. Although we cannot
each a thorough conclusion on speed change over time, we can still use the current observation on the angular speed to build a
ocomotion model that approximates the slowing dynamics.

.3.3. Social force model integration
The general idea of the locomotion module is: if pedestrians draw their visual attention to the store, they will adjust their desired

peed to ensure the angular speed towards the store display will not exceed a certain value. We firstly explain how the desired speed
egulates locomotion using Social Force Model. Then we demonstrate how to design the dynamic desired speed function.
In the Social Force Model (using the notation in Eqs. (2) and (3) in Johansson et al., 2007), for a pedestrian 𝛼, its velocity 𝑣𝛼 is

alculated by:

𝑑𝑣𝛼(𝑡)
𝑑𝑡

= 1
𝜏𝛼

(𝑣0𝛼𝑒𝛼 − 𝑣𝛼) +
∑

𝛽(𝛼)
𝑓𝛼𝛽 (𝑡) +

∑

𝑖
𝑓𝛼𝑖(𝑡) + 𝜉𝛼(𝑡) (6)

where 𝑓𝛼𝛽 (𝑡) and 𝑓𝛼𝑖 denote the repulsive effects from other pedestrians and the environment, respectively. 𝜉𝛼(𝑡) is a random noise
attribute. The first term (the goal force), describes the tendency to adjust the current velocity 𝑣𝛼 to a desired one 𝑣0𝛼𝑒𝛼 . It should be
noted that 𝑣0𝛼 is the desired speed in scalar and 𝑒𝛼 is the desired direction (vector) pointing to the pedestrian’s goal.

In Helbing and Molnár (1995) and Johansson et al. (2007), while the desired speed 𝑣0𝛼 varies among pedestrians, it is a constant
for a single pedestrian over time. In our paper, we turn it into a dynamic one. We update the desired speed at every time step by
scaling a neutral speed with the ratio between an ideal angular speed and the current angular speed. And the ratio is capped by 1.
As a result, if the current angular speed is greater than the ideal angular speed, the ratio will be less than 1. Then a smaller desired
speed will guide a pedestrian to slow down. If the current angular speed is smaller than the ideal, the ratio will still be 1 so no
influence is applied. The calculation steps are detailed below.

We first calculate the current angular speed by dividing the magnitude of tangential speed 𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡 with the length of 𝑘⃗ (illustrated
in Fig. 5(a)):

𝜔𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =
‖𝑣𝑡𝑎𝑛𝑔𝑒𝑛𝑡‖

‖𝑘⃗‖
=

(

1 − 𝑣 ⋅ 𝑘⃗
‖𝑣‖ ⋅ ‖𝑘⃗‖

)

⋅
‖𝑣‖

‖𝑘⃗‖
(7)

Then we calculate the ratio 𝜁 between the ideal angular speed 𝜔𝑖𝑑𝑒𝑎𝑙 ∼  (𝜇𝜔, 𝜎2𝜔) (detailed in Section 3.3.2) and the current
angular speed. 𝜔𝑖𝑑𝑒𝑎𝑙 is sampled once when a pedestrian is initiated in the simulation. The ratio is capped by 1.
7

𝜁 = min(𝜔𝑖𝑑𝑒𝑎𝑙∕𝜔𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 1) (8)
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Fig. 6. Boundary conditions: (a) and (b) shows the probability distributions of the time gaps between pedestrians in two directions. The dots are empirical
easurements. The dashed lines are exponential fitting results. The y-axes are shown in log scales. (c) shows how the average walking speed varies with lateral
oordinates for pedestrians without visual attention, suggesting that pedestrians close to walls tend to walk more slowly. (d) shows the density distributions of
edestrians as a function of lateral coordinates. The two distributions in two colors represent the pedestrian flows in two directions. The shaded areas represent
he 95% CIs for the metrics.

Next, the desired speed is scaled by the ratio. Besides, such a scaling only happens when the visual attention has been initiated
i.e. 𝑠𝑇+1 = 1):

𝑣0𝛼 = 𝑣𝑛𝑒𝑢𝑡𝑟𝑎𝑙 ⋅
[

𝜁 ⋅ 𝑠𝑇+1 + (1 − 𝑠𝑇+1)
]

(9)

where 𝑣𝑛𝑒𝑢𝑡𝑟𝑎𝑙 represents the desired speed without visual attention. It is fixed for a single pedestrian over time. But it varies among
pedestrians, which is elaborated in Section 3.3.4. In this way, the desired speed controlled by attention states acts as a dynamic
term in the goal force component of the Social Force Model.

3.3.4. Simulation configurations
To demonstrate that the success of our model relies on the design of visual attention module and its locomotion regulation

(rather than the overfitted parameters in SFM and boundary condition), we configure SFM and the boundary condition only using
pedestrians that do not show visual attention. In other words, we split all pedestrians in the empirical dataset into 3 disjoint groups:
(1) pedestrians that never initialize visual attention or walk into the store, i.e. commuters. (2) pedestrians that initialize visual
attention, that is, having attention-based movement behaviors. (3) pedestrians that enter or exit the store, i.e. consumers. We only use
the first group for SFM and boundary condition (except flow rates) configuration. And we use first two groups to fit visual attention
module and the flow rates. Then, we run two simulations with visual attention module activated and deactivated respectively. We
expect that the simulation without visual attention module should produce results that resemble the behaviors of commuters (the
first group). And the one with visual attention should be similar to the union of first two groups. The third group is not in our scope,
as we clarified in Section 1. The results are shown in Figs. 9(c) and 9(d). And the configuration details are provided as below:

Social force model. We do not fit the Social Force Model (locomotion module) ourselves because there are few neighboring
pedestrians for a large proportion of our trajectories, which lead to insufficient data for a traditional model fitting. Instead, we
adapt existing models and specifications in prior work. Given that prior models were fitted using dataset with different pedestrian
flow densities, we assign different parameters and specifications for different flow density scenarios. In this paper, we consider
the cases where the pedestrian Level-of-Service is no more than Level C (1.4 m2 per person, equivalent to a flow rate at around
0.5 people∕(m s) in all directions in our paper) as low-density scenarios, otherwise as high-density.

For low-density simulations that appear in the model validation Section 3.4.2 and the first case study Section 5.1, we adapt
he parameters and specifications in Zanlungo et al. (2012), since it is fitted for such scenarios and is capable of replicating the
peed distribution along the walking facility section (Zanlungo et al., 2012). Based on its original parameter values, we change two
f them (𝐴 and 𝜏−1, see Table 3c) to let the walking speed distribution to be aligned with the empirical data (see Fig. 9(c)). For
igh-density simulations that appear in the second case study Section 5.2, we adopt (Johansson et al., 2007), which does better in
aintaining pedestrian flow stability in high-density scenes.

oundary condition. We set the boundary conditions of pedestrian flows to resemble the original dataset in (Li, 2023). The boundary
onditions are set by three key attributes: pedestrian flow rate, neutral speed, and density distribution. They are analyzed and
odeled as below:
The pedestrian flow rate, referring to the number of pedestrians moving through a designated area over a period of time, is

epresented by time gaps between two pedestrians crossing the same vertical plane. After removing the gaps over 60 s, the time
aps follow an exponential distribution where the mean values are detailed in Table 3d (distributions are illustrated in Figs. 6(a)
nd 6(b)).
For pedestrians who never have attention drawn to the store, their walking speed distribution is used as the mean of the neutral

alking speed 𝜇𝑣 for all agents. Fig. 6(c) shows that pedestrians tend to walk faster at the center of the corridor. Such a trend
8

s approximated by a second-degree polynomial function, where the mean of the neutral speed is affected by the initial lateral
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Table 2
Variables for Representation Evaluation. It should be noted that some variables (𝜓 , 𝑑, 𝑛𝑔 , 𝑑𝑖𝑟, 𝜌, 𝑡𝑔 , 𝑎𝑚𝑎𝑥) are neither parts of our visual
attention module nor locomotion module. They are only used for representation evaluation that is shown in 4.1.
Variable Notion Definition

Intrinsic variable
Angular separation 𝜑 Xie et al. (2007), also see Section 3.2.2
Observation angle 𝜙 Zhou et al. (2022), also see Section 3.2.2
Visibility 𝜓 Wang et al. (2014)
Observation distance 𝑑 Zhou et al. (2022)
Walking speed 𝑣
Angular speed 𝜔 Angular speed with regard to environmental objects, see Section 3.3.2

for details
Cumulative gazing time 𝑡𝑔 The cumulative time of gazing for a pedestrian
Walking direction 𝑑𝑖𝑟 A binary variable (0 or 1) for walking directions in bi-directional

corridors

Extrinsic variable
Gazing pedestrian number 𝑛𝑔 The number of gazing surrounding pedestrians whose observation angle

is less than 120 degrees and the distance is less than 3 m
Pedestrian density 𝜌 The X-T definition (Duives, 2016) adapted from (Edie, 1963)
Maximum surrounding acceleration 𝑎𝑚𝑎𝑥 The maximum acceleration of surrounding pedestrians. The scope of

‘‘surrounding’’ is same as that in gazing pedestrian number 𝑛𝑔

position: 𝜇𝑣(𝑥) = 𝑎𝑣𝑥2 + 𝑏𝑣, with 𝑥 in centimeters and 𝜇𝑣 in centimeters per second. When agents are initialized, their desired
walking speeds without visual attention 𝑣𝑛𝑒𝑢𝑡𝑟𝑎𝑙 are sampled from  (𝜇𝑣(𝑥), 𝜎2𝑣 ), where the standard deviation 𝜎𝑣 is also calculated
from the observation data.

Finally, the density function of pedestrians’ initial lateral position is modeled the same as a prior work (Zanlungo et al., 2014).
In Zanlungo et al. (2014), the density function is proportional to a Boltzmann factor: 𝑝(𝑥) ∝ 𝑒𝑈 (𝑥). And the energy function 𝑈 (𝑥) is
designed to resemble a Gaussian at its maximum, drop to zeros at wall boundaries, and maintain a constant value far enough from
the walls and its peak:

𝑈 (𝑥) =
𝑎𝜌
𝑥

+
𝑎𝜌

𝐿𝑐 − 𝑥
+ ( 𝛿

𝑏𝜌𝐿𝑐
)2

𝛿 =

{

𝑥 − 𝑐𝜌𝐿𝑐 if |𝑥 − 𝑐𝜌𝐿𝑐 | ≤ 𝑑𝜌𝐿𝑐
𝑑𝜌𝐿𝑐 if |𝑥 − 𝑐𝜌𝐿𝑐 | ≥ 𝑑𝜌𝐿𝑐

here 𝐿𝑐 = 540 cm is the width of the corridor. 𝑎𝜌 is fixed to 30 cm, as indicated in Zanlungo et al. (2014). The remaining parameters
re calibrated using grid search with our dataset. The definition and the calibration results of these parameters are summarized in
able 3d. The fitted distribution and empirical measurements are visualized in Fig. 6(d).

.4. Evaluation protocols

Our model is evaluated in two steps: firstly we compare the attention prediction results to ground truth, where we measure the
erformance of the visual attention module solely. Then we compare the simulation results to ground truth to know the performance
f the whole model.

.4.1. Attention metrics
We evaluate the visual attention module by three aspects. First, to prove that we chose powerful variables as model inputs, our

epresentations are compared to other possible combinations of variables in previous literature. Second, our model is compared to
isual-attention models in selected previous work (Wang et al., 2014; Zhou et al., 2022; Kremer et al., 2020) to prove its performance
in attention transition events (initiation and termination). Finally, as prediction errors for individual time steps may accumulate
over time, good prediction performance on transition events may not necessarily mean good performance on sequential predictions.
Therefore, to evaluate such accumulated errors, we compare the probability distributions of attention duration among all models.

Representation Evaluation A list of independent variables (intrinsic and extrinsic) is derived from a literature review. They
are defined and calculated as in previous studies (see Table 2). To provide a general impression of variable impacts, we
enumerate all uni-variate and bi-variate combinations for all listed variables. And we use those combinations to construct
logistic regression models with the highest order up to 2. Then we compare the prediction performances of all models.

valuation on transition events Since previous work is not constrained to logistic regression, our model is compared to the works
of (Wang et al., 2014; Zhou et al., 2022; Kremer et al., 2020) by fitting and validating with our dataset. All models are fit
using gradient descent with an Adam optimizer. However, for (Wang et al., 2014) and Kremer et al. (2020), we also apply
grid-search for comparison as their model structures are not designed for gradient descent and suffer exploding gradients
in certain cases. Although we have applied smoothing terms to mitigate their numerical instabilities in gradient-descent, we
believe their models may exhibit larger potentials if they are fit by grid-search.
9



Transportation Research Part C 162 (2024) 104583D. Li et al.

a
N
a
C
t

W

4

f

4

w

e
p
A
d
f

m
(
t
(
o
i
e

c

Both evaluation tasks follow the same procedure: the datapoints in the original empirical dataset are firstly down-sampled at
sampling rate of 6 Hz. After the standardization, the sampled data is split into a training set and a testing set at a ratio of 3:1.
ext, models are fit to the training set. Evaluation metrics are derived by running prediction tasks on the testing set. All procedures
bove are repeated (100 times for representation evaluation and 30 times for the other) to get the distribution of the metrics. ROC
urves and AUC scores are provided to describe the true positive rate when the false positive rate is controlled. The results using
his protocol are shown in Section 4.1.

Evaluation on attention duration As we assume a model with fewer accumulated errors produces an attention duration distri-
bution that is closer to empirical observation, we calculate the difference between the attention duration distribution of
empirical data and that of simulation for each model. The duration distribution for each model is derived by simulating all
attention states of each pedestrian trajectory frame-by-frame where the previous attention state for each frame is the previous
simulation result. On the contrary, in the previous two evaluation tasks, previous attention states were always the ground
truth. The difference between two duration distributions is shown by the difference of their cumulative distribution functions
(CDFs). Wasserstein distance, which sums up the absolute of these differences, was chosen as the quantitative metric. The
results are shown in Section 4.1.

3.4.2. Locomotion metrics
To demonstrate that our model can jointly predict visual attention and speed variations, which are proxies of retail potential

and pedestrian efficiency, the proportion of long-attention pedestrians and the average speed are compared to empirical datasets.
In addition, to demonstrate our model’s ability to show the spatial variance of these metrics, the metrics are calculated as functions
of lateral position. They are defined as below:

Proportion of Long-attention Pedestrians 𝑃𝑙𝑜𝑛𝑔(𝑋) Pedestrians who draw their attention to the store for no less than 2.5 s are
defined as long-attention pedestrians. The duration threshold here is chosen based on the empirical observation in Gidlöf
et al. (2017), where the probability of buying starts to rapidly increase when pedestrians spend more than 2.5 s looking at
a product. Then, given a lateral coordinate stratum 𝑋 ∈ [𝑎, 𝑏), we count the number of pedestrians whose datapoints fallen
into this stratum as 𝑁𝑎𝑙𝑙. Next, we count the number of long-attention pedestrians in this stratum as 𝑁𝑙𝑜𝑛𝑔 . Finally we have
𝑃𝑙𝑜𝑛𝑔(𝑋) = 𝑁𝑙𝑜𝑛𝑔∕𝑁𝑎𝑙𝑙.

alking Speed 𝑣(𝑋) For each pedestrian 𝑝 in the population 𝑆, for all its datapoints falling into the lateral coordinate stratum
𝑋 ∈ [𝑎, 𝑏), average the walking speed as 𝑣𝑝,𝑋 . After we get all 𝑣𝑝,𝑋 for every 𝑝, the final result 𝑣(𝑋) is the average of all
𝑣𝑝,𝑋 > 0.

. Results

In this section we firstly show the prediction performance of our visual attention module. Then we demonstrate that our entire
ramework can simulate the attention-based movement with regard to both visual attention and locomotion.

.1. Visual attention modeling

In the representation evaluation, our model representation was among the top candidates with regard to prediction performance,
hereas other top candidates showed no significant difference from ours (see Fig. 7).
Among all uni-variate logistic regressions, observation angle 𝜙 was the most influential variable in both attention state transition

vents. On the contrary, some variables (mostly extrinsic ones) imposed little impact on the dataset. For instance, the AUC scores of
edestrian density 𝜌 and maximum surrounding acceleration 𝑎𝑚𝑎𝑥 on both attention transition events were close to 0.5 (see Fig. 7).
lso, gazing pedestrian number 𝑛𝑔 (defined in Table 2) played little role in attention termination predictions. However, the results
o not indicate the extrinsic variables are not influential in all real-world cases. Because our dataset did not capture pedestrian
lows with extreme densities.
Next, we compare our model with prior work in visual attention modeling. For attention initiation events (see Fig. 8(a)), our
odel was on par with (Zhou et al., 2022), a reasonable result given our representation is a coordinate transform of Zhou et al.
2022) for the attention initiation part. For attention termination events (see Fig. 8(b)), our model achieved 11% higher AUC score
han the best prior work. With regard to attention duration, our model achieved the closest distribution to empirical observation
40% less Wasserstein distance than the best prior work, see Fig. 8(d)). While (Zhou et al., 2022) and Kremer et al. (2020) tend to
verestimate the proportion of pedestrian with short attention duration, ours excels in predicting long-attention pedestrians, which
ncreases the overall performance. Although we introduce more parameters than some previous studies (Wang et al., 2014; Kremer
t al., 2020), it achieves prediction improvements without significant additional computational cost.
Finally, using the whole dataset, our final model fitting results are shown in Table 3a. It should be noted that some variable

ombination terms (such as 𝜃8 for 𝜑2 in attention termination predictions) were removed from Eq. (5) by step-wise backward feature
10
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0

Fig. 7. AUC scores of visual attention predictions with different representations. Boxplots are drawn based on 100 trials with randomized samplings of our
dataset. An AUC score equal to 1 indicates the model is always correct in the test dataset. And a score close to 0.5 indicates that the model performance is the
same as random choices. The red boxes denote the performance of our representation. The gray boxes are representation performances that have significantly
different mean values from ours. The 𝑥-axis labels are abbreviations of representations, where a single letter means a uni-variate linear logistic regression. And
two letters connected by a plus (such as 𝜙+𝜔) mean a bi-variate linear logistic regression. A squared letter means the logistic regression is polynomial up to 2
degrees. It should be noted that we only display the top five results and all uni-variate linear fitting results here.

4.2. Locomotion modeling

We firstly show that attention-based movement pedestrians make a major contribution to the slowing effects. In Fig. 9(a), the
difference between the mean walking speed function of all pedestrians (group 1+2+3, see group definitions in Section 3.3.4) and
that of group 1+2, is smaller than the difference between group 1+2+3 and group 1. It shows the removal of group 3 (consumers)
does not impose a major impact to pedestrian flows, especially for 𝑥 coordinate intervals where most pedestrians appear. But group
2 does so, which makes itself as our focus in this paper.

Our simulation was generally in accordance with the empirical data. In Fig. 9(b), the proportion of long-attention pedestrians
𝑃𝑙𝑜𝑛𝑔 decreased with the distance to the store entrance. In Fig. 9(d), walking speed function 𝑣 showed a decaying slowing effect of
the store when the distance increases.

We also show our simulation results without visual attention module in Fig. 9(c) (in magenta), where we observe the walking
speed distribution aligns with empirical data where we only keep commuters in the empirical data (in green). After we include
pedestrians with visual attention into the empirical data (in blue, see Fig. 9(d)), we observe the slowing effect that can only be
captured when we enable the visual attention module in our simulation (in red). Therefore, we prove that the slowing effect
stems from visual attention module and its regulation on locomotion, rather than the over-fitting from SFM or boundary condition
parameters.

5. Case study

In this section, we explore how architectural design features may influence pedestrian efficiency and retail potential using our
model. The first application aims to reveal the influence of three key design feature variables (corridor width, store entrance width,
and display depth) qualitatively. The second one shows the process of striking a balance between efficiency and retail potential by
changing the corridor width incrementally in simulations.

5.1. Qualitative analysis on design feature impacts

To reduce the computation complexity in simulation, discretizations are applied to design feature variables: We pick two values
for each variable. Then we compare the simulation results between all combinations of the values. The values are discretized
as: corridor width 𝐿𝑐 = {3.5 m, 8 m}, store entrance width 𝐿𝑠 = {4.2 m, 6 m}, and display depth (defined in Section 3.3.2)
𝐿𝑑 = {0.5 m, 5 m}. The combination of these values provide 8 test conditions (illustrated in Fig. 10).

The pedestrian flows are generated in two directions. For each direction, the flow rate for a unit of corridor width is fixed to
.08 people m−1 s−1. Other parameters are set as Table 3.
In the analysis, the average speed loss 𝛥𝑣 and long-attention-pedestrian proportion 𝑃𝑙𝑜𝑛𝑔 are compared between trials. The speed

loss here is defined as the speed difference between the simulation and an ideal simulation, which has the same corridor width but
has no stores. The two metrics above are shown in their spatial distribution form. In other words, rather than analyzing the corridor
as a whole, the corridor is divided into rectangular cells. And the metrics are calculated for each cell using the pedestrian trajectory
segments inside it.
11
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Table 3
All model parameters and simulation specifications. The first table is the final model fitting for visual attention modules.
Parameters are fitted using standardized input variables (the means and the standard deviations are shown in the ‘‘Value’’
column). All parameter estimates were significantly different from zero (𝑝-value < 0.05). The second table includes parameters
in Section 3.3.3 that calculate desired speed. The third table covers all parameters in the SFM for low density scenarios, where
asterisks denote the parameter values that differ from the original prior work (Zanlungo et al., 2012). The last table lists all
parameters in the boundary condition configuration.
Variable Value Parameter Estimate Std. errors ValueZ scores
Notation Notation

Attention initiation events
𝜑 0.981 ± 0.433 𝜃0 3.167 0.351 9.031
𝜙 1.797 ± 0.558 𝜃1 −1.542 0.056 −27.308
𝜑2 1.151 ± 1.008 𝜃2 −2.359 0.306 −7.709
(intercept) – 𝜃5 −4.683 0.107 −43.682

Attention termination events
𝜑 1.366 ± 0.383 𝜃6 −0.804 0.160 −5.009
𝜙 1.350 ± 0.504 𝜃7 −2.510 0.363 −6.918
𝜙2 2.076 ± 1.472 𝜃9 1.060 0.266 3.980
𝜙𝜑 1.806 ± 0.776 𝜃10 0.828 0.193 4.284
(intercept) – 𝜃11 1.177 0.048 24.560

(a) Visual attention module

Parameter Description Value Unit

𝜇𝜔 Mean of ideal angular speed towards the store 0.18 rad/s
𝜎𝜔 Standard deviation of ideal angular speed towards the store 0.04 rad/s

(b) Attention-based locomotion regulation

Parameter Description Value Unit

𝐴 Weight of pedestrian repulsive effect 1.13∗ m/s2
𝐵 Distance discounting factor of pedestrian repulsive effect 1 m
𝑟𝑣 Pedestrian perception range 5.6 m
𝑡𝑚𝑎𝑥 Maximum predicted collision time 6.1 s
𝐴𝑤 Weight of environment repulsive effect 0.9 m/s2
𝐵𝑤 Distance discounting factor of environment repulsive effect 1.0 m
𝜃𝑣 Velocity bias 0.16 rad
𝜆 Asymmetry parameter 0.95
𝜏−1 Inverse of relaxation time 2∗ s−1
𝜅 Weight of physical collision 5000

(c) Social Force Model in low density

Parameter Description Value Unit

𝑡+ Mean time gap between pedestrians (direction 1) 5.11 s
𝑡− Mean time gap between pedestrians (direction 2) 5.22 s
𝑎𝑣 Parameter in neutral speed function −1.3 10−4

𝑏𝑣 Intercept of neutral speed function 139 cm/s
𝜎𝑣 Standard deviation of desired walking speed 30 cm/s
𝑎𝜌 Distance regulation to the wall 24.78 cm
𝑏𝜌 Width factor of pedestrian flow 0.2
𝑐𝜌 Positional factor of maximum density 0.24
𝑑𝜌 Probability of walking on the wrong side 0.36
𝐿𝑐 Width of the corridor 540 cm

(d) Boundary condition

As illustrated in Fig. 11(a), design feature variables imposed complex impacts on the distribution of 𝑃𝑙𝑜𝑛𝑔 . 𝑃𝑙𝑜𝑛𝑔 did not always
decrease with the distance to the store. The trend was conditioned on corridor widths. For very narrow corridors, a larger proportion
of pedestrians drew their attention to the store when they were located further away from it. This can be attributed to the constrained
visual coverage in narrow corridors. For pedestrians who walk on the store side, they will suffer a larger observation angle in a
narrow corridor, which discourages them to draw their attention for a long time. For the other two variables, store widths were
positively correlated to visual attention while display depths played little role.

While not influential to 𝑃𝑙𝑜𝑛𝑔 , display depths greatly affected 𝛥𝑣. As shown in Fig. 11(b), shallower storefront displays led to
larger speed decreases, which resulted from the angular speed adaptations. Since store displays are much closer, pedestrians have
to decrease speed more to keep the angular speed at a low level. We also observed such impacts interacting with the other two
variables. For instance, the speed decrease got smaller when the store became wider. That can be explained by the spread-out of
visual attention distribution, which makes pedestrians get attracted when they are further away from the store, lowering their need
to maintain the angular speed.
12
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Fig. 8. Compare our visual attention module with prior work. (a) and (b) are ROC curves with regard to attention initiation and termination predictions.
When the curve gets closer to the top-left corner, the model achieves a higher true positive rate when the false positive rate is fixed. Shaded areas represent
the standard errors of true positive rates. Our model is on par with Zhou et al. (2022) in attention initiation modeling, shown by their overlapping curves. The
model names with asterisks (e.g., *Wang et al.) refer to the modified models fitted by gradient descent. (c) compares the attention duration distributions
of model results and empirical data by probability density functions. For visualization quality, the lines are smoothed by a Gaussian kernel. In the legend, the
numbers in the parenthesis are the Wasserstein distances to the empirical distribution. (d) shows the differences between the attention duration distribution of
model simulation and that of empirical data, represented in the residuals of cumulative distribution function. When the line is closer to y=0, the simulation
result is closer to empirical data. The legend is the same as the previous sub-figure, and lines are also smoothed by a Gaussian kernel.

5.2. Optimization: strike the balance

Finally, to demonstrate our model can help designers find the balance between efficiency and retail potential, we used our model
to run a local sensitivity analysis on corridor width in two store display depth settings. These options resemble decisions in real
practice where designers need to find an ideal facility dimension when other external factors are fixed.

In the simulation, display depths are set as 5 m and 0.5 m respectively. In both cases, the flow rates for each direction are fixed
to 2 people/s, and the entrance widths are fixed to 4.2 m. Other parameters are set as Table 3. We incrementally change the corridor
width (illustrated in Fig. 12) to evaluate its impact on two metrics (long-attention pedestrian proportion 𝑃𝑙𝑜𝑛𝑔 and average walking
speed 𝑣). Here the corridor is analyzed as a whole without spatial discretizations.

As shown in Fig. 13, we observed the trade-offs between pedestrian flow efficiency (average walking speed) and retail potential
(long-attention pedestrian) in both scenarios. Although the actual balance point depends on the designers’ judgments, the figures
help designers to make data-informed decisions by providing the possible outcomes in different scenarios.

6. Conclusion

In this paper, we propose a novel pedestrian simulation framework focused on providing feedback on architectural design
decisions to increase retail potential and pedestrian flow efficiency for common retail spaces similar to transportation hubs. Our
13
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Fig. 9. Simulation results compared to empirical data. To better visualize the contribution of our model, we split all pedestrians in the empirical dataset into
3 disjoint groups: (1) commuters; (2) pedestrians with attention-based movement behaviors; (3) consumers. (see definitions in Section 3.3.4) (a) Mean walking
peed 𝑣 as a function of 𝑥 coordinate in empirical data. The error bars represent the 95% CIs for the metrics. We compare the slowing effects when different
roups are included in the population. (b) The proportion of long-attention pedestrians 𝑃𝑙𝑜𝑛𝑔 as a function of 𝑥 coordinate. (c) Mean walking speed 𝑣 as a
unction of 𝑥 coordinate for commuters (group 1). Green: empirical measurement. Magenta: simulation data with visual attention module disabled (simulation of
roup 1). (d) Mean walking speed 𝑣 as a function of 𝑥 coordinate for commuters and pedestrians with attention-based movement (group 1+2). Blue: empirical
easurement. Red: simulation data with visual attention module enabled (simulation of group 1+2).

Fig. 10. Design settings with varying features in isometric views. White floors represent the corridor segment. Light red floors are store areas. And the red
volumes represent store displays. Corridor width 𝐿𝑐 , store width 𝐿𝑠, and store depth 𝐿𝑑 are all in the unit of meter here.
14
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Fig. 11. Simulations with varying design features Refer to Fig. 10 for corresponding 3D representation. (a) The distribution map of 𝑃𝑙𝑜𝑛𝑔 , which means the
probability of observing a pedestrian with long-time visual attention to the store; (b) The distribution map of 𝛥𝑣, which means the average speed loss compared
o the same corridor without a store. Maps are top-down views of the corridor in real-world dimensions. The gray boxes represent the dimensions of the store
idth and display depth.

Fig. 12. Design settings with varying corridor width in isometric views. White floors represent the corridor segment. Light red floors are store areas. And
the red volumes represent store displays.

Fig. 13. Simulations with varying corridor widths. The proportion of long-attention pedestrians and average walking speed for all pedestrians are plotted in
the same diagram with different scales. There are two scenarios where (a) store display depth is 0.5 m, and (b) depth is 5 m. The error bars represent the 95%
CIs for the metrics.

model uses visual attention to introduce the modification of the Social Force Models desired velocity coefficient for the goal force.
The model that combines visual attention and locomotion, is compared to prior works by fitting to an existing dataset. Finally, we
demonstrate qualitative results through a simple case study of a corridor and a single storefront.

In general, the model evaluates retail potential and pedestrian flow efficiency by jointly predicting the visual attention and
locomotion of the pedestrians at the same time. The visual attention, which is the proxy to retail potential, is able to simulate
the transitions between the dual states of visual attention, making it adaptable to multi-store simulations. As for the model
representation, we extend the model in Zhou et al. (2022) to the varying sizes of attractions by changing the distance factor in
he model to angular separation in Xie et al. (2007). In this way, the attention prediction is purely guided by ego-centric visual
nformation, which maximizes its potential in generalizations. Also, Our model outperforms prior work in the prediction of attention
15
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terminations. While previous work by Zhou et al. (2022) chose a time-decaying function to represent how visual attentions fade,
our study indicates such transitions can be better explained by pedestrian visual fields.

Then the locomotion model is conditioned on visual attention prediction. Compared to prior work that chose a fixed walking
speed for pedestrians with visual attention (Wang, 2014), we propose a dynamic walking speed scheme. We found that when
pedestrians are attracted by environmental objects, their walking speed is regulated by the angular speed with regard to the objects.
Such a setting can be related to experimental findings by Warren and Fajen (2008), where the author concluded that human
ocomotion is guided by optical flows.
Additionally, we show that our model is responsive to design feature variations, showing its potential in design optimizations.

y configuring store widths and display depths, our model can be applied to various environmental objects such as stores, banners,
nd window displays. By adjusting corridor widths, architects can compare different design proposals with regard to facility
imensioning. Although the model in this paper is built upon a dataset of attention-based movement behaviors, its findings may
ive insights into similar topics such as signage detections or evacuation wayfinding.
Our work has some limitations that should be addressed in future work: First, in visual attention modeling, we only discuss a

imited number of extrinsic factors in diluted pedestrian flows due to data availability. Future works should cover more extrinsic
actors. Second, the empirical data we use is limited in the diversity of location and in pedestrian flow density. Our finding about
actor influences on visual attention does not apply to pedestrian flows with extreme high densities. Third, while attention-based
ovement behaviors play a dominant role in our context, integration of other response modes would be beneficial to create more
ealistic simulations. For example, the pedestrians who walk into the store. Fourth, although our visual attention model is compared
o the original forms of prior models, a comparison that considers the varying parameter sizes of the models may better reveal the
dvantage of ours. Since we have not found a way to fairly compare models of which parameter size cannot be easily scaled, we
onsider this topic as a potential future work. Finally, since the overall performance of our simulation framework is closely related
o that of the Social Force Model, the limitations inherit in this model propagate, and such a base model can be improved to explore
ur attention-based model input.
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