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Abstract: The ability of bipedal robots to adapt to diverse and unstructured terrain conditions
is crucial for their deployment in real-world environments. To this end, we present a novel,
bio-inspired robot foot design with stabilizing tarsal segments and a multifarious sensor suite
involving acoustic, capacitive, tactile, temperature, and acceleration sensors. A real-time signal
processing and terrain classification system is developed and evaluated. The sensed terrain
information is used to control actuated segments of the foot, leading to improved ground contact
and stability. The proposed framework highlights the potential of the sensor-integrated adaptive

foot for intelligent and adaptive locomotion.
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1. INTRODUCTION

Legged robots are increasingly required to traverse a
variety of environments and terrains to accomplish their
tasks (Shamsah et al. (2023)). For example, agricultural
robots for fruit harvesting need to walk on grass, dirt, mud,
snow, and mulch; disaster recovery robots could navigate
through building rubble, ruined streets, and collapsed
houses; and home-assistance robots may traverse rugs,
carpets, and a variety of tile and hardwood floors. For each
type of terrain, the robot foot should be robust enough
to enable stable ground support. In addition, sufficient
sensory input and processing capability are necessary
to identify the terrains in order to adjust the control
strategy of the robot. This paper proposes a versatile foot
design for the Cassie robot, integrated with a multi-modal
sensor suite (see Fig. 1), and employs machine learning
algorithms to classify terrains based on the sensor data.

Terrain-adaptive foot design is essential for a bipedal
robot’s ability to traverse harsh terrains. The default foot
of a Cassie robot is narrow and prone to sinking on
deformable terrains. In contrast, a rigid wide foot design
does not make full contact with the ground if the terrain
is not flat. Therefore, we propose a nature-inspired foot
design with tarsal segments that can be actuated according
to the terrain types, which adapts to terrain surfaces with
soft and uneven properties.

The robust classification of the terrain relies on multiple
sources of sensory input. The features extracted from the
sensor data are input into a machine learning based terrain
classification system. The signal acquisition and terrain
classification framework is closely related to the previous
work in Guo et al. (2020), but with a newly designed
sensor suite involving temperature, acoustic, acceleration,
capacitive, tactile measurements. Additionally, new fea-
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Fig. 1. Illustration of a reconfigurable Cassie foot design
with stabilizing tarsal segments and multi-modal sens-
ing suite (i.e., multiple sensors for various features).

ture extraction methods and deep learning algorithms are
explored in this study.

The contributions for this paper lie in: (i) a nature-
inspired foot design with adaptive foot stabilization over
uneven terrains, complete with a high-level controller; (ii)
the design of a tactile sensor with commercially available
components, as well as the integration of the multifarious
sensor suite and associated electronics; (iii) a terrain iden-
tification system capable of real-time operation on a Cassie
robot, and an evaluation of the performances of various
supervised learning algorithms for terrain classification.

2. RELATED WORK

Adaptive foot design: Previous attempts have been
made to design an adaptive foot with sensor integration to
enhance robot locomotion. The works in Catalano et al.
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(2021) and Piazza et al. (2016) propose articulated soft
foot designs that are compliant with unstructured terrains
to maximize contact. The work in Fondahl et al. (2012)
develops an actuated multi-contact foot with pressure
sensor arrays integrated.

Sensors for terrain classification: A combination of
inertial measurement units (IMUs), force, and torque sen-
sors are commonly used to gather terrain data. Examples
of this include Kolvenbach et al. (2019), Wang et al.
(2020), Bosworth et al. (2016), Venancio et al. (2020),
Walas (2015), and Walas et al. (2016). Visual data is also
a popular input: Walas (2015) combines force and torque
data with visual and depth data, Halatci et al. (2008)
uses a combination of images and wheel vibration in a
rover, Khan et al. (2011) and Khan et al. (2012) both use
a single robot-mounted camera, and Kurobe et al. (2021)
uses camera and microphone input to identify terrain char-
acteristics. Tactile sensors, which mimic a human’s ability
to sense through touch, are also beneficial for terrain
classification. Guo et al. (2020) proposes to use a variety
of embedded sensors including tactile, acoustic, capacitive,
temperature, and acceleration sensors, and shows that
integrating multiple sensor modalities in general results
in more effective terrain identification.

Machine learning algorithms for terrain classifica-
tion: Support vector machine is used by Kolvenbach et al.
(2019), Walas (2015), Walas et al. (2016), Halatci et al.
(2008), and Wu et al. (2016), while Khan et al. (2011),
Khan et al. (2012), and Zhang et al. (2016) all use the
random forest algorithm. Ding et al. (2022) experiments
with four traditional algorithms: support vector machine,
logistic regression, k-nearest neighbor, and gaussian dis-
criminant analysis. Recent trends indicate the potential
of deep learning algorithms for terrain identification due
to their enhanced feature learning capabilities compared
to traditional machine learning methods as well as their
ability to generalize over large quantities of data. Artificial
neural networks (ANNs) are used in Giguere and Dudek
(2011); Convolutional neural networks (CNNs) are used
in Venancio et al. (2020), Kurobe et al. (2021), and Vulpi
et al. (2021); Recurrent neural networks (RNNs) are used
in Wang et al. (2020) and Vulpi et al. (2021); and concepts
from transformers are used in Bednarek et al. (2022) and
Séjka et al. (2023).

3. METHODS

This section is organized in the following manner: the
mechanical design and stability control of the adaptive
foot is discussed in Sec. 3.1; the electrical design and
sensor integration are discussed in Sec. 3.2; the signal
processing and terrain classification framework is discussed
in Sec. 3.3.

3.1 Mechanical Design

Two primary objectives are considered for the design of the
foot. First, the foot must incorporate new tarsal segments
that can adaptively stabilize the robot on rough terrain.
Second, the foot needs to be lightweight to minimize
deterioration of the Cassie robot’s joints.

The design shown in Figs. 1 and 2 fulfills the first objective
by efficiently transferring rotational force from a servo into
two tarsal segments on either side of the foot that act on

the ground. The servo located at the center of the foot
rotates to a selected angle between 0 and 360° based on the
feedback from the sensors and the classification algorithm.
As the servo rotates, the reinforced string attached to
the servo’s output shaft winds up, pulling the joint above
the center of the foot down. This pulls on the linkages
which directly push the tarsal segments down. The tarsal
segments, which are attached to the central part of the foot
using hinges, rotate to a maximum angle of fifteen degrees
below the horizontal. When the foot is raised off the
ground, the servo unwinds and the spring connecting the
two tarsal segments passively retracts the tarsal segments
to ten degrees above the horizontal. As such, the force from
the servo acts through the linkages to pull directly on the
tarsal segments. While it does have to overcome the force
of the spring, it is a relatively weak spring that serves to
barely lift the tarsal segments off the ground, preserving
as much force from the servo for the tarsal segments as
possible.

The servo provides a maximum torque of 22.8 kg-cm,
which is converted through the linkages in our design into
a stabilizing force of up to 447 N split between the two
tarsal segments. If the robot is perfectly balanced and the
tarsal segments are both flat on the ground, this force will
be split evenly between the segments; as the robot falls to
one side, the force will shift to the tarsal segment on that
side to help the robot stay upright.

To actuate the tarsal segments, a bang-bang controller,
running at 45 Hz with the sensors, uses feedback from
the classification algorithm, represented by the adaptive
design portion of Fig. 1. The servo operates the tarsal seg-
ments if the algorithm predicts a terrain that is potentially
destabilizing: poppy seeds, gravel, pine straw, turf, a foam
block, or carpet. As the tarsal segments descend, they
increase the overall contact area of the foot by 292% to
distribute weight and stabilize the robot. As loose terrains
shift, the tarsal segments can descend further to maintain
contact with the ground. If a stable terrain is classified,
the tarsal segment remains in its upright, passive position
and only the central part of the foot is in contact. The
current controller is limited to being either fully-actuated
or passive, meaning that the angle cannot be fine-tuned
based on the terrain classification. The Cassie robot takes
a step every 0.4 seconds. Thus, running the controller at
45 Hz means there is ample time to react to any new input
from the classification algorithm between steps.

To achieve the goal of a lightweight foot, the physical
components are fabricated using a variety of materials
and methods. The tarsal segments, linkages, and actuator
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Fig. 2. A labeled rendering of the foot that shows the
placement of sensors and mechanical components.
The red lines show the sensor placements on the foot.
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mount are all 3D printed using a nylon and carbon fiber
filament, while the central component of the foot is milled
using Aluminum 6061-T6. Other, less structurally essential
components, like sensor mounts, are 3D printed using ABS
filament. The final mass of all mechanical components
of the foot is 0.64 kg, while the total mass including
electronics is 1.05 kg. For reference, the original Cassie
robot’s foot is 0.21 kg.

3.2 FElectrical Design

Five sensors are used on the foot: capacitive, acoustic,
tactile, temperature, and accelerometer. These sensors
are shown on the foot in Fig. 2. The capacitive sen-
sor is a copper plate connected to the microcontroller
with a wire while the acoustic sensor (SPH8878LR5H-
1, SparkFun), accelerometer (ADXL343, Adafruit), and
temperature sensor (GY-906 MLX90614ESF, HiLetgo) are
commercially available breakout boards. The new tactile
sensors, like the one in Fig. 3, are based on the design by
Tenzer et al. (2014) that uses barometric pressure sensors
to register forces. We follow a similar fabrication process to
the one used by Koiva et al. (2020) to construct the tactile
sensors. However, two key differences from these papers
are that we use Bosch BMP390 sensors (Bosch Sensortec),
which communicate with the microcontroller through an
12C Multiplexer (TCA9548A, Adafruit) capable of coordi-
nating with up to eight sensors with the same 12C address
at once. To take full advantage of this multiplexer, two
tactile sensors are used on the foot and each tactile sensor
has four Bosch sensors.

A Raspberry Pi 4 microprocessor is used to provide
the processing power to perform data acquisition and
terrain classification in real time. However, the Pi lacks
analog to digital converters, making it incompatible with
the requirements for the acoustic and capacitive sensors.
Therefore, a Teensy 3.6 microcontroller is used with the
Raspberry Pi. The Teensy gathers the data from the
capacitive and acoustic sensors at 18 kHz and performs
feature extraction. The Raspberry Pi reads and processes
data from the other sensors at 45 Hz, and requests features
extracted on the Teensy at the same frequency.

Each sensor needs to be compatible with the Raspberry
Pi and the Teensy, which have 3.3 v and 5.0 v supply
voltages. Each sensor uses 3.3 v, excluding the temperature
sensor, which operates at 5.0 v. Individually, the sensors
need to have appropriate ranges to be able to respond to
the different stimuli that are likely to occur on a given
terrain. The temperature sensor has a range of —40°
C - 380° C, which more than covers any likely terrain
temperature. The new pressure sensor, accelerometer, and
acoustic sensor, which replace their obsolete counterparts,
all outperform the sensors used by Guo et al. (2020): a
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Fig. 3. Closeup of a completed tactile sensor, with individ-
ual components labeled.

pressure range of 30 kPa - 125 kPa vs 50 kPa - 115 kPa,
acceleration resolution options of + 2 g /+4 g /£ 8¢g /+
16 gvs+2g /£ 4g/+ 8¢, and a frequency range of 7
Hz - 36 kHz vs 100 Hz - 15 kHz.

3.8 Terrain Classification Algorithms

Preprocessing: The raw data is preprocessed and seg-
mented so that the appropriate features can be extracted
for use in classification. Before preprocessing, the raw
tactile data may experience linear drift over time. Ad-
ditionally, an offset is at times introduced to the pres-
sure sensors during the manufacturing processes needed to
make the tactile sensors. To remove the drift and keep the
input from each pressure sensor at a constant baseline, a
detrending function is applied to the input of each sensor.
This function performs a linear least-squares fit to the
data and subtracts the solution from the data to remove
the linear drift. The detrended tactile data is used to
segment the rest of the data, i.e., split the data every
time a footstep is taken so that statistical features can be
extracted around the footsteps, and the unnecessary data
between footsteps can be ignored. This is accomplished by
identifying maxima and minima in the tactile data that
corresponds to the foot in contact with the terrain. !

Feature Extraction: Feature extraction is applied to
the segmented data so that each footstep is represented
by a single set of variables for the machine learning
algorithms. Using extracted features instead of raw data
reduces the dimensionality of the data and facilitates the
classification process. In total, 100 features are extracted
from the five sensors using the equations below, where
x = {20,21,...,2,}, and x; € R denotes the i*" scalar
in a time series of sensor data with length n, and ZCR
stands for the Zero-crossing Rate:
n

Sum: feum(x) = Zi:o T

Maximum: fimax(x) = max(z1, 22, T3, ..., Tn)
Minimum: fiin(x) = min(zq, 22, 3, ..., Tn)

1 n
Mean: pu(x) = - Zz‘:o x;

1 n
: L2000 2
Variance: 0°(x) = - E i:O(xZ 1)

- 1 n
Skewness: ji*(x) = m Zi:()(xi —p)?

. 1 n 4

Kurtosis: fiurt(x) = W Zi:o (z; — )

. 0xz; <0
Slgn: fsign(xi) - { 1 Z; 2 0

1 n

ZOR: fror(x) = — > | fuian(@i) = fuign(@i-1)|
80% Rise Time: fggo(x) = ¢ for x; = 0.8(fmax(X))
Fast Fourier Transform: fg(x) = FFT(x)

The features extracted from each sensor are as follows:
Accelerometer: the maximum, minimum, mean, variance,
sum, and ZCR are calculated for each axis (X, Y, and Z)
on the three-axis accelerometer for eighteen features.

1 See https://github.com/ATMontague/Cassie-Robot-Foot-Design
for additional information on the electrical design and preprocessing.



526 Ted Tyler et al. / IFAC PapersOnLine 56-3 (2023) 523—528

Acoustic: the ZCR and Fast Fourier Transform (FFT)
functions are calculated. The FFT output is averaged over
nine spectral bands for ten features.

Capacitive: the mean and variance are calculated, as well
as the same nine spectral band averages that are calculated
for the acoustic sensor for 11 features.

Tactile: the maximum value, minimum value, and 80%
rise time values are calculated for the data summed at each
time step across the eight barometric pressure sensors. We
also calculate the maximum, minimum, mean, variance,
skewness, and kurtosis values for each individual sensor,
as well as each individual sensor’s value when the summed
value reaches 80% rise time for 59 features. As Guo et al.
(2020) states, the summed value at 80% of the rise time
is used because it could be a valuable indication of the
terrain’s stiffness.

Temperature: the mean and variance of the terrain’s
temperature during every footstep are extracted for two
features.

Classification Algorithms: We test four traditional ma-
chine learning algorithms and two deep learning algo-
rithms to classify the extracted terrain features: k-nearest
neighbor (KNN), support vector machine (SVM), ran-
dom forest (RF), gradient boosting classifier (GB), arti-
ficial neural networks (ANN), and convolutional neural
networks (CNN). Each classifier accepts the previously
discussed extracted features as inputs for training. Tech-
niques like K-Fold Cross Validation and Regression are
implemented, as appropriate based on the algorithm, to
find the best models.

4. EXPERIMENTAL SETUP

Finite Element Analyses (FEA) are performed on the servo
linkages, the central part of the foot, and the servo bracket
to validate the mechanical design of the foot. To simulate
the forces acting on the foot, the bottom of the foot is
fixed and a force is applied at the ankle joint equal to the
weight of the robot. The servo bracket is fixed by the holes
where the bracket is bolted to the central foot, and the
force required to secure the servo at the servo’s maximum
torque is applied to the upper, inside surface of the servo
bracket. For the linkages, hinge constraints are applied
to the inner cylindrical surfaces where they rotate as the
servo actuates, and additional constraints are applied to
represent the bolt fixing the linkages at the linkage joint
above the servo. The force acting on the linkage is applied
to the inside face of the upper hole parallel to the linkage
pointing towards the opposite hole.

Fig. 4 shows the result of the FEA on the linkage as an
example. Darker blue areas represent areas under lower
stress, while red areas represent those with high stress.
Because FEA results show that the linkages have the most
potential for failure, an endurance limit study, which is
related to fatigue failure, is performed for the linkages
using Marin Factors. The results of these analyses are in
Section 5.

To gather training data for classification, we fabricate a
prototype and install it on an Instron 5965 machine, which
can be programmed to simulate a footstep. For each step,
the machine lowers the foot onto the terrain until 300 N

Table 1. Hyperparameter Tuning

Algorithm Hyperparameters
# of Neighbors 10
Leaf Size 30

KNN Weight Function Uniform
Distance Computation Minkowski
Regularization Scaler 1.0

SVM Kernel RBF
Decision Function One-VS-Rest
# of Trees 100

RF Maximum Depth None
Split Criteria Gini Impurity
# Loss Function Logistic Loss

GB Learning Rate 0.1
# of Estimators 100
Max Depth 3
Hidden Layers 2
Nodes/Hidden Layer 50, 100
Batch Size 32

ANN Activation Function ReLU
Optimizer Adam
Learning Rate Adaptive
Convolution Layers 2
Batch-Norm Layers 2
Max Pooling Layers 2

CNN Fully Connected Layers 2
Trainable Parameters 97,354
Batch Size 32
Optimizer Adam

Learning Rate 1x 1073

of force is measured. The foot is held in this position for
one second while the tarsal segments, which actuate based
on inputs from the tactile sensors, lowered. The machine
then returns the foot to a neutral position as the tarsal
segments retract, where it rests for 0.25 seconds before the
process repeats. To avoid settling, we regularly shuffle any
loose materials that shift during data gathering to prevent
erroneous readings. This cycle is repeated 1000 times for
each terrain so that each terrain is represented by 1000
data points during classification.

Ten materials are used in the experiments to simulate real-
world terrains: a metal plate (METAL), a wood board
(WOOD), a foam block (FOAM), a yoga mat (MAT),
a patch of artificial grass (GRASS), gravel (GRAVEL),
pine straw (STRAW), concrete (CONCRETE), a patch of
carpet (CARPET), and poppy seeds (POPPY). We select
these materials because they roughly represent a range of
terrains that a bipedal robot could encounter in indoor
and outdoor deployments.

Once the training data is gathered, it is used to construct
models for each of the algorithms discussed in Section 3.3.
The 10,000 data points are divided and 80% is allocated to
a training set and 20% is allocated to a test set. Each model
is trained and tested on these same sets. Once these models
are tuned and trained, they are saved and loaded onto the
Raspberry Pi. To validate the feasibility of using our design
in real-time applications, ten steps are timed and classified
for each of the top three performing algorithms and the
average classification speed is recorded. Table 1 outlines
the set of hyperparameters that returns the highest test
results for each model.

5. RESULTS AND DISCUSSION
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FEA Analysis: FEA results
for the central foot, linkages,
and servo bracket can be seen
in Table 2, which shows that
the linkages have the most po-
tential for failure with a fac-
tor of safety (FOS) of only
1.43. Despite the low FOS, the
endurance limit study showed
that the linkage design can
withstand 5x10% footsteps be-
fore failing. At the speed that
the Cassie robot walks, this
comes out to constant walking
for 24 hours per day for over six
years. As such, the strength of
these elements is validated to
be reliable.

in being able to obtain sufficient information from only
two sensors, it would be ideal if all of the sensors played
a stronger role in the terrain identification to make the
foot more resilient to failed or malfunctioning sensors.
The reason for the
disparity between
sensors varies from
sensor to sensor
and could theoret-
ically be caused by
a number of rea-
sons. More varia-
tion in the ter-
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Learning Algorithm Evalu-
ation: As shown in Table 4, RF has the highest test
accuracy with 99.90%, while GB scores the second highest
with 99.85% accuracy. Both deep learning-based models
score nearly as well with CNN scoring 99.85% and ANN
scoring 99.80%. This high performance could be due to the
significant distinction in features generated per class. We
complete a principal component analysis (PCA) to reduce
the feature space to three dimensions for visualization
purposes, which can be seen in Fig. 5. Each colored cluster
represents the 100 features of each terrain projected onto
three dimensions for visualization. The resulting feature
space clearly shows each class in relatively dense clusters,
excluding a small number of outliers. This visualization
illustrates how the feature extraction discussed in Section
3.3 statistically groups the data from each terrain into
unique clusters, making it simpler for the classification
algorithms to identify the differences between each terrain.
Based on the information obtained through the PCA, the
high performance of both RF and GB also becomes clearer
since tree-based models like RF and GB are known to
outperform neural networks on tabular data, as seen in
work by Grinsztajn et al. (2022) and Shwartz-Ziv and
Armon (2022). SVM returned the lowest offline accuracy
at 59.15%. However, based on the PCA visualization, this
also may not be surprising considering that SVM works by
linearly separating one class from the rest, and generally
works better with two or three classes at the most.

Sensor Ablation Study: To understand how the clas-
sifiers learn, combinations of sensors are tested on RF
and GB to see which sensors contribute the most to the
classifiers. As Table 3 shows, each sensor had similar ef-
fects on RF and GB accuracy. However, the accelerometer
and tactile sensor data influence the classification algo-
rithms more than the data of the other sensors. While
this shows the robustness of the classification algorithms

Table 2. FEA Results

Component Max Stress Yield Stress Factor

p (MPa) (MPa) of Safety
Central Foot 10.87 275.00 25.3
Linkages 78.14 112.00 1.43
Servo Bracket  57.61 112.00 1.94

itive and tempera-
ture sensors. Mov-
ing the acoustic
sensor away from
the noisy servo could increase sound quality and make it
more beneficial. And, as Section 3.3 outlines, 59 of the 100
features extracted from the raw data come from the tactile
sensor. The classifiers might simply rely more on tactile in-
formation because they received more statistical data from
that sensor. As such, expanding the feature extraction of
the other sensors could increase their usefulness to the
classifiers. It is expected that testing more diverse terrains
(i.e., wet or cold terrains) will also increase the usefulness
of the other sensors as the capacitive and temperature
sensors would be more suitable than the accelerometer
and tactile sensors to identifying these subtle differences.
Beyond maximizing classification accuracy, using multiple
sensors provides an additional benefit in terms of redun-
dancy.

Fig. 5. Visualization of features pro-
jected to 3D space using PCA.

Table 3. Performance per Sensor

Sensor RF Accuracy (%) GB Accuracy (%)
all 99.90 99.85
temperature 49.45 54.73
accelerometer 96.17 96.07
microphone 60.10 61.09
capacitive 44.08 44.63
tactile 99.80 99.80
temp + mic + cap 86.22 85.67
temp + cap 69.40 71.19
temp + mic 82.84 83.08
mic + cap 68.26 68.71

Online Classification Speed: Models for GB, RF,
and ANN are saved and loaded onto the Raspberry Pi
to be timed. Although CNN outscores ANN by a slim
margin, the accuracies are close enough that the ANN
was used in place of the CNN because its architecture is
more compatible with the microprocessor. Over ten steps,
GB, RF, and ANN have average classification speeds of
2.73 ms, 32.76 ms, and 0.64 ms, respectively. RF has the
longest inference time, possibly due to a large number of
trees (see Table 1) within the model. ANN is the fastest
by a large margin due to the relatively small size of the
ANN model. Because classification is performed at the
end of the footstep once the data for the step has been
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Table 4. Test Accuracy Results (%)

Metal Foam Wood Mat Gravel Poppy Carpet Grass Straw Concrete Average
RF 100.00 100.00 100.00 100.00 99.49 100.00 100.00 99.50 100.00 100.00 99.90
GB 100.00 100.00 100.00 100.00 99.49 100.00 99.53 99.50 100.00 100.00 99.85
CNN 100.00 100.00 100.00 100.00 98.98 100.00 100.00 99.50 100.00 100.00 99.85
ANN 100.00 100.00 100.00 100.00 100.00 99.52 100.00 99.50 99.04 100.00 99.80
k-NN 100.00 100.00 100.00 100.00 64.97 52.86 99.53 81.50 46.89 100.00 83.96
SVM 0.00 100.00 93.26 100.00 1.02 98.10 99.53 0.00 0.00 95.45 58.97
collected and processed, all of these times are fast enough  Khan, Y.N., Komma, P., and Zell, A. (2011). High resolution

that the data-gathering process of the following step would
not be negatively impacted in a real-time application. This
implies that the current system can realistically be used
in an online terrain identification application.

6. CONCLUSIONS

Using multi-modal foot contact sensing consisting of an
acoustic sensor, accelerometer, capacitive sensor, tactile
sensor, and temperature sensor, the stabilizing Cassie foot
was able to classify ten terrains with an average test
accuracy of 99.90%, demonstrating great potential for real-
world applications. To achieve the objective of using this
foot in these scenarios, future work will be to implement a
more powerful control scheme for tarsal segment actuation
so the angle can be adaptively tuned to each terrain,
and to assemble the foot onto the Cassie robot to obtain
additional training data and complete real-time, online
tests with the robot. Once the foot has successfully been
integrated into the robot and tested, the classification
algorithm will be used to update and optimize the robot’s
gait at runtime as it traverses a variety of terrains.
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