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Hydrologic reconstructions from North America are largely unknown for the Middle Miocene. Examination
of fungal palynomorph assemblages coupled with traditional plant-based palynology permits delineation of
local, as opposed to regional, climate signals and provides a baseline for study of ancient fungas. Here, the
Fungi in a Warmer World project presents paleoecology and paleoclimatology of 351 fungal morphotypes
from 3 sites in the United States: the Clarkia Konservat-Lagerstétte site (Idaho), the Alum Bluff site (Florida),
and the Bouie River site (Mississippi). Of these, 83 fungi are identified as extant taxa and 41 are newly
reported from the Miocene. Combining new plant-based paleoclimatic reconstructions with funga-based
paleoclimate reconstructions, we demonstrate cooling and hydrologic changes from the Miocene climate
optimum to the Serravallian. In the southeastern United States, this is comparable to that reconstructed
with pollen and paleobotany alone. In the northwestern United States, cooling is greater than indicated by
other reconstructions and hydrology shifts seasonally, from no dry season to a dry summer season. Our
results demonstrate the utility of fossil fungi as paleoecologic and paleoclimatic proxies and that warmer
than modern geological time intervals do not match the “wet gets wetter, dry gets drier” paradigm. Instead,
both plants and fungi show an invigorated hydrological cycle across mid-latitude North America.
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provides a proxy for likely future warming [1]. While global tem-

peratures of the MCO are well established [1,2], the hydrological

The Miocene climate optimum [MCO; 16.9 to 14.7 million years
ago (MA)], a period of warmer-than-present climates globally,
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cycle is still poorly understood. In North America, recent fossil
plant-based reconstructions suggested that rainfall patterns were
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more seasonal than modern [3]. Here, we use a recently devel-
oped fossil fungi paleoclimate proxy to reconstruct Koppen-
Geiger climate classifications [4] and use it to qualitatively test
this “more seasonal than modern” hypothesis.

Both extant fungal biogeography and previous works exam-
ining fossil fungal assemblages have shown that they are sensi-
tive to ambient climate [4-6].

Using fungal remains preserved during and following the
MCO across a latitudinal gradient to reconstruct climate pro-
vides a fossil plant-independent perspective on past hydrologi-
cal conditions.

Alum Bluff (Florida) and the Bouie River (Mississippi) site,
located in the southeastern part of the United States, provide a
record from 16 to 11.6 MA [3], encompassing part of the MCO
(Alum Bluff), and the interval of time after the global cooling of
the Middle Miocene climatic transition (MMCT) at Bouie River
(Fig. 1; Supplementary Materials, SI1). The Clarkia Konservat-
Lagerstitte (northern Idaho), located in the northwestern part of
the country, provides a well-constrained record from the MCO
(Fig. 1; Supplementary Materials, SI1). Trapper Creek (southern
Idaho) provides a paleobotanical record of Serravallian climate
for the northwest but was not part of the fungal study (Fig. 1).
Existing paleobotanical and palynological records for these sites
[7-12] suggest that a mosaic of plant communities inhabited the
temperate to tropical Alum Bluff, subtropical to temperate Bouie
River, warm-temperate Clarkia sites, and cool-conifer forests of
Trapper Creek [13]. These 4 sites create a latitudinal and temporal
perspective on North American paleoclimates during this warmer-
than-present world.

Fossil fungal remains have been previously documented from
all sites and have been the subject of minor studies at both Alum
Bluff and Clarkia. Jarzen etal. [7] identified fungi present at
Alum Bluft using fossil names, which have little correlation with
modern taxonomic names and thus could not, as such, contrib-
ute ecological or climatological information about the fungi pres-
ent. Most fungal taxa described from Clarkia to date utilize
modern names; however, the focus has been primarily on epi-
phyllous fungi, which are not frequently encountered in palyno-
logical preparations from this site [8,14-16]. This is the first study
to systematically extract, identify, and interpret fossil fungi pre-
served in sediments from Clarkia, Alum Bluff, and the Bouie
River site (Fig. 1) in the full context of their modern counterparts.
Where possible, fossil taxa were identified using modern names,
which facilitates their use for paleoclimate reconstructions. These
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fungal-based reconstructions were then compared to new quan-
titative paleobotanical reconstructions to better elucidate both
local and regional climate signals at each locality.

Results

A total of 351 fungal morphotypes were obtained from the 3
sites (Supplementary Materials, SI2). Eighty-three of the mor-
photypes have been identified as modern taxa. Of these, 41
genera have not previously been noted in the Miocene: cf.
Acarocybiopsis, Bispora, Bombardioidea, Brachydesmiella, cf.
Desertella, Dictyocheirospora, Didymosphaeria, cf. Helensiella,
Hughesinia, Massaria, Melanographium, cf. Neoroussoella,
Pendulispora, cf. Polytretophora, and Seychellomyces are unique
to the Clarkia Lagerstitte; cf. Alysidium, Atrotorquata aff. lineata,
cf. Cladosporium, Gliomastix aft. fusigera, cf. Kionocephala,
Puccinia-type, Sporidesmium, Thecaphora, and cf. Trimmatostroma
are unique to Alum Bluff; cf. Bahugada, Caryospora, Heteroconium,
cf. Melanospora, Septonema, Spegazzinia B-type, and cf.
Termitariopsis are unique to the Bouie River site; Brachysporium,
cf. Endophragmiopsis, Melanocephala, cf. Naviculispora, and
Trichocladium occur in both the Bouie River site and the Clarkia
Konservat-Lagerstatte; Hermatomyces, Minutisphaera, and
Sphaerodes occur in both Alum Bluff and the Clarkia Konservat-
Lagerstitte; and Chaetomium and Spadicoides occur in all 3 sites.
Samples from Clarkia (Fig. 2) generally contained the most
diverse fungal assemblages, with up to 37 morphotypes present
in any sample. The lowest fungal diversity occurred near the bases
of ash deposits, especially in ash RA-3. Samples from Alum Bluff
(Fig. 3) generally contained low-diversity fungal assemblages,
with an average of 4 taxa in the lower portion of the measured
section and 2 taxa in the upper portion of the measured section.
The Jarzen et al. [7] samples, thought to be from just above the
measured section, had somewhat higher diversity than those
from the lower portion of the measured section. Samples from
the Bouie River site (Fig. 4) exhibited similar low diversity.

Paleoecology

Most taxa recovered from the Clarkia Konservat-Lagerstitte are
wood saprophytes (Supplementary Materials, SI2 and SI3). All
trophic modes are represented except keratinophytic, animal para-
sitic, and nematophagous. Fungi recovered are largely indicative
of freshwater terrestrial environments that are variably submerged
or subaerial. Examination of fungal guild structure is limited by 2
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Fig. 1. Fungal study site ages and location. (A) Age of the 3 study sites plotted in relation to the 5180 “mega-splice” [2]. (B) Location of the 3 study sites within the United
States. Blue shaded zone indicates Middle Miocene Climate Transition (MMCT), while pink shaded zone indicates Miocene Climate Optimum (MCO).
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Fig. 2. Fungal palynomorphs recovered from the Clarkia Konservat-ILagerstéatte. (A) cf. Bombardioidea. (B) cf. Sordariales. (C) cf. Brachydesmiella. (D) cf. Melanographium.
(E) Sphaerodes. (F) cf. Cercophora. (G) cf. Polytretophora. (H) Hughesinia. (I) cf. Acrogenospora. (J) cf. Apiosporaceae. (K) Xylariaceae. (L) cf. Rosellinia. (M) Chaetomium.
(N) Acarocybiopsis. (O) Endophragmia. (P) Bispora. (Q) cf. Didymosphaeria. (R) Neoroussoella. (S) cf. Lemkea. (T) cf. Catenularia. (U) Endophragmiella. (V) Desertella. (W)
Bactrodesmium. (X) Spadicoides sp. 1. (Y) Spadicoides sp. 2. (Z) Podospora. (AA) Minutisphaera. (BB) Pendulispora. (CC) Phragmocephala. (DD) Diporotheca aff. rhizophila.
(EE) Melanocephala. (FF) Seychellomyces. (GG) Trichocladium. (HH) Brachysporiella. (Il) Bactrodesmium aff. abruptum. (JJ) Endophragmiopsis. (KK) Naviculispora. (LL)

Dictyocheirospora. (MM) Helensiella. (NN) cf. Helicoon. (00) cf. Hermatomyces. Sca

factors: (a) nonrecovery of very fragile and hyaline fungal spores
and (b) the large number of taxa that could not be confidently
assigned to a modern analog within each sample. To largely cir-
cumvent these challenges, only those samples that contained
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greater than 10 identified fungi were included in the analysis for
Clarkia and subsequent settings. In this limited subset, 3 variations
in guild structure were noted: (a) saprotroph dominated with near-
equal numbers of dark septate endophytes (DSEs) and unknowns,
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Fig. 3. Fungal palynomorphs recovered from Alum Bluff. (A) Glomeromycota. (B) Acrogenospora. (C) Apiosporaceae. (D) Rosellinia. (E) Elegantimyces. (F) Atrotorquata aff.
lineata. (G) Sporidesmium. (H) Savoryella aff. lignicola. (I) Minutisphaera. (J) Sphaerodes. (K) cf. Kionocephala. (L) Cercophora. (M) Spadicoides. (N) Xylariales. (O) Thecaphora.
(P) cf. Hermatomyces. (Q) Canalisporium. Scale bar, 10 pm.

and a greater number of pathogenic fungi (Supplementary
Materials, SI4); (b) saprotroph-unknown co-dominated; and (c)
saprotroph-unknown co-dominated with DSEs and pathogenic
fungi present. Wood saprophytes are also common in sediments
from Alum Bluff (Supplementary Materials, SI2 and SI3), and
keratinophytic, hyperparasitic, and nematophagous modes are
absent. Fungi recovered are generally indicative of freshwater con-
ditions, although marine and/or brackish water elements are pres-
ent at various points in the column (e.g., samples 43592, 1499,
1495, 1486, and 1482). Fungal guild structure reconstructions are
not possible for Alum Bluff due to low taxonomic diversity in
individual samples. The Bouie River site is especially challenging
to characterize as very few samples contain many identifiable fungi
(Supplementary Materials, SI2 and SI3). That said, the only trophic
mode not present in the fungas from the Bouie River site is nema-
tophagous. Marine/Brackish water elements are more likely in the
lower third of the section than elsewhere. Only one sample (1516)
could be analyzed for guild structure. The funga present in this
sample is remarkably similar to the third type noted above for
Clarkia (Supplementary Materials, SI4).

Paleoclimatology
Kdppen-Geiger classes
Koppen-Geiger class reconstructions using fungi are noisy
where primarily cosmopolitan taxa are present [4]. This is the
case for large parts of the reconstructions from the Clarkia
Konservat-Lagerstitte, the Alum Bluff site, and the Bouie River
site (Supplementary Materials, SI4).

In the Clarkia Konservat-Lagerstitte (Fig. 5), the fungal-
indicated Koppen-Geiger class at the time of lake initiation at
P-33 (sample 1501) is temperate with no dry season and warm
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summers (Cfb). While noisy, the next 3 m records a transition
to temperate with dry winters and hot summers (Cwa). A brief
return to Cfb conditions is seen 2 m above this before reverting
to Cwa. At 11 m, a temperate with no dry season and hot sum-
mers (Cfa) climate is indicated, largely due to the presence of
Brachyporiella aff. setosa, before a return to Cwa conditions. The
entirety of site P-37, where single Kdppen-Geiger classes could
be reconstructed, was likely deposited under Cwa conditions.

In stratigraphically ordered samples from the Alum Bluff site
(Fig. 5), no single Képpen-Geiger class can be clearly recon-
structed from the fungi. The most constrained reconstruct tropi-
cal rainforest, monsoonal, or savannah with dry winters (Af,
Am, Aw) or Aw to temperate with dry winter and hot summer
(Cwa) conditions. The lowermost 5 productive samples may
record a transition from primarily tropical to primarily warm
temperate conditions. While the remaining samples in the strati-
graphic section are noisy, they consistently reconstruct Am and
Aw climates, suggesting a return to tropical conditions. In the
Jarzen et al. [7] samples, treated as being from similar horizons
above the measured section, reconstructions range from Af or
Am to mixed Aw and Ctb to Cfa or Cwa conditions.

At the Bouie River site (Fig. 5), the fungal-indicated Képpen-
Geiger classes range from Cfb (1506, 1508) to Cwa (1512, 1514,
1516), mixed Cwa and Cfb at 1.3 m (1526), and mixed Af and
Cfaat 2.2 m (1542), suggesting that subtropical wet conditions
predominated.

Paleobotany-based reconstructions using crestr

Our new plant-based paleoclimate-defined Képpen-Geiger clas-
sifications show that Bouie River and Alum Bluft supported a flora
in a Cfa (temperate, no dry season, hot summer) class, whereas
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Fig.4.Fungal palynomorphs recovered from the Bouie River site. (A) cf. Catenularia. (B) Zopfiella aff. neogenica. (C) cf. Cercophora. (D) Spegazzinia p-type. (E) cf. Bahugada.
(F) Sphaerodes. (G) Sordariales. (H) Chaetomium. (l) cf. Naviculispora. (J) Apiosporaceae. (K) Xylariales. (L) cf. Asterina. (M) cf. Delitschia. (N) cf. Berkleasmium. (O) cf.
Rosellinia. (P) cf. Caryospora. (Q) cf. Endophragmiella. (R) cf. Diporotheca. (S) cf. Acrogenospora. (T) cf. Heteroconium. (U) cf. Melanocephala. (V') Termitariopsis. (W) cf.

Bactrodesmium. (X) cf. Dictyosporium. (Y) Potamomyces. Scale bar, 10 pm.

Clarkia and Trapper Creek were reconstructed as Cfb (temperate,
no dry season, hot summer) and Dsb (cold, dry summer, warm
summer) classes, respectively (Fig. 6; Supplementary Materials,
SI5). These reconstructions show a clear climatic cooling and
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increase in seasonality between the 42°N to 47°N MCO Clarkia
and post-MMCT Trapper Creek. This cooling was on the order
of 3.65 °C for mean annual temperature (MAT) and summer tem-
perature and 2.25 °C in winter (Supplementary Materials, SI5).
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Although the Képpen-Geiger class of Alum Bluff and Bouie River
are the same, a 1.15 °C drop in MAT and a 2.35 °C decrease in
winter temperature are reconstructed (Supplementary Materials,
SI5). All new reconstructions are comparable to previously pub-
lished estimates (Supplementary Materials, SI6).

Discussion

The MCO has been considered an analog for future climate
change [1]. Here, we compare our new results to predictions for
end-21st century Képpen-Geiger climate class distribution. In
North America, the distribution of Képpen-Geiger classes largely
follows the “dry gets drier, wet gets wetter” paradigm that assumes
that higher temperatures will exaggerate contemporary hydrologi-
cal conditions, which has been shown to be an invalid assumption
for over 70% of land areas [17]. For the warmer-than-present
MCO, our results show wetter conditions, with fossil fungi show-
ing a summer-wet hydrological regime (Fig. 6). A summer-wet
regime characterizes many present-day monsoon regions, includ-
ing the North American Monsoon [18]. Presently, the North
American Monsoon only delivers infrequent heavy rainfall events
to the southern United States during summer and is projected to
change by +5% with contemporary CO, increase [18,19]. This is
supported by middle Miocene climate modeling that showed a
weaker North American Monsoon [20]. Atmospheric rivers are
projected to increase winter rainfall across western North America
with future climate change [21]. This may be a causal mechanism
for the winter-wet climate reconstructed for Trapper Creek during
the Serravallian, but not the aseasonal (plant-based) or summer-
wet (fungal-based) climate reconstructed for MCO Clarkia (Fig.

6). Increased mean annual precipitation is a consistent feature of
the MioMIP1 multi-model ensemble in western North America
and increases in geographic area with increasing atmospheric
CO,; however, it is currently unknown how this responds season-
ally [20]. Additionally, uplift of the Cascade Range and portions
of the Rocky Mountains in the middle to late Miocene has fun-
damentally changed the hydrologic regime in what is now north-
central Idaho [22], and mid-Miocene climate reconstructions are
unlikely to fully reflect the impact of future warming scenarios
for this region. Our reconstructed post-MCO cooling in the
northwest is greater than that reported in Greenwood et al. [23].
Taggart and Cross [13] proposed Trapper Creek as a cold conifer
forest, which is supported by our Kdppen-Geiger reconstruction.
In southeast North America, the plant-based paleoclimate recon-
struction shows the presence of the same Koppen-Geiger classi-
fication as today (Fig. 6), and that which is predicted to be present
to the end of the 21st century and is consistent with other palaeo-
botanical reconstructions for these sites [3]. The fungal-based
reconstructions are more uncertain due to poorer preservation,
but also point to a warmer and potentially wetter climate during
the middle Miocene. This is supported by climate model studies,
although this is also a region with high model disagreement for
the hydrologic response [20].

Reconstructions based on fungi and plants, while in this
case complementary, are fundamentally completed at different
scales and focused on different aspects of the system. Macro-
paleobotany-based reconstructions are, by nature of the defined
assemblages, time-averaged, as they represent accumulation
across much broader stratigraphic intervals than microfossil-
based reconstructions [24]. Plant palynology data, with few
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exceptions, reconstructs a regional signal [24] due to admixture
of long-transport and local pollen sources. Fungal palynology,
due to the relatively small dispersal distance of most fungi (mil-
limeters to meters), provides a highly local signal in endorheic
lakes and peat-producing settings [25,26]. While transport dis-
tances can be greater in alluvial-fluvial settings, the signal
remains more localized than that of anemophilous pollen.
Additionally, the taphonomy of fungi differs from that of both
leaves and plant pollen and spores due to the chemistry of the
setting and the chemistry of the fungal palynomorphs. Melanized
fungal remains are more resistant to degradation by both bac-
teria and other fungi [27,28], and are thus more likely to be
preserved in the fossil record. Darkening of weakly melanized
fungal spores is known to occur through a variety of mecha-
nisms [27] and to vary with thermal maturity [29]. All samples
examined in this study are thermally immature; therefore, that
factor can be discounted. Beyond mere preservation, the nature
of fungal palynomorphs as a biological entity is very different
from plant palynomorphs. Plant palynomorphs that fall on the
ground are reproductively sterile—they will not progress further
along their life cycles and are largely preserved as whole organs.
Fungal palynomorphs, however, represent fungal necromass—
for whatever reason, conditions were inhospitable for continu-
ance of the fungal life cycle [25]. We, therefore, expect to see
more limited and highly localized assemblages in the fossil
record. Thus, we are comparing a taphonomically distinct local
signal to a regional and/or time-averaged signal when compar-
ing fungi-based to plant-based reconstructions.

Conclusions

Three hundred fifty-one fungal morphotypes were recorded
from Miocene sections in North America, 83 of which were
identified as extant forms, and 41 of which were not previ-
ously known from the Miocene. While recovery varied from
very good (Clarkia) to sparse (Alum Bluff), the recovered
fungas permitted interpretation of both paleoecology and
paleoclimate.

Fungas recovered from Miocene-aged sediments from Clarkia,
Idaho, Alum Bluff, Florida, and the Bouie River site, Mississippi,
complement plant-based paleoclimate reconstructions. At
Clarkia, the MCO fungal-reconstructed Képpen-Geiger classes
fluctuate from a dominant Cwa to Cfa and Cfb, showing a warm-
temperate to temperate climate with dry winters or no dry season
that is consistent with the fossil pollen-based reconstructions.
Following the MCO, fossil plant reconstructions show a cooling
to a cold climate with a dry and warm summer (Dsb), indicating
a hydrological shift in response to either global cooling, regional
uplift, or a combination of the 2. In southeastern North America,
the fungal-based reconstructions are hampered by poor preser-
vation but still produce results consistent with paleobotany. At
Alum Bluff, the reconstruction ranges from seasonal tropical/
subtropical (Aw/Cwa) to aseasonal tropical (Af) leading up to
and during the MCO, and Af/Cfa/Cwa/Cfb for the Bouie River
site following the MCO. The numerical paleobotanic reconstruc-
tions show a 6 °C MAT cooling in Idaho (42°N to 46°N) and
1 °C cooling in the southeast (30°N to 31°N) from the MMCT.
Opverall, these fungal-based results are consistent with paleobo-
tanical reconstructions and show a wetter middle Miocene in
North America. This provides further geological evidence that
contradicts the “wet gets wetter, dry gets drier” paradigm of
elevated global temperatures.
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Materials and Methods

Sample collection and palynological processing
Samples were collected from freshly excavated vertical trenches.
At Clarkia and Alum Bluff, individual samples were obtained
in 2.5-cm-diameter 15-cm-long sterile polyvinyl chloride tubes
pounded into the exposure; in cases where this was not feasible,
a stainless-steel grain scoop of similar depth was used to obtain
samples. At the Bouie River site, rising water levels dictated
collection of pillar samples from a step trench. The pillar sam-
ples were subsampled for study upon return to the laboratory.
All samples were dried in a 50 °C oven and crushed to —1 mm
prior to processing. Processing followed hydrofluoric acid
(HF)-free protocols outlined by O’Keefe and Eble [30] and
Pound et al. [31], except for select samples from Alum Bluff,
which were treated with multiple rounds of microwave-assisted
HF digestion following HCI treatment to remove carbonates.

Fungal palynology

Microscopy and image collection followed the methods of
Romero et al. [6]. Images were sorted into OneNote files based
on palynomorph morphology, and taxonomic identifications
were completed using the morphometric methods of Pound et al.
[4] as well as comparisons with materials from The Fungarium
at Royal Botanic Gardens Kew (Supplementary Materials, SI2).
Unidentified specimens were assigned the prefix OPaL (the paleo-
ecology laboratory at Morehead State University) and a number,
following the recommendations of O’Keefe et al. [32] and Miola
[33] to avoid increasing taxonomic instability caused by giving a
likely extant organism a fossil name. Occurrence data were tabu-
lated; counts were not performed following the recommendations
of Perrotti et al. [34] and Nuilez Otaiio et al. [25]. Fungal traits
and geographic distributions were determined following the
methods of Pound et al. [4] in April 2023 (Supplementary
Materials, SI3). Fungal Guild assignments were made via r-script
query of FUNGuild [35] in March of 2024; for those taxa not
listed in FUNGuild, the primary literature was consulted to derive
guild assignments (Supplementary Materials, SI4). Qualitative
paleoclimate reconstructions of Koppen-Geiger climate systems
were reconstructed using the methods of Pound et al. [4]; the
qualitative analysis was chosen because the present-day distribu-
tions of fungi are not as well documented as plants.

Plant-based paleoclimate reconstructions

The probabilistic paleoclimate reconstruction model Climate
Reconstruction Software (crestr) was used to define Koppen-
Geiger classifications from the fossil plant assemblages of all
sites (Fig. 1) [36,37]. Crestr was run in R Studio 2023.03.04+-386
(Posit team 2023) following the recommended parameteriza-
tion of Chevalier [37], and the resulting optima were used to
define Koppen-Geiger classifications following Belda et al. [38]
and Beck et al. [36]. Full results with 0.5 and 0.95 uncertainties,
comparison with previously published paleoclimate recon-
structions, supporting references, and links to the crestr script
are available in the Supplementary Materials (SI5 and SI6).
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