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Hydrologic reconstructions from North America are largely unknown for the Middle Miocene. Examination 
of fungal palynomorph assemblages coupled with traditional plant-based palynology permits delineation of 
local, as opposed to regional, climate signals and provides a baseline for study of ancient fungas. Here, the 
Fungi in a Warmer World project presents paleoecology and paleoclimatology of 351 fungal morphotypes 
from 3 sites in the United States: the Clarkia Konservat-Lagerstätte site (Idaho), the Alum Bluff site (Florida), 
and the Bouie River site (Mississippi). Of these, 83 fungi are identified as extant taxa and 41 are newly 
reported from the Miocene. Combining new plant-based paleoclimatic reconstructions with funga-based 
paleoclimate reconstructions, we demonstrate cooling and hydrologic changes from the Miocene climate 
optimum to the Serravallian. In the southeastern United States, this is comparable to that reconstructed 
with pollen and paleobotany alone. In the northwestern United States, cooling is greater than indicated by 
other reconstructions and hydrology shifts seasonally, from no dry season to a dry summer season. Our 
results demonstrate the utility of fossil fungi as paleoecologic and paleoclimatic proxies and that warmer 
than modern geological time intervals do not match the “wet gets wetter, dry gets drier” paradigm. Instead, 
both plants and fungi show an invigorated hydrological cycle across mid-latitude North America.

Introduction

The Miocene climate optimum [MCO; 16.9 to 14.7 million years 
ago (MA)], a period of warmer-than-present climates globally, 

provides a proxy for likely future warming [1]. While global tem-
peratures of the MCO are well established [1,2], the hydrological 
cycle is still poorly understood. In North America, recent fossil 
plant-based reconstructions suggested that rainfall patterns were 
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more seasonal than modern [3]. Here, we use a recently devel-
oped fossil fungi paleoclimate proxy to reconstruct Köppen-
Geiger climate classifications [4] and use it to qualitatively test 
this “more seasonal than modern” hypothesis.

Both extant fungal biogeography and previous works exam-
ining fossil fungal assemblages have shown that they are sensi-
tive to ambient climate [4–6].

Using fungal remains preserved during and following the 
MCO across a latitudinal gradient to reconstruct climate pro-
vides a fossil plant-independent perspective on past hydrologi-
cal conditions.

Alum Bluff (Florida) and the Bouie River (Mississippi) site, 
located in the southeastern part of the United States, provide a 
record from 16 to 11.6 MA [3], encompassing part of the MCO 
(Alum Bluff), and the interval of time after the global cooling of 
the Middle Miocene climatic transition (MMCT) at Bouie River 
(Fig. 1; Supplementary Materials, SI1). The Clarkia Konservat-
Lagerstätte (northern Idaho), located in the northwestern part of 
the country, provides a well-constrained record from the MCO 
(Fig. 1; Supplementary Materials, SI1). Trapper Creek (southern 
Idaho) provides a paleobotanical record of Serravallian climate 
for the northwest but was not part of the fungal study (Fig. 1). 
Existing paleobotanical and palynological records for these sites 
[7–12] suggest that a mosaic of plant communities inhabited the 
temperate to tropical Alum Bluff, subtropical to temperate Bouie 
River, warm-temperate Clarkia sites, and cool-conifer forests of 
Trapper Creek [13]. These 4 sites create a latitudinal and temporal 
perspective on North American paleoclimates during this warmer-
than-present world.

Fossil fungal remains have been previously documented from 
all sites and have been the subject of minor studies at both Alum 
Bluff and Clarkia. Jarzen et al. [7] identified fungi present at 
Alum Bluff using fossil names, which have little correlation with 
modern taxonomic names and thus could not, as such, contrib-
ute ecological or climatological information about the fungi pres-
ent. Most fungal taxa described from Clarkia to date utilize 
modern names; however, the focus has been primarily on epi-
phyllous fungi, which are not frequently encountered in palyno-
logical preparations from this site [8,14–16]. This is the first study 
to systematically extract, identify, and interpret fossil fungi pre-
served in sediments from Clarkia, Alum Bluff, and the Bouie 
River site (Fig. 1) in the full context of their modern counterparts. 
Where possible, fossil taxa were identified using modern names, 
which facilitates their use for paleoclimate reconstructions. These 

fungal-based reconstructions were then compared to new quan-
titative paleobotanical reconstructions to better elucidate both 
local and regional climate signals at each locality.

Results
A total of 351 fungal morphotypes were obtained from the 3 
sites (Supplementary Materials, SI2). Eighty-three of the mor-
photypes have been identified as modern taxa. Of these, 41 
genera have not previously been noted in the Miocene: cf. 
Acarocybiopsis, Bispora, Bombardioidea, Brachydesmiella, cf. 
Desertella, Dictyocheirospora, Didymosphaeria, cf. Helensiella, 
Hughesinia, Massaria, Melanographium, cf. Neoroussoella, 
Pendulispora, cf. Polytretophora, and Seychellomyces are unique 
to the Clarkia Lagerstätte; cf. Alysidium, Atrotorquata aff. lineata, 
cf. Cladosporium, Gliomastix aff. fusigera, cf. Kionocephala, 
Puccinia-type, Sporidesmium, Thecaphora, and cf. Trimmatostroma 
are unique to Alum Bluff; cf. Bahugada, Caryospora, Heteroconium, 
cf. Melanospora, Septonema, Spegazzinia β-type, and cf. 
Termitariopsis are unique to the Bouie River site; Brachysporium, 
cf. Endophragmiopsis, Melanocephala, cf. Naviculispora, and 
Trichocladium occur in both the Bouie River site and the Clarkia 
Konservat-Lagerstätte; Hermatomyces, Minutisphaera, and 
Sphaerodes occur in both Alum Bluff and the Clarkia Konservat-
Lagerstätte; and Chaetomium and Spadicoides occur in all 3 sites. 
Samples from Clarkia (Fig. 2) generally contained the most 
diverse fungal assemblages, with up to 37 morphotypes present 
in any sample. The lowest fungal diversity occurred near the bases 
of ash deposits, especially in ash RA-3. Samples from Alum Bluff 
(Fig. 3) generally contained low-diversity fungal assemblages, 
with an average of 4 taxa in the lower portion of the measured 
section and 2 taxa in the upper portion of the measured section. 
The Jarzen et al. [7] samples, thought to be from just above the 
measured section, had somewhat higher diversity than those 
from the lower portion of the measured section. Samples from 
the Bouie River site (Fig. 4) exhibited similar low diversity.

Paleoecology
Most taxa recovered from the Clarkia Konservat-Lagerstätte are 
wood saprophytes (Supplementary Materials, SI2 and SI3). All 
trophic modes are represented except keratinophytic, animal para-
sitic, and nematophagous. Fungi recovered are largely indicative 
of freshwater terrestrial environments that are variably submerged 
or subaerial. Examination of fungal guild structure is limited by 2 

Fig. 1. Fungal study site ages and location. (A) Age of the 3 study sites plotted in relation to the δ18O “mega-splice” [2]. (B) Location of the 3 study sites within the United 
States. Blue shaded zone indicates Middle Miocene Climate Transition (MMCT), while pink shaded zone indicates Miocene Climate Optimum (MCO).
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factors: (a) nonrecovery of very fragile and hyaline fungal spores 
and (b) the large number of taxa that could not be confidently 
assigned to a modern analog within each sample. To largely cir-
cumvent these challenges, only those samples that contained 

greater than 10 identified fungi were included in the analysis for 
Clarkia and subsequent settings. In this limited subset, 3 variations 
in guild structure were noted: (a) saprotroph dominated with near-
equal numbers of dark septate endophytes (DSEs) and unknowns, 

Fig. 2. Fungal palynomorphs recovered from the Clarkia Konservat-lLagerstätte. (A) cf. Bombardioidea. (B) cf. Sordariales. (C) cf. Brachydesmiella. (D) cf. Melanographium. 
(E) Sphaerodes. (F) cf. Cercophora. (G) cf. Polytretophora. (H) Hughesinia. (I) cf. Acrogenospora. (J) cf. Apiosporaceae. (K) Xylariaceae. (L) cf. Rosellinia. (M) Chaetomium. 
(N) Acarocybiopsis. (O) Endophragmia. (P) Bispora. (Q) cf. Didymosphaeria. (R) Neoroussoella. (S) cf. Lemkea. (T) cf. Catenularia. (U) Endophragmiella. (V) Desertella. (W) 
Bactrodesmium. (X) Spadicoides sp. 1. (Y) Spadicoides sp. 2. (Z) Podospora. (AA) Minutisphaera. (BB) Pendulispora. (CC) Phragmocephala. (DD) Diporotheca aff. rhizophila. 
(EE) Melanocephala. (FF) Seychellomyces. (GG) Trichocladium. (HH) Brachysporiella. (II) Bactrodesmium aff. abruptum. (JJ) Endophragmiopsis. (KK) Naviculispora. (LL) 
Dictyocheirospora. (MM) Helensiella. (NN) cf. Helicoon. (OO) cf. Hermatomyces. Scale bar, 10 μm.
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and a greater number of pathogenic fungi (Supplementary 
Materials, SI4); (b) saprotroph-unknown co-dominated; and (c) 
saprotroph-unknown co-dominated with DSEs and pathogenic 
fungi present. Wood saprophytes are also common in sediments 
from Alum Bluff (Supplementary Materials, SI2 and SI3), and 
keratinophytic, hyperparasitic, and nematophagous modes are 
absent. Fungi recovered are generally indicative of freshwater con-
ditions, although marine and/or brackish water elements are pres-
ent at various points in the column (e.g., samples 43592, 1499, 
1495, 1486, and 1482). Fungal guild structure reconstructions are 
not possible for Alum Bluff due to low taxonomic diversity in 
individual samples. The Bouie River site is especially challenging 
to characterize as very few samples contain many identifiable fungi 
(Supplementary Materials, SI2 and SI3). That said, the only trophic 
mode not present in the fungas from the Bouie River site is nema-
tophagous. Marine/Brackish water elements are more likely in the 
lower third of the section than elsewhere. Only one sample (1516) 
could be analyzed for guild structure. The funga present in this 
sample is remarkably similar to the third type noted above for 
Clarkia (Supplementary Materials, SI4).

Paleoclimatology
Köppen-Geiger classes
Köppen-Geiger class reconstructions using fungi are noisy 
where primarily cosmopolitan taxa are present [4]. This is the 
case for large parts of the reconstructions from the Clarkia 
Konservat-Lagerstätte, the Alum Bluff site, and the Bouie River 
site (Supplementary Materials, SI4).

In the Clarkia Konservat-Lagerstätte (Fig. 5), the fungal-
indicated Köppen-Geiger class at the time of lake initiation at 
P-33 (sample 1501) is temperate with no dry season and warm 

summers (Cfb). While noisy, the next 3 m records a transition 
to temperate with dry winters and hot summers (Cwa). A brief 
return to Cfb conditions is seen 2 m above this before reverting 
to Cwa. At 11 m, a temperate with no dry season and hot sum-
mers (Cfa) climate is indicated, largely due to the presence of 
Brachyporiella aff. setosa, before a return to Cwa conditions. The 
entirety of site P-37, where single Köppen-Geiger classes could 
be reconstructed, was likely deposited under Cwa conditions.

In stratigraphically ordered samples from the Alum Bluff site 
(Fig. 5), no single Köppen-Geiger class can be clearly recon-
structed from the fungi. The most constrained reconstruct tropi-
cal rainforest, monsoonal, or savannah with dry winters (Af, 
Am, Aw) or Aw to temperate with dry winter and hot summer 
(Cwa) conditions. The lowermost 5 productive samples may 
record a transition from primarily tropical to primarily warm 
temperate conditions. While the remaining samples in the strati-
graphic section are noisy, they consistently reconstruct Am and 
Aw climates, suggesting a return to tropical conditions. In the 
Jarzen et al. [7] samples, treated as being from similar horizons 
above the measured section, reconstructions range from Af or 
Am to mixed Aw and Cfb to Cfa or Cwa conditions.

At the Bouie River site (Fig. 5), the fungal-indicated Köppen-
Geiger classes range from Cfb (1506, 1508) to Cwa (1512, 1514, 
1516), mixed Cwa and Cfb at 1.3 m (1526), and mixed Af and 
Cfa at 2.2 m (1542), suggesting that subtropical wet conditions 
predominated.

Paleobotany-based reconstructions using crestr
Our new plant-based paleoclimate-defined Köppen-Geiger clas-
sifications show that Bouie River and Alum Bluff supported a flora 
in a Cfa (temperate, no dry season, hot summer) class, whereas 

Fig. 3. Fungal palynomorphs recovered from Alum Bluff. (A) Glomeromycota. (B) Acrogenospora. (C) Apiosporaceae. (D) Rosellinia. (E) Elegantimyces. (F) Atrotorquata aff. 
lineata. (G) Sporidesmium. (H) Savoryella aff. lignicola. (I) Minutisphaera. (J) Sphaerodes. (K) cf. Kionocephala. (L) Cercophora. (M) Spadicoides. (N) Xylariales. (O) Thecaphora. 
(P) cf. Hermatomyces. (Q) Canalisporium. Scale bar, 10 μm.
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Clarkia and Trapper Creek were reconstructed as Cfb (temperate, 
no dry season, hot summer) and Dsb (cold, dry summer, warm 
summer) classes, respectively (Fig. 6; Supplementary Materials, 
SI5). These reconstructions show a clear climatic cooling and 

increase in seasonality between the 42°N to 47°N MCO Clarkia 
and post-MMCT Trapper Creek. This cooling was on the order 
of 3.65 °C for mean annual temperature (MAT) and summer tem-
perature and 2.25 °C in winter (Supplementary Materials, SI5). 

Fig. 4. Fungal palynomorphs recovered from the Bouie River site. (A) cf. Catenularia. (B) Zopfiella aff. neogenica. (C) cf. Cercophora. (D) Spegazzinia β-type. (E) cf. Bahugada. 
(F) Sphaerodes. (G) Sordariales. (H) Chaetomium. (I) cf. Naviculispora. (J) Apiosporaceae. (K) Xylariales. (L) cf. Asterina. (M) cf. Delitschia. (N) cf. Berkleasmium. (O) cf. 
Rosellinia. (P) cf. Caryospora. (Q) cf. Endophragmiella. (R) cf. Diporotheca. (S) cf. Acrogenospora. (T) cf. Heteroconium. (U) cf. Melanocephala. (V) Termitariopsis. (W) cf. 
Bactrodesmium. (X) cf. Dictyosporium. (Y) Potamomyces. Scale bar, 10 μm.
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Fig. 5. Funga-based Köppen-Geiger climate class reconstructions for (A) Clarkia, (B) Bouie River, and (C) Alum Bluff.
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Although the Köppen-Geiger class of Alum Bluff and Bouie River 
are the same, a 1.15 °C drop in MAT and a 2.35 °C decrease in 
winter temperature are reconstructed (Supplementary Materials, 
SI5). All new reconstructions are comparable to previously pub-
lished estimates (Supplementary Materials, SI6).

Discussion
The MCO has been considered an analog for future climate 
change [1]. Here, we compare our new results to predictions for 
end-21st century Köppen-Geiger climate class distribution. In 
North America, the distribution of Köppen-Geiger classes largely 
follows the “dry gets drier, wet gets wetter” paradigm that assumes 
that higher temperatures will exaggerate contemporary hydrologi-
cal conditions, which has been shown to be an invalid assumption 
for over 70% of land areas [17]. For the warmer-than-present 
MCO, our results show wetter conditions, with fossil fungi show-
ing a summer-wet hydrological regime (Fig. 6). A summer-wet 
regime characterizes many present-day monsoon regions, includ-
ing the North American Monsoon [18]. Presently, the North 
American Monsoon only delivers infrequent heavy rainfall events 
to the southern United States during summer and is projected to 
change by ±5% with contemporary CO2 increase [18,19]. This is 
supported by middle Miocene climate modeling that showed a 
weaker North American Monsoon [20]. Atmospheric rivers are 
projected to increase winter rainfall across western North America 
with future climate change [21]. This may be a causal mechanism 
for the winter-wet climate reconstructed for Trapper Creek during 
the Serravallian, but not the aseasonal (plant-based) or summer-
wet (fungal-based) climate reconstructed for MCO Clarkia (Fig. 

6). Increased mean annual precipitation is a consistent feature of 
the MioMIP1 multi-model ensemble in western North America 
and increases in geographic area with increasing atmospheric 
CO2; however, it is currently unknown how this responds season-
ally [20]. Additionally, uplift of the Cascade Range and portions 
of the Rocky Mountains in the middle to late Miocene has fun-
damentally changed the hydrologic regime in what is now north-
central Idaho [22], and mid-Miocene climate reconstructions are 
unlikely to fully reflect the impact of future warming scenarios 
for this region. Our reconstructed post-MCO cooling in the 
northwest is greater than that reported in Greenwood et al. [23]. 
Taggart and Cross [13] proposed Trapper Creek as a cold conifer 
forest, which is supported by our Köppen-Geiger reconstruction. 
In southeast North America, the plant-based paleoclimate recon-
struction shows the presence of the same Köppen-Geiger classi-
fication as today (Fig. 6), and that which is predicted to be present 
to the end of the 21st century and is consistent with other palaeo-
botanical reconstructions for these sites [3]. The fungal-based 
reconstructions are more uncertain due to poorer preservation, 
but also point to a warmer and potentially wetter climate during 
the middle Miocene. This is supported by climate model studies, 
although this is also a region with high model disagreement for 
the hydrologic response [20].

Reconstructions based on fungi and plants, while in this 
case complementary, are fundamentally completed at different 
scales and focused on different aspects of the system. Macro-
paleobotany-based reconstructions are, by nature of the defined 
assemblages, time-averaged, as they represent accumulation 
across much broader stratigraphic intervals than microfossil-
based reconstructions [24]. Plant palynology data, with few 

Fig. 6. Comparison of (A) fossil plant and fossil funga-based Köppen-Geiger climate class reconstructions with (B) present-day distributions of Köppen-Geiger climate classes 
and (C) Köppen-Geiger climate class distributions predicted for 2071–2100 in the contiguous United States ([36]; Supplementary Materials, SI5).
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exceptions, reconstructs a regional signal [24] due to admixture 
of long-transport and local pollen sources. Fungal palynology, 
due to the relatively small dispersal distance of most fungi (mil-
limeters to meters), provides a highly local signal in endorheic 
lakes and peat-producing settings [25,26]. While transport dis-
tances can be greater in alluvial-fluvial settings, the signal 
remains more localized than that of anemophilous pollen. 
Additionally, the taphonomy of fungi differs from that of both 
leaves and plant pollen and spores due to the chemistry of the 
setting and the chemistry of the fungal palynomorphs. Melanized 
fungal remains are more resistant to degradation by both bac-
teria and other fungi [27,28], and are thus more likely to be 
preserved in the fossil record. Darkening of weakly melanized 
fungal spores is known to occur through a variety of mecha-
nisms [27] and to vary with thermal maturity [29]. All samples 
examined in this study are thermally immature; therefore, that 
factor can be discounted. Beyond mere preservation, the nature 
of fungal palynomorphs as a biological entity is very different 
from plant palynomorphs. Plant palynomorphs that fall on the 
ground are reproductively sterile—they will not progress further 
along their life cycles and are largely preserved as whole organs. 
Fungal palynomorphs, however, represent fungal necromass—
for whatever reason, conditions were inhospitable for continu-
ance of the fungal life cycle [25]. We, therefore, expect to see 
more limited and highly localized assemblages in the fossil 
record. Thus, we are comparing a taphonomically distinct local 
signal to a regional and/or time-averaged signal when compar-
ing fungi-based to plant-based reconstructions.

Conclusions
Three hundred fifty-one fungal morphotypes were recorded 
from Miocene sections in North America, 83 of which were 
identified as extant forms, and 41 of which were not previ-
ously known from the Miocene. While recovery varied from 
very good (Clarkia) to sparse (Alum Bluff), the recovered 
fungas permitted interpretation of both paleoecology and 
paleoclimate.

Fungas recovered from Miocene-aged sediments from Clarkia, 
Idaho, Alum Bluff, Florida, and the Bouie River site, Mississippi, 
complement plant-based paleoclimate reconstructions. At 
Clarkia, the MCO fungal-reconstructed Köppen-Geiger classes 
fluctuate from a dominant Cwa to Cfa and Cfb, showing a warm-
temperate to temperate climate with dry winters or no dry season 
that is consistent with the fossil pollen-based reconstructions. 
Following the MCO, fossil plant reconstructions show a cooling 
to a cold climate with a dry and warm summer (Dsb), indicating 
a hydrological shift in response to either global cooling, regional 
uplift, or a combination of the 2. In southeastern North America, 
the fungal-based reconstructions are hampered by poor preser-
vation but still produce results consistent with paleobotany. At 
Alum Bluff, the reconstruction ranges from seasonal tropical/
subtropical (Aw/Cwa) to aseasonal tropical (Af) leading up to 
and during the MCO, and Af/Cfa/Cwa/Cfb for the Bouie River 
site following the MCO. The numerical paleobotanic reconstruc-
tions show a 6 °C MAT cooling in Idaho (42°N to 46°N) and 
1 °C cooling in the southeast (30°N to 31°N) from the MMCT. 
Overall, these fungal-based results are consistent with paleobo-
tanical reconstructions and show a wetter middle Miocene in 
North America. This provides further geological evidence that 
contradicts the “wet gets wetter, dry gets drier” paradigm of 
elevated global temperatures.

Materials and Methods

Sample collection and palynological processing
Samples were collected from freshly excavated vertical trenches. 
At Clarkia and Alum Bluff, individual samples were obtained 
in 2.5-cm-diameter 15-cm-long sterile polyvinyl chloride tubes 
pounded into the exposure; in cases where this was not feasible, 
a stainless-steel grain scoop of similar depth was used to obtain 
samples. At the Bouie River site, rising water levels dictated 
collection of pillar samples from a step trench. The pillar sam-
ples were subsampled for study upon return to the laboratory. 
All samples were dried in a 50 °C oven and crushed to −1 mm 
prior to processing. Processing followed hydrofluoric acid 
(HF)-free protocols outlined by O’Keefe and Eble [30] and 
Pound et al. [31], except for select samples from Alum Bluff, 
which were treated with multiple rounds of microwave-assisted 
HF digestion following HCl treatment to remove carbonates.

Fungal palynology
Microscopy and image collection followed the methods of 
Romero et al. [6]. Images were sorted into OneNote files based 
on palynomorph morphology, and taxonomic identifications 
were completed using the morphometric methods of Pound et al. 
[4] as well as comparisons with materials from The Fungarium 
at Royal Botanic Gardens Kew (Supplementary Materials, SI2). 
Unidentified specimens were assigned the prefix OPaL (the paleo-
ecology laboratory at Morehead State University) and a number, 
following the recommendations of O’Keefe et al. [32] and Miola 
[33] to avoid increasing taxonomic instability caused by giving a 
likely extant organism a fossil name. Occurrence data were tabu-
lated; counts were not performed following the recommendations 
of Perrotti et al. [34] and Nuñez Otaño et al. [25]. Fungal traits 
and geographic distributions were determined following the 
methods of Pound et al. [4] in April 2023 (Supplementary 
Materials, SI3). Fungal Guild assignments were made via r-script 
query of FUNGuild [35] in March of 2024; for those taxa not 
listed in FUNGuild, the primary literature was consulted to derive 
guild assignments (Supplementary Materials, SI4). Qualitative 
paleoclimate reconstructions of Köppen-Geiger climate systems 
were reconstructed using the methods of Pound et al. [4]; the 
qualitative analysis was chosen because the present-day distribu-
tions of fungi are not as well documented as plants.

Plant-based paleoclimate reconstructions
The probabilistic paleoclimate reconstruction model Climate 
Reconstruction Software (crestr) was used to define Köppen-
Geiger classifications from the fossil plant assemblages of all 
sites (Fig. 1) [36,37]. Crestr was run in R Studio 2023.03.0+386 
(Posit team 2023) following the recommended parameteriza-
tion of Chevalier [37], and the resulting optima were used to 
define Köppen-Geiger classifications following Belda et al. [38] 
and Beck et al. [36]. Full results with 0.5 and 0.95 uncertainties, 
comparison with previously published paleoclimate recon-
structions, supporting references, and links to the crestr script 
are available in the Supplementary Materials (SI5 and SI6).
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