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Abstract Tropical forest diversity governs forest structures, compositions, and influences the ecosystem
response to environmental changes. Better representation of forest diversity in ecosystem demography (ED)
models within Earth system models is thus necessary to accurately capture and predict how tropical forests
affect Earth system dynamics subject to climate changes. However, achieving forest coexistence in ED models
is challenging due to their computational expense and limited understanding of the mechanisms governing
forest functional diversity. This study applies the advanced Multi-Objective Population-based Parallel Local
Surrogate-assisted search (MOPLS) optimization algorithm to simultaneously calibrate ecosystem fluxes and
coexistence of two physiologically distinct tropical forest species in a size- and age-structured ED model with
realistic representation of wood harvest. MOPLS exhibits satisfactory model performance, capturing
hydrological and biogeochemical dynamics observed in Barro Colorado Island, Panama, and robustly achieving
coexistence for the two representative forest species. This demonstrates its effectiveness in calibrating tropical
forest coexistence. The optimal solution is applied to investigate the recovery trajectories of forest biomass after
various intensities of clear-cut deforestation. We find that a 20% selective logging can take approximately
40 years for aboveground biomass to return to the initial level. This is due to the slow recovery rate of late
successional trees, which only increases by 4% over the 40-year period. This study lays the foundation to
calibrate coexistence in ED models. MOPLS can be an effective tool to help better represent tropical forest
diversity in Earth system models and inform forest management practices.

Plain Language Summary Tropical forests have extremely high levels of tree species diversity,
which are estimated to harbor about 50% of the world's terrestrial plant species. Representing tropical forest
diversity in Earth system models (ESMs) is important to accurately capture and predict the interactions
between tropical forests and environmental changes. But simulating coexistence in ESMs is challenging, as
only a limited number of models can simulate forest functional coexistence. In addition, only a few algorithms
have been developed to calibrate ecosystem fluxes and tree coexistence concurrently. This study applies an
advanced multi-objective optimization algorithm to calibrate (a) carbon, water, and energy cycle-related
variables and (b) coexistence of two typical tropical forests (i.e., early and late successional forests). Our
multi-objective optimization algorithm can satisfactorily capture the dynamics in tropical forest ecosystems
and effectively lead many more model runs to successful and stable coexistence than random sampling. The
improved parameterization is further applied to investigate the recovery of forest biomass following various
intensities of clear-cut deforestation scenarios. Our results have important implications for capturing tropical
forest diversity as well as their responses to environmental changes and human interventions such as wood
harvest.

1. Introduction

Although they only encompass less than 7% of the world's land area, tropical forests have the highest diversity of
tree species (Baccini et al., 2017; Wohl et al., 2012). About 50% of the world's plant species are estimated to exist
in tropical forests. For example, there are more than 15,000 plant species in Malaysian Borneo's tropical forests.
In some tropical areas, more tree species are found in a single 50 ha plot than that in the entire North America or
Europe (Burslam et al., 2001).
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The high tree species richness contributes to the complexity of the forest structure and diversity of functional
composition, influencing the responses and feedbacks of tropical forests to climate and anthropogenic changes
(Fisher et al., 2010; Lichstein et al., 2007). Given the important role of Earth system models (ESMs) in projecting
the impact of tropical forests on Earth system dynamics, inadequate representation of tropical forests in ESMs can
lead to systematic biases in these projections. The projections that may be affected include forest carbon and water
budgets, as well as the Earth's climate, especially under a changing environment. For example, the misrepre-
sentation of tree species composition can cause a deviation of modeled vegetation biomass from ground mea-
surements by up to two times in an Amazonia tropical forest (Delbart et al., 2010).

The size- and age-structured ecosystem demographic (ED) models (Fisher & Koven, 2020; Fisher et al., 2015,
2018; Ma et al., 2022; Medvigy et al., 2009; Moorcroft et al., 2001), by explicitly simulating many essential
vegetation processes (e.g., competition, succession, natural and anthropogenic disturbances) (Chesson, 2000;
Freckleton & Watkinson, 2002; Huang et al., 2020), have been recently developed to better represent tropical
forest complexity. However, achieving stable forest coexistence in ED models remains an ongoing research
challenge due to their computational expense, amplified gap-phase dynamics, potential over-exaggeration of
reproduction feedback, rapid shifts in competition outcomes, and insufficient calibration of hydrological pa-
rameters (Cheng et al., 2022; Detto et al., 2022; Fisher & Koven, 2020; Fisher et al., 2010; Koven et al., 2019).

In addition, tropical forests have undergone substantial deforestation and degradation (Anderson-Teixeira
et al., 2015; Baccini et al., 2012; Longo & Keller, 2019) in the past three decades. Selective logging (i.e., cutting
and removal of merchantable timber) of tropical forests contributes to approximately one-eighth of global timber
(Huang et al., 2020). It is a major driver of forest loss and degradation in Southeast Asia (Jamhuri et al., 2018) and
the Amazon (Tyukavina et al., 2017). The changes due to selective logging can convert tropical forests from a net
carbon sink to a net carbon source (Gatti et al., 2021). Therefore, it is important to understand how selective
logging operations could affect forest structure and composition, as well as how tropical forests would respond
and recover under these anthropogenic disturbances. This has important implications for the conservation and
management of forest ecosystems (Asner et al., 2005; Bonan, 2008; Erb et al., 2018; Huang et al., 2020).

In this study, we explore the coexistence of two physiologically distinct tropical forest species—early and late
successional tropical forests—in an advanced ED-type model called ELM-FATES, which is the Functionally
Assembled Terrestrial Ecosystem Simulator (FATES) implemented in the Energy Exascale Earth System Model
(E3SM) Land Model (ELM) (Fisher et al., 2015; Huang et al., 2020; Koven et al., 2019; Leung et al., 2020). The
calibration is carried out by using an advanced multi-objective optimization algorithm called Multi-Objective
Population-based Parallel Local Surrogate-assisted search (MOPLS). A previous study of calibrating early and
late successional plant function types (PFTs) in ELM-FATES used a single-objective parallel global optimization
scheme (Cheng et al., 2023). However, the cases where early and late successional PFTs coexist were manually
selected from all the evaluation experiments since coexistence was not guaranteed when employing the single-
objective global optimization scheme. In contrast, our study utilizes the multi-objective optimization scheme
MOPLS to simultaneously calibrate the features and coexistence of early and late successional PFTs. Notably,
coexistence calibration is one of the objective functions in our approach, resulting in more robust outcomes with
coexisting cases. Furthermore, the flexibility of this multi-objective scheme enables the calibration of coexistence
for multiple PFTs, a task that is notably more challenging when using the single-objective global optimization
scheme in Cheng et al. (2023). Moreover, this study further addresses the recovery trajectory of aboveground
biomass following various intensities of clear-cut deforestation by using an advanced selective logging module
within ELM-FATES. These investigations provide valuable insights for forest management practices.

We compare the modeling results against field measurements collected in Barro Colorado Island (BCI), Panama.
We find that the MOPLS optimization algorithm exhibits satisfactory performance in calibrating variables, both
included and not included in the objective function. The MOPLS scheme is robust in achieving coexistence using
different objective functions. Therefore, it is easy to use MOPLS to identify objective functions to calibrate forest
coexistence. MOPLS is much more effective than random sampling in searching for coexistence (Cheng
et al., 2022). We further analyze the recovery process of tropical forest aboveground biomass under different
intensities of clear-cut deforestation. We find that with a 20% clear-cutting, the aboveground biomass can take
almost 40 years to return to the initial level. Our improved simulation of tropical forest coexistence contributes to
a better understanding and prediction of how future forest carbon stocks will vary under anthropogenic
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disturbances. These applications are important for understanding the processes of maintaining tree species di-
versity (Bonell & Bruijnzeel, 2005).

2. Methods and Data
2.1. Study Area and Field Data for Calibration

Field measurements collected at BCI, Panama, a primary tropical forest site, are used as calibration data in this
study. These ecohydrological measurements include tree size distribution (f,,.,) (Condit et al., 2017), gross
primary production (GPP), sensible heat (SH), latent heat (LE) (Detto & Pacala, 2022), soil water content in the
top 15 cm (SWC), and runoff (Q) (Cheng et al., 2018). Meteorological data spanning 2003 to 2016, including
precipitation, wind speed, air temperature, relative humidity, surface pressure, and solar radiation, is recycled to
spin-up each optimization evaluation. Mean annual values for these climate variables are 2350 mm, 1.5 m/s,
299 K, 88.5%, 100 kPa, and 180 W/m?, respectively. BCI has distinguished dry (mid-December to mid-April) and
wet (late-April to early December) seasons (Cheng et al., 2019; Ogden et al., 2013), with mean seasonal pre-
cipitation values of 200 and 2150 mm, respectively.

2.2. Description of ELM-FATES With Selective Logging Module

The Energy Exascale Earth System Model (E3SM) land model (ELM) is the land component of E3SM (Leung
etal., 2020). ELM comprises modules that simulate biogeophysical, biogeochemical, and hydrological processes,
enabling it to simultaneously simulate the dynamics of terrestrial energy, water, and carbon cycles. The Func-
tionally Assembled Terrestrial Ecosystem Simulator (FATES) is a state-of-the-art ED model that uses size- and
age-structures and successional trajectory-based patches to group plants and simulate live vegetation processes
(Fisher et al., 2015; Koven et al., 2019). This is based on the ED theory derived from Moorcroft et al. (2001) and
incorporates the perfect plasticity approximation proposed by Purves et al. (2008).

Selective logging of tropical forests significantly contributes to forest loss and degradation, yet its realistic
representation in ESMs was mostly absent (Huang et al., 2020). In order to address this limitation, an advanced
selective logging module has been implemented into ELM-FATES (Huang et al., 2020) to represent realistic
wood harvest in field operations at a landscape level. This includes specifying the timing and extent of a logging
event and simulating realistic mortality types associated with logging, such as direct-felling, collateral, and
mechanical damages. Specifically, the selective logging module in ELM-FATES parameterizes three types of
mortality associated with logging in each logging event: direct-felling mortality, collateral mortality, and me-
chanical mortality. The direct-felling mortality represents the fraction of trees that are greater than or equal to a
diameter threshold and are selected for timbers. The collateral mortality represents the fraction of forests affected
by the felling of adjacent harvested trees. The mechanical mortality denotes the fraction of forests killed by field
infrastructure (e.g., log decks, skids, and trails) used for conducting wood harvest activities and for storing and
transporting timbers offsite. Loggers typically cut relatively small trees and avoid relatively large trees for
economic reasons. Therefore, another diameter threshold parameter associated with the mechanical mortality is
implemented in ELM-FATES, ensuring that only a certain fraction of trees equal to or smaller than that threshold
is affected during a logging operation. Please refer to Fisher et al. (2015), Koven et al. (2019), Leung et al. (2020),
Huang et al. (2020), and FATES-Development-Team (2019) for a complete overview of ELM-FATES, including
the selective logging module.

2.3. Calibrated Parameters for Tropical Forest Coexistence

Following Cheng et al. (2022, 2023), 19 parameters related to plant traits and soil hydrological processes were
selected for calibration (Table 1), including the maximum carboxylation rate of RuBisCO at the reference
temperature (25°C; V,

c,max

), specific leaf area at the top of canopy (sla,,,), longevity for root and leaf (z), wood
density (p,,,.4)» background mortality rate (1), decay parameters in the rooting depth distribution function (@ and
P), scaling exponent of the Clapp and Hornberger soil retention curve (By,,), saturated soil water content (6,),
saturated soil matric potential in five soil layers (¥ ;_5), saturated soil hydraulic conductivity (K), maximum
fractional saturated area (f,,,,), mean topographic slope (C,), and decay factors representing the distribution of
surface runoff (f,,,,) and subsurface runoff (f,,,;,). In this study, we calibrate the coexistence of early and late
successional tropical forests (Figure 1a), based on what has been observed in BCI, Panama. This region typically
features a mixture of early and late successional tree species (Condit et al., 1995). More information on these
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Table 1

Vegetation (Early and Late Successional Tropical Forests) and Soil Hydrological Parameters Calibrated in This Study

Parameter name Symbol Unit Range Calibrated value
Maximum carboxylation rate of Rub. at 25C, canopy top Early PFT Vi, iy pmol COz/mz/s 10-106" 106.0
Late PFT Vemax, late pmol CO,/m*/s 84.8
Specific Leaf Area (SLA) at top of canopy, Early PFT  sla,,, s, m?%/g C 0.007-0.039" 0.008
ipreied DEt sk Late PFT sl o m?/g C 0.007
Longevity for root and leaf (turnover time) Early PFT Bty yr 0.1-1.5¢ 0.9
Late PFT Tyare yr 2.3
Mean density of woody tissue in plant Early PFT Py, iy g/em® 0.2-1.0¢ 0.42
Late PFT  pyo0d tare g/em’ 0.84
Background mortality rate Early PFT Aearty 1/yr 0.01-0.1° 0.019
Late PFT Alate 1/yr 0.01
Root distribution parameter 1 Early PFT Xeariy - 0.1-8.0 2.6
Late PFT e - 2.1
Root distribution parameter 2 Early PFT [ - 0.1-8.0° 35
Late PFT Brase - 2.8
Scaling exponent of the soil retention curve - B, - 1-30% 1.0
Saturated hydraulic conductivity - K, mm/’h 0.036-728" 0.36
Saturated water content (porosity) - 0, m*/m? 0.35-0.65" 0.6
Saturated soil matric potential at five soil layers Layer 1 Y., mm 50-3508" 350.0
Layer 2 ¥ mm 94.7
Layer 3 ¥ s mm 214.3
Layer 4 ¥4 mm 141.2
Layer 5 Y5 mm 254.9
Maximum fractional saturated area - Srnax - 0.01-0.98*" 0.8
Mean topographic slope - C, - 0.01-0.98" 0.3
Decay factor that represents the distribution of surface runoff with depth - Tover 1/m 0.1-5&" 4.8
Decay factor that represents the distribution of - Farain 1/m 0.5-5&" 43

subsurface runoff with depth

“Domingues et al. (2005). bWright et al. (2004). “Huang et al. (2020). dLongo et al. (2019). “Longo and Keller (2019). fZeng (2001). #Hou et al. (2012). hHuang

et al. (2013).

; Early PFT
&
! Late PFT

Figure 1. Illustration of (a) coexisted early (light green) and late (dark green) plant functional types (PFTs), and (b) a 50%
clear-cut deforestation for early and late PFTs. The white color trees in (b) indicate their removal due to clear-cut

deforestation.
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Table 2

Parameters for the Selective Logging Module of ELM-FATES, With Their Values Used in Numerical Experiments Under Various Clear-Cut Intensities

Value in the clear-cut

Parameter name Symbol in ELM-FATES Unit experiments Physical meaning
Minimum diameter at breast height fates_logging_dbhmin cm 0.0 All trees are selected for harvesting
(dbh) at which logging is applied in the clear-cut experiments.
Tree diameter, above which fates_logging_dbhmax_infra cm 35 Only trees with a diameter equal to

infrastructure from logging does or smaller than 35 cm will be

not impact damage or mortality affected by logging
infrastructure (e.g., building log
decks, skids, and trails).

Fraction of trunk product being fates_logging_export_frac % 100 All the logged trunk product will be
shipped offsite; the leftovers will shipped offsite. No leftovers on
be left onsite as decomposing the ground.
coarse woody debris

Fraction of stems killed in the fates_logging_coll_under_frac % 0.0 No understory stems are killed when
understory when logging logging happens.
generates disturbance

Fraction of stems logged directly per fates_logging_direct_frac % 10~100 The clear-cut intensity ranges from
event 10% to 100%.

Fraction of upperstory large stems fates_logging_collateral_frac % 0.0 No collateral damages in the clear-
that die from logging collateral cut experiments. All damage is
damage caused by direct felling from

logging operation.

Fraction of stems killed due to fates_logging_mechanical_frac % 0.0 No infrastructure and other

infrastructure and other
mechanical damages

mechanical damages in the
clear-cut experiments.

calibrated parameters is given in Table 1. The distinctions in parameterization between early and late PFTs
involve the utilization of decay factors following Cheng et al. (2023).

Logged forests often exhibit rapid recovery of carbon and water fluxes within 1-3 years post-logging (Huang
et al., 2020; Negron-Juarez et al., 2020). However, the recovery times for carbon stocks are usually more than
30 years after logging (Huang et al., 2020). In this study, we perform several selective logging simulations to
analyze the trajectory of aboveground biomass (AGB) for early and late PFTs after different intensities of clear-
cut deforestation. These simulations use the same climate conditions as the calibration data, with intensities
ranging from 10% to 100% (Table 2). A 50% clear-cut deforestation indicates that the number of forests is reduced
by 50% (Figure 1b).

2.4. Multi-Objective Optimization Scheme

MOPLS (Wang et al., 2023) is a surrogate-assisted algorithm designed for multi-objective optimization problems
where the objective functions are evaluated via the black-box and time-consuming simulations. The core idea
behind MOPLS is to approximate the objective functions by surrogate models. The surrogate models are
analytical functions that are computed from a limited number of simulations and updated every time a new
simulation is performed. The surrogate models are used to assist the search of optima in the objective functions,
thereby significantly reducing the computational requirements.

Compared to prior multi-objective surrogate-assisted optimization algorithms, MOPLS introduces an innovative
tabu mechanism that addresses the common challenge in real-world engineering applications of finding the global
optimum in the presence of multiple local optima (Wang et al., 2023). Specifically, to avoid getting stuck in local
optima, the tabu mechanism temporarily sets asides some high-quality parameter vectors around which the
surrogate-assisted local searches yield poor-quality results. Moreover, MOPLS can take advantage of parallel
processing to boost its efficiency. This is because each surrogate-assisted local search and its subsequent objective
evaluation are conducted independently, making it possible to assign them to separate worker processors.
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MOPLS has demonstrated better performance when compared to other recent state-of-the-art surrogate-assisted
multi-objective methods across a suite of widely used benchmark problems (Wang et al., 2023). Additionally, it
performs well in the calibration of the Soil & Water Assessment Tool (SWAT) (Wang et al., 2023). In this study,
by applying MOPLS to the parameter calibration of ELM-FATES, we aim to identify a set of optimal parameter
values with respect to multiple different objectives, which is also known as the “non-dominated set” (Wang
et al., 2023). Below, we provide a detailed explanation of the surrogate model adopted by MOPLS and the
algorithmic workflow.

2.4.1. Radial Basis Function

In MOPLS, the surrogate model employed is the Radial Basis Function (RBF) with a cubic kernel and a linear tail.
Given n distinct d-dimensional sample points X = [xy, ...,x,] € RY, and an unknown function F : R? = R, we
generate a training set V = {(X;, F(X;))}._, in which F(X;) is the evaluated function value at point X;. In a noise-
free environment, a RBF model approximates the function F in the following augmented form:

d+1

s(X) = Z/L-tﬁ(llx - Xi”z) + Z cpi(X) )]
p =

where the cubic kernel function ¢(r) = r* is conditionally positive definite, and linear tail [pl(X),...,

de(X)]T: [1,x,...x4]". ||-]l, denotes the Euclidean norm. Based on the interpolation principle, Powell (1992)

had shown that the coefficients A = [A;,...,4,]” and ¢ = [c;, ...,cz1]" in the augmented RBF model can be
uniquely determined by solving a linear system:

o] P A y

P Oynyx@+n || € 0441

where the matrix ® € R™" with [®];; = ¢(||X; — X/[,). matrix PeR™{+D with [Pl;; = p/X,), and column
vector y = [F(X,), ...F(X,)]".

Furthermore, in the iterative optimization context, the RBF surrogate model s is constantly updated to achieve
better prediction accuracy, as additional information (i.e., more evaluated points) about function F' becomes
available. Therefore, we consider the surrogate value at any unevaluated point X to be a reliable prediction of F(X)
and use it to assist the optimization of F, especially when evaluating F demands substantial computational re-
sources due to its reliance on original physical model simulations.

2.4.2. MOPLS Algorithm Workflow

Figure 2 illustrates the algorithmic workflow of MOPLS for the bi-objective calibration of early and late PFTs in
ELM-FATES. In the initialization stage (Step 1), MOPLS uses Symmetric Latin Hypercube Design (SLHD) (Ye
et al., 2000) to randomly generate a set of distinct parameter vectors and evaluate their objective values through
the ELM-FATES simulations. The main loop of MOPLS (Step 2) comprises four sub-steps. First (Step 2.1), it
builds a RBF surrogate model for each objective function we are trying to optimize. Second (Step 2.2), it selects
high-quality parameter vectors with the assistance of these surrogate models. Third (Step 2.3), it evaluates how
well these selected parameter combinations perform in the real ELM-FATES simulations. Lastly (Step 2.4),
MOPLS updates a set of parameter vectors that are currently the best found so far, known as the “non-dominated
set” (Wang et al., 2023). This process continues until MOPLS reaches a predefined limit on the number of total
evaluations, which was set at 192 in our study, following Xia et al. (2020) and Cheng et al. (2023). They utilized
an optimization algorithm derived from the same surrogate-assisted optimization toolbox as MOPLS. At that
point, MOPLS terminates the loop and returns the set of non-dominated parameter vectors found so far as the final
optimization result.

The process of selecting new parameter vectors (i.e., Step 2.2) involves multiple separate local searches aided by
surrogate models and is vital for the effectiveness of MOPLS. In this process, we rely on a widely used metric
called the Hypervolume improvement indicator (Zitzler et al., 2007) to assess the quality of different parameter
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Generate and evaluate a set
Step 1 L
of initial parameter vectors
Build or update a surrogate
S0 2 model for each objective
( Step 2.2 Select P new paraﬁmagrK \
vectors using surrogate
™\
Generate N candidates around a Generate N candidates around a
high-quality parameter vector X{ high-quality parameter vector X§
found so far found so far
Use surrogate-based Use surrogate-based
Hypervolume metric to select X; Hypervolume metric to select X,
among candidates among candidates )
( Step 2.3 Objective gvaluaﬁon through \
simulation
Objective evaluation at Objective evaluation at
parameter vector X; parameter vector Xp
[ Run ELM-FATES simulation ] [ Run ELM-FATES simulation ]
7 . ;
Objective F; (X;) Objective F; (Xp)
Objective F,(X;) Objective F,(Xp)
Update non-dominated
SEp e parameter vectors
If maximum no. of No
evaluations Is met
Yes
Step 3 Return non-dominated set as
P the result
Figure 2. The algorithmic workflow of MOPLS when calibrating early and late plant function types in ELM-FATES. We
applied MOPLS with P (number of processors) being 24 in this study. F; and F), are the two objective functions as defined in
Equations 3 and 4, respectively.
combinations across multiple objective functions (more details are provided in Text S1 in Supporting Informa-
tion S1). The parameter vectors that have a higher Hypervolume improvement indicator are considered better.
Each surrogate-assisted local search starts by generating a set of N candidates. These candidates are unevaluated
parameter vectors that follow a multivariate Gaussian distribution, with an evaluated parameter vector of high
quality serving as the mean. Since the true objective values of each candidate are unknown, the algorithm
computes surrogate values of the candidate to approximate its Hypervolume improvement indicator. Finally, we
select the candidate with the highest estimated Hypervolume improvement indicator value and send it for
objective evaluation through real ELM-FATES simulation in Step 2.3. This step helps us narrow down the best
parameter vector choices for our optimization process.
CHENG ET AL. 7 of 18
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2.5. Multi-Objective Problem Formulation
2.5.1. Objective 1

The first objective of the optimization is to minimize the error between observed and simulated values for f,,.,,
GPP, SH, LE, SWC, and Q in this study. We use Nash Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970) to
quantify the error. The first objective function is the sum of negative NSEs for all the six variables, as calculated in
Equation 3. An equal weight is assigned to each variable. The original NSE has a range from negative infinity to 1.
The closer the NSE to 1, the better the model performance. Therefore, the negative NSE spans from —1 to positive
infinity, and the best model performance corresponds to the lowest value for negative NSE, which is —1. Our
optimization algorithm is designed to search for the global minimum, aiming to achieve the best model perfor-
mance by minimizing the value of the sum of negative NSEs calculated in Equation 3.

M
F(X) = ) (-NSEX),) (3)
i=0

where X is parameter vector, NSE(X), is the NSE value for variable i/ when using parameter vector X, M is the
number of calibrated variables (six in this study). Lower F;(X) values indicate better performance.

2.5.2. Objective 2

The second objective of the optimization is to achieve coexistence for early and late successional PFTs in ELM-
FATES. Here we use the biomass percentage of the early successional tropical forest (perc,,,,) to represent the
degree of coexistence. We define that perc,,,,, within 30% and 70% as stable coexistence. The objective function
has a minimum at perc,,,;, equals to 50%, representing the case where the two PFTs are equal competitors (i.e.,
early and late successional PFTs occupy equal percentages in the ecosystem) and strongly penalizes cases where

perc, for one of the two PFTs exceeds 70% (Figure 1a). Thus, the second objective function is calculated as:

early

0 asx abs(percea,,y(X) — 50%)C 30% < percogny < 710% @
: Ry abs(percea,,_v(X) - 50%)C perc,q, <30% or pere,,..> 70%

early

where X is parameter vector.

We test three cases for F5(X) in this study: (1) a = 500, b = 100, ¢ = 0.8 (f1), (2) a = 1500, b = 600, ¢ = 0.9 (f2),
and (3) a = 5500, b = 3,000, ¢ = 0.5 (f3) (Figure 3a). Given the absence of a formal formula for identifying
coexistence to the best of our knowledge, both the functional form for Objective 2 and the values of parameters a,
b, and c are determined through heuristics.

2.6. Optimization Experiment Design

To maximize processor utilization, we employ all processors available within a single computing node (P = 24
processors in our case) for the parallel MOPLS algorithm used in this study. To account for the inherent variability
in initial conditions within the optimization process, it is imperative to evaluate the performance of an optimi-
zation method through multiple trials. We perform five trials for each optimization experiment given the sub-
stantial computational demand of calibrating the ELM-FATES model.

3. Results and Discussions
3.1. Impact of Objective Functions on Achieving Coexistence

Figure 3b illustrates the probability densities of the percentage of biomass for early successional PFT
(perc.q,y,) for the three test functions of Objective 2 (Equation 4). The probability of coexistence for early
and late PFTs is relatively low when applying the three test functions (Figure 3b). While different objective
functions might achieve coexistence more efficiently, the perceived challenge in achieving coexistence does
not appear to arise from the choice of objective functions. Instead, it is primarily due to the amplified gap-
phase dynamics (Koven et al., 2019) and the potential over-exaggeration of reproduction feedbacks (Fisher
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(a) 800 et al.,, 2010) in ED models, which may have created conditions that

predispose the dominance of early successional tree species. Specifically,

600 in ED models, the forest is represented as a mosaic of patches of varying

o o ages (time since last disturbance). Once a disturbance hits the patch, ED

2400 — models typically eradicate all trees and reset succession. Early succes-

o 3 sional species are more efficient to take advantage of the gap formation

™~

following disturbances, becoming dominant. Koven et al. (2019) inves-
tigated the impact of disturbance representation on the dominance balance
between early and late successional PFTs in ELM-FATES. Their findings

0 20

40 60

i 80 100 corroborate that the generation of new patches upon disturbance favored
) f:acea,,y (DA)) early successional plants. Consequently, the likelihood of coexistence for
164 ’7;12‘(3300{;’47 iii:gi;jggg early and late PFTs is relatively low in our study.
> In addition, we find that optimization experiments utilizing various
E:Z - objective functions to characterize coexistence yield similar probability
2 f2 densities for perc,,,,, (Figure 3b). This indicates that MOPLS is effective
EZ’? f3 in achieving forest coexistence across a range of objective functions.
& 0'4< Therefore, it is easy to identify suitable objective functions for coexistence
0.2 U when using MOPLS.
%750 20 6 20 40 60 80 100 130 140

fraceariy (%)

3.2. Optimization Results

3.2.1. Parameter Distribution

Figure 3. (a) The three objective functions tested for the second objective
function (F, (X) in Equation 4) and (b) the probability density of the biomass The parameters calibrated by Latin Hypercube Sampling (LHS) and MOPLS

percentage of early successional tropical forest (perc

carly): exhibit distinct distributions (Figure 4). This disparity arises from the inherent

nature of LHS as a sampling method, which enforces a uniform spatial search
during the sampling process, consequently resulting in a uniform distribution of the parameters. In contrast,
MOPLS is an optimization algorithm that does not prioritize spatial uniformity; instead, it focuses on localized
searches that yield high-quality results, leading to the emergence of localized peaks within the parameter
distributions.

In line with a prior study that uses LHS for sensitivity analysis (Cheng et al., 2022), our analysis using MOPLS

reveals that f;,.., GPP, SH, and LE exhibit greater sensitivity to vegetation parameters, specifically V, and 7

c,max
(Figure S2 in Supporting Information S1). Conversely, SWC exhibits greater sensitivity to hydrological pa-
rameters, particularly B,,,. Additionally, B, plays a crucial role in controlling both carbon and water-related

variables, consistent with prior studies (Cheng et al., 2022, 2023).

3.2.2. Optimal Parameters

The optimal parameters for the early and late successional tropical forests, as well as the soil hydrological pa-
rameters, are similar to the observational values reported for tropical regions (Table 1). For example, the leaf and
fine root turnover times are calibrated to be 0.9/2.3 years for early/late PFTs, which is similar to the parameter
value calibrated for two Amazonia sites—0.9/2.6 years for early/late PFTs (Detto et al., 2018; Huang et al., 2020).
The observed and calibrated p,,,,, in Panama are very similar, which are 0.4/0.68 and 0.4/0.8 g/cm® for early/late
successional PFTs, respectively (Condit et al., 2012). The optimal 6, is 0.6 m>/m?, consistent with field obser-
vation in Panama (0.57 m*/m?®) (Litt et al., 2020). These consistencies between observed and calibrated parameter
values demonstrate the capability of MOPLS in finding the optimal solution for both early and late PFTs in
tropical forests.

3.2.3. Model Performance

The seasonal dynamics of observations are adequately captured by the simulations using optimal solutions ob-
tained by MOPLS (Figure 5). The mean errors between the calibrated and observed values for GPP, SH, LH,
SWC, and Q are 4.7 g C/m*/month, 3.3 W/m?, 7.6 W/m?, —0.04 m*/m>, and —4.8 mm/month, respectively. It
should be noted that the soil water content in the top 15 cm soil layer is still underestimated during the dry season.
This can be potentially attributed to the smaller fraction of deep roots in the optimal solution. Specifically, the
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Figure 4. Posterior probability distributions of the 19 vegetation and soil hydrological parameters calibrated using MOPLS (red color) and Latin Hypercube Sampling
(LHS, blue color). The vegetation parameters are for early PFTs, while the hydrological parameters are for the top soil layer. Please refer to Table 1 for full names of the

parameters.

roots fraction above and below 20 cm of the soil are 0.8/0.6 and 0.2/0.4 for early/late successional PFTs,
respectively. Previous studies have also reported the importance of the fraction of deep tree root in simulating dry
season shallow layer soil moisture (Bretfeld et al., 2018; Cheng et al., 2022; Chitra-Tarak et al., 2021). In addition,
the overestimation of LE during the dry season (Figure 5d) could also contribute to the underestimated shallow
layer soil moisture. The underestimated dry-season soil moisture results in underestimated dry-season runoff
(Figure 5f), due to the insufficient supply of groundwater recharge. Future attention should be drawn to improve
the representation of deep root fraction and seasonal water table movements in the model.

Note that Objective 1 assigns equal weight to each variable (Equation 3), as our goal is to optimize the overall
model performance rather than the performance of individual variables. This may not guarantee the optimality for
every variable, potentially resulting in suboptimal solutions for certain variables, as observed in the in-
sufficiencies in simulating GPP seasonality (Figure 5b). Future studies can optimize individual variables or apply
distinct weights to each variable based on specific priorities or areas of interest. The misrepresentation of GPP
seasonality is also possibly stemming from the absence of a plant hydraulics scheme and seasonality in photo-
synthetic capacity (Wu et al., 2017). Furthermore, a plant hydraulics scheme could potentially redistribute water
uptake to shallower soil layers, addressing the underestimated moisture in the shallow soil layer (Figure 5d).

CHENG ET

AL.

10 of 18

d ‘8 YT0T “99vTTY61

“sduy woxy papeoy

ASULOIT SUOWIWO)) dANE2I)) d[qearjdde oy) Aq pauroA0T a1 sa[onIe YO $asn Jo sanI 10j AIRIqIT JUI[UQ AS[IA UO (SUONIPUOI-PUE-SULId}/ W00 AaIm " ATeIqIjaur[uo//:sd)y) SUonIpuo) pue sus [, 3y 208 “[$707/60/+¢] U0 Areiqi auruQ A[IA\ ‘KNSIOATUN U0IdUL £q S61+00SINETOT/6T01 01/10p/wi0d" Kd[im A,



I VY ed B | . .
M\I Journal of Advances in Modeling Earth Systems 10.1029/2023MS004195
10% 2 (a) firee 300 (b) GPP
---- MOPLS Mean error=4.7 (g C/m?/mon)
T 10%4-- —— Observation 2801
(8] 3 A
® 1
e 4
£ 10%4
>
B 1
c 1
S 10 3
3 ]
0
§ 10 .
c 1 :
(0] 4
© . 180
= 10 ' i
] 1 160
10_2 T T T LI | T T “““!l T T LI | T T T T T T T T T T
10° 10" 10° 10° Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Tree Diameter (cm)
(c) SH ” (d) LE
1004 Mean error=3.3 (W/m?) 1104 Mean error=7.6 (W/m?)
100
90+
E t
= = 70+
60+
50
40
O T T T T T T T T T T 30 T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(€) SWC o f) Q
0.6 Mean error=-0.04 (m3/m?3) 250 Mean error=-4.8 (mm/mon)

0.0

mm/mon

300 1

250 1

200+

150+

100+

50

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 5. (a) Tree size distribution (f,,,,.) and mean seasonal (b) gross primary productivity (GPP), (c) sensible heat (SH), (d) latent heat (LE), (e) upper-layer (top 15 cm)
soil water content (SWC), and (f) runoff (Q) between simulations using optimal solutions obtained by MOPLS (red line) and observations from BCI, Panama (black
line). Gray area represents the dry season.
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Conducting a more thorough optimization study for ELM-FATES by incorporating a plant hydrodynamic module
(Xu et al., 2023) warrants future study.

It is noteworthy that across the Panamanian Isthmus, many canopy species, especially dry-deciduous species,
flush new leaves at the transition between dry and wet seasons (Medina et al., 2022). This would confer higher
photosynthetic capacity in the early mid wet season. Therefore, the underestimation of early wet-season GPP may
also stem from the absence of seasonality in leaf phenology in ELM-FATES, particularly in photosynthetic
capacity. In response to this issue, ELM-FATES does incorporate a “leaf age” capability. However, this feature is
seldom utilized due to its computational demands. Specifically, it necessitates users to specify variations in V,_ .,
as a function of leaf age and PFT, as well as to track leaf ages in each cohort and calculate the photosynthetic
uptake for each of these separately, resulting in substantial computational costs. Alternatively, another approach
to addressing this issue could involve utilizing an optimizing model of V. that increases in response to high
light (Ali et al., 2016). Nevertheless, the version of ELM-FATES used in this study did not implement either of
these features, leading to the misrepresentation of GPP seasonality.

In addition to satisfactorily capturing dynamics for calibrated variables, it should be noted that the optimal so-
lution also exhibits satisfactory performance in simulating non-calibrated variables. For instance, the observed
and simulated mean annual aboveground biomass (AGB) is 14.0 (Chave et al., 2003) and 13.4 kg C/m?,
respectively. The biomass for early and late successional PFTs from the optimal solution is 7.1 kg C/m? (52%) and
6.4 kg C/m? (48%), respectively, with each PFT occupying almost an equal percentage. This is consistent with
what is observed for coexisted early and late PFTs (Huang et al., 2020).

Furthermore, the ELM-FATES model with MOPLS-calibrated parameters for early and late PFTs can reasonably
well capture the size structure and tree density in the BCI tropical forests. For example, the observed and
simulated basal areas align well, with the observed/simulated basal area by size classes at 3.8/2.5,7.3/9.1, and 6.2/
7.2 m?/ha for DBH of 1-10 cm, 1030 cm, and 30-50 cm, respectively. Nevertheless, there is an overestimation in
the basal area for large trees (>50 cm), which is 15.4 and 47 m*/ha for observation and simulation, respectively.
Moreover, the simulated stem density values align well with observations for small trees, but there is an over-
estimation for large trees. Specifically, the observed/simulated stem density by size classes is 4014/1700, 337/
310, 54/53, and 30/86 trees per hectare (N/ha) for DBH of 1-10 cm, 10-30 cm, 30-50 cm, and >50 cm,
respectively. The overestimation of large trees was attributed to the role of a carbon starvation mortality term,
which is a common issue in forest demography models (Holm et al., 2020). Specifically, the primary mode of
mortality in FATES involves a constant background turnover mortality, along with a carbon starvation mortality
term. The latter is mainly responsible for the eradication of trees in the shady understory that are in negative
carbon balance, leading to density-dependent mortality as an emergent process. For canopy trees, carbon star-
vation is rarely triggered, and any overestimate of growth rates tends to result in an overabundance of large trees.
To address this issue, Needham et al. (2020) introduced a scheme into FATES to simultaneously track cohort age
and size. This modification can mitigate the overestimated biomass of large trees. However, it is important to note
that this is not the default configuration of FATES. Future studies can be conducted by applying this new scheme
to improve the overestimation of large trees.

3.3. Comparison Between MOPLS and Random Sampling

The probability for achieving coexistence is relatively low, with the probability of perc,,,;, within 30%-70%
being 0.03, 0.03, and 0.02 for f1, f2, and f3, respectively (Figure 3b). Nevertheless, with the same number of
simulations, MOPLS (Figures 6a—6c) performs much better in achieving coexistence than a previous study
(Cheng et al., 2022) that used a random sampling strategy (i.e., LHS) (Figures 6d—6f). Specifically, with a total of
1000 ensembles, the number of simulations that can achieve coexistence with perc,,,;, within 10%-90%, 20%—
80%, and 30%—70% is 52/15, 40/7, and 32/3 for MOPLS/LHS, respectively (Figure 6). With the requirement for
coexistence becoming stricter (i.e., the range of perc,,,,, increasing from 10%-90% to 30%—70%), MOPLS can
still achieve a reasonable number of simulations in which the two PFTs can coexist (i.e., 32 out of 1,000,
Figure 6¢), while LHS only has three simulations out of 1,000 ensembles that can achieve coexistence for early
and late PFTs (Figure 6f). This demonstrates that using MOPLS, an optimization algorithm that employs sur-
rogate approximations for each objective function, is more effective in calibrating coexistence in tropical forests.
The surrogated-assist feature of MOPLS enables it to perform a larger number of evaluations within the same
computational constraints compared to random sampling. Moreover, MOPLS incorporates several beneficial
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Figure 6. Relationship between the scaling exponent of the soil retention curve (B,,,) and the percentage of biomass for early successional PFT (perc,
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greedy search strategies that random sampling lacks (Wang et al., 2023). For example, MOPLS employs a
surrogate-assisted local search centered around a high-quality evaluated parameter vector. This strategy leverages
the assumption that neighboring parameter vectors of high quality are likely to yield high-quality results. In
addition, when evaluating how well the parameter combinations perform in the real ELM-FATES simulations,
MOPLS consistently select a new parameter combination that is predicted to have the best quality based on
knowledge obtained from prior evaluations. These design features set MOPLS significantly apart from pure
random sampling and enable it to produce more simulations with stable existence than random sampling
(Figure 6).

3.4. Simulated Trajectories of Tropical Forest Aboveground Biomass After Deforestation

We simulated the trajectories of ABG following different intensities of clear-cut deforestation to investigate the
recovery of tropical forests under these human-induced disturbances. We find that the damage level in the se-
lective logging practices determines the number of years required for AGB to recover to its original level. The
results show that after 20% and 30% clear-cuts, it takes 38 and 65 years for AGB to recover to the initial stage,
respectively. Moreover, 50% and 90% clear-cuts require 90 and 153 years, respectively, for AGB to fully recover
(Figure 7). The results are consistent with those reported in previous studies (Piponiot et al., 2018), which found
that, with initial losses of 10%, 25%, and 50% in forest biomass, it took 12, 43, and 75 years for AGB to recover,
respectively. These findings indicate that increasing clear-cut intensities would disproportionately extend the
recovery time, warranting careful consideration when intensifying clear-cutting practices.

After fully recovering from logging under various intensities, AGB would continue to increase to a level even
higher than the original value (i.e., 14 kg C/m?) (Figure 7a), consistent with previous findings that the AGB
accumulation rates in logged forests are higher than those observed in intact forests (Huang & Asner, 2010;
Huang et al., 2020; Mazzei et al., 2010). This is mainly attributed to the rapid recovery rates of early successional
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Figure 7. Simulated trajectories of recovered percentages of (a) total aboveground biomass (AGB) and (b) AGB of early and late PFTs following varying intensities of
forest clear-cutting (from 10% to 100%). (c) Heatmap illustrates the fraction of early successional (x axis) and late-successional (y axis) PFTs, with color representing
the corresponding required recovery time in total. The recovery line in each scenario crossed by the horizontal line of 100% of total AGB in (a) represents the time
required for full recovery (e.g., 1 and 38 years as denoted in (a)). The numbers in brackets in (c) represent recovery times from the literature.

trees (Figure 7b), especially during the early stage of the post-logging process when late PFT biomass has not yet
fully recovered, and early PFT experiences rapid growth, aided by sufficient sunlight.

The initial recovery rates of AGB for early PFT following clear-cutting are faster after high-intensity logging
activities (e.g., >70% clear-cut) (Figures 7b and 7¢) because the sufficient light reaching the forest floor favors the
light-demanding nature of early PFTs. In contrast, late PFTs take a longer time to recover and do so at a much
slower rate, even after low-intensity logging activities (e.g., 10% clear-cut, Figures 7b and 7c).

The findings indicate that in mixed tropical forests, a 20% clear-cut would require nearly 40 years for AGB to
recover (Figures 7b and 7c). Specifically, while the early PFT takes only 3 years to recover to its initial fraction,
the late PFT requires more than 160 years to recover to the fraction in the original unlogged forests (Figure 7b).
These findings have significant implications for forest management practices. This suggests that even a small
degree of damage in a tropical forest would demand a long time for carbon stocks to regenerate, thereby exerting a
substantial impact on both biogeochemical and biological processes.

Note that the selective logging module in ELM-FATES is specifically designed to simulate real-world wood
harvesting in landscape-level field operations. It only accounts for tree mortality linked to human activities and
does not consider tree mortality caused by drought or pests/insects. Recovery after drought or pests/insects will
probably differ from recovery after selective logging. First, selective logging targets trees of a specific size range,
while drought could affect all sizes. Second, drought is known to have delayed effects that might last several years
after the events (Trugman et al., 2018).

3.5. Future Directions

As a starting point for calibrating tropical forest coexistence in ED models, this study evaluates the performance
of a multi-objective optimization algorithm in calibrating the coexistence for two typical tropical tree species. In
the future, MOPLS can be extended to calibrate the coexistence for a greater number of PFTs (i.e., >2 objectives)
to better represent tropical forest diversity and better capture the interactions between tropical forests and
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environmental changes. Meanwhile, this study only applies MOPLS to ELM-FATES. Future studies can extend
the application of the multi-objective optimization algorithm to other ED models, such as ED v3.0 (Ma
etal., 2022). While tropical forests worldwide share similarities in climate and soil conditions, each tropical forest
is unique. Our study specifically applies MOPLS to a Panama site. Future work can apply the multi-objective
optimization algorithm to match other ecosystem observations representing different tropical forest character-
istics. Furthermore, improving the representation of deep root fraction and seasonal water table movements in the
model deserves attention in future endeavors.

In addition, this study investigates the recovery trajectories of forest biomass after different intensities of
deforestation under current climate conditions. Future study can explore forest recovery under different future
climate change conditions, such as El Nifio-related droughts and changes in wet or dry seasons (T. L. Powell
et al., 2018). Moreover, future research can be conducted to understand forest recovery while taking into account
the influence of forest regeneration on soil properties (Zhang et al., 2019). Furthermore, future study on forest
recovery should encompass not only the restoration of aboveground biomass but also the recovery of forest
diversity (Riiger et al., 2020), which is crucial for effective planning of forest restoration and sustainable tropical
forest management. Additionally, this study exclusively investigates the recovery time under various clear-cut
intensities within the same coexistence scenario. Future research endeavors could explore how recovery time
varies under different coexistence scenarios.

4. Conclusions

This study successfully applied a multi-objective optimization called MOPLS (Multi Objective Population-based
Parallel Local Surrogate-assisted search) to calibrate the coexistence of tropical forest species in BCI, Panama.
Specifically, it focused on calibrating the coexistence of early and late successional forests within an ED model
named ELM-FATES (the Functionally Assembled Terrestrial Ecosystem Simulator [FATES] implemented in the
Energy Exascale Earth System Model [E3SM] Land Model [ELM]). We performed three optimization experi-
ments using different objective functions to represent the coexistence. MOPLS achieved the coexistence of early
and late PFTs with similar probabilities for the three objective functions, indicating that it is easy to identify
objective functions for calibrating coexistence when using the algorithm. The optimal solution could not only
capture the dynamics of the calibrated variables (i.e., GPP, sensible and latent heat, soil water content, and
runoff), but also those of non-calibrated variables (i.e., aboveground biomass, as well as basal area and stem
density distributions across tree size classes). This demonstrates the capability of the MOPLS-calibrated pa-
rameters for early and late PFTs in simulating the dynamics of tropical forest ecosystems. Furthermore, with an
equal number of model evaluations, MOPLS produced a much higher number of simulations achieving coex-
istence compared to a random sampling strategy. This study establishes the groundwork for calibrating coexis-
tence while attaining satisfactory model performance in ELM-FATES, paving the way for better characterization
of tropical forest diversity in advanced ED models.

The optimal parameters were applied to simulate the trajectory of AGB following various intensities of clear-cut
deforestation. We found that a 20% clear-cut deforestation would require nearly 40 years for AGB to recover to
the initial level, due to the slow recovery rates of late successional forests. Our results demonstrate the promise of
MOPLS in identifying model parameters capable of simulating coexistence and diversity in tropical forests, with
significant implications for forest management practices. The MOPLS algorithm can be applied to other complex
models and employed to calibrate the coexistence of a greater number of PFTs, thereby further improving the
representation of tropical forest diversity. The improved representation of tropical forest composition can
contribute to better predictions of the trajectory of tropical forest carbon stocks subject to climate and land use
changes.
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