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Abstract—The Open Radio Access Network (RAN) is a new

networking paradigm that builds on top of cloud-based, multi-

vendor, open and intelligent architectures to shape the next gen-

eration of cellular networks for 5G and beyond. While this new

paradigm comes with many advantages in terms of observatibility

and reconfigurability of the network, it inevitably expands the

threat surface of cellular systems and can potentially expose its

components and the Machine Learning (ML) infrastructure to

several cyber attacks, thus making securing O-RAN networks a

necessity. In this paper, we explore security aspects of O-RAN

systems by focusing on the specifications, architectures, and intel-

ligence proposed by the O-RAN Alliance. We address the problem

of securing O-RAN systems with a holistic perspective, including

considerations on the open interfaces used to interconnect the

different O-RAN components, on the overall platform, and on

the intelligence used to monitor and control the network. For

each focus area we identify threats, discuss relevant solutions to

address these issues, and demonstrate experimentally how such

solutions can effectively defend O-RAN systems against selected

cyber attacks. This article is the first work in approaching the

security aspect of O-RAN holistically and with experimental

evidence obtained on a state-of-the-art programmable O-RAN

platform, providing unique guideline for researchers in the field.

Index Terms—O-RAN, Security, Interfaces, AI/ML, Data poi-

soning

I. INTRODUCTION

The increasing demand for multi-vendor, horizontally dis-
aggregated systems in cellular Radio Access Network (RAN)
has exposed the limitations of traditional, closed, proprietary
architectures. These systems are inadequate for meeting the
stringent requirements of new services, prompting a shift to-
wards open architectures that offer flexibility, programmability,
and observability while reducing CAPEX and OPEX [1]. The
Open RAN paradigm addresses these needs by promoting
cloud-based, disaggregated, multi-vendor deployments with
data-driven control, enabling flexible and customizable net-
works at lower costs.

However, the openness of O-RAN introduces security vul-
nerabilities, as fine-grained data extraction and network control
capabilities can be exploited by attackers. Despite well-defined
interface requirements, the impact of securing these interfaces
is not fully understood. O-RAN’s reliance on cloud-based
virtualized functions and third-party Artificial Intelligence
(AI)/ML applications for closed-loop control further expands
the threat surface. While there is ongoing research on securing

Securing the Platforms

Fig. 1: Challenges and opportunities to secure different groups
of components in the O-RAN architecture, which also reflects
the paper outline.

AI/ML and cloud-based architectures, a comprehensive secu-
rity solution for the entire O-RAN architecture remains an
open challenge.

Security in O-RAN is still in its early stages. Tab. I
summarizes the focus, security topics addressed, and security
implementations in the existing literature on O-RAN security.
[4] explores zero-trust principles, adding network analytics
and anomaly detection to authentication mechanisms. Abdalla
et al. [2], Mimran et al. [3] and Polese et al. [1] identify
potential threats and vulnerabilities but do not assess the cost
of protection. To address these shortcomings, we identify
three components within O-RAN—Open Interfaces, AI-native
closed loop control, and cloud-based platforms—that pose
heightened risks and propose actionable strategies to mitigate
these risks. Different from previous works, we empirically
evaluate the impact–in terms of cost and effectiveness–of
implementing several of these measures. Specifically, the con-
tributions of this article include:

• Reporting the observed effects on latency, throughput,
and processing load from integrating encryption into the
E2 interface.

• Assessing the efficacy of employing Autoencoders to

1

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3434419

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 24,2024 at 18:35:07 UTC from IEEE Xplore.  Restrictions apply. 



Paper Major Focus Interfaces Intelligence Platforms Implementation
[1] Comprehensive overview of O-RAN X X X
[2] Survey of current capabilities and limitations of O-RAN X X X
[3] Proposed security evaluation ontology for O-RAN X X X
[4] Proposed Zero Trust framework for 5G/6G X X
[5] Architectural security considerations for O-RAN X X
[6] Open Fronthaul Security X
[7] Securing the E2 interface X X

This paper Cost and effectiveness of implementing comprehensive security in O-RAN X X X X

TABLE I: Survey of prior works showing the general focus of each paper, the security topics addressed, and if any solutions
were implemented and evaluated in an O-RAN environment.

mitigate potential attacks targeting the AI.
• Identifying and detailing three pivotal principles of cloud

security essential for safeguarding computing platforms
in O-RAN deployments.

The organization of this paper, summarized in Fig. 1, is as
follows. We first provide a brief background on the O-RAN
architecture. Then, we discuss the open interfaces, followed
by a baseline implementation evaluating the cost of securing
them. Next, we demonstrate how to secure the intelligence
and mitigate threats targeting AI/ML applications hosted on
the near-RT RAN Intelligent Controller (RIC). After that, we
provide an overview on securing platforms and disaggregated
functions. Finally, we propose ways to advance security in
O-RAN and draw our conclusions.

II. O-RAN PRIMER

The O-RAN Alliance defines a flexible and softwarized
architecture (shown in Fig. 1) for the Open RAN ecosystem.
This architecture embraces the 3GPP 7.2x functional split,
where RAN functionalities are disaggregated into Central
Unit (CU), Distributed Unit (DU), and Radio Unit (RU) [8].
These components carry out operations at different layers
of the protocol stack. For example, the CU performs RRC,
PDCP, SDAP, and PDCP while the DU provides RLC, MAC,
and PHY-high functions. Both PHY-low and radio-frequency
transmission are carried out at the RU.

Each of these components’ functionalities can be controlled
in software through exposed Application Programming Inter-
faces (APIs). Open and standardized interfaces connect these
components both among them (e.g., the F1 interface connects
CU and DU, and Open Fronthaul interface connects DU and
RU), and to the RICs (i.e., through the E2 and O1 interfaces).

These controllers are connected by the A1 interface and
oversee the operations on the RAN nodes and enable closed
control-loops that operate at different time scales through
AI/ML applications. The near-RT RIC acts on time scales
between 10 ms and 1 s via applications called xApps, while
the non-RT RIC on time scales above 1 s via rApps. Finally,
the applications running on the RICs receive live RAN Key
Performance Indicators (KPIs) from the RAN nodes through
the E2 interface (in the case of xApps) and through the O1
interface (in the case of rApps). The RICs can send control
actions, e.g., to prioritize certain User Equipments (UEs) or
to modify the scheduling policy of the DU, through the same
control interfaces. Interested readers are referred to [1] for a

comprehensive overview of the O-RAN architecture and of its
specifications.

III. SECURING THE OPEN INTERFACES

A. New Vulnerabilities

The introduction of open interfaces that carry data be-
tween disaggregated components is a pillar of the O-RAN
framework. However, the openness of the interface, combined
with disaggregated nodes connected over open infrastructure,
introduces expanded security vulnerabilities. In fact, some of
the primary classes of threats arise from improper or missing
ciphering of the data sent across these open interfaces and lack
of proper authentication [2]–[4], [7]. For example, these vul-
nerabilities could be exploited with man-in-the-middle attacks
to inject false KPI reports northbound to the near-RT RIC or
inject malicious control actions southbound to the gNB.

The O-RAN Alliance recognizes these expanded threat vec-
tors and each interface working group has published guidance
to secure their respective interface. While the guidance varies
greatly in the level of detail provided, in general each interface
should provide confidentiality, integrity, and authentication.
While this guidance is reasonable and there is general con-
sensus that security is essential to the deployment of 5G
O-RAN infrastructure [2], [4]–[7], [9], [10], there has been
little study on the impact of securing the open interface in
an O-RAN deployment. It is vital that an informed and risk-
based approach is taken to adequately address security risks
in O-RAN, while recognizing that any method for enhancing
security, such as adding encryption, comes at a cost in terms
of performance. This impact could reduce throughput or re-
quire additional equipment, affecting scalability and negatively
impacting CAPEX.

B. Implementing IPsec on the E2 Interface

To extract actionable insights, we thoroughly test and an-
alyze the effects of adding encryption to the E2 interface as
described in [7]. We focus our efforts first on the E2 interface
as this is the most mature interface, which makes it possible to
add IPsec to this interface and observe the trade-offs between
security robustness and performance.

While the E2 interface standards call for the use of IPsec,
other open interfaces require the use of TLS 1.2, though
use of TLS 1.3 is recommended. There are some differences
in the way IPsec and TLS protocols initially establish a
connection or Security Association (SA), however, we are
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confident we can extend the results generally without loss
of accuracy because IPsec and TLS use the same underlying
encryption and hashing algorithms once the SA is established.
TLS 1.3 has the fastest SA establishment, making it hardest
to confidently extrapolate the results directly from IPsec, but
the general trends in performance still hold. Regardless of
the security protocol used, system designers should only use
modern secure encryption algorithms.

After establishing a baseline performance without encryp-
tion, we add O-RAN-compliant encryption (as specified in [9])
to the E2 interface. We test multiple combinations of en-
cryption algorithms and implementations, including AES128
(CBC, CCM), AES256 (CBC, CCM, GCM), and ChaCha20-
Poly1305. IPsec, as configured in our test, provides confiden-
tiality, integrity, replay protection, and authentication. With
this configuration, IPsec adds at least 57 Bytes of overhead to
each packet. However, because both AES and SHA2 require
fixed input block sizes, padding may be added causing the
overhead to further increase. For example, encrypting a 62
Byte selective acknowledgement (SACK) adds 76 Bytes for a
total cypher text (CT) SACK length of 138 Bytes.

C. Theoretical Analysis

To measure the impact to performance of adding security we
examine delay and throughput as key performance indicators.
In packet switched networks there are generally four sources of
delay at each node along the path: queuing delay, propagation

delay, transmission delay, and nodal processing delay [11].
• Queuing Delay: In general, the queuing delay is not

constant and depends on the packet arrival and departure
rates. However, adding encryption to the link does not
significantly impact the queuing delay. In other words, the
difference in queuing delay with or without encryption is
negligible.

• Propagation Delay: The propagation delay is strictly a
function of the physical length and propagation speed of
the link and will remain constant regardless of encryption.

• Transmission Delay: The transmission delay is a function
of the packet size (in bits), L, and the link transmission
rate, R, which is defined as Dtrans = L/R. For any given
system, R is fixed but L will increase to some extent with
encryption.

• Processing Delay: Typically the processing delay is de-
fined as the time required for intermediate nodes to exam-
ine the packet header and determine where to direct the
packet [11]. For this analysis, we include the encryption
delay in the processing delay because it is essential to
pass the payload to lower or higher OSI layers.

While queuing and propagation delay are unaffected by
encryption, transmission and processing delay are impacted.
For this reason our analysis focuses on quantifying the increase
in transmission and processing delays. While it is clear that
there will be some impact, researchers should fully understand
the expected trade-off for their system. Next, we outline a
few experiments that system engineers can perform to better
characterize the impact of security and ensure they plan for
security by design.

D. System Implementation Results

To quantify the effect of encryption for packets of various
lengths, we use ping (ICMP echo) of various lengths to capture
the network round trip time (RTT), which is twice the one-
way delay. We subtract the fixed propagation delay and the
known transmission delay and graph the processing delay in
Fig. 2. We observe that the specific implementation of the
AES algorithm greatly affects the additional processing delay.
AES256-CCM causes the processing delay to increase with
packet length while AES256-GCM has virtually no impact.
Galois/Counter Mode (GCM) offers both confidentiality (via
counter mode) and authentication (via arithmetic in the Galois
field GF(2n)), where n represents the key size. Since these
operations can be executed in parallel, GCM delivers higher
performance compared to modes like CBC, which necessitate
sequential operation chaining [12]. In either case, the pro-
cessing delay difference between CT and Plain Text (PT) is
�Dproc  50µs for all tested packet sizes. We can conclude
that encryption has minimal impact on E2 traffic delay.

Fig. 2: Processing delay as a function of packet size for PT
and CT traffic.

We also design an experiment to quantify the effect of
encryption on the total traffic throughput. We use iperf3 to
generate traffic at specific transmission rates for 10 s. In Fig.
3 we see that the maximum encryption rate our system is
capable of for AES256-CCM with SHA256 is a little under
600 Mbps. We also capture CPU utilization on the gNB for
each attempted transmission rate in Fig. 3 for both PT and
CT, showing that encryption is very CPU intensive. The CPU
utilization grows linearly until it reaches saturation.

We test several other encryption algorithms and find a
similar pattern for all. However, some algorithms are more
CPU intensive than others. To illustrate the different impact a
given encryption algorithm has on maximum throughput, we
used iperf3 to send the maximum amount of traffic possible for
30 s. AES-CBC achieves 505 and 512 Mbps for key lengths
128 and 256 bits, respectively. AES-CCM achieves 573 Mbps
for both key lengths of 128 and 256 bits. Cha-Cha20-Poly1305
achieves 989 Mbps, while AES-GCM achieves 1370 Mbps for
all key lengths, 64, 128, and 256 bits. The specific algorithm
implementation is the most significant factor and AES-GCM
vastly outperforms the other algorithm implementations. One
key observation is that there is virtually no difference in
performance based on key size (AES128 verse AES256). We
encourage all system designers to use 256 bit key length
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Fig. 3: Measured throughput as a function of attempted
transmission rate for PT and CT traffic. CPU utilization is
the limiting factor for throughput with encryption.

as that provides higher security with virtually no impact to
performance.

E. Key to Securing Open Interfaces

The key trade-off for securing O-RAN open interfaces is
processing power. Any disaggregated gNB component must
have enough CPU resources to manage all of its explicit
functions. However, as the total traffic over the open interfaces
increases, CPU resources needed for encryption alone will also
increase. One potential solution is to increase the total compute
resources in the distributed gNB. For example, we compare
OpenSSL benchmark tests on our Colosseum emulation en-
vironment built on Intel Xeon e5-2650 CPU to a desktop
running an Intel Core i7-11700KF CPU and found that the
desktop offers approximately a 3.5⇥ performance improve-
ment. System designers could also add dedicated encryption
hardware to the network stack to remove the burden from
the CPU. A third option is to set strict limits on the amount
of traffic that can be sent over the interfaces. This option
requires careful consideration, as limiting interface throughput
can significantly impact system performance. However, there
may be safe reduction opportunities. For instance, in our
system with 10 UEs, the E2 interface averages 3.5 Mbps
with updates every 250 ms. However, this rate of updates
may be higher than what is actually needed. By reducing
the update frequency to every 333 ms the average throughput
is reduced to 2.6 Mbps, decreasing link utilization by 25%.
In any case, system engineers must understand the amount
of traffic expected across given interfaces and include the
overhead of encryption in their system design.

IV. SECURING THE INTELLIGENCE

O-RAN comes with the promise of AI-native cellular net-
works where a fabric of RICs, rApps and xApps monitor the
network and take autonomous decisions to maximize perfor-
mance and meet operator goals and intents [1]. By leveraging
AI/ML techniques, rApps and xApps will enable applica-
tions ranging from control of network slicing and scheduling
policies, traffic steering, mobility management, beamforming,
and energy saving functionalities. However, these data-driven
techniques are also known to have pitfalls and vulnerabilities

that might expose rApps, xApps, RICs and the entire network
to a variety of security threats.

A. Vulnerabilities of AI/ML O-RAN Applications

As rApps and xApps are the decision-making engines of
O-RAN systems, it is fundamental that their decisions are
unbiased, made with confidence, resilient against attacks or
anomalies, and do not deviate from the goal of the network
operator. Next, we highlight some vulnerabilities that affect
AI/ML routines embedded in O-RAN applications.

• Before Deployment: AI/ML solutions heavily rely upon
the quality and quantity of data used to train them, which
makes them vulnerable against data poisoning and back-

door attacks. Data poisoning aims at injecting misleading
data into the data lakes to negatively impact the decisions
made by data-driven xApps and rApps. One example is an
adversarial UE falsely reporting poor KPI measurements
(e.g., a low throughput level while experiencing high
values). Any xApp or rApp trained using such biased
and misleading data will result in sub-optimal decisions.
Backdoor attacks, instead, aim at making AI/ML models
sensitive against specific inputs, events, or KPI patterns.
For example, an attacker can develop an xApp controlling
slicing policies with a backdoor such that the xApp
makes decisions that are unfair toward certain subset of
UEs whenever a certain input triggers the backdoor, or
takes actions that are in conflict with those of legitimate
applications.

• After Deployment: Attacks might also affect real-time
execution and inference of xApps and rApps. A well-
known attack is Adversarial Machine Learning (AML),
where the attacker aims at either generating completely
synthetic inputs, or at modifying an existing legitimate
input via small and hard to detect perturbations. In O-
RAN, these attacks can be extremely effective and can
completely disrupt networking operations. This includes
misleading a traffic classifier used to determine traffic
type and corresponding Quality of Service (QoS), by-
passing anomaly detection mechanisms, steering control
decisions away from their optimal, or leading the non-
RT RIC into producing an inaccurate representation of
network state. Similarly, an attacker can potentially gen-
erate undetectable adversarial inputs that mislead an rApp
into triggering wrong handover procedures, while at the
same time causing an xApp to allocate fewer resources
to the hand-off UEs, resulting in unfairness and poor
performance.

B. Toward Reliable AI/ML O-RAN Applications

Although the spectrum of attacks against data-driven xApps
and rApps is broad, practitioners can rely upon a portfolio of
well-established tools and solutions to protect the intelligence
of the RICs.

• Preventing Attacks: The first step starts from designing
and training xApps and rApps that are secure and robust
against attacks by design. In this area, xApp/rApp devel-
opers can leverage several tools designed to minimize the
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impact of data variance on the output of AI/ML solutions
embedded into O-RAN applications. A few examples are:
projecting data into a latent space (e.g., Autoencoders
(AEs)), embedding synthetic adversarial and poisoned
data into the training process (e.g., contrastive and ad-
versarial learning, contaminated best arm identification,
defensive distillation), and mitigating attack effectiveness
via attention networks that aim at maintaining attention
level on relevant features only and neglect adversarial
influence.

• Detecting Attacks: Although preventing attacks is always
desirable, learning how to detect novel and increasingly
sophisticated attacks becomes a necessity. Anomaly de-
tection is the most relevant area of research that focuses
on this issue and can help in designing secure O-RAN
systems. Among others, we mention techniques that de-
tect anomalies by monitoring the distance between input
data and the expected distribution (e.g., clustering- and
distance-based algorithms, statistical methods), as well
as deep neural networks that can identify unexpected
data features that characterize anomalies. The former
techniques could be used, for instance, to compare the
decisions made by xApps/rApps at run-time with their
statistical behavior, raising an anomaly warning in case
these differ significantly. The latter, instead, could be
leveraged to flag data with unexpected formats or patterns
caused by anomalies in the network.

• Reacting to Attacks: In the case where an attack is
successful and it has been detected, the best way to
react is to understand what caused the attack, how it
was performed and eventually learn to recover from
it. Explainable AI tools can be used to analyze the
behavior of O-RAN applications, and to provide the non-
RT RIC with information on which xApps and rApps
were affected, what type of input produced the attack and
why certain applications produced unexpected outputs.
This information can then be used by the non-RT RIC to
retrain model to eliminate vulnerabilities.

C. Autoencoders for Threat Mitigation

In the following, we provide experimental results that
illustrate how embedding AI-based solutions like Autoen-
coders (AEs) into O-RAN applications can effectively help in
mitigating adversarial attacks targeting the data-driven logic
running therein. We experimentally demonstrate that conven-
tional autoencoders can deliver a good degree of protection
against adversarial attacks, but more complex variations (e.g.,
variational, denoising and convolutional autoencoders) could
be used for improved performance).

We consider the case of an xApp embedding a Deep
Reinforcement Learning (DRL) agent trained to jointly control
RAN slicing and scheduling policies of Enhanced Mobile
Broadband (eMBB), Ultra Reliable and Low Latency Com-
munication (URLLC) and Massive Machine-Type Communi-
cations (mMTC) slices. These agents are trained using a Prox-
imal Policy Optimization (PPO) architecture with a reward
that weights slice-specific KPIs. Due to space limitations, we

refrain from reporting details on the DRL design and training
process, which can be found in [13]. We consider two state
configurations: direct feeding of KPIs to the DRL agent,
and preprocessing KPIs through an AE for dimensionality
reduction and outlier suppression before feeding them to the
DRL agent. We consider the case of black-box adversarial
attacks. The attacker uses an attack vector consisting of
corrupted KPI measurements generated by taking legitimate
KPI data and perturbing them with additive random noise
following a normal distribution with mean equal to the KPI
value being perturbed and variance �.

Fig. 4: Percentage of actions deviating from the expected
outcome after the attack with and without the autoencoder.

To evaluate the effectiveness of the attack, we vary the
standard deviation of such a random variable and run 200
independent runs. For each run, the DRL agent is fed first
with KPIs reported by a cellular base station, and then by those
affected by the attack. In Fig. 4, we show the percentage of
actions that deviate from the intended original actions taken
by the DRL agent after attack. We perform this analysis by
considering two cases. In the first case, we feed the perturbed
KPIs directly to the DRL agent, while in the second case
the KPIs are first processed by an AE. Our results show that
the AE always results in fewer deviations from the intended
actions even in the case of high noise variance. On the
contrary, the case where no AE is used results in more than
95% deviation from the intended action. Moreover, we notice
that the most affected action is the scheduling policy, which
deviates 70% of times, while the slicing policy is affected only
30% of times.

In Fig. 5, we investigate how much an attack can steer
the xApp/rApp agent away from the intended behavior, i.e.,
how distant from the intended outcome the actions taken
by the DRL agent are, by reporting the Euclidean distance
between the intended action and the one taken by the DRL
agent. Scheduling policies are enumerated as {0, 1, 2}, while
slicing actions consist of three integer numbers (one per slice)
whose sum must be equal to 50 (i.e., the number of Physical
Resource Blocks (PRBs) to assign to each slice). We measure
the Euclidean distance between the intended action and the one
taken by the DRL agent, and in Fig. 5 we report the normalized
Euclidean distance. Results show that the AE reduces the
distance (and therefore the effectiveness of the attack) between
scheduling decisions made after the attack by approximately
2⇥, and by more than 13⇥ with respect to the slicing policies.
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Fig. 5: Action distance comparison after attack with and
without autoencoder. Scheduling policies are enumerated as
{0, 1, 2}, while slicing actions consist of three integer numbers
(one per slice) whose sum must be equal to 50 (i.e., the number
of Physical Resource Blocks (PRBs) to assign to each slice).

V. SECURING THE PLATFORMS

One of the defining characteristic of O-RAN is the shift
toward virtualization of network functions [1]–[3], [5]. This
shift supports several goals including multi-vendor support,
disaggregation of nodes, scalability, and open source develop-
ment. In practice, this is accomplished in a way that follows
cloud service deployments. Specifically, network functions
are hosted and executed in virtual machines (or containers)
managed by a hypervisor or host operating system (OS) to
provide resource management, performance optimization, and
access to common interfaces, among other services. While
virtualization and cloud-based deployments result in a much
more agile and flexible network infrastructure, they inevitably
result in a much larger threat surface area.

A. Cloud Security Risks

One of the key components of any cloud infrastructure
is common hardware components shared by multiple soft-
ware instances. In the context of cellular communications,
this introduces a new risk as isolation between applications
is logical only, without physical isolation across hardware
[5]. Additionally, the increased number of layers controlled
by different parties in a virtual system provides additional
threat vectors. An application must rely on multiple lower
layers to perform specific security functions. For example,
the host operating system has access to all RAM memory,
disk volumes mounted on virtual machines, and containers
[5]. As another example the hypervisor must access hardware
security functions and pass those functions to the application.
This means that the application must be able to trust both the
hardware itself and the virtualization layer. To fully trust an
application, one needs to trust all the layers in the stack.

There are several existing cloud security architectures built
on the concept of shared responsibility [14]. In general,
the idea of shared responsibility means the cloud service
provider is responsible for the security of all the components
necessary to operate the cloud service, while the customer
is responsible for protecting their data. In cloud security, the
specific breakdown in responsibility is often a function of the

type of cloud service (i.e., Infrastructure as a Service versus
Platform as a Service (PaaS)). An O-RAN deployment most
closely resembles a PaaS deployment. One of the security
services typically used for a PaaS deployment is a Cloud
Workload Protection Platform (CWPP). The objective of the
CWPP is to keep the application, whether a VM or container,
secure. System engineers should review PaaS security services
for valuable lessons when designing O-RAN security and
applications.

B. O-RAN Specific Security Recommendations

Unlike typical cloud deployments, one of the features of
O-RAN is enabling multiple vendors to provide different
functions. This creates additional challenges to principles such
as supply chain security, secure service administration, and
personnel security. This also means traditional appliances
such as external security gateways are infeasible in terms of
both CAPEX and OPEX to deploy between each and every
component of a distributed O-RAN system. Some of these
challenges could be mitigated through a strong governance
framework and appropriate visibility and auditing. On the
other hand, O-RAN’s stated goal of increasing automation and
using AI and ML naturally supports principles such as security
automation and flexibility.

Regardless of the cloud service architecture, there are many
existing cloud security frameworks that can be applied. For
example, the UK National Cyber Security Centre published
14 Cloud Security Principles [15], while Amazon AWS uses
7 Design Principles. A full discussion of all of these principles
is beyond the scope of this paper, but we will address a few of
the key principles that should be applied to O-RAN systems.
• Separation Between Customers. O-RAN deployments

must ensure separation between customers so that a malicious
or compromised component cannot affect the service or data
provided by another component. This responsibility belongs
to both cloud service providers to secure the hypervisor or
host OS and on developers providing new functionality, such
as ensuring xApps do not leak customer information to other
entities.
• Visibility and Auditing. O-RAN deployments should

also embrace visibility and auditing so that it is clear to all
parties who is responsible for what function and the actions
taken by each component can be traced. While visibility is
inherently present to a degree in open source deployments,
auditing is often overlooked. Further, as more complicated
intelligence is introduced to closed loop control, understanding
which component directed a particular action becomes both
more difficult and more necessary to secure each component.
One way to achieve this is to ensure the RICs maintains logs
of the control messages sent by each xApp and rApp.
• Security by Design. O-RAN must embrace security by

design at all layers of the O-RAN stack. Each component
in Fig. 1 should be built with security in mind from the
beginning. This can be especially challenging at the lower
levels such as the RU and DU where performance is at
a premium. There is always a trade off between security
and performance. However, starting with security as one of
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the necessary objectives for each block allows researchers to
optimize the solutions before deployment and before an attack.

VI. ADVANCING THE SECURITY FRAMEWORK

Our study serves as a foundational reference for future
O-RAN security research, highlighting vulnerabilities in its
components and demonstrating the efficacy of proposed meth-
ods through practical implementations. However, achieving
a completely secure O-RAN deployment requires further
research to build integral, in-depth, comprehensive security.
Future efforts should focus on securing the Open Fronthaul
and implementing a Zero Trust Architecture.
• Open Fronthaul. The Open Fronthaul includes the User

plane, Control plane, Sycnhronization plane, and Manage-
ment plane. While each of these planes has unique security
requirements, all of them require low latency. For example,
the synchronization plane does not require confidentiality, but
authentication and integrity are crucial for timing packets
crossing an insecure switched network. A man-in-the-middle
attack could insert, delete, modify, or replay these messages
causing a significant degradation or outage of service. En-
suring each plane provides the appropriate security function
without impacting the quality of services is an open problem.
• Zero Trust Architecture. Existing security models often

assume a high level of trust among entities, which doesn’t
align well with the O-RAN framework [4]. In contrast, Zero-
Trust Architectures (ZTA) align well with emerging 5G net-
work infrastructure [10]. ZTAs offer security assurances by
adopting a data-centric model rather than traditional perimeter-
based methods. This paradigm shift redefines networks as
platforms for distributed data management, emphasizing data
protection at every stage of the data cycle.

O-RAN presents an opportunity for implementing ZTA. Key
ZTA elements include dynamic risk assessment and continuous
trust evaluation. Researchers can leverage the AI/ML integra-
tion inherent in O-RAN for these tasks. Further development
and implementation of ZTA xApps and rApps should focus
on real-time monitoring, risk assessment, and ensure the
availability, integrity, and confidentiality of a dynamic, multi-
vendor, virtual O-RAN platform.

VII. CONCLUSIONS

In this article, we provide a holistic guideline for securing
an O-RAN system by classifying the potential targets as
open interfaces, data-driven decision making components, i.e.
intelligence, and cloud-based platforms. We indicate possible
threats and suggest how these can be addressed using various
methods. We then provide baseline implementation results
for open interfaces and intelligence in order to showcase the
impact of the few suggested solutions.

Specifically, we observed that the IPsec protocol, which is
the recommended security protocol for E2 interface by O-RAN
Alliance, has minimal affect on delay for encrypting packets
in the open interfaces, as the encryption adds a delay of less
than 50µs. However, encryption comes with a computation
cost, requiring higher CPU for increasing throughput. In our
environment, CPU utilization is the key cost to encryption.

Threats to the intelligence (i.e., AI/ML enabled RICs)
can come before and after deploying ML models. Security
measures for the intelligence include preventing, detecting,
and reacting to attacks. In this paper, we showcased an
implementation to mitigate data poisoning attacks against an
xApp that runs a DRL model using an autoencoder layer
before the input to the DRL. Our experiments revealed that
autoencoders can decrease the unexpected ML outputs for
scheduling and slicing by 30% and 70%, respectively.

Lastly, we provide security measure directions on the overall
platform, where we suggest researchers to focus on shared
cloud responsibility. In this model, the service providers and
users are responsible for securing the service and data, respec-
tively, which can be realized through a CWPP, for example.
We also highlight three key principles for O-RAN specific
cloud deployment, including separation between customers,
visibility and auditing, and security by design.
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