2024 IFIP Networking Conference (IFIP Networking)

Enabling Online Reinforcement Learning Training
for Open RAN

Andrea Lacava*t, Tommaso Pietrosanti’, Michele Polese*, Francesca Cuomo’, Tommaso Melodia*
*Institute for the Wireless Internet of Things, Northeastern University, Boston, MA, USA
TSapienza University of Rome, Rome, Italy
Email: {lacava.a, m.polese, t.melodia}@northeastern.edu

Email: pietrosanti.1994391 @studenti.uniromal.it, francesca.cuomo@uniromal.it

Abstract—The Open Radio Access Network (RAN) architec-
ture has introduced new elements in the RAN, i.e., the RAN
Intelligent Controllers (RICs), which allow for closed-loop control
of the physical infrastructure through custom, data-driven, intel-
ligent applications. At the near-real-time RIC, xApps access RAN
nodes through the E2 interface and offer the option to host tra-
ditional algorithms or data-driven Deep Reinforcement Learning
(DRL) agents to control and optimize RAN functionalities. The O-
RAN specifications suggest that Artificial Intelligence (AI) model
training should not be done on production RAN deployments
to avoid network disruptions and degradation in the Quality
of Experience (QoE) of the User Equipments (UEs), suggesting
the adoption of offline reinforcement learning. However, this
approach limits the exploration phase during training to the
static data that has already been collected, potentially affecting
the performance of the model and its generalization capabilities.
Therefore, a safe environment capable of supporting online
reinforcement learning is needed to overcome such constraints
and to allow AI agents to perform state explorations freely.
In this paper, we present a new control environment based
on Gymnasium (gym), a Python library for the creation of
reinforcement learning environments, and ns-O-RAN, a software
integration between a real-world near-real-time RIC and an
Network Simulator 3 (ns-3) simulated RAN, which exposes the
RAN Key Performance Indicators (KPIs) through a standardized
Application Programming Interface (API) ready to be used
by any solving approach. Leveraging ns-O-RAN, we create an
environment that dynamically captures the simulated O-RAN
telemetry, waits for the agent to compute a decision, receives and
delivers such control action to update the RAN configuration
in the underlying simulation, allowing the development and
test of models in safe and reproducible conditions. Finally,
our framework exposes an abstract API interface that can be
extended to support custom use cases to design AI agents and
to study the Radio Resource Management (RRM) issues of the
next generation of cellular networks.

Index Terms—Open RAN, ns-3, deep reinforcement learning,
artificial intelligence, gymnasium

I. INTRODUCTION

Despite the performance improvement introduced by 5Sth
generation (5G) cellular systems, the traditional monolithic
cellular infrastructure does not offer the flexibility to opti-
mize and control the Radio Access Network (RAN) at the
granularity needed by a specific User Equipments (UEs).
In recent years, the O-RAN ALLIANCE [1], a community

This work was partially supported by the U.S. National Science Foundation
under Grants CNS-2120447 and CNS-2112471.
ISBN 978-3-903176-63-8 © 2024 IFIP

of mobile operators, vendors, and academic institutions, has
begun to embrace the Open RAN paradigm and define open
specifications focused on agile and disaggregated architec-
tures. These architectures are based on softwarization and
virtualization to exploit the re-programmability of network
components, thereby improving Radio Resource Management
(RRM) and control of the RAN [2]. This new ecosystem
has created opportunities for standardized data collection and
dynamic control of the RAN parameters through the exchange
of messages over the O-RAN interfaces. Such messages enable
tight control loops between the RAN and the RAN Intelligent
Controller (RIC) to manage the behavior of the system through
control applications, called xApps for the near-real-time con-
trol granularity [3]. The xApps can implement heuristics or
data-driven approaches and are usually created by different
vendors [4]. This architecture paves the way for the use of
novel approaches, among with Deep Reinforcement Learning
(DRL), for various RRM use cases, such as traffic steering,
anomaly detection, energy saving, and more. To enable the
study of the possibilities introduced by the Open RAN ar-
chitecture, we created ns-O-RAN [5], the first open-source
simulation platform that combines a functional 3rd Generation
Partnership Project (3GPP) RAN 5G protocol stack in ns-3
with an O-RAN-compliant E2 interface. In real RAN deploy-
ments, the online DRL training is discouraged by the O-RAN
specifications [6], which identifies potential risks of outages
for the UEs associated with the natural exploration phase of
the DRL algorithms. In ns-O-RAN, UEs are simulated, making
our framework ideal for developing data-driven algorithms.
However, most implementations of these algorithms rely on
functions not exposed in ns-O-RAN, complicating their use,
especially for controlling the online DRL training process.
These functions are implemented through standard frameworks
such as Gymnasium (gym) [7], which provides a unified inter-
face for single-agent reinforcement learning environments. In
this paper, we expand the ns-O-RAN framework capabilities
to support online DRL by introducing a gym environment
that acts as an Application Programming Interface (API)
interface to ns-O-RAN.! To the best of our knowledge, our
work is the first gym-based DRL environment for Open RAN
powered by 3GPP-based radio channel models, leveraging the

Uhttps://github.com/wineslab/ns-o-ran-gym-environment

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 24,2024 at 18:46:16 UTC from IEEE Xplore. Restrictions apply.

978-3-903176-63-8/24/$31.00 ©2024 IEEE 5

2024 IFIP Networking Conference (IFIP Networking)

flexibility of ns-3. This allows researchers to compare the
effectiveness of various reinforcement learning algorithms in
a standardized manner across the same network optimization
problems. This integration offers several advantages. First,
it provides standardized access to the ns-O-RAN framework
since the gym APIs are the de facto standard in the scientific
community for reinforcement learning, facilitating the usage of
the ns-O-RAN framework with state-of-the-art DRL algorithm
frameworks. Second, the use of gym facilitates the adoption
of the environment by those familiar with its APIs, even
if they are not interested in the specific internals of ns-O-
RAN, thus providing abstraction and generalization to the
whole framework. Finally, the different classes implemented
in this integration improve and modularize data management
during the simulation, with specific tasks such as updating the
environment and synchronization between the agent and ns-3.
This ensures that the ns-O-RAN framework can be upgraded
without requiring changes to the model used for studying
its use cases. The main contributions of this paper are the
following:

o We describe the changes made in the ns-O-RAN codebase
to enable the synchronization between ns-3 and external
software;

o We present the NsOranBase environment, explain how
it is interfaced with the rest of the ns-3 framework, and
how can be extended to develop custom use cases;

o We implement a proof-of-work online environment for
the Traffic Steering use-case based on the problem for-
mulation of [8];

o We benchmark our implementation demonstrating that the
overhead caused by our code is minimal compared to the
usual performance of ns-O-RAN.

The remainder of the paper is organized as follows. Sec-
tion II reviews the state of the art for DRL and simu-
lated control environments for cellular networks. Section III
introduces the general architecture of the ns-O-RAN Gym
base environment, how it works and its general capabilities.
Section IV introduces the environment created for the Traffic
Steering use case and its features implemented, including
an analysis of the performance overhead. Finally, Section V
presents possible future works based on such framework and
the overall conclusion.

II. STATE OF THE ART
A. The Open RAN Architecture

Key principles of O-RAN are the disaggregation of the
standard network functions into different entities and the on-
demand re-programmability of these functions using open
standardized interfaces. The management of the different en-
tities in O-RAN takes place in the RIC, which acts as the
centralized abstraction of the network and is connected with
all the Base Stations (BSs) of a specific geographic area.
The O-RAN Alliance defines two different types of RIC: the
non-real-time RIC, which operates on a time scale longer
than 1s, and the near-real-time RIC, which operates on a

time scale between 10ms and 1s [9]. From a research point
of view, the collection of the Key Performance Indicators
(KPIs) from all the RAN borders in one place paves the
way for the construction of standardized virtual applications
to create Artificial Intelligence (Al)-enabled RRM agents to
be deployed through xApps.

B. Reinforcement Learning and Wireless Network Simulators

Deep Reinforcement Learning (DRL) is a class of Machine
Learning (ML) problems where an agent optimizes a math-
ematical function known as the reward, which quantifies the
performance of a system of interest referred to as the envi-
ronment. The agent’s goal is to derive an association, named
policy, between the different observations, named states, of the
environment and its reward, and to modify the environment
through its actions. Due to its adaptability, DRL has become
popular among wireless network researchers [10]. One of the
major challenges of DRL is the availability of datasets and
reliable baselines and the lack of commonly accepted APIs
makes reproducibility and validation of results difficult [11].
This is what motivated the creation of foundational frame-
works such as gym [7], which creates a standardized interface
that allows common access to heterogeneous environments,
from video games [12] to drones, and more,2 as well as
Stable-Baselines 3, a Python library that implements some of
the most important state-of-the-art DRL algorithms [13]. The
same challenge persists for DRL-based optimization problems
in wireless networks and especially in O-RAN, where the
deployment of untrained Al agents may be detrimental to the
final user experience and is, therefore, discouraged [6]. Similar
frameworks in the literature are mostly non-based on the Open
RAN E2 Service Model (SM) and are hard to transition from
a prototype to a real xApp. In [14], Schneider et al. propose
a minimal gym environment for autonomous coordination in
wireless mobile networks. Despite its versatility, this environ-
ment does not represent the wireless radio channels, especially
compared to other well-established network simulators such
as ns-3 and Omnet++. For this work, we chose ns-3 as our
simulator due to its accurate radio channel and protocol stack
models, as well as its extensibility. Some works in the past
have connected the power of ns-3 with the Gym interface [15],
[16]. These frameworks require major changes within the
simulation scenarios and are only for specific versions of ns-3,
making them not supported by ns-O-RAN.

C. ns-O-RAN primer

ns-O-RAN is the first open-source simulation platform
combining a functional LTE/5G protocol stack in ns-3 with an
O-RAN-compliant E2 interface [5]. This platform, alongside
the gym environment implemented in our work, forms part of
the OpenRAN Gym framework? [17], an experimental toolbox
for end-to-end design, data collection, and testing workflows
for intelligent control in next-generation Open RAN systems.
Thanks to these, researchers and network operators can test

Zhttps://gymnasium.farama.org/environments/third_party_environments/
3https://openrangym.com/

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 24,2024 at 18:46:16 UTC from IEEE Xplore. Restrictions apply.

5

2024 IFIP Networking Conference (IFIP Networking)

NsOranEnv

ActionController

-Attributes
o metadata: dict
o sim_process: subprocess.Popen
o metricsReadySemaphore: Semaphore
o controlSemaphore: Semaphore
o control_header: list
o log_file: str

TrafficSteeringEnv Method

Attribut

o directory: str
o log_filename: str
o control_filename: str
Methods
o __init_(sim_path: str, log_filename: str,
control_filename: str, header: dict)

ttribut
o observation_space: spaces.Box
o action_space: spaces.MultiDiscrete
Methods
o __init_ (ns3_path: str, scenario_configuration: dict,
output_folder: str, optimized: bool)
o _compute_action(action): list(tuple)
o _fill_datalake_usecase(): void
o _get_obs(): list
o _compute_reward(): float

o setup_sim()

o configure_and_build_ns3()
o start_sim()

o _set_nonblocking(fileobj)

o read_streams()

o is_simulation_over() -> bool

o _fill_datalake()

o _get_obs() -> list «abstract»

o _compute_reward() «abstract»

o _fill_datalake_usecase() «abstract»
o _get_info() -> dict

o render()

o close()

o __init__(render_mode: str=None, ns3_path: str=None, scenario: str=None,
scenario_configuration: dict=None, output_folder: str=None,
optimized: bool=True, skip_configuration: bool=False,
control_header: list = [], log_file: str = ", control_file: str = ")

o reset(seed: int | None = None, options: dict[str, Any] | None = None)
o step(action: object) -> tuple[object, SupportsFloat, bool, bool, dict[str, Any]]

o _compute_action(action) -> list[tuple] «abstract»

o create_control_action(timestamp: int, actions: list[tuple])

Datalake

Attribute
o connection: sqlite3.Connection
o cursor: sqlite3.Cursor
Methods
o __init__(simulation_dir: str, num_ues_gnb: int, debug: bool)
© acquire_connection(): bool
o release_connection(): bool
o sanitize_column_name(column_name: str): str

o _create_table(table_name: str, columns: dict)

o entry_exists(table_name: str, timestamp: int,
ue_imsi_complete: int): bool

o insert_Ite_cu_cp(data: dict)

o insert_gnb_cu_cp(data: dict)

o insert_|te_cu_up(data: dict)

e insert_gnb_cu_up(data: dict)

o insert_du(data: dict)

o insert_data(table_name: str, data: dict)

o read_table(table_name: str): list

o read_kpms(timestamp: int, required_kpms: list): list
o extract_cellld(filepath: str): int

Fig. 1: Simplified Unified Modeling Language (UML) Diagram of the ns-O-RAN and the Traffic Steering environments

applications in a safe environment, collect data on a large
scale, and design and train data-driven approaches for the
RRM. ns-O-RAN has been specifically designed to integrate
the O-RAN RIC with large-scale 5G simulations using 3GPP
radio channel models. This integration enables the collection
of RAN Key Performance Measurements (KPMs) across var-
ious simulated scenarios and applications, such as multimedia
streaming, web browsing, wireless virtual reality, and more.
ns-O-RAN supports E2SM-KPMs monitoring [18] and E2SM-
RAN Control (RC) [19] functionalities. The framework is
composed of three main software:

e the e2sim module, which is responsible of the man-
agement of the connection between ns-3 and RIC, the
encoding and decoding of the E2 Application Protocol
(AP), and the delivery of E2 SM messages;

o the ns—-0O-RAN module, which is responsible of intercon-
nect ns-3 with e2sim;

e the mmWave module, which we extended to extract the
RAN features compliant with the O-RAN specifications.

ns-O-RAN enables the simulated BSs to exchange messages
with a near-real-time RIC that follows the same E2 protocol.
ns-O-RAN has two modes of operation: (i) bridged, where an
active E2 connection to a near-real-time RIC is needed, and
(ii) stand-alone, where simulation-generated metrics can be
collected by logging into files and no connection is required.
The RC can be achieved in both modes. In the bridged mode,
the E2 SM RC messages are created in the RIC and delivered
to the e2sim RAN termination that will subsequently trigger
a callback based on the RAN function identifier. In the stand-
alone mode, the same control is file-based, thus an external
process is supposed to write the actions to be implemented in
the network in a dedicated file, specific per use case. In this
work, we exploit the stand-alone mode of ns-O-RAN to create
a gym environment that enables the possibility of performing
online training and testing of data-driven solutions for network

and RRM optimization problems.

III. SYSTEM OVERVIEW
A. NsOranEnv: the ns-O-RAN base environment

ns-O-RAN was not designed as a DRL framework for
a specific RRM scenario, but as a library that can support
different use cases with different observation spaces, control
types, and rewards. Such flexibility cannot be provided directly
by a single environment, thus we design an abstract middle
layer responsible for handling all communications between
the controller and the ns-3 module. The NsOranEnv class
is an abstract base class for creating environments compli-
ant with the gym framework, specifically designed for ns-
O-RAN simulations. This class provides a structured way
to initialize, configure, and manage the ns-3 simulations,
facilitating the integration of DRL algorithms. A review of
the main classes implemented is shown in the UML diagram
of Fig. 1. The NsOranEnv class leverages the Datalake
and ActionController classes, which are responsible for
extracting data from the simulation and delivering actions
generated by the controller, respectively.

The Datalake is a Python wrapper for a SQLite database
that stores the KPMs generated by ns-O-RAN and works on
an independent thread. This database is utilized to leverage
the agent’s control action based on the current simulation
state. Each time the environment is reset, a new simulation
starts, and thus a new database is created. All implemented
KPMs in ns-O-RAN are saved in the database, regardless of
the environment’s observation set. The list of KPMs related to
a specific use case can be accessed using the read_kpms ()
method, which takes as input the timestamp and the list of
required features and returns the per-UE KPMs.

The agent then writes the action on the shared con-
trol file through the ActionController, which cre-
ates and updates the file that will be read and parsed

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 24,2024 at 18:46:16 UTC from IEEE Xplore. Restrictions apply.

5

2024 IFIP Networking Conference (IFIP Networking)

by the stand-alone mode of ns-O-RAN. The control action
is specific per use case. Indeed, the abstract NsOranEnv
class provides four methods that another class must over-
ride, e.g., TrafficSteeringEnv presented in Section IV,
for the environment to function properly. These methods
implement a specific use case since the data they re-
turn depends on the optimization problem being studied:
(i) _get_obs (), which returns the observation state; (ii)
_compute_reward (), which returns the reward function
based on the observation state; (iii) _compute_action (),
which is a helper function that converts the agent’s action
defined in gym into the format required by ns-O-RAN be-
fore triggering the ActionController class, and (iv)
_fill datalake_usecase (), which is a function used
to capture additional data from ns-O-RAN and store it in the
Datalake. Any additional data definition must always use
the ns-O-RAN timestamp and the UE International Mobile
Subscriber Identity (IMSI) as primary keys. This last function
is optional, so it does not throw an exception if not imple-
mented. Finally, the NsOranEnv can reconfigure the ns-3
framework, allowing the user to decide whether to use an
optimized or a debug build of ns-3. Part of the codebase that
handles the reconfiguration and the start of the simulation has
been ported from Simulation Execution Manager (SEM), a
framework that enables large-scale data collection campaigns
for ns-3 [20].

B. Synchronization of the Gymnasium environment with ns-3

[Environment] [ns-O-RAN] [Datalake] [ActionControIIer]
| env.reset()

|
_— >
I |
| Create

I
| Create
h

I
I
|
| | start_simulation

| St _SIMutation
I h
I

| hew_state
>

I h
_ initial_state_kpm
h T

I
' initial_state_kpms

| |
loop / [while done is not True]
\

T T
| env.step(action) | | |
— > I I

I
|

i | generate_control_action(action) | |
T T]

I

I

i

| | _ implement_ action(action)
L MPIEMENt, actiontaction) .
I T
I

i
| new_state _,
NEW_state
h

I
| _hew_state

I)
| new_state, reward, done |
1 NEWS1atE, reward, done

: env.close() : :
—_——> I
| | close() |
' —>»
i | close() |

| close()

Fig. 2: Activity diagram with the agent and the environment

[Environment l [ns-O-RAN] [Datalake] [ActionControlIer]

The ns-O-RAN framework is based mainly on ns-3, which
is a discrete-time simulator where each network event is
associated with a function and a timestamp that indicates when
the event should be executed. Events with the same timestamp
are executed with a First In First Out (FIFO) mechanism,
preserving the happened-before relationship in ns-3. Moreover,

the simulator is a single-core process that can be extended
with callbacks based on the C++ multi-threading system,
but it was not designed to accept external inputs to ensure
the reproducibility of each single simulation upon the same
random seed. This restriction does not apply to DRL since the
reproducibility of a result in a real or pseudo-real environment
is based on a statistical evaluation and not on individual
simulations, except in the case where the environment is
deterministic. Fig. 2 illustrates the interactions between an
external agent and all components of the environment. Each
time the agent resets the environment, a new simulation is
initiated and continues until the first set of KPMs is generated.
The periodicity of the KPMs generation coincides with the E2
SM KPM Indication Message Periodicity [18]. After retrieving
the data, the environment parses it based on the observation
space and sends it to the agent, which then computes an action
according to the defined action space. In our gym environment,
the NsOranEnv creates and manages the simulation. The
scenario to be simulated is defined on the ns-3 side, while the
parameters of the single simulation can be changed directly
from the environment. In this way, we have two different
processes performing I/O operations over the same files, so
it is important to synchronize them to avoid possible race
conditions. Such synchronization is achieved through the use
of two different named semaphores, one that signals when
the metrics are ready to be read from the environment and
written into the Datalake, and the other that signals to
the simulation when the ActionController has finished
writing the E2 SM RC Control Message to the control file, thus
delivering the action to ns-O-RAN. Both the semaphores are
created at the beginning of the simulation and destroyed when
the environment is closed, either by calling the close () or
the reset () methods. The semaphore for Control Action
delivery is blocking, while the other is non-blocking and
embedded in a loop that waits for new metrics to become
available. Inside the loop, the semaphore attempts to access the
shared files within a 10-second window. If access is granted,
the loop breaks and the metrics are extracted. If the window
times out, the environment checks if the simulation process is
still active. If the simulation has ended, it transitions to the
final state and initiates closing procedures. Following the gym
APIs, each call to the step () method returns two additional
boolean values: one indicating if the environment is closed and
another specifying whether the closure was due to truncation
or natural termination of the simulation. Since there is no
natural closure condition in a RAN optimization problem, we
always return the truncated boolean variable as true, and since
ns-3 imposes a simulation time limit that can be dynamically
changed by the user [21]. In the literature, another case that
predicts truncation as true occurs when the conditions of the
Markovian Decision Process (MDP) are violated, which is
what we return if the simulation ends with an error. In this
scenario, the environment sets the termination variable to false
and displays the error and the simulation’s return code.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 24,2024 at 18:46:16 UTC from IEEE Xplore. Restrictions apply.

5

2024 IFIP Networking Conference (IFIP Networking)

IV. TRAFFIC STEERING IMPLEMENTATION

In this section, we present an example of a gym environment
that extends the NsOranEnv class to a specific use case
by defining all the necessary components that form a MDP
for an Open RAN-based RRM optimization problem, thus
proving our framework as a practical way to design and study
DRL problems using online algorithms. Furthermore, we use
the same environment to benchmark the performance of the
framework and show that the time overhead introduced by the
gym APIs is negligible compared to the computation time of
the simulation. We implement the environment for the O-RAN
Traffic Steering use case, the optimization problem definition
and the reference scenario from [8].

A. Simulation Scenario

4000

NR gNB NR gNB
3000
” LTE eNB +
2 NR gNB
()
€000 NRENB NR gNB
1000
NR gNB NR gNB
% 1000 2000 3000 4000

meters

Fig. 3: Simulation scenario implemented for TrafficSteeringEnv class

We reproduce a 5G Non Stand Alone (NSA) scenario with
one primary evolved Node Base (eNB) cell and seven sec-
ondary Next Generation Node Bases (gNBs) cells, as shown
in Fig. 3. The eNB is placed at the center of the scenario
and is co-located with one gNB, while the remaining gNBs
are placed at a fixed inter-site distance of 1000 m from the
center. Each UE is initially located close to a gNB, with
exact coordinates defined using a uniform distribution. Notable
tunable parameters in the scenario configuration include the E2
Indication Periodicity, simulation time, number of UEs per-
gNB, and size of the Physical Resource Block (PRB) buffer.

To benchmark our environment, we make the UEs request
downlink traffic from a remote server with a mixture of four
traffic models: Full Buffer, Bursty, Half Full/Half Bursty, and
Mixed. The Full Buffer model simulates Maximum Bit Rate
(MBR) traffic with a maximum data rate of 20 Mbit/s, rep-
resenting file transfer or synchronization with cloud services.
The Bursty model represents traffic with an average data rate
of 3 Mbit/s, modeling video streaming applications. The Half
Full/Half Bursty model includes 50% of UEs with Full buffer
traffic and 50% with Bursty traffic. The Mixed model includes
25% Full Buffer, 25% Bursty at 3 Mbps, 25% Bursty at 750
Kbit/s, and 25% Bursty at 150 Kbit/s, representing a range
of applications from web browsing and instant messaging to
phone calls. More details about the implemented scenario can
be found in the original paper [8].

B. Extending the NsOranEnv Environment

The NsOranEnv must be extended with additional in-
formation to shape a specific MDP network optimization
problem. In particular, the extended entity shall describe:

1) the action space, which represents the set of possible
commands that the agent can execute on the network;

2) the observation space, which describes the elements that
the agent can analyze to generate the action;

3) the reward that returns feedback to the agent of the
impact that the action it previously sent has on the

system.
Following these principles, we present
TrafficSteeringEnv, a class implementing the

Traffic Steering use case. In this environment, we extend the
abstract methods of NsOranEnv according to the problem
specifications. Indeed, we define the action space as a
multi-discrete variable [U, A], where U is the number of the
UEs in the simulation and A represents the action each UE
can take at each E2 indication periodicity. Specifically, A
is a discrete variable with cardinality equal to the number
of gNBs in the scenario minus two. In this way, each value
[u,a] of A, represents the association between the u-th UE
with the a + 2-th gNB id, including the solution where
a = 0, meaning that no handover shall be performed for
that particular UE. The action space can be converted into a
discrete variable with U x A cardinality, where each value
is mapped to a single tuple of the original variable. The
observation space is a set of selected per-UE and per-cell
KPMs that are extracted using the Datalake. Finally, the
reward for UE u is the logarithmic throughput between the
actual and the last E2 Indication periodicity minus a fixed
cost factor representing the mobility overhead. The reward is
positive, if the improvement in the log-throughput is higher
than its cost, and negative, otherwise.

C. Performance evaluation

We study the impact of our environment on the overall
simulation. The implementation of additional code and the
management of the environment brings a cost in the perfor-
mance of ns-3. We define the elapsed time as the total duration
from when the environment is reset to when it is closed, and
the overhead as the additional time spent by the program on
operations related to the gym environment and semaphore
sleeps. Fig. 4a illustrates the time required in minutes for
different numbers of UEs per-cell across these traffic models.
As the number of UEs increases, the time required also
increases. The Full buffer model consistently requires more
time, followed by the Half Full/Half Bursty and Mixed models,
with the Bursty model requiring the least time. Fig. 4b shows
the time overhead introduced with the gym environment. In
this case, the y-axis is in milliseconds and clearly shows
that as the number of UEs in the simulation increases, the
overhead increases proportionally, with no significant variation
related to the traffic model. This behavior is consistent with
expectations, as an increasing number of UEs in the simulation

Authorized licensed use limited to: University of Texas at Austin. Downloadeg §n18eptember 24,2024 at 18:46:16 UTC from IEEE Xplore. Restrictions apply.

2024 IFIP Networking Conference (IFIP Networking)

—— Half Full / Half Bursty
25 Mixed
—e— Bursty
—— Full buffer

Time [mins]

Time [ms]

Half Full / Half Bursty
Mixed

Bursty

Full buffer

2 3 4 5 6 7 8 9 10

Number of UEs per cell

(a) Total elapsed time for executing a simulation

2 3 4 5 6 7
Number of UEs per cell

3
©

10

(b) Time spent outside the simulation due to the processes of the gym environment

Fig. 4: Measurements of the simulation time in minutes compared to the overhead caused by the gym environment in milliseconds

results in more data generated by the framework for per-

UE
the

KPM reports, thus increasing the workload handled by
environment. Overall, the overhead is significantly lower

(nanoseconds vs. minutes) compared to the time required for

the

simulation, making the impact of the gym environment on

performance negligible.

V. CONCLUSIONS

In this paper, we presented a novel gym Environment that
embeds ns-O-RAN and exposes a standardized APIs capable
of supporting the current state-of-the-art frameworks for DRL.
Future work includes extending this framework with new use
cases such as energy saving, network slicing, and others, to
establish ns-O-RAN as the definitive testing benchmark for
intelligent cellular networks within the O-RAN architecture.

(1]

(2]

(4]

[5]

(6]

(71

(8]

REFERENCES

C. Ziqi and I. Chih-Lin, “O-ran alliance vertical industry whitepaper,”
Dec. 2023. [Online]. Available: https://mediastorage.o-ran.org/white-
papers/O-RAN.WGH . Vertical-Industry-White-Paper-2023-12.pdf

L. Bonati, M. Polese, S. D’Oro, S. Basagni, and
T. Melodia, “Open, Programmable, and Virtualized 5G
Networks: State-of-the-Art and the Road Ahead,” Computer
Networks, vol. 182, p. 107516, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128620311786
M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “ColO-
RAN: Developing Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental Platforms,” IEEE
Transactions on Mobile Computing, pp. 1-14, July 2022.

O-RAN Working Group 1, “O-RAN Architecture Description 5.00,” O-
RAN.WG1.0-RAN-Architecture-Description-v05.00 Technical Specifi-
cation, July 2021.

A. Lacava, M. Bordin, M. Polese, R. Sivaraj, T. Zugno, F. Cuomo,
and T. Melodia, “ns-o-ran: Simulating o-ran 5g systems in ns-3,” in
Proceedings of the 2023 Workshop on ns-3, 2023, pp. 35-44.

O-RAN Working Group 2, “O-RAN AI/ML workflow description and
requirements 1.03,” O-RAN.WG2.AIML-v01.03 Technical Specifica-
tion, July 2021.

M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d.
Cola, T. Deleu, M. Gouldo, A. Kallinteris, A. KG, M. Krimmel,
R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen,
and O. G. Younis, “Gymnasium,” Mar. 2023. [Online]. Available:
https://zenodo.org/record/8127025

A. Lacava, M. Polese, R. Sivaraj, R. Soundrarajan, B. S. Bhati, T. Singh,
T. Zugno, F. Cuomo, and T. Melodia, “Programmable and customized
intelligence for traffic steering in 5g networks using open ran archi-
tectures,” IEEE Transactions on Mobile Computing, vol. 23, no. 4, pp.
2882-2897, 2024.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Under-
standing O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” IEEE Communications Surveys & Tutorials,
vol. 25, no. 2, pp. 1376-1411, 2023.

S. Ergun, I. Sammour, and G. Chalhoub, “A survey on how
network simulators serve reinforcement learning in wireless networks,”
Computer Networks, vol. 234, p. 109934, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128623003791

F. Felten, L. N. Alegre, A. Nowe, A. Bazzan, E. G. Talbi, G. Danoy,
and B. C. da Silva, “A toolkit for reliable benchmarking and research in
multi-objective reinforcement learning,” in Advances in Neural Informa-
tion Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, Eds., vol. 36. Curran Associates, Inc., 2023,
pp- 23671-23700.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253-279, 2013.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1-8,
2021.

S. Schneider, S. Werner, R. Khalili, A. Hecker, and H. Karl, “mobile-
env: An open platform for reinforcement learning in wireless mobile net-
works,” in Network Operations and Management Symposium (NOMS).
IEEE/IFIP, 2022.

P. Gawtowicz and A. Zubow, “Ns-3 meets openai gym: The playground
for machine learning in networking research,” in Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, 2019, pp. 113-120.

Yin, Hao and Liu, Pengyu and Liu, Keshu and Cao, Liu and
Zhang, Lytianyang and Gao, Yayu and Hei, Xiaojun, “Ns3-ai:
Fostering artificial intelligence algorithms for networking research,”
in Proceedings of the 2020 Workshop on Ns-3, ser. WNS3 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
57-64. [Online]. Available: https://doi.org/10.1145/3389400.3389404
L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Openran
gym: An open toolbox for data collection and experimentation with
ai in o-ran,” in 2022 IEEE Wireless Communications and Networking
Conference (WCNC). 1EEE, 2022, pp. 518-523.

O-RAN Working Group 3, “O-RAN near-real-time RAN intelligent
controller E2 service model (E2SM) KPM 2.0,” ORAN-WG3.E2SM-
KPM-v02.00 Technical Specification, July 2021.

——, “O-RAN near-real-time RAN intelligent controller E2 service
model, ran control 1.0,” ORAN-WG3.E2SM-RC-v01.00 Technical Spec-
ification, July 2021.

D. Magrin, D. Zhou, and M. Zorzi, “A simulation execution manager
for ns-3: Encouraging reproducibility and simplifying statistical analysis
of ns-3 simulations,” in Proceedings of the 22nd International ACM
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2019, pp. 121-125.

F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits
in reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2018, pp. 4045-4054.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 24,2024 at 18:46:16 UTC from IEEE Xplore. Restrictions apply.

5

