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ABSTRACT
Because of the ever-growing amount of wireless consumers,
spectrum-sharing techniques have been increasingly com-
mon in the wireless ecosystem, with the main goal of avoid-
ing harmful interference to coexisting communication sys-
tems. This is evenmore important when considering systems,
such as nautical and aerial �eet radars, in which incum-
bent radios operate mission-critical communication links.
To study, develop, and validate these solutions, adequate
platforms, such as the Colosseum wireless network emula-
tor, are key as they enable experimentation with spectrum-
sharing heterogeneous radio technologies in controlled envi-
ronments. In this work, we demonstrate how Colosseum can
be used to twin commercial radio waveforms to evaluate the
coexistence of such technologies in complex wireless propa-
gation environments. To this aim, we create a high-�delity
spectrum-sharing scenario on Colosseum to evaluate the
impact of twinned commercial radar waveforms on a cellular
network operating in the CBRS band. Then, we leverage IQ
samples collected on the testbed to train a machine learning
agent that runs at the base station to detect the presence of
incumbent radar transmissions and vacate the bandwidth to
avoid causing them harmful interference. Our results show
an average detection accuracy of 88%, with accuracy above
90% in SNR regimes above 0 dB and SINR regimes above
�20 dB, and with an average detection time of 137ms.

CCS CONCEPTS
• Networks! Network experimentation; Network per-
formance analysis.
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1 INTRODUCTION
The evolution of wireless technology has resulted in the
ever-increasing complexity of wireless systems design. New
generations of wireless networks have become more chal-
lenging to manage due to requirements necessitating opti-
mal sharing of valuable resources between expanding sets
of users. These challenges force researchers to think beyond
traditional model-based approaches that are often limited to
a speci�c problem scope and move toward Arti�cial Intel-
ligence (AI) solutions that o�er superior performance in a
wider range of conditions (e.g., channel conditions in this
context) thanks to their data-driven nature.
The advancements of AI-based solutions pave the way

for more e�cient use of the limited Radio Frequency (RF)
spectrum, enabling multiple wireless systems to coexist har-
moniously and cater to the growing demands of the digital
era. Besides these bene�ts, challenges still exist regarding
the potential interference between wireless networks that
share the same spectrum. These mostly concern the adverse
impact of such networks on incumbent radios with critical
safety communication links [11]. One example is the poten-
tial interference of 5G Radio Access Networks (RANs) on the
incumbent radar communications in the RF band ranging
between 3.55 GHz and 3.7 GHz. This necessitates thorough
study, research, and development of mitigation strategies to
ensure the reliable operation of both systems, i.e., seamless
communication of cellular networks while avoiding harmful
interference to incumbent radar systems within nautical and
aerial �eets [4]. In the context of Open RAN, the AI/Machine
Learning (ML) agents can be deployed in the RAN Intelligent
Controllers (RICs) proposed by O-RAN [16], i.e., as xApps
and rApps, or at the Base Station (BS) directly as dApps [5].
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A use case of interest with such applications is to optimize
the spectrum utilization and mitigate interference between
coexisting wireless systems such as next-generation cellular,
incumbent, or unlicensed radios [1]. However, these meth-
ods require an abundance of high-quality data to train ef-
fective ML models making them applicable to limited case
studies that are often not scalable. Gathering diverse and
representative datasets that capture real-world scenarios can
be time-consuming and resource-intensive, but is crucial for
achieving accurate and robust AI algorithm performance. As
an alternative, high-�delity emulation-based platforms can
provide similar-quality data while o�ering several bene�ts
compared to experimental setups: they are cost-e�ective,
time-e�cient, reproducible, and readily scalable [3]. In the
context of incumbent radios and communication links, such
as nautical and aerial �eets, safety is of paramount impor-
tance, and non-carefully planned real-world experiments
can endanger critical operations. Emulation platforms allow
researchers to simulate interference scenarios and evaluate
their impact without posing any actual risk to operational
systems. However, collecting high-�delity data not only re-
quires an emulation platform that replicates the real wireless
environment, but it also needs high-precision replicas of
wireless nodes (core network, BS, and User Equipment (UE))
that can reliably reproduce the network protocols and wire-
less waveforms to represent what happens in real-world
deployments—a true wireless digital twin [22]. Prior works,
however, generate datasets that are not always able to cap-
ture high-�delity and diverse environments, or that leverage
synthetic waveforms that are not representative of commer-
cial radios. This may result in impractical AI models, whose
performance substantially degrades when deployed in the
real-world [7, 24, 25].

In this work, we develop a framework to emulate a spectrum-
sharing scenario with cellular and radar nodes implemented
in a high-�delity digital twin system that can be reliably used
to collect data, train AI networks, and test them in realistic
scenarios. We implement this framework on Colosseum, the
world’s largest wireless network emulator with hardware-
in-the-loop [3]. We collect In-phase and Quadrature (IQ)
samples of radar and cellular communications and train a
Convolutional Neural Network (CNN) that can be deployed
as a dApp to detect the presence of radar signals and notify
the RAN to stop operations to eliminate the interference on
the incumbent radar communications. Our experimental re-
sults show an average accuracy of 88%, with accuracy above
90% in Signal-to-Noise-Ratio (SNR) regimes above 0 dB and
Signal to Interference plus Noise Ratio (SINR) regimes above
�20 dB. Through timing experiments, we also experience
an average detection time of 137ms. This demonstrates the
e�ectiveness of our system in detecting in-band interference
in the Citizens Broadband Radio Service (CBRS) band, as

it complies both with maximum timing requirements (60 s)
and accuracy (99% within the 60 s time window) [9].
The remaining of this paper is organized as follows. Sec-

tion 2 overviews the Colosseum wireless network emula-
tor. Section 3 details the integration of commercial radar
technologies on Colosseum, as well as a spectrum-sharing
scenario for the coexistence of cellular and radar signals. Sec-
tion 4 details our intelligent radar detection use case, while
Section 5 discusses our results. Section 6 concludes the paper.

2 PRIMER ON COLOSSEUM
Colosseum is the world’s largest wireless network emulator
with hardware-in-the-loop hosted at Northeastern Univer-
sity and part of the Platforms for Advanced Wireless Re-
search (PAWR) Project [3, 15]. It consists of 256 NI/Ettus
USRP X310 Software-de�ned Radios (SDRs), each equipped
with two UBX-160 daughterboards able to irradiate signals
between 10MHz and 6 GHz. Half of the SDRs are allocated
to the users and remotely accessible to carry out experiments
on the system. This is done through the use of so-called Stan-
dard Radio Nodes (SRNs)—a combination of a high-compute
server (48-core Intel Xeon E5-2650 CPUs with 126 GB of
RAM) and an SDR interfaced through a 10 Gbps connection—
that the users of the system can reserve and program through
softwarized Linux Containers (LXCs). The other half is allo-
cated to the Massive Channel Emulator (MCHEM), which is
in charge of truthfully reproducing the conditions of hetero-
geneous wireless environments that the users can leverage
in their SDR-based experiments. This is done through Fi-
nite Impulse Response (FIR) �lters implemented through
an array of 64 Virtex-7 690T FPGAs. When users transmit
with Colosseum SRNs, the RF waveforms generated by the
SDRs do not travel over the air but are sent to the MCHEM
SDRs via coaxial cables. This component, then, leverages the
above-mentioned FIR �lters to apply the channel conditions—
expressed as a series of channel taps—to the signals generated
by the users, and then transmit the signals resulting from this
processing operation to the other SRNs. Practically, channel
taps are organized in a series of RF scenarios that the users
can choose fromwhen performing their experiments. Scenar-
ios and taps are computed beforehand, e.g., through on-site
measurements or software-based like ray-tracers [19, 22],
installed on the Colosseum system, and made publicly avail-
able to the users. Through them, users can prototype and
evaluate di�erent protocol stacks and waveforms with di�er-
ent channel conditions and node mobility—including e�ects
such as fading, path loss, shadowing, di�erent speeds, and
movement trajectories—as if the radios were transmitting in
the real-world environment that is emulated on the testbed.

Waveform Twinning. Through the use of software con-
tainers, users can twin waveforms on the Colosseum SRNs.
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This process is shown at a high-level in Figure 1. First, the
waveform is either recorded from a real-world transmission
(e.g., radar, Wi-Fi, or cellular transmission) or synthetically
generated. The waveform is imported on Colosseum and
interfaced with the softwarized LXC container running on
Colosseum SRN. It is then transmitted by the SRN USRP to
the other nodes of the experiment through MCHEM. At the
end of the experiment, data is collected and analyzed for
post-processing purposes. Finally, it is worth noticing this
procedure can be repeated on Colosseum for the �ne-tuning
of designed user solutions and their validation, thus allowing
reproducible experiments to be carried out on the testbed.

Transmit w/ USRP 
through MCHEM

Interface w/ SRN
Softwarized Container

Data
AnalysisRecord Waveform

Waveform Twinning

USRP X310

Container

Reproducible Experiments

Figure 1: Waveform twinning on Colosseum.

3 COEXISTENCE OF CELLULAR AND
RADAR TECHNOLOGIES IN CBRS BAND

In this section, we consider the use case of 4G/5G RANs
transmitting in the CBRS band that needs to vacate said
bandwidth because of an incoming radar transmission. CBRS
regulations allow commercial broadband access to the RF
spectrum ranging from 3.55 GHz to 3.7 GHz, as depicted in
the Code of Federal Regulations (CFR) [13]. This spectrum
is shared with various incumbents, including the U.S. mili-
tary, which operates radar systems in this frequency range,
e.g., shipborne radars along the U.S. coasts. According to
the regulations, dynamic access to the spectrum is permit-
ted as long as the network is able to detect the presence
of the radar and activates interference mitigation measures
when necessary [4]. As it will be described in Section 4, BSs
leverage AI/ML agents —that can run as dApps— to perform
inference on the received IQ samples and detect incoming
radar transmissions, which will be described in Section 3.1.
Once detected, BSs can either move to an unused bandwidth,
if any, or terminate any ongoing communication to give
priority to the radar. To e�ectively study this use case in
the Colosseum wireless network emulator, we developed an
RF propagation environment—located in the Waikiki Beach
in Honolulu, Hawaii, described in Section 3.2—in which a
coastline BS working in the CBRS bandwidth needs to vacate
said bandwidth due to the start of radar transmissions from
a boat moving in the North Paci�c Ocean.

3.1 Radar Characterization
Radar systems leverage re�ections of RF electromagnetic
signals from a target to infer information on such target [12].

Typical informationmay include detection, tracking, localiza-
tion, recognition, and composition of the target, which may
include aircraft, ships, spacecraft, vehicles, astronomical bod-
ies, animals, and weather phenomena. Even though radar’s
primary uses were mainly related to military applications,
nowadays this technology is commonly used in other areas,
such as weather forecasting, and automotive applications.
In this work, we leverage a weather radar that combines

techniques typical of continuous-wave radars, e.g., pulse-
timing to compute the distance of the target, and of pulse
radars, like the Doppler e�ect of the returned signal to estab-
lish the velocity of the moving target [6]. Note that similar
considerations can be applied to any other radar or wave-
form type, and the radar signal considered in this work is
a use-case study (without loss of generality) to showcase
Colosseum capabilities. Our radar operates in the S-Band,
typically located within the [3.0, 3.8] GHz frequency range.
The signal has been synthetically generated as a collection of
IQ samples and timestamps, with a sampling rate of 6MS/s
and 106657 sampling points for a total duration of 17.8ms.
Figure 2 shows some characterization of the radar signal.
Figure 2a depicts the Power Spectral Density (PSD) of the
radar. Figure 2b displays the constellation diagram of the
transmitted signal. We notice that the signal lies only in the
�rst quadrant of the IQ-plane, which is typical of some radars.
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Figure 2: Radar characterization with PSD and constellation plots.

Figure 3 shows the various operations that we developed to
integrate an arbitrary waveform (radar in this case) into the
Colosseum environment. In the �rst step, the radar signal is
generated either through a hardware device or in a synthetic
manner. The output of this step is a raw signal formed of IQ
samples for given time instances, which in our case is stored
in a .csv �le. The raw data is then processed to convert it
into a format that can be interpreted by Colosseum. We use
MATLAB to read the .csv raw signal and generate a .iq �le
with the array of IQ values sequentially saved in a float32
format. Finally, the newly created .iq �le is transmitted in
the Colosseum environment by leveraging the open-source
CaST framework, which is based on GNU Radio [8, 22]. For
the purpose of this work, CaST has been modi�ed to include
a File Source block that allows us to load the .iq �le on the
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UHD: USRP Sink

MCHEM

Colosseum
CaST

File Source

To Active SRNs

Data Processing

iq

float32

Raw SignalRadar

Figure 3: Block diagram of the operations needed to integrate the
radar signal in Colosseum.

Colosseum system. The signal is then passed through an
UHD: USRP Sink block, which connects to the USRP SDR in
Colosseum, and transmits the signal over MCHEM to the
other SRNs.

Figure 4 shows the radar signal transmitted on the Colos-
seum wireless network emulator through CaST and received
by another SRN. Figure 4a displays real and imaginary parts
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Figure 4: Results of a radar transmission through CaST.

of the raw radar waveform at the receiver node, while Fig-
ure 4b the correlation between the original radar signal and
the received waveform. We notice that the correlation values
are clearly visible, meaning that the radar signal is correctly
transmitted and detected at the receiver side. We also notice
a periodic jigsaw trend in the correlation results. This be-
havior is due to the large length of the transmitted radar IQ
sequence (106657 complex points). Upon performing the cor-
relation operation, the length of the sequence causes peaks
at the beginning of the sequence, as well as valleys because
of leftover samples from the correlation.

3.2 ColosseumWaikiki Beach Scenario
To validate our use case on Colosseum, we created a novel
RF scenario that emulates the propagation environment of
Waikiki Beach in Honolulu, Hawaii. This scenario involves
a BS—whose location was taken from the OpenCelliD data-
base [20] of real-world cellular deployments—that serves
6 UEs, and a radar-equipped ship that moves in the North

Identify
Location

Obtain
3D Model
from OSM

Load in
Matlab

Ray-tracer

Set Nodes &
Trajectories

Sample
Channels

Parse
Output

Approximate
Channels

Install
Scenario

Modeling Emulation

Figure 5: CaST scenario creation toolchain blocks diagram. Figure
adapted from [22].

Paci�c Ocean. This scenario was created with the CaST
toolchain [22] following the steps of Figure 5.
In the �rst step, we identify the scenario location. Since

we are considering a ship node for the radar, we choose the
coastal area of Waikiki Beach in Honolulu, Hawaii. Next, we
obtain the 3D model of the selected location through the
Open Street Map (OSM) tool [14]. We generate an .osm �le
of a rectangular area of about 700 ⇥ 800 m2, which includes
Waikiki Beach, nearby buildings, and skyscrapers, as well as
a portion of the ocean. We then load the 3D model into the
MATLAB ray-tracer, and de�ne the nodes of our scenario
(shown in Figure 6) as well as their trajectories.

BS-01

UE-02

UE-03

UE-04
UE-05

UE-06

UE-07

Ship-08

100 m
300 ft

Figure 6: Location of the nodes in the Waikiki Beach scenario.

Our nodes are as follows.
• One cellular BS (red circle in Figure 6), whose antennas
are located at 3m from the ground.

• Six static UEs (blue circles in Figure 6) uniformly dis-
tributed in the surroundings of the BS. UEs are located at
1m from the ground level to emulate hand-held devices.

• One ship (shown in black in Figure 6) equipped with a
radar, whose antennas are located at a height of 3m. The
shipmoves following aNorth-South linear trajectory along
Waikiki beach at a constant speed of 20 knots (⇠10m/s).
This speed was derived as the average between the speed
typical of civilian container ships—which travel at around

36



Twinning Commercial Radio Waveforms in the Colosseum Wireless Network Emulator WiNTECH ’23, October 6, 2023, Madrid, Spain

10 knots (⇠ 5m/s)—and that of aircraft carriers—which
reach speeds of around 30 knots (⇠15m/s) [18].
Table 1 summarizes the wireless parameters de�ned for

the designed Colosseum RF emulation scenario.

Table 1: Parameters of the Waikiki Beach scenario.

Parameter Value

Signal bandwidth 20MHz
Transmit power (BS and ship) 30 dBm
Transmit power (UEs) 20 dBm
Antenna height (BS and ship) 3m
Antenna height (UEs) 1m
Building material Concrete
Max number of re�ections 3
Sampling time 1 second
Ship speed 10m/s
Emulation area 700G800 m2

Figure 7 shows the layout of the scenario loaded in the
MATLAB ray-tracer. We notice the 3D model of the envi-
ronment (white building blocks in the �gure), together with
the radio node locations (red icons), and the trajectory of
the ship (green dots). In this step, we perform ray-tracing
to characterize the environment of interest and derive the
channel taps among each pair of the nodes of our scenario.

Ship-08

BS-01

UE-02

UE-03

UE-04
UE-05

UE-06

UE-07

Figure 7: Layout of the scenario loaded in the MATLAB ray-tracer
and visualized with Site Viewer.

After these operations are completed, the next step involves
approximating the channel taps returned by the ray-tracer.
This step is required to install the scenario in Colosseum,
since MCHEM supports a maximum of 4 non-zero chan-
nel taps, with a maximum delay spread of 5.12 `s. This is
performed through a k-mean clustering algorithm that we
previously developed [19]. The heat map of the path loss
among each pair of nodes after this channel approximation
step is depicted in Figure 8. (The ship node is considered to
be in the top position at the beginning of the scenario.) As
expected, closer nodes experience lower path loss values.
As a �nal step, the channel taps are converted in FPGA-

readable format, and the scenario is installed in Colosseum.
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Figure 8: Heat map of the path loss among the nodes of the Waikiki
scenario in Figure 7. Themobile ship node is considered in its starting
position on the top.

Generating the channel taps with the ray-tracing software,
and approximating them to the 4 non-zero taps required
around 7 hours by using a 2021 MacBook Pro M1 with 10
cores and 16 GB of RAM. Installing the scenario on the Colos-
seum system required around 50minutes by leveraging a
virtual machine hosted on a Dell PowerEdge M630 Server
with 24 CPU cores and 96 GB of RAM.

4 INTELLIGENT RADAR DETECTION
The BS leverages an AI model to detect radar signals during
or before cellular communications. This section explains how
we collect and pre-process the data before feeding it into our
model, as well as the structure of the model itself.

4.1 Data Collection
By using the scenario of Section 3.2, radar and cellular sig-
nals are transmitted in di�erent combinations and varying
reception gain. Speci�cally, we collect IQ samples when only
the radar is present, only the cellular signal is present, both
are present, and neither is present (empty channel). These
combinations encompass all the possible real scenarios that
the intelligent radar detector might come across.
We pre-process these recordings by �rst breaking them

into smaller samples of 1024 IQs, as this is the input size
to the ML agent. This input size was chosen as we have
found it to be the smallest size that still o�ers high classi-
�cation performance. We then convert each sample to its
frequency domain representation. Finally, we o�er a binary
label to each sample: 1 if radar exists in the sample, and 0
otherwise. In this way, the model groups empty channels
and un-interfered cellular transmissions as 0 and therefore
be free to communicate in the given band.

4.2 Model Design and Training
We utilize an altered and lightweight CNN for the radar de-
tection. Speci�cally, we use a smaller version of VGG16 [17].
We chose this structure as it is commonly used in wireless
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applications and can adequately show the capabilities of our
framework.1 The model architecture can be seen in Figure 9.

IQ
samples

2x
(2xConv+MaxPool+NLB)

3x 
(3xConv+MaxPool)

2x
Dense

Radar?

Figure 9: CNN model used to train the radar detector.

For the �rst two convolutional blocks, we append a Non-
local Block (NLB). These blocks help the CNN achieve self-
attention and focus on spatially distant information. More
on these blocks can be read in [23]. This is a desirable trait
as it can help identify long-range dependencies that may be
present in the wireless signal rather than only focusing on
adjacent IQs. The model takes as input IQs in the shape of
(10C2⌘_B8I4, 1024, 2) where the last dimension is the real and
complex part of the IQ separated into two distinct channels.

5 PERFORMANCE EVALUATION
In this section, we present results on the e�ect of a radar
signal on a cellular network deployed on the Colosseum
wireless network emulator by showing: (i) the performance
and accuracy of theML intelligent detectormodel; and (ii) the
Key Performance Indicators (KPIs), e.g., throughput, Channel
Quality Information (CQI), and computation time of real-
time experiments with and without radar transmissions and
the intelligent detector.

5.1 Intelligent Detector Results
We test our radar detector on data withheld during training
and observe an accuracy of 88%, a precision of 94%, and a
recall of 79%. This tells us that our model is not susceptible
to false positives (misclassifying empty channels or cellular
signals as radar), but is susceptible to false negatives (mis-
classifying radar as an empty channel or a cellular signal).
To delve deeper into these results, we plot the accuracy

as a function of SNR in Figure 10a. For this plot, we keep the
cellular nodes static in the scenario and only vary the radar
gain. Here we can see that through varying SNRs we have
very high and consistent performance in detecting radar
signals, above 90%. However, when we add cellular signals
into the channel, this makes the detection of radar more
di�cult, as can be seen in Figure 10b, where we plot accuracy
as a function of SINR. The cellular signal is considered as
interference in this plot. Indeed, with high cellular signal gain
and low radar gain, we see that our classi�cation accuracy
decreases to about 75%.
1More complex AI algorithms can be used for this task. However, this is out
of the scope of this paper.
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Figure 10: CNN radar detection accuracy with varying SNR of the
radar signal, and varying SINRwhere the cellular signal is considered
to be interference.

5.2 Experimental Results
To properly study the network performance with and with-
out the presence of radar transmissions, we leverage Colos-
seum and the newly created scenario described in Section 3.2
to deploy a cellular network and run tra�c analysis. The
parameters of the experiments are summarized in Table 2.

Table 2: Parameters of the experiments.

Parameter Value

Center frequency 3.6 GHz
Signal bandwidth (radar) 20MHz
Signal bandwidth (cellular) 10MHz
Number of BSs 1
Number of UEs 6
USRP BS gains (Tx and Rx) [10, 30] dB
USRP UE gains (Tx and Rx) 20 dB
USRP radar Tx gain 20 dB
Scenario Duration 40 s
Tra�c type UDP Downlink
Tra�c rate 10Mbps
Scheduling policy Round-robin

The center frequency is set to 3.6 GHz in the newly opened
CBRS band, which is also used by S-Band-type radars. It is
worth noticing that, even though characterized at 3.6 GHz,
the scenario has been installed in Colosseum at a center fre-
quency of 1 GHz, at which MCHEM is optimized to work.
The scenario duration is set to 40 s, which is the time needed
by the ship to travel the planned 400m trajectory at the con-
stant speed of 10m/s. Then, the scenario repeats cyclically
from the beginning inde�nitely.
We leverage the open-source SCOPE framework to de-

ploy a twinned srsRAN protocol stack with one BS and
six UEs [2, 10]. Additionally, the radar signal is transmit-
ted through the use of the CaST transmit node [21], which
has been modi�ed to support custom radio waveforms. In the
following subsections, we show the results for three main
cellular network use cases: (i) no radar transmission; (ii) with
radar signal interference; and (iii) with radar and intelligent
detector. In all experiments, a User Datagram Protocol (UDP)
downlink tra�c of 10Mbps among BS and UEs is gener-
ated through iPerf, a tool to benchmark the performance of
Internet Protocol (IP) networks.
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Figure 11: Moving average of cellular network downlink throughput
and CQI. A radar transmission is ongoing from second 150 to second
190, highlighted with a blue shade.

5.2.1 No Radar. The performance of the cellular network,
in terms of downlink throughput and CQI, without radar
transmissions is shown in Figure 11, from second 0 to 150.
The gains of the BS USRP are set to 25 dB. As expected, the
throughput, shown in Figure 11a, decreases with the increase
of the distance between UEs and BS. The best performance is
achieved by UE-04, with values between 5.22 and 5.71Mbps,
while the other UEs experience a performance between 1.82
and 5.25Mbps. The worst throughput is achieved by UE-07
due to its large distance from the BS, environment conditions,
and interference with the other nodes. The CQI, shown in
Figure 11b, follows a similar trend. Best values are reported
by UE-04, with a stable CQI of 13. The other UEs show CQI
values between 2 and 13, with UE-07 reporting the lowest
CQI values (between 2 and 7).

5.2.2 Radar. The impact of radar transmissions on the cel-
lular performance is shown in Figure 11, from second 150 to
190. As expected, we notice a drop in the throughput (Fig-
ure 11a) and CQI values reported by the UEs (Figure 11b).
This is more visible for the nodes closer to the BS, e.g., UE-
03, UE-04, and UE-05, since they get more a�ected by the
radar transmission.When the radar stops transmitting, i.e., at
around second 190, the performance of the UEs goes back to
the initial values, i.e., to the values in the [0, 150] s window.
5.2.3 Intelligent Radar Detection. In this last use case, we
evaluate the e�ectiveness of our intelligent detector in un-
derstanding the presence of the radar signal, as shown in
Figure 12. The top portion of the �gure shows the downlink
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Figure 12: (top) Downlink cellular spectrogram; (bottom) radar de-
tection system. The BS is shut down when a radar transmission is
detected and resumes normal operations after no radar is detected.

cellular spectrogram centered at 980MHz (i.e., the downlink
center frequency we use for srsRAN in Colosseum) with a
6MHz span; the bottom one displays the results of the radar
detection system. At the beginning of the experiment—from
second 0 to second 50—the BS is serving the UEs through
UDP downlink tra�c (Figure 12, top), as we notice from the
orange and yellow stripes. Then, at second 50, a radar trans-
mission is detected by the intelligent detector (Figure 12,
bottom) described in Section 4, and the BS is shut down
accordingly. After the radar transmission ends, i.e., at sec-
ond 90, the BS receives the command to power back on and,
after around 10 seconds, it resumes its operations (second
100). Finally, at second 110, the UEs reconnect to the BS,
and the downlink transmissions are restarted. Overall, this
demonstrates the e�ectiveness of our intelligent detector in
identifying radar signals and vacating the cellular bandwidth.
Note that even if we have not tested our ML agent with dif-
ferent radar signal types, changes in the radar waveform that
impact its frequency domain representation might require a
re-training of the model to achieve similar performance.
Figure 13 shows the required computation time for the

classi�cation, performed on CPU, with di�erent batch sizes
in a Colosseum SRN. We notice that values grow linearly
with the batch size, e.g., 6ms for a batch size of 1 sample,
27.4ms for 10, 239ms for 100. This can be traced back to
the fact that these operations run on CPU, so there is not
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Figure 13: Computation time required for a radar classi�cation, with
di�erent batch sizes, run on CPU on a Colosseum SRN with 48-cores
Intel Xeon processor and 126 GB of RAM.
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much parallelization of the processes as it would be in a GPU.
However, even in the case of a batch size of 100 samples, the
maximum time of 60 seconds required for the detection of
commercial transmissions in the CBRS band is satis�ed [9].
To avoid false positives and false negatives, we leverage a
voting system of 100 samples, in which the signal to shut
down the BS is sent only when more than 50% of the outputs
are detecting a radar. Moreover, we use a batch size of 10 sam-
ples, which gives us a good tradeo� between computation
time and granularity of the output samples needed for the
voting system. In these conditions, our intelligent detector is
able to detect an incumbent radar transmission and vacate
the cellular bandwidth within 137ms—which is the average
time for the ML model to generate 50 new outputs with a
batch size of 10 samples—and with an accuracy of 88%.

6 CONCLUSIONS
In this work, we developed a framework for high-�delity
emulation-based spectrum-sharing scenarios with cellular
and radar nodes implemented as a digital twin system on
the Colosseum wireless network emulator. First, we twinned
the radar waveform on Colosseum, then we collected IQ
samples of radar and cellular communications in di�erent
conditions. Finally, we trained a CNN network —that can run
as a dApp— to detect the presence of the radar signal and halt
the cellular network to eliminate the undesired interference
on the incumbent radar communications. Our experimental
results show that our detector obtains an average accuracy
of 88% (above 90% when SNR and SINR are greater than 0 dB
and �20 dB respectively), and requires an average time of
137ms to detect ongoing radar transmissions.
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