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Abstract: Compressional velocity (Vp) and bulk density (ov) logs are essential for characterizing gas
hydrates and near-seafloor sediments, however it is sometimes difficult to acquire these logs due to
poor borehole conditions, safety concerns or cost related issues. We present a machine learning
approach to predict either compressional Vp or g» logs with a high accuracy and low error in near
seafloor sediments within water saturated intervals, in intervals where hydrate is filling fractures
and intervals where hydrate occupies the primary pore space. We use scientific quality logging-
while drilling well logs, gamma ray, ob, Vp, and resistivity, to train the machine learning model to
predict Vp or gvlogs. Of the six machine learning algorithms (Multilinear Regression, Polynomial
Regression, Polynomial Regression with Ridge Regularization, K Nearest Neighbors, Random
Forest and Multilayer Perceptron) tested, we find that the Random Forest and K Nearest Neighbors
algorithms are best suited to predict Vp and ov logs based on coefficients of determination (R?)
greater than 70% and mean absolute percentage errors less than 4%. Due to the high accuracy and
low error results for Vp and gb prediction in both hydrate and water saturated sediments, we argue
our model can be applied in most LWD wells to predict Vp or ov logs in near seafloor siliciclastic
sediments on continental slopes irrespective of the presence or absence of gas hydrate.

Keywords: Gas hydrate; well logs; compressional velocity; bulk density; random forest; k nearest
neighbors

1. Introduction

Natural gas hydrate occurs in near seafloor sediments worldwide; detecting
and quantifying gas hydrate is a challenge, but important for understanding the amount
and contribution of gas hydrate in the global carbon cycle as well as for assessing gas
hydrate as a prospective energy resource [1,2]. Out of the different methods for
interpreting hydrate, downhole logging measurements are the most accurate way to
identify the amount of gas hydrate in the subsurface.

The most common downhole logs used for interpreting gas hydrate are
compressional velocity (Vp), resistivity and bulk density (o») [3]. The measurement
response for Vp in hydrate bearing sediments depends on whether hydrate occurs in the
primary pore space or as fill in veins or fractures. In coarse grained sand or silt hydrate
nucleates in the primary pore space [4,5]. When hydrate saturation exceeds ~40%hydrate
begins forming a rigid framework ; at that saturation there is a distinct increase in
formation moduli that increases Vp relative to water saturated sediments [6]. Hydrate in
marine muds and clays is usually observed in fractures, and those fractures likely grow
in place due to the formation of hydrate and methane supplied via microbial
methanogenesis [7].Vp, however, does not usually increase significantly in hydrate filled
fractures, as these accumulations usually have lower hydrate saturation than sand or silt
layers [8].

Gas hydrate increases the electrical resistivity as it is an electrical insulator [3]. When
hydrate is in the primary pore space, resistivity increases with increasing hydrate
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saturation [9,10]. However, when hydrate is in near-vertical fractures the increase in
resistivity is not only related to the amount of hydrate but also depends on fracture
orientation [11].

Bulk density in near seafloor sediments provides the most accurate measurement of
porosity (e.g., [3]). Porosity is essential for calculating hydrate saturation using both
resistivity and Vp [12,13]. Therefore, bulk density is linked to the interpretation of hydrate.
However, the small difference in the bulk density of hydrate (0.92 g/cm3 [12]) and pore
water (1.02 g/cm?®) makes hydrate effectively undetectable from the bulk density log.

Hydrate interpretation relies on good quality Vp and g» logs, however these logs are
sometimes poor quality or are not acquired in near seafloor sediments. For example, there
are ~70 LWD scientific ocean drilling holes with missing Vp or g» logs on the Lamont
Doherty Earth Observatory database.

Machine learning is an effective tool that can be used for building both linear and
non-linear correlations to predict or fill-in missing data [14,15]. Supervised learning is a
type of machine learning that trains a model using input and output features from a
labeled input dataset and predicts on a new or novice dataset to test the accuracy of the
model [16]. For supervised learning, available data is often split into training and
validation data sets [16]. The training dataset is used so that the computer model can learn;
in addition, a small proportion of the training dataset is used to validate the model [16].

Supervised machine learning models have been applied to marine geology [17-22]
and geophysics [23,24], geochemistry [25,26] and gas hydrate [26-29] datasets to predict
different physical properties. For example, Graw et al. [30] used the Random Forest
algorithm to predict global seafloor sediment bulk density using core measurements
acquired by scientific ocean drilling programs. Sain and Kumar [31] used artificial neural
networks to interpret subsurface geological features with a combination of seismic
attributes. Similarly, Farfour & Mesbah, Ismail et al., Ramya et al. [17,18,19] used artificial
neural networks for interpretating subsurface features such as gas chimneys, channels,
hydrocarbon saturated rocks using marine seismic data. Dumke and Berndt [32] used Vp
logs, local geological information (such as water depth and distance to basement) and the
Random Forest algorithm to predict subseafloor Vp trends worldwide. In a more related
study in an Arctic permafrost region, Singh et al. [27] used a variety of different machine
learning algorithms and well log combinations to predict gas hydrate saturation.

In this work, we use a machine learning model to predict Vy and ov logs in near
seafloor sediments, which includes both water saturated and hydrate bearing sediments.
This includes predicting Vp and gb logs and their variation with different depths and
different hydrate morphologies including hydrate in pores and hydrate in fractures. Our
model results have broader relevance and are not only applicable to marine hydrate
systems but may also be useful for researchers working to identify shallow natural
hazards such as overpressure intervals or landslides in near seafloor marine sediments
[33,34]. In these cases, Vp and b are essential inputs for computing overburden stress and
pore pressure [33,35]. In addition, our model results will be useful for well to seismic ties,
since Vp and gb logs are essential inputs to link seismic data (measured in time) to well
logs (measured in depth) (e.g. [36]).

2. Data

For our machine learning model, we use data only acquired by logging-while-
drilling (LWD) tools as they collect the highest quality well logging datasets in a borehole.
This is because LWD tools are placed directly behind the drill bit and acquire data before
sediments have time to erode [3]. This ensures that the machine learning model is trained
on quality data and can make predictions with high accuracy.

We downloaded all the available LWD data from 22 holes from three primary
locations on continental slopes from the Lamont-Doherty Earth Observatory database to
train, validate and test each machine learning model (Figure 1): seven holes from the Gulf
of Mexico collected by the Gas Hydrate Joint Industry Project (JIP) Leg II [37], three holes
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from Cascadia Margin collected during Integrated Ocean Drilling Program (IODP) 99
Expedition 311 [38] and 12 holes from Bay of Bengal collected during the Indian National 100
Gas Hydrate Program (NGHP) Expedition 01 [39]. All these holes host a range of 101

siliciclastic sediment types and some of these holes contain natural gas hydrates. 102
2.1. Training Holes 103

We use LWD datasets from 20 holes from the Gulf of Mexico, Cascadia Margin and 104
Bay of Bengal to train the machine learning model (Figure 1). 105

The training holes from the northern Gulf of Mexico were drilled by JIP Leg Il and 106
are in Green Canyon (Figure 1) and Alaminos Canyon (Figure 1) [37]. The three holesin 107
Green Canyon in Block 955 (GC955) in ~2 km of water and with sediments sourced from 108
turbidite channel-levee complexes as well as hemipelagic marine muds [40,41]. Hole 109
GC955-H has high quality LWD data drilled to 590 mbsf that includes 412 m of water 110
saturated sediments, 144 m of near-vertical gas hydrate filled fractures in clay sediments 111
with low hydrate saturations, and a 34 m of hydrate in the primary pore space of a coarse 112
silt reservoir with saturation ranging from 30-80% [42]. Holes GC955-Q and GC955-1 also 113
have high quality LWD data to 461 and 671 mbsf in mostly water saturated sediments 114
[37]. Alaminos Canyon Block 21 (AC21) lies in the northwestern Gulf of Mexico at a water 115
depth of ~1.5 km. Holes AC21-A and AC21-B are drilled to a depth of 536 and 340 mbsf. 116
Sediments in both holes are primarily water saturated marine muds, with one ~60 m water 117
saturated sand interval that is part of a large submarine fan system [43,44]. 118

IODP Expedition 311 drilled and logged turbidite sequences on the Cascadia 119
subduction zone (Figure 1). The training Holes U1325A, U1327A and U1328A from 120
Cascadia Margin (the yellow dots in Figure 1) are mostly water saturated but also have 121
gas hydrate accumulations. The average gas hydrate saturation ranges from 4-10%, with 122
local maximums up to 80% [10]. In Hole U1325A, drilled to a depth of 350 mbsf, most of 123
the hydrate is present in thin sands (< 23 cm) [10]. Hole U1327A, drilled to a depth of 300 124
mbsf, is water saturated except for an 18 m thick high resistivity interval composed of 125
hydrate-saturated turbidite lenses [45]. Hole U1328A is drilled to a depth of 300 mbsf; in 126
this hole, gas hydrate filled fractures were identified on the resistivity image logs from the =~ 127
seafloor to 46 mbsf, while the remaining 254 m are water saturated marine muds [45]. 128

The training holes drilled and logged offshore India as a part of NGHP-01 have high 129
quality LWD data. Holes 24, 2B, 3A, 4A, 5A, 5B, 6A, 7A, 10A and 11A lie in the Krishna- 130
Godavari Basin and the Holes 8A and 9A are located in the more northern Mahanadi Basin 131
(Figure 1; Table 1). Both locations have clay-rich sediments that are primarily water 132
saturated; almost all gas hydrate encountered during the NGHP-01 Expedition occurs in 133
marine muds in near-vertical fractures [39]. 134

We use all the available LWD logging data from NGHP-01 holes except some data 135
from Hole 10A. Hole 10A is located at a paleo-vent site in the Krishna-Godavari Basinand 136
consist of a webby network of veins and fractures [46]. The propagation resistivity logsin 137
Hole 10A exceed the accuracy range in the interval 43-90 mbsf and are not valid 138
measurements [11]. Therefore, we do not use the data in the interval 43-90 mbsf from Hole 139
10A for training the model and use the data below 90 mbsf. 140

141
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Hole Location Drilling Water Total Water Hydrate | Hydrate
Project Depth | Depth Saturated in in pores
(m) Drilled | Intervals | fractures (m)
(mbsf) (m) (m)

GC955-H 2033 590 412 144 34
GC955-1 2064 671 666 0 ~5

GC955-Q 1985 461 437 0 ~24
AC21-A Gulfof | JIPLegll | 1490 | 536 436 79 21

Mexico
AC21-B 1488 340 301 0 39
WR313-G 2000 1043 <753 >246 44
WR313-H 1966 1000 626 325 49
UI1325A 2192 350 >349 0 <0.23
UI327A Cascadia IODP 1305 300 282 0 18
Margin | Expedition
UI1328A 311 1267 300 254 46 0
NGHP-01-02A 1058 50 50 0 0
NGHP-01-02B 1058 250 250 0 0
NGHP-01-03A 1076 300 91 209 0
NGHP-01-04A 1081 300 280 20 0
NGHP-01-05A 945 200 161 39 0
NGHP-01-0sB | Bl | NOUP - [oas 500 163 37 0
NGHP-01-06A 8 ol 1160 | 350 339 11 0
NGHP-01-07A 1285 260 220 40 0
NGHP-01-10A 1038 205 82 123 0
NGHP-01-11A 1007 200 180 20 0
NGHP-01-08A 1689 350 313 37 0
NGHP-01-09A 1935 330 230 100 0
Table 1. Training, validation and test datasets for the machine learning model. Holes WR313-G and 142

WR313-H are used to test and all the other holes are used to train and validate the model by splitting into a 143
70% (train) and 30% (validation) ratio. 144

145

146

147
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2.2. Test Holes

We use two Walker Ridge LWD holes, Holes WR313-G and WR313-H for testing,
which assesses the predictability of the model (the white dot in Gulf of Mexico, Figure 1).
We selected these two holes for testing as they host the three key intervals that we are
focusing on for our machine learning model: water saturated sediments, hydrate in the
primary pore space and hydrate in near-vertical fractures.

These holes were drilled in the Terrebonne mini-basin in the Gulf of Mexico with a
water depth of about 2 km [47]. A total of ~1220 m in Holes WR313-G and WR313-H are
water saturated with a low background resistivity that ranges from 1- 2 Om. Hydrate with
hydrate saturation of 50-90% occurs in the primary pore space of sand or silt layers a total
of 50 m between both holes [47].

Hydrate also occurs in near-vertical fractures in marine mud over a total thickness of
~520 m between both holes [48]. Free gas is also present in an interval ~2 m in the Hole
WR313-G just below the gas hydrate stability zone [48]. However, we did not include free
gas in our machine learning model as this was the only hole with any free gas intervals.
The lack of data in free gas intervals is not surprising; in general, free gas intervals are
carefully avoided during scientific ocean drilling because they present a potential drilling
hazard.
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Figure 1. Maps showing the training holes (yellow dots) and testing holes (white dots) (A) Holes
located at Cascadia Margin. (B) Holes located offshore India. (C) Holes located in the Gulf of Mexico.
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Holes Location | Gas Hydrate | LWD Tools | Logs Used
Occurrence
GC955-H Gulf of Gas hydrate | EcoScope Density Caliper (DCAV),
GC955-1 Mexico occurs in all | geoVISION | Bulk Density (RHOB),
GC955-Q the holes. sonicVISION | Calibrated and Filtered
AC21-A Gamma Ray
AC21-B (GRMA_FILT), RING
Resistivity, Propagation
Resistivity (A16L, A40L,
P16H, P28H, P40H), V,
U1327A Cascadia | Gas hydrate | adnVISION | Density Caliper (DCAV),
UI328A Margin occurs in EcoScope Bulk Density (RHOB),
U1325A holes geoVISION | Calibrated and Filtered
U1327A and | sonicVISION | Gamma Ray
U1328A. (GRMA_FILT), RING
Resistivity, Propagation
Resistivity (A16L, A40L,
P16H, P28H, P40H), V;
NGHP-01-02A | Bay of Gas hydrate | EcoScope Density Caliper (DCAV),
NGHP-01-02B | Bengal occurs in all | geoVISION | Bulk Density (RHOB),
NGHP-01-03A the holes sonicVISION | Calibrated and Filtered
NGHP-01-04A except 02A Gamma Ray
NGHP-01-05A and 02B (GRMA_FILT), RING
NGHP-01-05B Resistivity, Propagation
NGHP-01-06A Resistivity (A16L, A40L,
NGHP-01-07A P16H, P28H, P40H), V,
NGHP-01-08A
NGHP-01-09A
NGHP-01-10A
NGHP-01-11A

Table 2. Holes used for training the machine learning model. V; is computed from the compressional slowness log,

DTCO.

3. Methods
3.1. Machine Learning Algorithms

We predict Vp logs using gamma ray, gv and resistivity as inputs and g» logs using
gamma ray, Vp and resistivity as inputs using the 20 training holes (Table 2) and test the
model in the two Walker Ridge holes (Holes WR313-G and WR313-H). We use all these
logs as inputs because they are important for interpreting sediment type, the morphology
of hydrate and hydrate saturation. For example, gamma ray differentiates between sand
and clay rich sediments. Bulk density measures the electron density of matrix and pore
fluids. Resistivity is used to identify gas hydrate at low and high saturations and Vj is
used to identify gas hydrate at high saturation [49]. We focus on predicting Vp and gvlogs
because they are often poor quality in near seafloor sediments. We do not predict
resistivity logs because there are often many resistivity channels collected and, in general,
deeper penetrating resistivity logs are often the highest quality measurements in near
seafloor sediments.

We use six supervised machine learning algorithms and compare the accuracy and
error for each algorithm using R? and mean absolute percentage error (MAPE). We
selected these algorithms as they have been used previously in geoscience applications
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[27,30,31,32]. Some machine learning algorithms have hyperparameters that can be tuned 191
to predict output with the highest accuracy and least error. We use gridsearchcv technique 192
to select the best set of hyperparameters for predicting Vp and gv. Gridsearchcv is a cross 193
validation method that splits the training data into different parts and validates the model 194
on each part iteratively while training the model on the remaining set of data points, 195
searching for the optimum set of hyperparameters using all the possible user defined 196
hyperparameter combinations [50]. We split our training data into five folds and perform 197
hyperparameter tuning with gridsearchcv using the process as described by [51,52] 198
(Figure 2). The spreadsheets generated after gridsearchcv with all the possible 199
combination of hyperparameters for each algorithms are provided with the 200
Supplementary Material. We perform k-fold cross validation for all the algorithms using 201
the 20 holes for predicting Vp and g» logs on different parts of the dataset (statistics appear 202
in the Supplementary Material). We use a k-fold of five that divides the training data into 203
five parts and validates the machine learning model on each part (Figure 2). This helps 204
identify which algorithms are more consistent in predicting Vp and g» that are not biased =~ 205

for a specific set of data points. 206
207

208

A brief description of each algorithm Is given below: 209

a. Multilinear Regression: Multilinear regression develops a correlation between the 210
provided inputs and output on a labeled training dataset using a linear relationship and 211
the resulting linear model is used to predict values for a new dataset [53]. This algorithm 212
does not require hyperparameter tuning. 213

b. Polynomial Regression: This algorithm defines a relationship between the input 214
and output parameters based on a nt degree polynomial. The user defines the degree of 215
the polynomial and then the algorithm transforms the input data into a polynomial 216
equation [54]. For a supervised learning model, the same equation is then used to predict 217
outputs on a novice dataset. Herein, we tested polynomial equations from orders two to 218
six and chose a 4t order polynomial equation after hyperparameter tuning. 219

c. Polynomial Regression with Ridge Regularization (L2): L2 regularization reduces 220
overfitting by adding a penalty term that can be used to reduce the magnitude of large 221
coefficients in the equation [55]. Here, we combine a 4th order polynomial equation witha 222
ridge regression fit on the training data. We use a regularization of 0.001 and 0.01 to 223
predict Vp and oo respectively. 224

D. K Nearest Neighbors: This algorithm uses feature similarity between input and 225
output points in a space to make predictions [56]. Whenever a new dataset is input into 226
the model, the Euclidean distance from the training data points is calculated for all the 227
new data points and then the nearest neighboring values are selected based on the k value, 228
which defines the search criteria and selects k number of nearest neighbors from the input = 229
(e.g. [56]). Another parameter, the weight attribute, weighs different points in the 230
neighborhood corresponding to their respective Euclidean distances. The closeness thatis 231
calculated as the Euclidean distance from training points is then used to predict an output 232
based on the class of the nearest neighbors [57]. We select k=7 and “distance’ as the weight 233
attribute as they fit the model best for predicting Vpand ov. 234

e. Random Forest: As described in [58], and by other research works in geosciences 235
such as Bressan et al., Hou et al., Shalaby et al., [20,22,25] Random Forest uses a bootstrap 236
aggregating method that uses a combination of decision trees and takes the mean out of 237
all the decision trees to generate the final output. Decision trees mimic the structure of a 238
tree and consist of several nodes that terminate on a leaf node [59]. Leaf nodes are 239
representative of class labels, and all other nodes signify feature attributes. Each branch 240
of the tree used in Random Forest is subdivided into nodes based on the conditions that 241
the algorithm tries to construct with reference to the input data provided [59]. This 242
structure of Random Forest reduces variance and avoids overfitting. Herein, we use 243
Random Forest by constructing a forest with ‘400" trees, ‘sqrt’ as the max_features that 244
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defines the size of the features to be considered while splitting a node, ‘1" as 245
min_samples_leaf that refers to the minimum number of samples at the leaf node , ‘15" as 246
max_depth that refers to the maximum depth of the tree from the root node to the leaf 247
node and ‘2" as min_samples_split that refers to the minimum number of samples 248
required to split a node. 249

f. Multilayer Perceptron: A Multilayer Perceptron is an artificial neural network that 250
uses artificial neurons with an input layer, a hidden layer and an output layer to make 251
non-linear predictions based on the inputs provided to it [60]. It is inspired by the 252
structure of biological neurons that receive signals from other neurons via 253
interconnections [61,62]. It has been frequently applied in the geosciences [17- 254
23,25,27,29,31]. An important part of a multilayer perceptron is the choice of activation 255
function, which defines the output from a neuron. We use the ‘relu’ activation function, 256
which is a piecewise linear function [63], along with four and five hidden layers to predict 257
Vpand ob respectively as it provides the best fit. 258

In order to implement the machine learning algorithms, we use only well log data 259
sampled at 0.5 ft (0.1524 m) depth intervals. We also normalize the inputs to range from 0 260
to 1 [64]. This ensures that each variable is contributing equally to the model. 261
Normalization is particularly important for algorithms that use distance-based attributes 262
to improve accuracy and reduce error [65]. We normalize the inputs when using all the 263
above algorithms except for Random Forest because it does not depend on distance-based 264

attributes. 265
266
3.2. Prediction of py and Vp 267

We predict oo and Vp for Holes WR313-G and WR313-H using the six machine 268
learning algorithms by creating a training dataset from the 20 holes with the available 269
LWD logs from the Gulf of Mexico, Cascadia Margin and Bay of Bengal (Table 2). Asa 270
part of the well log quality control for the training dataset we eliminate washout zones > 271
5 m thick where borehole diameter > 5 cm more than the bit size to remove intervals with 272
poor data. We keep thinner washout intervals because the machine learning model needs 273
to be trained on some poor-quality data along with good quality data to avoid overfitting. 274

For all algorithms, the training dataset consists of 34,341 sets of data at discrete 275
depths with 30,478 data points corresponding to water saturated intervals, 2938 data 276
points corresponding to intervals with gas hydrate in near-vertical fractures and 925 data 277
points corresponding to intervals with gas hydrate in the primary pore space. Each well 278
log in the training dataset has 34,341 sets of data at discrete depths, or 34341 values of 279
gamma ray, Qbv, ring resistivity, propagation resistivity and V,. We split the training 280
dataset and use 70% for training the model and 30% for validation (Figure 2). The 281
validation dataset is kept separate from the training dataset to observe if the model is 282
consistent enough in making predictions. We also perform feature selection analysis to 283
select the best combination of input well logs to predict Vp and ov using both the 284
workflows (the statistics are shown in Section 5 of Supplementary Material). 285

We predict Vp and g» using different sets of well logs as inputs and describe each of 286
these sets as a Case. We use two different workflows to predict Vp; Case 1 and 2, where 287
we use bulk density and gamma ray logs, but different resistivity logs. For Case 1, ring 288
resistivity is the only resistivity dataset used as an input. For Case 2, we use propagation 289
resistivities (A16L, A40L, P16H, P28H, P40H) instead of ring resistivity along with gamma 290
ray and bulk density. To predict ob Case 1, we use gamma ray, ring resistivity and Vpas 291
input well logs and for o Case 2 we use gamma ray, propagation resistivities and Vp as 292
input well logs. 293

294

3.3. Downsampling the predicted results 295
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Vp and gvlogs have a lower vertical resolution than the other logs. For example, Vp 2%
has a vertical resolution of ~61 cm [66] and gvhas a vertical resolution of ~30 cm [67] while 297
ring resistivity has a resolution of ~5-7 cm [68] and gamma ray has a vertical resolution of =~ 298
~31 cm [67]. The vertical resolution of the propagation resistivity logs ranges from ~21 cm 299
to ~121 cm [67]. Therefore, we downsample the predicted outputs using a moving average 300
filter while estimating V; for Case 1 and 2 and ov for Case 1 only. 301
302
303
22 Holes
Well log QC
Data
Preprocessing
Train and Validation:
20 Holes

A |

| |

| Hy.pe_rparamett.er - :
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[ LOF

I <L Qo

| * a g ~
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| Divide data into 5 folds for K-fold crossvalidation :
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optimization
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Training Dataset Validation Dataset Test: 2 Holes

Apply model with best set of hyperparameters o4
Figure 2. The workflow used for the data and the machine learning models in this 305
study. 306
307
308
4. Results and Discussion 309
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Our study is the first to use centimeter scale resolution LWD data to predict Vp and
ovlogs in near seafloor sediments. Out of the six algorithms, we find that Random Forest
and K Nearest Neighbors are more robust and can predict Vp and v logs with a high
accuracy (R?) greater than 70% and low error (MAPE) less than 4% on training, validation,
test data (Figure 3 and Table 3). In addition, Random Forest and K Nearest Neighbors
have consistently high accuracy for k-fold cross validation across different folds
(Supplementary Material). Random Forest has been used across the geosciences to tackle
a variety of different problems [30, 69, 70], however our study shows that K Nearest
Neighbors is a strong machine learning method and may be viable for other geoscience

applications..

Multilinear Regression and Multilayer Perceptron have also been used in geoscience
studies [27, 31, 71] but do not perform as well herein as Random Forest and K Nearest
Neighbors to predict Vp and ovlogs. Multilinear Regression has an accuracy of only ~30-
60% and a higher error of 4-6% for training, validation and test data (Figure 3 and Table
3). This low accuracy signifies that the relationship among different well logs is not linear;
this is an important point, because missing log data is commonly approximated using
linear equations. Similarly, Multilayer Perceptron has overall low accuracy varying from
55-59% on training, validation, and test data.

Polynomial Regression and Polynomial Regression with ridge regularization have
extremely poor accuracy in the main hydrate bearing sands in WR313-G and WR313-H
(Figure 3 and Table 3). Moreover, Polynomial Regression and Polynomial Regression with

80
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ridge regularization perform poorly on different folds while performing k-fold cross
validation (Supplementary Material).
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Figure 3. R? accuracy and mean absolute percentage error (MAPE) for V, and v prediction.
Averaged over the two Walker Ridge Holes WR313-G and WR313-H.
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Training | Training | Validation | Validation | Test R? Test

R? (%) MAPE R? MAPE (%) MAPE
(%) (%) (%) (%)
Vp Case 1 56 4.18 55 4.18 59 5.69
Vp Case 2 62 3.6 64 3.46 53 6.45
pb Case 1 31 5.18 31 5.12 49 5.17
pb Case 2 46 4.13 48 4.13 41 3.14

Polynomial Regression (4™ order)

Training | Training | Validation | Validation | Test R? Test

R? (%) MAPE R? MAPE (%) MAPE
(%) (%) (%) (%)
Vp Case 1 91 2.46 90 2.48 50 3.79
V; Case 2 88 2.02 0.015 4.83 7.0 71.4
pb Case 1 62 3.54 60 3.49 33 160
pb Case 2 82 2.33 0 11 0 155

Polynomial Regression (4" order) with Ridge Regularization

Training | Training | Validation | Validation | Test R? Test

R? (%) MAPE R? MAPE (%) MAPE
(%) (%) (o) (o)
Vyp Case 1 85 2.69 83 2.7 74 2.99
Vp Case 2 82 242 81 2.34 55 4.99
py Case 1 57 3.86 57 3.8 42 5.16
pb Case 2 75 2.78 75 2.81 25 2.70

K Nearest Neighbors

Training | Training | Validation | Validation | Test R? Test

R? (%) MAPE R? MAPE (%) MAPE
(%) (%) (%) (%)
Vp Case 1 100 0 94 1.98 73 3.45
Vp Case 2 100 0 86 1.79 64 4.4
pv Case 1 100 0 76 2.55 75 2.00
pb Case 2 100 0 85 1.86 66 2.65

Random Forest

Training | Training | Validation | Validation | Test R? Test

R? (%) MAPE R? MAPE (%) MAPE
(%) (%) (%) (%)
Vyp Case 1 99 1.07 96 1.60 70 3.96
Vyp Case 2 97 1.05 91 1.60 63 4.40
pb Case 1 93 1.51 81 2.30 72 2.19
pb Case 2 95 1.16 89 1.71 49 3.18

Multilayer Perceptron

Training | Training | Validation | Validation | Test R? Test

R? (%) MAPE R? MAPE (%) MAPE
(%) (%) (%) (%)
Vp Case 1 56 4.20 55 4.19 59 5.66
Vp Case 2 62 3.59 63 3.45 52 6.53
py Case 1 46 4.47 45 4.40 57 2.70

pb Case 2 0 6.37 0 6.38 0.1 11
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339

Table 3. Train/Validation accuracy and error metrics computed over the 20 training holes with a 340
70:30 split over training data. Test metrics is computed for the two Walker Ridge Holes WR313-G 341
and WR313-H (taking average R? and MAPE over the two holes). 342

4.1. Formation Vy Prediction 343

Random Forest and K Nearest Neighbors have high R? low MAPE and are more 344
consistent than the other algorithms, therefore we compare these two algorithms and 345
focus on how these results vary in water saturated intervals, hydrate in the primary pore 346
space and hydrate in fractures (Table 4). A unique aspect of our study is that we consider 347
hydrate in different morphologies and the effect on machine learning results. 348

a. Water Saturated Intervals 349

In Figures 4 and 5 water saturated intervals are primarily identified by low resistivity 350
and are signified by a white background. In these water saturated intervals the predicted 351
Vp closely matches the measured Vp with a low percent error (Figure 6) for both algorithms 352
using Vp Case 1 (R? ~ 75%). However, the R? for predicted Vp for Vp Case 2 is 66% (MAPE 353
4.7%) for Random Forest and 70% (MAPE 4.0%) for K Nearest Neighbors. This indicates 354
that either Random Forest or K Nearest Neighbors can be used for estimating Vpin water 355
saturated intervals with ring resistivity as one of the inputs in the training model. 356
However, the propagation resistivity can also be used to predict Vp in water saturated 357
sediments if ring resistivity is not available (Case 2). The high accuracy and low percent 358
error for these results may suggest that these models could be applied in datasets in near- 359
seafloor water saturated sediments to predict accurate V, where high quality input logs 360
are available. 361

b. Hydrate in Fractures 362

We compare the predicted Vp results with the measured Vpfor WR313-G and WR313- 363
H in the intervals where hydrate is identified in near-vertical fractures. Intervals where 364
hydrate occurs in near-vertical fractures are highlighted in yellow in Figures 3 and 4. 365
Propagation resistivity measurements are the most sensitive to resistivity anisotropy 366
caused by near-vertical hydrate filled fractures; near-vertical resistivity fractures cause a 367
characteristic curve separation in propagation resistivity curves that depends on the 368
fracture angle, hydrate resistivity, the measurement type and the spacing of the 369
measurement sondes [11]. In general, no significant increase in Vyp is observed in near- 370
vertical fracture intervals, which is likely due to the low concentration of hydrate in the 371
bulk sediment [8]. The Random Forest Vp prediction results have a low accuracy and 372
higher percent error (Figure 6) using Case 1 (using ring resistivity) but a higher accuracy 373
and lower percent error (Figure 6) with Case 2 (using propagation resistivity: A16L, A40L, 374
P16H, P28H, P40H) (Table 4); this is consistent with the observation that a set of 375
propagation resistivity logs are sensitive to near vertical fractures while a single resistivity ~ 376
measurement (in this case, ring resistivity) cannot be used to identify near-vertical gas 377
hydrate filled fractures. However, the accuracy of the K Nearest Neighbors algorithm is 378
lower for Case 2 (R*=48% and MAPE=4.2%) as compared to Case 1 (R>=73% and 379
MAPE=2.4%). These contradictory results may be due to the fact that gas hydrate filled 380
fractures form complex 3D networks [46] with a variety of fracture angles [8] and the 381
anisotropy caused by these networks may result in data which is difficult to fit by a 382
machine learning model. 383

This suggests that some caution is required while predicting Vp when hydrates occur 384
in near-vertical fractures. Thus, in order to predict Vp for hydrates in near-vertical 385
fractures, the Random Forest algorithm with propagation resistivities (Case 2) or the K 386
Nearest Neighbors algorithm with ring resistivity (Case 1) are the best algorithms and 387
datasets. 388

c. Hydrate in Pores 389
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Hydrate bearing sands are highlighted in blue on Figures 4 and 5. These intervals 390
have a significant increase in the measured Vp log and a corresponding increase in the 391
resistivity logs. In hydrate bearing sands (Figures 4 and 5) the Random Forest algorithm 392
closely replicates the measured Vp log using Case 1 (R? =81% and MAPE=6.5%), and we 393
recommend this algorithm over K Nearest Neighbors (R? =71% and MAPE=10%) in 394
locations with high saturation gas hydrate. This is because Random Forest predictions 395
better match the measured Vp log both in thick sand accumulations and thin sands (<5m 3%
in thickness) as compared to K Nearest Neighbors. In addition, a higher accuracy is 397
observed when the ring resistivity log (Case 1) is used over a suite of propagation 398
resistivity logs (Case 2). This is likely due to a better vertical resolution of ring resistivity =~ 399
(5-7 cm) from geoVISION* tool [68] as compared to the propagation resistivities (~21-121 400
cm resolution) from EcoScope* tool [67]. Therefore, the ring resistivity measurement is 401
able to resolve thinner beds and improves the accuracy of Vpprediction using Case 1. 402

Of course, high saturation gas hydrate is not a common occurrence. Even so, datain 403
these intervals may still benefit from prediction algorithms. For example, [72] observed 404
that the presence of high-saturation hydrate in pores can cause loss of signal while 405
acquiring Vp logs in boreholes. This may make it difficult to interpret formation Vp logs 406
due to poor data quality. Our prediction results for hydrate in pores may improve the 407
interpretation for Vplogs in such cases where Vpdata is compromised due to loss of signal. 408
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Figure 4. LWD data from 31 — 1043 mbsf (m below sea floor) in Hole WR313-G showing the original
and predicted results from K Nearest Neighbors (Track 4) and Random Forest (Track 5) for V, Case
1. Insets show (a) water saturated interval (b) interval with hydrates in fractures and (c) interval
with hydrate in pore space.
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Figure 5. LWD data from 31 — 1043 mbsf (m below sea floor) in Hole WR313-G showing the original
and predicted results from K Nearest Neighbors (Track 4) and Random Forest (Track 5) for Vp Case
2. Insets show (a) water saturated interval (b) interval with hydrates in fractures and (c) interval
with hydrate in pore space.
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Random K Nearest
Forest Neighbors
R? | MAPE| R? | MAPE
Complete log | 70% | 3.9% | 73% | 3.4%
interval
74% | 3.0% | 75% | 3.6%
Water
Vp Case 1 Saturated
(Input logs: Hydratein | 54% | 5.9% | 73% | 2.4%
Gamma Fractures
Ray, Bulk 81% | 6.5% | 71% | 10%
Density,
Ring Hydrate in
Resistivity) Pores
Complete log | 63% | 4.4% | 64% | 4.4%
interval
66% | 4.7% | 70% | 4.0%
Vp Case 2 Water
(Input logs: Saturated
Gamma Hydratein | 68% | 2.8% | 48% | 4.2%
Ray, Bulk Fractures
Density,
Propagation 69% | 14% | 63% | 15%
Resistivity)
Hydrate in
Pores
Complete log | 72% | 2.2% | 75% | 2.0%
pb Case 1 interval

Table 4. Statistical analysis for Vp and v prediction averaged over Holes WR313-G and WR313-H
for water saturated sediments, gas hydrate in near vertical fractures and gas hydrates in the primary

pore space. (MAPE = mean absolute percentage error).

4.2. Bulk Density Prediction

We predict ov log with high accuracy and low error using Random Forest and K
Nearest Neighbors algorithms. We choose Case 1 (with gamma ray, ring resistivity and
Vpas inputs) for gv prediction over Case 2 (with gamma ray, propagation resistivities and

424
425

426
427
428

429

430
431
432
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Vp as inputs), since gv Case 2 overfits the model. This is because g» Case 2 predicts gp with 433
a high accuracy and low error on training and validation datasets but the prediction 434
becomes poor for the test holes (Table 3). Unlike Vp prediction, we do not assess the 435
different hydrate morphologies for gv prediction as Case 1 fits all the intervals (Figure 7). 436

The bulk density measurement is important for hydrate interpretation as it provides 437
the most accurate measurement of porosity in near seafloor sediments. Porosity is used to ~ 438
compute hydrate saturation along with resistivity and Vp. Our bulk density model (Case 439
1), therefore will be valuable to estimate the bulk density measurement in the near seafloor 440
sediments in locations where bulk density is not collected, such as the Nankai Trough [73] 441
and the Hikurangi Margin [34, 74]. 442

4.3. Prediction at Deeper Depths 443

We observe that the accuracy decreases and error increases for Vp and ov prediction 444
at deeper depths (>600 mbsf) in the test dataset (Figures 6 and 7). This is likely because the =~ 445
total drilled depth for the training holes ranges from ~200-600 mbsf, however the total 446
drilled depth for the validation holes is ~1000 mbsf. Both V, and gv are a function of depth, 447
i.e., both increase with increasing depth. Therefore, the model can predict Vp and gb with ~ 448

a higher accuracy and low error for depths where training data is available (<600 mbsf). 449
450
4.4 Further Data Limitations 451

One work is limited by the availability of scientific ocean drilling LWD data. We use 452

all the publicly available data (22 holes) from the Lamont Doherty Earth Observatory 453
database to train, validate and test the model. If more data becomes publicly available in 454
the future, further data can be incorporated to improve the model. 455
If a user wants to apply our models to new data, the Vp model requires gamma ray, 456
resistivity, oo logs and the g» model requires the gamma ray, resistivity and Vp logs, 457
otherwise the model cannot be accurate applied. Moreover, our model is only applicable 458
to siliciclastic near seafloor sediments in marine settings. It cannot be used for permafrost 459
environments or in lithified rock. 460
The well log data that we use for this project is few tens to few hundreds of 461
megabytes in size and the machine learning algorithms take 30 seconds to 2 minutes for 462
execution. However, the computation time increases to 3-4 hours while performing 463
hyperparameter optimization that compares several hundreds of combinations of different 464
hyperparameters for different algorithms. For Random Forest, the computation time for 465
hyperparameter optimization is higher and takes about 10 hours. 466
467

468

469

470

471
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4.5. Neutron Porosity 476

The neutron porosity log measures the hydrogen concentration in the formation 477
which is related to the porosity of the formation [49]. In clay rich environments, however, 478
the apparent neutron porosity can be larger and noisy due to the presence of hydroxyl 479
ions (OH") associated with clay minerals [49]. Therefore, bulk density is the preferred log 480
in near-seafloor sediments to interpret porosity because it most closely replicates in situ 481
porosity [3]. For this reason, we used bulk density as an input log in Case 1 and 2. 482

We tested the neutron porosity log as an input for our machine learning model to 483
predict V, (Figure 8). When applying neutron porosity to the two Walker Ridge Holes 484
(WR313-G and WR313-H), we found that the predicted Vp in clayey zones does not 485
correlate as well as when the bulk density was used (Case 1). In contrast, [27] shows that 486
both neutron porosity and porosity derived from bulk density can be used 487
interchangeably as an input in a machine learning model used to compute hydrate 488
saturation in a permafrost location in Canada (Figure 8). The neutron porosity works in 489
the model of [27] because the lithology is primarily sand whereas we apply our machine 490
learning model to both sand and clay rich intervals. Caution should always be exercised 491
if using neutron porosity in mud or clay rich environments. 492

4.6. Model application in non-hydrate sites 493

Even though we train our machine learning model using borehole data from hydrate 494
drilling expeditions in the Gulf of Mexico, Cascadia Margin and Offshore India, we argue 495
our model can still be applied in boreholes missing data not only in hydrate systems but 496
in siliciclastic near seafloor sediments on the continental slopes. While this paper is 497
focused on hydrate systems, most of the data used in the model (89%) is from water 498
saturated marine sediments; in these systems our model can predict Vp and oo with a high 499
accuracy and a low percent error (Figure 6 and 7). 500

One factor that might affect the machine learning model is porewater salinity. Thisis 501
because resistivity is a function of porewater salinity in high porosity sediments. In 502
general, an increase in porewater salinity would reduce resistivity. This would reduce 503
predicted Vp and gb. Conversely, a decrease in porewater salinity would increase 504
resistivity and also the predicted Vpand gb. For example, porewater salinity variations can 505
be due to the formation or dissociation of hydrate [10,75]. Porewater salinity can also vary 506
in places with shallow salt diapers [76]. While these situations where pore water salinity 507
varies are not very common and porewater salinity is normally standard seawater, 508
caution should be taken in any location where there may be a significant change in 509
porewater salinity. There are many holes where this model can be applied in marine 510
sediments on continental margins. For example, our model could be used to predict Vp 511
and v logs for the ~70 LWD scientific ocean drilling holes on Lamont Doherty Earth 512
Observatory database with missing Vp or gv logs. Even more holes have missing or 513
damaged Vp or gv logs where our model could be applied. 514
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5. Conclusion 525

In this work, we present a novel machine learning approach to predict Vy and grlogs 526
in marine gas hydrates and their variation with different depth intervals and different 527
hydrate morphologies. We predict Vp log using gamma ray, bulk density and resistivity = 528
as inputs and gvlog using gamma ray, Vp and resistivity logs as inputs. To identify the 529
best algorithms, we use six machine learning algorithms and compare the results. We find 530
that Random Forest and K Nearest Neighbors algorithms can be used to predict Vpand g~ 531
logs with a high degree of accuracy and low error in near seafloor sediments with water 532
saturated intervals, intervals where hydrate is filling fractures and intervals where 533
hydrate is in the primary pore space. Due to a good match between the measured and 534
predicted logs both hydrate bearing and water saturated intervals, our model can be 535
applied to siliciclastic near seafloor sediments where either Vy or g»logs are missing. Our 536
model for Vp or b prediction is applicable not only to hydrate systems but also useful for 537
researchers working to identify shallow natural hazards such as submarine landslides as 538

well as conducting studies by integrating well and seismic data. 539
540
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