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Abstract: Compressional velocity (Vp) and bulk density (ρb) logs are essential for characterizing gas 7 

hydrates and near-seafloor sediments, however it is sometimes difficult to acquire these logs due to 8 

poor borehole conditions, safety concerns or cost related issues. We present a machine learning 9 

approach to predict either compressional Vp or ρb logs with a high accuracy and low error in near 10 

seafloor sediments within water saturated intervals, in intervals where hydrate is filling fractures 11 

and intervals where hydrate occupies the primary pore space. We use scientific quality logging- 12 

while drilling well logs, gamma ray, ρb, Vp, and resistivity, to train the machine learning model to 13 

predict Vp or ρb logs. Of the six machine learning algorithms (Multilinear Regression, Polynomial 14 

Regression, Polynomial Regression with Ridge Regularization, K Nearest Neighbors, Random 15 

Forest and Multilayer Perceptron) tested, we find that the Random Forest and K Nearest Neighbors 16 

algorithms are best suited to predict Vp and ρb logs based on coefficients of determination (R2) 17 

greater than 70% and mean absolute percentage errors less than 4%. Due to the high accuracy and 18 

low error results for Vp and ρb prediction in both hydrate and water saturated sediments, we argue 19 

our model can be applied in most LWD wells to predict Vp or ρb logs in near seafloor siliciclastic 20 

sediments on continental slopes irrespective of the presence or absence of gas hydrate. 21 

Keywords: Gas hydrate; well logs; compressional velocity; bulk density; random forest; k nearest 22 

neighbors 23 

 24 

1. Introduction 25 

Natural gas hydrate occurs in near seafloor sediments worldwide; detecting 26 

and quantifying gas hydrate is a challenge, but important for understanding the amount 27 

and contribution of gas hydrate in the global carbon cycle as well as for assessing gas 28 

hydrate as a prospective energy resource [1,2]. Out of the different methods for 29 

interpreting hydrate, downhole logging measurements are the most accurate way to 30 

identify the amount of gas hydrate in the subsurface. 31 

The most common downhole logs used for interpreting gas hydrate are 32 

compressional velocity (Vp), resistivity and bulk density (ρb) [3]. The measurement 33 

response for Vp in hydrate bearing sediments depends on whether hydrate occurs in the 34 

primary pore space or as fill in veins or fractures. In coarse grained sand or silt hydrate 35 

nucleates  in the primary pore space [4,5]. When hydrate saturation exceeds ~40%hydrate 36 

begins forming a rigid framework ; at that saturation there is a distinct increase in 37 

formation moduli that increases Vp relative to water saturated sediments [6]. Hydrate in 38 

marine muds and clays is usually observed in  fractures, and those fractures likely grow 39 

in place due to the formation of hydrate  and methane supplied via microbial 40 

methanogenesis [7].Vp, however, does not usually increase significantly in hydrate filled 41 

fractures, as these accumulations usually have lower hydrate saturation than sand or silt 42 

layers [8]. 43 

Gas hydrate increases the electrical resistivity as it is an electrical insulator [3]. When 44 

hydrate is in the primary pore space, resistivity increases with increasing hydrate 45 
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saturation [9,10]. However, when hydrate is in near-vertical fractures the increase in 46 

resistivity is not only related to the amount of hydrate but also depends on fracture 47 

orientation [11].  48 

Bulk density in near seafloor sediments provides the most accurate measurement of 49 

porosity (e.g., [3]). Porosity is essential for calculating hydrate saturation using both 50 

resistivity and Vp [12,13]. Therefore, bulk density is linked to the interpretation of hydrate. 51 

However, the small difference in the bulk density of hydrate (0.92 g/cm3 [12]) and pore 52 

water (1.02 g/cm3) makes hydrate effectively undetectable from the bulk density log.  53 

Hydrate interpretation relies on good quality Vp and ρb logs, however these logs are 54 

sometimes poor quality or are not acquired in near seafloor sediments. For example, there 55 

are ~70 LWD scientific ocean drilling holes with missing Vp or ρb logs on the Lamont 56 

Doherty Earth Observatory database. 57 

Machine learning is an effective tool that can be used for building both linear and 58 

non-linear correlations to predict or fill-in missing data [14,15]. Supervised learning is a 59 

type of machine learning that trains a model using input and output features from a 60 

labeled input dataset and predicts on a new or novice dataset to test the accuracy of the 61 

model [16]. For supervised learning, available data is often split into training and 62 

validation data sets [16]. The training dataset is used so that the computer model can learn; 63 

in addition, a small proportion of the training dataset is used to validate the model [16]. 64 

Supervised machine learning models have been applied to marine geology [17-22] 65 

and geophysics [23,24], geochemistry [25,26] and gas hydrate [26-29] datasets to predict 66 

different physical properties. For example, Graw et al. [30] used the Random Forest 67 

algorithm to predict global seafloor sediment bulk density using core measurements 68 

acquired by scientific ocean drilling programs. Sain and Kumar [31] used artificial neural 69 

networks to interpret subsurface geological features with a combination of seismic 70 

attributes. Similarly, Farfour & Mesbah, Ismail et al., Ramya et al. [17,18,19] used artificial 71 

neural networks for interpretating subsurface features such as gas chimneys, channels, 72 

hydrocarbon saturated rocks using marine seismic data. Dumke and Berndt [32] used Vp 73 

logs, local geological information (such as water depth and distance to basement) and the 74 

Random Forest algorithm to predict subseafloor Vp trends worldwide. In a more related 75 

study in an Arctic permafrost region, Singh et al. [27] used a variety of different machine 76 

learning algorithms and well log combinations to predict gas hydrate saturation. 77 

In this work, we use a machine learning model to predict Vp and ρb logs in near 78 

seafloor sediments, which includes both water saturated and hydrate bearing sediments. 79 

This includes predicting Vp and ρb logs and their variation with different depths and 80 

different hydrate morphologies including hydrate in pores and hydrate in fractures. Our 81 

model results have broader relevance and are not only applicable to marine hydrate 82 

systems but may also be useful for researchers working to identify shallow natural 83 

hazards such as overpressure intervals or landslides in near seafloor marine sediments 84 

[33,34]. In these cases, Vp and ρb are essential inputs for computing overburden stress and 85 

pore pressure [33,35]. In addition, our model results will be useful for well to seismic ties, 86 

since Vp and ρb logs are essential inputs to link seismic data (measured in time) to well 87 

logs (measured in depth) (e.g. [36]). 88 

2. Data 89 

 For our machine learning model, we use data only acquired by logging-while- 90 

drilling (LWD) tools as they collect the highest quality well logging datasets in a borehole. 91 

This is because LWD tools are placed directly behind the drill bit and acquire data before 92 

sediments have time to erode [3]. This ensures that the machine learning model is trained 93 

on quality data and can make predictions with high accuracy.  94 

We downloaded all the available LWD data from 22 holes from three primary 95 

locations on continental slopes from the Lamont-Doherty Earth Observatory database to 96 

train, validate and test each machine learning model (Figure 1): seven holes from the Gulf 97 

of Mexico collected by the Gas Hydrate Joint Industry Project (JIP) Leg II [37], three holes 98 
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from Cascadia Margin collected during Integrated Ocean Drilling Program (IODP) 99 

Expedition 311 [38] and 12 holes from Bay of Bengal collected during the Indian National 100 

Gas Hydrate Program (NGHP) Expedition 01 [39]. All these holes host a range of 101 

siliciclastic sediment types and some of these holes contain natural gas hydrates. 102 

2.1. Training Holes 103 

 We use LWD datasets from 20 holes from the Gulf of Mexico, Cascadia Margin and 104 

Bay of Bengal to train the machine learning model (Figure 1). 105 

 The training holes from the northern Gulf of Mexico were drilled by JIP Leg II and 106 

are in Green Canyon (Figure 1) and Alaminos Canyon (Figure 1) [37]. The three holes in 107 

Green Canyon in Block 955 (GC955) in ~2 km of water and with sediments sourced from 108 

turbidite channel-levee complexes as well as hemipelagic marine muds [40,41]. Hole 109 

GC955-H has high quality LWD data drilled to 590 mbsf that includes 412 m of water 110 

saturated sediments, 144 m of near-vertical gas hydrate filled fractures in clay sediments 111 

with low hydrate saturations, and a 34 m of hydrate in the primary pore space of a coarse 112 

silt reservoir with saturation ranging from 30-80% [42]. Holes GC955-Q and GC955-I also 113 

have high quality LWD data to 461 and 671 mbsf in mostly water saturated sediments 114 

[37]. Alaminos Canyon Block 21 (AC21) lies in the northwestern Gulf of Mexico at a water 115 

depth of ~1.5 km. Holes AC21-A and AC21-B are drilled to a depth of 536 and 340 mbsf. 116 

Sediments in both holes are primarily water saturated marine muds, with one ~60 m water 117 

saturated sand interval that is part of a large submarine fan system [43,44]. 118 

IODP Expedition 311 drilled and logged turbidite sequences on the Cascadia 119 

subduction zone (Figure 1). The training Holes U1325A, U1327A and U1328A from 120 

Cascadia Margin (the yellow dots in Figure 1) are mostly water saturated but also have 121 

gas hydrate accumulations. The average gas hydrate saturation ranges from 4-10%, with 122 

local maximums up to 80% [10]. In Hole U1325A, drilled to a depth of 350 mbsf, most of 123 

the hydrate is present in thin sands (< 23 cm) [10]. Hole U1327A, drilled to a depth of 300 124 

mbsf, is water saturated except for an 18 m thick high resistivity interval composed of 125 

hydrate-saturated turbidite lenses [45]. Hole U1328A is drilled to a depth of 300 mbsf; in 126 

this hole, gas hydrate filled fractures were identified on the resistivity image logs from the 127 

seafloor to 46 mbsf, while the remaining 254 m are water saturated marine muds [45]. 128 

 The training holes drilled and logged offshore India as a part of NGHP-01 have high 129 

quality LWD data. Holes 2A, 2B, 3A, 4A, 5A, 5B, 6A, 7A, 10A and 11A lie in the Krishna- 130 

Godavari Basin and the Holes 8A and 9A are located in the more northern Mahanadi Basin 131 

(Figure 1; Table 1). Both locations have clay-rich sediments that are primarily water 132 

saturated; almost all gas hydrate encountered during the NGHP-01 Expedition occurs in 133 

marine muds in near-vertical fractures [39]. 134 

 We use all the available LWD logging data from NGHP-01 holes except some data 135 

from Hole 10A. Hole 10A is located at a paleo-vent site in the Krishna-Godavari Basin and 136 

consist of a webby network of veins and fractures [46]. The propagation resistivity logs in 137 

Hole 10A exceed the accuracy range in the interval 43-90 mbsf and are not valid 138 

measurements [11]. Therefore, we do not use the data in the interval 43-90 mbsf from Hole 139 

10A for training the model and use the data below 90 mbsf. 140 

 141 
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Hole Location Drilling 
Project 

Water 
Depth 
(m) 

Total 
Depth 
Drilled 
(mbsf) 

Water  
Saturated 
Intervals 

(m) 

Hydrate 
in 

fractures 
(m) 

Hydrate 
in pores 

(m) 

GC955-H  
 
 
 
 

Gulf of 
Mexico 

 
 
 
 
 

JIP Leg II 

2033 590 412 144 34 
GC955-I 2064 671 666 0 ~5 

GC955-Q 1985 461 437 0 ~24 

AC21-A 1490 536 436 79 21 

AC21-B 1488 340 301 0 39 

WR313-G 2000 1043 <753 >246 44 
WR313-H 1966 1000 626 325 49 

U1325A  
 

Cascadia 
Margin 

 
 

IODP  
Expedition 

311 

2192 350 >349 0 <0.23 

U1327A 1305 300 282 0 18 

U1328A 1267 300 254 46 0 

NGHP-01-02A  
 
 
 
 
 

Bay of 
Bengal 

 
 
 
 
 
 

NGHP  
Expedition 

01 

1058 50 50 0 0 
NGHP-01-02B 1058 250 250 0 0 
NGHP-01-03A 1076 300 91 209 0 

NGHP-01-04A 1081 300 280 20 0 
NGHP-01-05A 945 200 161 39 0 
NGHP-01-05B 945 200 163 37 0 
NGHP-01-06A 1160 350 339 11 0 
NGHP-01-07A 1285 260 220 40 0 
NGHP-01-10A 1038 205 82 123 0 
NGHP-01-11A 1007 200 180 20 0 

NGHP-01-08A 1689 350 313 37 0 

NGHP-01-09A 1935 330 230 100 0 

Table 1. Training, validation and test datasets for the machine learning model. Holes WR313-G and 142 

WR313-H are used to test and all the other holes are used to train and validate the model by splitting into a 143 

70% (train) and 30% (validation) ratio. 144 

 145 

 146 

 147 
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2.2. Test Holes 148 

 We use two Walker Ridge LWD holes, Holes WR313-G and WR313-H for testing, 149 

which assesses the predictability of the model (the white dot in Gulf of Mexico, Figure 1). 150 

We selected these two holes for testing as they host the three key intervals that we are 151 

focusing on for our machine learning model: water saturated sediments, hydrate in the 152 

primary pore space and hydrate in near-vertical fractures. 153 

These holes were drilled in the Terrebonne mini-basin in the Gulf of Mexico with a 154 

water depth of about 2 km [47]. A total of ~1220 m in Holes WR313-G and WR313-H are 155 

water saturated with a low background resistivity that ranges from 1- 2 Ωm. Hydrate with 156 

hydrate saturation of 50-90% occurs in the primary pore space of sand or silt layers a total 157 

of 50 m between both holes [47].  158 

Hydrate also occurs in near-vertical fractures in marine mud over a total thickness of 159 

~520 m between both holes [48]. Free gas is also present in an interval ~2 m in the Hole 160 

WR313-G just below the gas hydrate stability zone [48]. However, we did not include free 161 

gas in our machine learning model as this was the only hole with any free gas intervals. 162 

The lack of data in free gas intervals is not surprising; in general, free gas intervals are 163 

carefully avoided during scientific ocean drilling because they present a potential drilling 164 

hazard. 165 

 166 

 167 

Figure 1. Maps showing the training holes (yellow dots) and testing holes (white dots) (A) Holes 168 
located at Cascadia Margin. (B) Holes located offshore India. (C) Holes located in the Gulf of Mexico. 169 

 170 

 171 
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Holes Location Gas Hydrate 
Occurrence 

LWD Tools  Logs Used 

GC955-H 
GC955-I 
GC955-Q 
AC21-A 
AC21-B 
 

Gulf of 
Mexico 

Gas hydrate 
occurs in all 
the holes. 

EcoScope 
geoVISION 
sonicVISION 

Density Caliper (DCAV), 
Bulk Density (RHOB), 
Calibrated and Filtered 
Gamma Ray 
(GRMA_FILT), RING 
Resistivity, Propagation 
Resistivity (A16L, A40L, 
P16H, P28H, P40H), Vp  

U1327A 
U1328A 
U1325A 
 

Cascadia 
Margin 

Gas hydrate 
occurs in 
holes 
U1327A and 
U1328A. 

adnVISION 
EcoScope 
geoVISION 
sonicVISION 

Density Caliper (DCAV), 
Bulk Density (RHOB), 
Calibrated and Filtered 
Gamma Ray 
(GRMA_FILT), RING 
Resistivity, Propagation 
Resistivity (A16L, A40L, 
P16H, P28H, P40H), Vp  

NGHP-01-02A 
NGHP-01-02B 
NGHP-01-03A 
NGHP-01-04A 
NGHP-01-05A 
NGHP-01-05B 
NGHP-01-06A 
NGHP-01-07A 
NGHP-01-08A 
NGHP-01-09A 
NGHP-01-10A 
NGHP-01-11A 

Bay of 
Bengal 

Gas hydrate 
occurs in all 
the holes 
except 02A 
and 02B 

EcoScope 
geoVISION 
sonicVISION 

Density Caliper (DCAV), 
Bulk Density (RHOB), 
Calibrated and Filtered 
Gamma Ray 
(GRMA_FILT), RING 
Resistivity, Propagation 
Resistivity (A16L, A40L, 
P16H, P28H, P40H), Vp 

 Table 2. Holes used for training the machine learning model. Vp is computed from the compressional slowness log,  172 

DTCO. 173 

3. Methods 174 

3.1. Machine Learning Algorithms 175 

 We predict Vp logs using gamma ray, ρb and resistivity as inputs and ρb logs using 176 

gamma ray, Vp and resistivity as inputs using the 20 training holes (Table 2) and test the 177 

model in the two Walker Ridge holes (Holes WR313-G and WR313-H). We use all these 178 

logs as inputs because they are important for interpreting sediment type, the morphology 179 

of hydrate and hydrate saturation. For example, gamma ray differentiates between sand 180 

and clay rich sediments. Bulk density measures the electron density of matrix and pore 181 

fluids. Resistivity is used to identify gas hydrate at low and high saturations and Vp is 182 

used to identify gas hydrate at high saturation [49]. We focus on predicting Vp and ρb logs 183 

because they are often poor quality in near seafloor sediments. We do not predict 184 

resistivity logs because there are often many resistivity channels collected and, in general, 185 

deeper penetrating resistivity logs are often the highest quality measurements in near 186 

seafloor sediments.  187 

We use six supervised machine learning algorithms and compare the accuracy and 188 

error for each algorithm using R2 and mean absolute percentage error (MAPE). We 189 

selected these algorithms as they have been used previously in geoscience applications 190 
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[27,30,31,32]. Some machine learning algorithms have hyperparameters that can be tuned 191 

to predict output with the highest accuracy and least error. We use gridsearchcv technique 192 

to select the best set of hyperparameters for predicting Vp and ρb. Gridsearchcv is a cross 193 

validation method that splits the training data into different parts and validates the model 194 

on each part iteratively while training the model on the remaining set of data points, 195 

searching for the optimum set of hyperparameters using all the possible user defined 196 

hyperparameter combinations [50]. We split our training data into five folds and perform 197 

hyperparameter tuning with gridsearchcv using the process as described by [51,52] 198 

(Figure 2). The spreadsheets generated after gridsearchcv with all the possible 199 

combination of hyperparameters for each algorithms are provided with the 200 

Supplementary Material. We perform k-fold cross validation for all the algorithms using 201 

the 20 holes for predicting Vp and ρb  logs on different parts of the dataset (statistics appear 202 

in the Supplementary Material). We use a k-fold of five that divides the training data into 203 

five parts and validates the machine learning model on each part (Figure 2). This helps 204 

identify which algorithms are more consistent in predicting Vp and ρb that are not biased 205 

for a specific set of data points. 206 

 207 

 208 

A brief description of each algorithm Is given below: 209 

a. Multilinear Regression: Multilinear regression develops a correlation between the 210 

provided inputs and output on a labeled training dataset using a linear relationship and 211 

the resulting linear model is used to predict values for a new dataset [53]. This algorithm 212 

does not require hyperparameter tuning. 213 

b. Polynomial Regression: This algorithm defines a relationship between the input 214 

and output parameters based on a nth degree polynomial. The user defines the degree of 215 

the polynomial and then the algorithm transforms the input data into a polynomial 216 

equation [54]. For a supervised learning model, the same equation is then used to predict 217 

outputs on a novice dataset. Herein, we tested polynomial equations from orders two to 218 

six and chose a 4th order polynomial equation after hyperparameter tuning.   219 

c. Polynomial Regression with Ridge Regularization (L2): L2 regularization reduces 220 

overfitting by adding a penalty term that can be used to reduce the magnitude of large 221 

coefficients in the equation [55]. Here, we combine a 4th order polynomial equation with a 222 

ridge regression fit on the training data. We use a regularization of 0.001 and 0.01 to 223 

predict Vp and ρb respectively. 224 

D. K Nearest Neighbors: This algorithm uses feature similarity between input and 225 

output points in a space to make predictions [56]. Whenever a new dataset is input into 226 

the model, the Euclidean distance from the training data points is calculated for all the 227 

new data points and then the nearest neighboring values are selected based on the k value, 228 

which defines the search criteria and selects k number of nearest neighbors from the input 229 

(e.g. [56]). Another parameter, the weight attribute, weighs different points in the 230 

neighborhood corresponding to their respective Euclidean distances. The closeness that is 231 

calculated as the Euclidean distance from training points is then used to predict an output 232 

based on the class of the nearest neighbors [57]. We select k=7 and ‘distance’ as the weight 233 

attribute as they fit the model best for predicting Vp and ρb. 234 

e. Random Forest: As described in [58], and by other research works in geosciences 235 

such as Bressan et al., Hou et al., Shalaby et al., [20,22,25] Random Forest uses a bootstrap 236 

aggregating method that uses a combination of decision trees and takes the mean out of 237 

all the decision trees to generate the final output. Decision trees mimic the structure of a 238 

tree and consist of several nodes that terminate on a leaf node [59]. Leaf nodes are 239 

representative of class labels, and all other nodes signify feature attributes. Each branch 240 

of the tree used in Random Forest is subdivided into nodes based on the conditions that 241 

the algorithm tries to construct with reference to the input data provided [59]. This 242 

structure of Random Forest reduces variance and avoids overfitting. Herein, we use 243 

Random Forest by constructing a forest with ‘400’ trees, ‘sqrt’ as the max_features that 244 
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defines the size of  the features to be considered while splitting a node, ‘1’ as 245 

min_samples_leaf that refers to the minimum number of samples at the leaf node , ‘15’ as 246 

max_depth that refers to the maximum depth of the tree from the root node to the leaf 247 

node and ‘2’ as min_samples_split that refers to the minimum number of samples 248 

required to split a node. 249 

f. Multilayer Perceptron: A Multilayer Perceptron is an artificial neural network that 250 

uses artificial neurons with an input layer, a hidden layer and an output layer to make 251 

non-linear predictions based on the inputs provided to it [60]. It is inspired by the 252 

structure of biological neurons that receive signals from other neurons via 253 

interconnections [61,62]. It has been frequently applied in the geosciences [17- 254 

23,25,27,29,31]. An important part of a multilayer perceptron is the choice of activation 255 

function, which defines the output from a neuron. We use the ‘relu’ activation function, 256 

which is a piecewise linear function [63], along with four and five hidden layers to predict 257 

Vp and ρb respectively as it provides the best fit.   258 

In order to implement the machine learning algorithms, we use only well log data 259 

sampled at 0.5 ft (0.1524 m) depth intervals. We also normalize the inputs to range from 0 260 

to 1 [64]. This ensures that each variable is contributing equally to the model. 261 

Normalization is particularly important for algorithms that use distance-based attributes 262 

to improve accuracy and reduce error [65].  We normalize the inputs when using all the 263 

above algorithms except for Random Forest because it does not depend on distance-based 264 

attributes.  265 

 266 

3.2. Prediction of ρb and Vp 267 

We predict ρb and Vp for Holes WR313-G and WR313-H using the six machine 268 

learning algorithms by creating a training dataset from the 20 holes with the available 269 

LWD logs from the Gulf of Mexico, Cascadia Margin and Bay of Bengal (Table 2). As a 270 

part of the well log quality control for the training dataset we eliminate washout zones > 271 

5 m thick where borehole diameter > 5 cm more than the bit size to remove intervals with 272 

poor data. We keep thinner washout intervals because the machine learning model needs 273 

to be trained on some poor-quality data along with good quality data to avoid overfitting. 274 

For all algorithms, the training dataset consists of 34,341 sets of data at discrete 275 

depths with 30,478 data points corresponding to water saturated intervals, 2938 data 276 

points corresponding to intervals with gas hydrate in near-vertical fractures and 925 data 277 

points corresponding to intervals with gas hydrate in the primary pore space. Each well 278 

log in the training dataset has 34,341 sets of data at discrete depths, or 34341 values of 279 

gamma ray, ρb, ring resistivity, propagation resistivity and Vp. We split the training 280 

dataset and use 70% for training the model and 30% for validation (Figure 2). The 281 

validation dataset is kept separate from the training dataset to observe if the model is 282 

consistent enough in making predictions. We also perform feature selection analysis to 283 

select the best combination of input well logs to predict Vp and ρb using both the 284 

workflows (the statistics are shown in Section 5 of Supplementary Material). 285 

We predict Vp and ρb using different sets of well logs as inputs and describe each of 286 

these sets as a Case. We use two different workflows to predict Vp; Case 1 and 2, where 287 

we use bulk density and gamma ray logs, but different resistivity logs. For Case 1, ring 288 

resistivity is the only resistivity dataset used as an input. For Case 2, we use propagation 289 

resistivities (A16L, A40L, P16H, P28H, P40H) instead of ring resistivity along with gamma 290 

ray and bulk density. To predict ρb Case 1, we use gamma ray, ring resistivity and Vp as 291 

input well logs and for ρb Case 2 we use gamma ray, propagation resistivities and Vp as 292 

input well logs. 293 

  294 

3.3. Downsampling the predicted results 295 
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Vp and ρb logs have a lower vertical resolution than the other logs. For example, Vp 296 

has a vertical resolution of ~61 cm [66] and ρb has a vertical resolution of ~30 cm [67] while 297 

ring resistivity has a resolution of ~5-7 cm [68] and gamma ray has a vertical resolution of 298 

~31 cm [67]. The vertical resolution of the propagation resistivity logs ranges from ~21 cm 299 

to ~121 cm [67]. Therefore, we downsample the predicted outputs using a moving average 300 

filter while estimating Vp for Case 1 and 2 and ρb for Case 1 only. 301 

 302 

 303 

 304 
Figure 2. The workflow used for the data and the machine learning models in this 305 

study. 306 

 307 

 308 

4. Results and Discussion 309 
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Our study is the first to use centimeter scale resolution LWD data to predict Vp and 310 

ρb logs in near seafloor sediments. Out of the six algorithms, we find that Random Forest 311 

and K Nearest Neighbors are more robust and can predict Vp and ρb logs with a high 312 

accuracy (R2) greater than 70% and low error (MAPE) less than 4% on training, validation, 313 

test data (Figure 3 and Table 3). In addition, Random Forest and K Nearest Neighbors 314 

have consistently high accuracy for k-fold cross validation across different folds 315 

(Supplementary Material). Random Forest has been used across the geosciences to tackle 316 

a variety of different problems [30, 69, 70], however our study shows that K Nearest 317 

Neighbors is a strong machine learning method and may be viable for other geoscience 318 

applications..  319 

Multilinear Regression and Multilayer Perceptron have also been used in geoscience 320 

studies [27, 31, 71] but do not perform as well herein as Random Forest and K Nearest 321 

Neighbors to predict Vp and ρb logs. Multilinear Regression has an accuracy of only ~30- 322 

60% and a higher error of 4-6% for training, validation and test data (Figure 3 and Table 323 

3). This low accuracy signifies that the relationship among different well logs is not linear; 324 

this is an important point, because missing log data is commonly approximated using 325 

linear equations. Similarly, Multilayer Perceptron has overall low accuracy varying from 326 

55-59% on training, validation, and test data.  327 

Polynomial Regression and Polynomial Regression with ridge regularization have 328 

extremely poor accuracy in the main hydrate bearing sands in WR313-G and WR313-H 329 

(Figure 3 and Table 3). Moreover, Polynomial Regression and Polynomial Regression with 330 

ridge regularization perform poorly on different folds while performing k-fold cross 331 

validation (Supplementary Material).  332 

 333 

 334 

 335 

Figure 3. R2 accuracy and mean absolute percentage error (MAPE) for Vp and ρb prediction. 336 
Averaged over the two Walker Ridge Holes WR313-G and WR313-H. 337 

 338 

Multilinear Regression 
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 Training 
R2 (%) 

Training 
MAPE 

(%) 

Validation 
R2 

(%) 

Validation 
MAPE 

(%) 

Test R2 
(%) 

Test 
MAPE 

(%) 
Vp Case 1 56 4.18 55 4.18 59 5.69 
Vp Case 2 62 3.6 64 3.46 53 6.45 
ρb Case 1 31 5.18 31 5.12 49 5.17 
ρb Case 2 46 4.13 48 4.13 41 3.14 

Polynomial Regression (4th order) 
 Training 

R2 (%) 
Training 
MAPE 

(%) 

Validation 
R2 

(%) 

Validation 
MAPE 

(%) 

Test R2 
(%) 

Test 
MAPE 

(%) 
Vp Case 1 91 2.46 90 2.48 50 3.79 
Vp Case 2 88 2.02 0.015 4.83 7.0 71.4 
ρb Case 1 62 3.54 60 3.49 33 160 
ρb Case 2 82 2.33 0 11 0 155 

Polynomial Regression (4th order) with Ridge Regularization 
 Training 

R2 (%) 
Training 
MAPE 

(%) 

Validation 
R2 

(%) 

Validation 
MAPE 

(%) 

Test R2 
(%) 

Test 
MAPE 

(%) 

Vp Case 1 85 2.69 83 2.7 74 2.99 
Vp Case 2 82 2.42 81 2.34 55 4.99 
ρb Case 1 57 3.86 57 3.8 42 5.16 
ρb Case 2 75 2.78 75 2.81 25 2.70 

K Nearest Neighbors 
 Training 

R2 (%) 
Training 
MAPE 

(%) 

Validation 
R2 

(%) 

Validation 
MAPE 

(%) 

Test R2 
(%) 

Test 
MAPE 

(%) 
Vp Case 1 100 0 94 1.98 73 3.45 
Vp Case 2 100 0 86 1.79 64 4.4 
ρb Case 1 100 0 76 2.55 75 2.00 
ρb Case 2 100 0 85 1.86 66 2.65 

Random Forest 
 Training 

R2 (%) 
Training 
MAPE 

(%) 

Validation 
R2 

(%) 

Validation 
MAPE 

(%) 

Test R2 
(%) 

Test 
MAPE 

(%) 
Vp Case 1 99 1.07 96 1.60 70 3.96 
Vp Case 2 97 1.05 91 1.60 63 4.40 
ρb Case 1 93 1.51 81 2.30 72 2.19 
ρb Case 2 95 1.16 89 1.71 49 3.18 

Multilayer Perceptron 
 Training 

R2 (%) 
Training 
MAPE 

(%) 

Validation 
R2 

(%) 

Validation 
MAPE 

(%) 

Test R2 
(%) 

Test 
MAPE 

(%) 
Vp Case 1 56 4.20 55 4.19 59 5.66 
Vp Case 2 62 3.59 63 3.45 52 6.53 
ρb Case 1 46 4.47 45 4.40 57 2.70 
ρb Case 2 0 6.37 0 6.38 0.1 11 



Energies 2023, 16, x FOR PEER REVIEW 12 of 33 
 

 

 339 

Table 3. Train/Validation accuracy and error metrics computed over the 20 training holes with a 340 
70:30 split over training data. Test metrics is computed for the two Walker Ridge Holes WR313-G 341 
and WR313-H (taking average R2 and MAPE over the two holes). 342 

4.1. Formation Vp Prediction 343 

Random Forest and K Nearest Neighbors have high R2, low MAPE and are more 344 

consistent than the other algorithms, therefore we compare these two algorithms and 345 

focus on how these results vary in water saturated intervals, hydrate in the primary pore 346 

space and hydrate in fractures (Table 4). A unique aspect of our study is that we consider 347 

hydrate in different morphologies and the effect on machine learning results. 348 

a. Water Saturated Intervals 349 

 In Figures 4 and 5 water saturated intervals are primarily identified by low resistivity 350 

and are signified by a white background. In these water saturated intervals the predicted 351 

Vp closely matches the measured Vp with a low percent error (Figure 6) for both algorithms 352 

using Vp Case 1 (R2 ~ 75%). However, the R2 for predicted Vp for Vp Case 2 is 66% (MAPE 353 

4.7%) for Random Forest and 70% (MAPE 4.0%) for K Nearest Neighbors. This indicates 354 

that either Random Forest or K Nearest Neighbors can be used for estimating Vp in water 355 

saturated intervals with ring resistivity as one of the inputs in the training model. 356 

However, the propagation resistivity can also be used to predict Vp in water saturated 357 

sediments if ring resistivity is not available (Case 2). The high accuracy and low percent 358 

error for these results may suggest that these models could be applied in datasets in near- 359 

seafloor water saturated sediments to predict accurate Vp where high quality input logs 360 

are available. 361 

b. Hydrate in Fractures 362 

We compare the predicted Vp results with the measured Vp for WR313-G and WR313- 363 

H in the intervals where hydrate is identified in near-vertical fractures. Intervals where 364 

hydrate occurs in near-vertical fractures are highlighted in yellow in Figures 3 and 4. 365 

Propagation resistivity measurements are the most sensitive to resistivity anisotropy 366 

caused by near-vertical hydrate filled fractures; near-vertical resistivity fractures cause a 367 

characteristic curve separation in propagation resistivity curves that depends on the 368 

fracture angle, hydrate resistivity, the measurement type and the spacing of the 369 

measurement sondes [11]. In general, no significant increase in Vp is observed in near- 370 

vertical fracture intervals, which is likely due to the low concentration of hydrate in the 371 

bulk sediment [8]. The Random Forest Vp prediction results have a low accuracy and 372 

higher percent error (Figure 6) using Case 1 (using ring resistivity) but a higher accuracy 373 

and lower percent error (Figure 6) with Case 2 (using propagation resistivity: A16L, A40L, 374 

P16H, P28H, P40H) (Table 4); this is consistent with the observation that a set of 375 

propagation resistivity logs are sensitive to near vertical fractures while a single resistivity 376 

measurement (in this case, ring resistivity) cannot be used to identify near-vertical gas 377 

hydrate filled fractures. However, the accuracy of the K Nearest Neighbors algorithm is 378 

lower for Case 2 (R2=48% and MAPE=4.2%) as compared to Case 1 (R2=73% and 379 

MAPE=2.4%). These contradictory results may be due to the fact that gas hydrate filled 380 

fractures form complex 3D networks [46] with a variety of fracture angles [8] and the 381 

anisotropy caused by these networks may result in data which is difficult to fit by a 382 

machine learning model.  383 

This suggests that some caution is required while predicting Vp when hydrates occur 384 

in near-vertical fractures. Thus, in order to predict Vp for hydrates in near-vertical 385 

fractures, the Random Forest algorithm with propagation resistivities (Case 2) or the K 386 

Nearest Neighbors algorithm with ring resistivity (Case 1) are the best algorithms and 387 

datasets. 388 

c. Hydrate in Pores 389 



Energies 2023, 16, x FOR PEER REVIEW 13 of 33 
 

 

Hydrate bearing sands are highlighted in blue on Figures 4 and 5. These intervals 390 

have a significant increase in the measured Vp log and a corresponding increase in the 391 

resistivity logs. In hydrate bearing sands (Figures 4 and 5) the Random Forest algorithm 392 

closely replicates the measured Vp log using Case 1 (R2 =81% and MAPE=6.5%), and we 393 

recommend this algorithm over K Nearest Neighbors (R2 =71% and MAPE=10%) in 394 

locations with high saturation gas hydrate. This is because Random Forest predictions 395 

better match the measured Vp log both in thick sand accumulations and thin sands (< 5 m 396 

in thickness) as compared to K Nearest Neighbors. In addition, a higher accuracy is 397 

observed when the ring resistivity log (Case 1) is used over a suite of propagation 398 

resistivity logs (Case 2). This is likely due to a better vertical resolution of ring resistivity 399 

(5-7 cm) from geoVISION* tool [68] as compared to the propagation resistivities (~21-121 400 

cm resolution) from EcoScope* tool [67]. Therefore, the ring resistivity measurement is 401 

able to resolve thinner beds and improves the accuracy of Vp prediction using Case 1. 402 

Of course, high saturation gas hydrate is not a common occurrence. Even so, data in 403 

these intervals may still benefit from prediction algorithms. For example, [72] observed 404 

that the presence of high-saturation hydrate in pores can cause loss of signal while 405 

acquiring Vp logs in boreholes. This may make it difficult to interpret formation Vp logs 406 

due to poor data quality. Our prediction results for hydrate in pores may improve the 407 

interpretation for Vp logs in such cases where Vp data is compromised due to loss of signal. 408 
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 409 

Figure 4. LWD data from 31 – 1043 mbsf (m below sea floor) in Hole WR313-G showing the original 410 
and predicted results from K Nearest Neighbors (Track 4) and Random Forest (Track 5) for Vp Case 411 
1. Insets show (a) water saturated interval (b) interval with hydrates in fractures and (c) interval 412 
with hydrate in pore space. 413 
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 415 

Figure 5. LWD data from 31 – 1043 mbsf (m below sea floor) in Hole WR313-G showing the original 416 
and predicted results from K Nearest Neighbors (Track 4) and Random Forest (Track 5) for Vp Case 417 
2. Insets show (a) water saturated interval (b) interval with hydrates in fractures and (c) interval 418 
with hydrate in pore space. 419 
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 420 

Figure 6. LWD data from 31 – 1043 mbsf (m below sea floor) in Hole WR313-G showing the original 421 
and predicted results for Vp Case 1 and 2 using K Nearest Neighbors and Random Forest along with 422 
the percentage error for different depth intervals. 423 
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 425 

 
Random 
Forest 

K Nearest 
Neighbors 

 R2 MAPE R2 
 

MAPE 
 

 
 
 
 

Vp Case 1 
(Input logs: 

Gamma 
Ray, Bulk 
Density, 

Ring 
Resistivity) 

 
 
 
 
 

Complete log 
interval 

70% 3.9% 73% 3.4% 

 
 

Water 
Saturated 

74% 3.0% 75% 3.6% 

Hydrate in 
Fractures 

54% 5.9% 73% 2.4% 

 
 

Hydrate in 
Pores 

81% 6.5% 71% 10% 

 
 
 

 Vp Case 2 
(Input logs: 

Gamma 
Ray, Bulk 
Density, 

Propagation 
Resistivity) 

Complete log 
interval 

63% 4.4% 64% 4.4% 

 
 

Water  
Saturated 

66% 4.7% 70% 4.0% 

Hydrate in 
Fractures 

68% 2.8% 48% 4.2% 

 
 

Hydrate in 
Pores 

69% 14% 63% 15% 

ρb Case 1 
Complete log 

interval 
72% 2.2% 75% 2.0% 

Table 4. Statistical analysis for Vp and ρb prediction averaged over Holes WR313-G and WR313-H 426 
for water saturated sediments, gas hydrate in near vertical fractures and gas hydrates in the primary 427 
pore space. (MAPE = mean absolute percentage error). 428 

4.2. Bulk Density Prediction 429 

 We predict ρb log with high accuracy and low error using Random Forest and K 430 

Nearest Neighbors algorithms. We choose Case 1 (with gamma ray, ring resistivity and 431 

Vp as inputs) for ρb prediction over Case 2 (with gamma ray, propagation resistivities and 432 
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Vp as inputs), since ρb Case 2 overfits the model. This is because ρb Case 2 predicts ρb with 433 

a high accuracy and low error on training and validation datasets but the prediction 434 

becomes poor for the test holes (Table 3). Unlike Vp prediction, we do not assess the 435 

different hydrate morphologies for ρb prediction as Case 1 fits all the intervals (Figure 7). 436 

 The bulk density measurement is important for hydrate interpretation as it provides 437 

the most accurate measurement of porosity in near seafloor sediments. Porosity is used to 438 

compute hydrate saturation along with resistivity and Vp. Our bulk density model (Case 439 

1), therefore will be valuable to estimate the bulk density measurement in the near seafloor 440 

sediments in locations where bulk density is not collected, such as the Nankai Trough [73] 441 

and the Hikurangi Margin [34, 74]. 442 

4.3. Prediction at Deeper Depths 443 

 We observe that the accuracy decreases and error increases for Vp and ρb prediction 444 

at deeper depths (>600 mbsf) in the test dataset (Figures 6 and 7). This is likely because the 445 

total drilled depth for the training holes ranges from ~200-600 mbsf, however the total 446 

drilled depth for the validation holes is ~1000 mbsf. Both Vp and ρb are a function of depth, 447 

i.e., both increase with increasing depth. Therefore, the model can predict Vp and ρb with 448 

a higher accuracy and low error for depths where training data is available (<600 mbsf). 449 

                                                     450 

                                                    4.4 Further Data Limitations 451 

One work is limited by the availability of scientific ocean drilling LWD data. We use 452 

all the publicly available data (22 holes) from the Lamont Doherty Earth Observatory 453 

database to train, validate and test the model. If more data becomes publicly available in 454 

the future, further data can be incorporated to improve the model.  455 

If a user wants to apply our models to new data, the Vp model requires gamma ray, 456 

resistivity, ρb logs and the ρb  model requires the gamma ray, resistivity and Vp logs, 457 

otherwise the model cannot be accurate applied.  Moreover, our model is only applicable 458 

to siliciclastic near seafloor sediments in marine settings. It cannot be used for permafrost 459 

environments or in lithified rock. 460 

The well log data that we use for this project is few tens to few hundreds of 461 

megabytes in size and the machine learning algorithms take 30 seconds to 2 minutes for 462 

execution. However, the computation time increases to 3-4 hours while performing 463 

hyperparameter optimization that compares several hundreds of combinations of different 464 

hyperparameters for different algorithms. For Random Forest, the computation time for 465 

hyperparameter optimization is higher and takes about 10 hours. 466 

 467 

 468 

 469 

 470 

 471 
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 472 

Figure 7. LWD logs showing bulk density Case 1 for Hole WR313-G comparing the results and 473 
percentage error associated with different depth intervals for K Nearest Neighbors and Random 474 
Forest algorithms. 475 
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4.5. Neutron Porosity 476 

 The neutron porosity log measures the hydrogen concentration in the formation 477 

which is related to the porosity of the formation [49]. In clay rich environments, however, 478 

the apparent neutron porosity can be larger and noisy due to the presence of hydroxyl 479 

ions (OH-) associated with clay minerals [49]. Therefore, bulk density is the preferred log 480 

in near-seafloor sediments to interpret porosity because it most closely replicates in situ 481 

porosity [3]. For this reason, we used bulk density as an input log in Case 1 and 2. 482 

 We tested the neutron porosity log as an input for our machine learning model to 483 

predict Vp (Figure 8). When applying neutron porosity to the two Walker Ridge Holes 484 

(WR313-G and WR313-H), we found that the predicted Vp in clayey zones does not 485 

correlate as well as when the bulk density was used (Case 1). In contrast, [27] shows that 486 

both neutron porosity and porosity derived from bulk density can be used 487 

interchangeably as an input in a machine learning model used to compute hydrate 488 

saturation in a permafrost location in Canada (Figure 8). The neutron porosity works in 489 

the model of [27] because the lithology is primarily sand whereas we apply our machine 490 

learning model to both sand and clay rich intervals. Caution should always be exercised 491 

if using neutron porosity in mud or clay rich environments. 492 

4.6. Model application in non-hydrate sites 493 

Even though we train our machine learning model using borehole data from hydrate 494 

drilling expeditions in the Gulf of Mexico, Cascadia Margin and Offshore India, we argue 495 

our model can still be applied in boreholes missing data not only in hydrate systems but 496 

in siliciclastic near seafloor sediments on the continental slopes. While this paper is 497 

focused on hydrate systems, most of the data used in the model (89%) is from water 498 

saturated marine sediments; in these systems our model can predict Vp and ρb with a high 499 

accuracy and a low percent error (Figure 6 and 7).  500 

One factor that might affect the machine learning model is porewater salinity. This is 501 

because resistivity is a function of porewater salinity in high porosity sediments. In 502 

general, an increase in porewater salinity would reduce resistivity. This would reduce 503 

predicted Vp and ρb. Conversely, a decrease in porewater salinity would increase 504 

resistivity and also the predicted Vp and ρb. For example, porewater salinity variations can 505 

be due to the formation or dissociation of hydrate [10,75]. Porewater salinity can also vary 506 

in places with shallow salt diapers [76]. While these situations where pore water salinity 507 

varies are not very common and porewater salinity is normally standard seawater, 508 

caution should be taken in any location where there may be a significant change in 509 

porewater salinity. There are many holes where this model can be applied in marine 510 

sediments on continental margins. For example, our model could be used to predict Vp 511 

and ρb logs for the ~70 LWD scientific ocean drilling holes on Lamont Doherty Earth 512 

Observatory database with missing Vp or ρb logs. Even more holes have missing or 513 

damaged Vp or ρb logs where our model could be applied. 514 

 515 

 516 

 517 

 518 

 519 
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 520 

Figure 8. LWD logs for WR313-G showing two different clay rich intervals A and B with Vp 521 
prediction results using Random Forest algorithm before and after eliminating Neutron Porosity 522 
(Case 1) from the training model. 523 

 524 
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5. Conclusion 525 

 In this work, we present a novel machine learning approach to predict Vp and ρb logs 526 

in marine gas hydrates and their variation with different depth intervals and different 527 

hydrate morphologies. We predict Vp log using gamma ray, bulk density and resistivity 528 

as inputs and ρb log using gamma ray, Vp and resistivity logs as inputs. To identify the 529 

best algorithms, we use six machine learning algorithms and compare the results. We find 530 

that Random Forest and K Nearest Neighbors algorithms can be used to predict Vp and ρb 531 

logs with a high degree of accuracy and low error in near seafloor sediments with water 532 

saturated intervals, intervals where hydrate is filling fractures and intervals where 533 

hydrate is in the primary pore space. Due to a good match between the measured and 534 

predicted logs both hydrate bearing and water saturated intervals, our model can be 535 

applied to siliciclastic near seafloor sediments where either Vp or ρb logs are missing. Our 536 

model for Vp or ρb prediction is applicable not only to hydrate systems but also useful for 537 

researchers working to identify shallow natural hazards such as submarine landslides as 538 

well as conducting studies by integrating well and seismic data.  539 
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