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Abstract

Analysis of hydrate systems across basins is not common, as most studies are focused
on smaller sites. Using petroleum industry well and seismic data, we identify natural gas
hydrate accumulations across the entire North Carnarvon Basin, offshore Western Australia.
Out of 120 wells, 52 wells have evidence for gas hydrate, though hydrate is distributed
throughout the hydrate stability zone in low concentrations. In addition, we do not observe a
connection between the presence of hydrate in wells and deeper thermogenic gas reservoirs.
From 3D seismic data, we observe bottom simulating reflections (BSRs) are very rare. In
addition, while faults are common across the basin, shallow bright spots, which indicate
shallow free gas, are uncommon. Based on all these observations from well and seismic data,
we argue that hydrate across the North Carnarvon Basin formed predominantly from in-situ

gas that is microbial in nature.

Keywords: Gas hydrate, well logs, seismic, bottom simulating reflection

1. Introduction

Natural gas hydrate commonly occurs on continental slopes within marine sediments
(Collett et al., 2009). Identifying and characterizing natural gas hydrate is important for
several reasons. Hydrate can be a potential geohazard as hydrate dissociation may trigger

underwater landslides. Hydrate is also a potential natural gas resource that hosts vast
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quantities of methane (Boswell & Collett, 2011; Collett et al., 2009; Maslin et al., 2010).
Moreover, hydrate is also an important component of the global carbon cycle as it is
estimated to host ~5-20% of mobile carbon on Earth (Boswell & Collett, 2011; Ruppel &
Kessler, 2017). Understanding the source of gas in hydrate systems — either microbial or
thermogenic gas — may help us understand the role of hydrate in the global carbon cycle
(Kvenvolden, 1988, 2002). Microbial gas is formed from the consumption of organic matter
by microorganisms in near seafloor sediments, while thermogenic gas is formed from the
degradation of organic matter under high temperature and pressure conditions occurring far
below the seafloor (Brooks et al., 1984; Kvenvolden, 2002). Characterizing the gas source for
hydrate systems will help us understand the migration of gas and the formation and

accumulation of hydrate in near seafloor systems.

Several countries such as Japan, Canada, China, India, Korea and the U.S. have
conducted studies to drill and identify gas hydrate, but these studies only focus on relatively
small areas (Collett et al., 2009; Collett et al., 2014; Fujii et al., 2014; Hui et al., 2016; Ryu
et al., 2009; Takahashi et al., 2005; Tsuji et al., 2009). The occurrence and distribution of
hydrate across larger basins, however, is still not well understood. For example, the largest
hydrate study offshore Western Australia, Paganoni et al. (2019) is focused on natural gas
hydrate in the North Carnarvon Basin, offshore Western Australia (white polygon, Figure 1);
while the Paganoni study included 4130 km? of 3D seismic data, it covers only a small
fraction (0.8%) of the North Carnarvon Basin. Herein, we identify the presence of natural gas
hydrate for the first time on a wide scale across the North Carnarvon Basin in offshore
Western Australia using petroleum industry reflection seismic data and downhole well logs,

which covers an area of 34,000 km? (Figure 1).

The two most common geophysical methods used to identify natural gas hydrate are

downhole logging and reflection seismic surveys (Goldberg et al., 2010; Holbrook et al.,
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1996). Downhole logs provide a variety of physical properties measurements, which can be
used to determine the in situ characteristics of hydrate and hydrate saturation (Goldberg et al.,
2010; Tsuji et al., 2009). The most common downhole logs for interpreting hydrate are bulk
density, resistivity and compressional velocity (Goldberg et al., 2010). Bulk density provides
the most accurate measurement of porosity in the hydrate stability zone (HSZ), which is
essential for interpreting hydrate using both resistivity and compressional velocity (Helgerud
et al., 1999; Lee & Collett, 2011). Hydrate is an electrical insulator and increases electrical
resistivity even if it is present in small amounts. Compressional velocity increases in hydrate

bearing intervals when hydrate saturation is above ~40% (Yun et al., 2005).

Marine reflection seismic data are used to interpret hydrate systems and free gas. .
Seismic data is often used to identify bottom simulating reflections (BSRs) which occur due
to the presence of free gas at the base of hydrate stability zone (BHSZ) (Haacke et al., 2007,
Shipley et al., 1979), but BSRs do not always indicate hydrate (Majumdar et al., 2016). In
some cases, phase reversals may be present at or near the BSR, which can be a direct hydrate
indicator on seismic data (Bellefleur et al., 2007; Boswell et al., 2016; Collett et al., 2019).
Free gas can also be associated with bright spots, chimneys and faults (Heggland, 1998;
Hillman et al., 2020; Ligtenberg, 2003; Miller et al., 2012; Sheriff, 1975). Bright spots are
high amplitude anomalies with a negative acoustic impedance that indicates the presence of
natural gas (Sheriff, 1975). Gas chimneys are often identified by low amplitude anomalies on
seismic data; these features can extend deep into the subsurface (Heggland, 1998). Faults
appear as discontinuities with offsets in stratigraphy and can be both shallow or deep seated.
Faults can also be highly permeable and gas migration from deep reservoirs can occur along

such migration pathways (Miller et al., 2012).

1.1 Hydrate systems in the North Carnarvon Basin
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Most of the sediments within the HSZ in the North Carnarvon Basin are part of the
Delambre Formation, which consists primarily of nannofossil carbonate ooze (Barrett et al.,
2021; Bradshaw et al., 1994). At Site 762 and 763 from Ocean Drilling Program (ODP) Leg
122, (Figure 1) the total carbonate content of the sediments ranges from 60-80% from 0-400
mbsf (meters below seafloor) (Haq et al., 1990). Moreover, in shallow shelf sediments the
lithology primarily consist of unconsolidated wackestone and packstone at International
Ocean Discovery Program (IODP) Sites U1461, U1462, U1463 (Figure 1; Gallagher et al.,
2017). This shows that carbonate is widely deposited in the shallow sediments within the

Exmouth Plateau.

Only a few studies describe the presence of hydrate offshore Western Australia.
Imbert & Ho (2012) inferred the presence of hydrate from the observation of funnel shaped
features from a seismic survey in the Exmouth Plateau. The study by Imbert & Ho (2012)
however, does not present any direct evidence (such as well logs and geochemical data) for
the presence of hydrate. Similarly, Paganoni et al. (2019) inferred the presence of hydrate
system in the Exmouth Plateau in offshore Western Australia using the 3D Bonaventure

seismic survey and geochemical data from ODP Sites 762 and 763 (Figure 1).

In the Bonaventure survey, Paganoni et al. (2019) identified a few discontinuous
BSR-like features that are negative amplitude anomalies that most likely signify the presence
of free gas at and below the reflection and possible gas hydrate occurring above. These BSR-
like features, however, are difficult to interpret due to the presence of sedimentary layers that
are parallel to the seafloor. In the seismic data, Paganoni et al., (2019) also observed a dense
network polygonal faults, which may act as potential conduits for gas migration (Cartwright
et al., 2003; Cartwright & Lonergan, 1997) in the Exmouth Plateau in offshore Western

Australia.
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Based on the seismic interpretation and geochemical data below the HSZ from
industry boreholes in the Exmouth Plateau, Paganoni et al., (2019) inferred the presence of a
hydrate system sourced with thermogenic gas from deep gas reservoirs, most likely the
Mungaroo formation in the Upper Triassic. Paganoni et al. (2019) suggested that the gas has
likely migrated through faults and stratal pathways that is evident from the presence of

stacked high amplitude anomalies and gas chimneys on seismic data.

1.2 The Petroleum System in the North Carnarvon Basin

The North Carnarvon Basin has ~46 trillion cubic feet of proved and probable oil and
gas reserves making it the highest hydrocarbon producing region in Australia (Geoscience
Australia, 2022). The main source rocks in the North Carnarvon Basin comprise of the Upper
Triassic Mungaroo Formation with some contribution from organic rich marine units from
the Lower Triassic Locker Shale (Bradshaw et al., 1994). The reservoir bearing rocks in the
North Carnarvon Basin consist of sand-prone facies of the Triassic Mungaroo Formation and
Barrow Group in the Early Cretaceous (Exon & Willcox, 1980; Geoscience Australia, 2022).
Hydrocarbon leakage from the Triassic Mungaroo Formation into shallow sediments could be

a thermogenic source for hydrate (e.g. Scarborough gas field) (Cowley & O’Brien, 2000).
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Figure 1 A map showing the data used to characterize hydrate systems in the North
Carnarvon Basin, offshore Western Australia. The orange dots are the petroleum industry
wells evaluated in this study; the pink dots are ODP (Ocean Drilling Program) Sites 762 and
763; the yellow dots are the IODP (International Ocean Discovery Program) Sites U1461,
U1462 and U1463. Seismic surveys interpreted in this study are shown as yellow shaded
areas. The white shaded area is the Bonaventure 3D seismic survey used by Paganoni et al.
(2019), as well as in this study.

There is also evidence for microbial methane sources at ODP Sites 762 and 763
(Figure 1). Hydrocarbon data from these sites show high methane concentrations up to
100,000 ppm in headspace gas samples (Snowdon & Meyers, 1992), which may suggest a
microbial methane source (Claypool & Kvenvolden, 1983). The measured total organic
carbon (TOC) at Site 762 is quite low, less than 1%. At Site 763, most TOC measurements
are between 0.2-1.5%. While these values are low, low methane and low hydrate
concentrations can be generated from small amounts of organic carbon (e.g. Malinverno,

2010). In addition, extremely high TOC ranging from 9-15% in two thin (3 cm and 10 cm)



132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

layers at Site 763 are significant TOC sources for microbial gas generation (Figure 1) (Haq et

al., 1990; Snowdon & Meyers, 1992).

2. Data and Methods

We use water column temperature, petroleum industry wells and 3D seismic surveys
from the National Oceanic and Atmospheric Administration (NOAA), the National Offshore
Petroleum Information Management System (NOPIMS), and the Western Australian
Petroleum and Geothermal Information Management System (WAPIMS). NOPIMS and
WAPIMS provide public access to the petroleum exploration data from Australia in the form

of well logs, marine seismic surveys, interactive maps, and cores.

2.1 Estimating the Base of Hydrate Stability Zone

Hydrate stability below the seafloor depends on temperature, pressure, pore water
salinity and gas composition (Sloan & Koh, 2007). We use the Colorado School of Mines
Hydrate CSMHYD program (Sloan & Koh, 2007) to estimate the BHSZ in each well using
the water depth, the seafloor temperature and the geothermal gradient at each well location.
(These datasets are available in the Supplementary Material spreadsheet). We assume 100%
methane (Structure 1) and 3.5% porewater salinity to estimate the BHSZ. We assume
methane gas because most hydrate accumulations worldwide predominantly consist of
methane gas (Ruppel & Kessler, 2017; Sloan & Koh, 2007). In addition, the methane
concentration from the gas chromatograph data in the petroleum industry wells in North
Carnarvon Basin increases to 99% from deeper to shallower sediments indicating
predominantly methane gas in hydrate. Also, it has been found that the gas hydrate reservoir

at Green Canyon Block 955 in the Gulf of Mexico is composed almost entirely of microbial
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methane (99.99%) that was expected to have a thermogenic source with higher order

hydrocarbons (Flemings et al., 2020; Phillips et al., 2020).

We use well completion reports from the NOPIMS and WAPIMS databases to
determine the water column depth at each wellhead. There are ~1600 wells drilled in offshore
Western Australia with water depths ranging from the continental shelf to deep water
settings. However, we only use wells with water depths > 534 m, because the up dip edge of
methane hydrate stability in offshore Western Australia is ~534 m based on our calculations

using the CSMHYD program (Sloan & Koh, 2007).

Seafloor temperature is needed to estimate the geothermal gradient and calculate the
BHSZ. We use the deepest available water column temperature data from the World Ocean
Atlas (Boyer et al., 2018; Locarnini et al., 2018) to estimate the seafloor temperature at each

well (Boyer et al., 2018; Locarnini et al., 2018).

To estimate the geothermal gradient, a temperature measurement below the seafloor is
also needed. In industry wells, formation pressure tests provide the most precise estimate of
formation temperature below the seafloor (Anderson et al., 2011). Formation pressure tests
are conducted by packing a specific interval in the borehole, which allows the borehole fluids
to reach equilibrium with the formation so that the formation temperature can be measured
(Peters & Nelson, 2012). In our dataset, 81 wells have formation pressure test data and we

use this data to compute the geothermal gradient at those wells.

Another type of temperature measurement is the bottomhole temperature (BHT); this
measurement is the maximum recorded temperature inside the borehole at the bottom of the
hole. BHT measurements may be less reliable than the formation pressure tests, because BHT
measures the temperature of drilling fluid at the bottom hole and that temperature may not be

equal to the temperature of the formation (Evans & Coleman, 1974). In our dataset, 24 wells
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have formation pressure test in addition to BHT data, which provides an opportunity to
compare the similarity between the two temperature measurements. We find that the mean
absolute difference was 1.85 C/km with the maximum difference of +8.04 C/km and
minimum difference of +0.17 C/km, where the positive sign indicates a warmer gradient from
the formation pressure test data. Because the mean difference between the formation pressure
test and BHT gradients was low, we argue that BHT is a reliable estimate of the geothermal
gradient in wells where no formation pressure test data was available. Therefore, we use BHT

to estimate BHSZ for 38 wells with no formation pressure test measurements.

For the remaining 27 wells with no BHT and formation pressure test data, we estimate
the geothermal gradient using the weighted average geothermal gradient from other wells

within a radius of 70 km.

2.2 Gas Hydrate Interpretation

Once we estimate the BHSZ, we choose wells with at least 30 m of valid well log data
within the HSZ for interpretation. We also eliminate data that is poor quality. For example,
metal casing generates inaccurate or erratic resistivity that can be easily identified and

removed.

We use gamma ray and resistivity logs for interpreting sediment type and hydrate
occurrence as these logs are most commonly available within the HSZ for these wells. If
other logs are available within the HSZ, such as bulk density and compressional velocity,

they are also used to interpret the lithology and hydrate occurrence.

Resistivity logs are used to identify gas hydrate and estimate background resistivity.
Background resistivity is the resistivity of sediments that are 100% saturated with brine-rich
water. As the hydrate displaces pore fluid in the pore space, the measured resistivity increases

(Goldberg et al., 2010). We interpret this increase in resistivity with reference to the
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background resistivity to identify hydrate saturated intervals (Goldberg et al., 2010; Pearson

et al., 1983).

Background resistivity can either be calculated or estimated depending on the type
and quality of logs available in a well. Background resistivity can be calculated when a
quality bulk density log and resistivity log are available. A bulk density log is used to
compute porosity as it provides the most accurate porosity in near seafloor sediments
(Goldberg et al., 2010). We show an example in Figure 2 where we compute porosity using a
bulk density log for the Yellowglen-1 well. We assume a typical grain density (pg) for of 2.70

g/cm? for carbonate sediment and a fluid density (py) of 1.03 g/cm? for brine-rich porewater:

__ Pg—Pb
¢den - Pg—Pw (1)

The ¢ 4., porosity calculated from Equation (1) can then be used to compute the background

resistivity R, using the Archie’s equation (Archie, 1942):

Ry
Ro = o (2)

where Ry is the pore water resistivity and is assumed to be the resistivity of seawater, Rw =

0.32 Om (Ellis & Singer, 2007). The cementation exponent (m) is related to the cementation
of sediment (Ellis & Singer, 2007). We use the value m=2 initially for the complete interval
and adjusted it to 2.4 for the interval 1365 to 1407 mKB and 2.2 for the interval below 1407

mKB to match R, in water saturated intervals for the Yellowglen-1 well in Figure 2 (Ellis &

Singer, 2007).

10
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Figure 2 Well log data from Yellowglen-1. The first depth track is the depth in meters below
seafloor (mbsf). The second depth track is the depth as measured in meters from the Kelly
Bushing (or rig floor). Track 1 displays the gamma ray log that shows the variation in
lithology with depth; the low gamma ray suggests the sediment consists primarily of
carbonate ooze. Track 2 shows the original bulk density (in red). Track 3 displays the
porosity calculated using Equation (1). Track 4 shows the deep resistivity (P40H, in purple)
and background resistivity (Ro) calculated using Equation (2). Other propagation resistivity
logs also agree with the P40H log and do not show any deviations from P40H in the HSZ.
The base of hydrate stability is estimated based on the geothermal gradient (46.6 C/km) from
formation pressure tests. The highlighted intervals (light blue) show resistivity increases
greater than 0.5 Qm with reference to the computed R,. These highlighted intervals are
categorized as hydrate bearing and the well is Category D hydrate.

11



235

236

237

238

239

240

241

242

243

244

245

246

247

248

In the wells where bulk density log is not available, we estimate R,. Usually, R, varies
between 1-1.5 Qm for water-saturated near seafloor sediments, due to changes in porosity.
We choose a conservative R, to avoid overestimating the presence of hydrate in the wells. We
observe the resistivity trend all throughout the HSZ, as well as at and just below BHSZ to
select the most likely Ro. Ro can increase with depth due to decreasing porosity because of
compaction. In such cases where R, is variable, different R, values are chosen for different
intervals. For example, in Blackdragon-1 (Figure 3) we select a R, of 1 Qm from 1429 -1636

mKB, 1.2 Qm from 1636 - 1691 mKB, and 1.4 Qm below 1691 mKB.

Gas hydrate saturation is using Archie’s saturation equation (Archie, 1942) :

Sp=1- (R)"" G)

Rin

where R, is the calculated background resistivity using Equation 2, R is the measured
resistivity and # is the saturation exponent (for example Scarborough-2, Figure 4). However,
caution should be taken while using Archie’s equation as it should only be applied where

hydrate is present in the primary pore space.

12
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Figure 3 Well logs from Blackdragon-1 with an estimated R, from 1-1.4 Qm. The two depth
tracks display depth in meters below seafloor (mbsf) and meters below rig floor (mKB).
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as hydrate bearing intervals. This is a Category D well (Table 1). The BHSZ is estimated at
1825 mKB using a geothermal gradient of 34.9 C/km.
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2.3 Gas hydrate categories

We categorize gas hydrate into four categories based on the increase in resistivity
above R, (Table 1) using the criteria modified from Majumdar et al. (2017). Category A is the
highest category and has the largest increase in resistivity above R, (5 Qm) and the thickness
of accumulations, whereas Category D is the lowest concentration and thickness of
accumulation for hydrate out of the four categories. For example, we classify Yellowglen-1
(Figure 2) and Blackdragon-1 (Figure 3) wells as Category D hydrate, because the increase in

resistivity is > 0.5 Qm above background resistivity for a thickness of 2 m.

2.4 Seismic Interpretation

We interpret 18 3D seismic surveys covering a total area of 34130 km? with an aim of
assessing the hydrate system in the North Carnarvon Basin. The 3D seismic surveys in the
North Carnarvon Basin have a dominant frequency of 20-60 Hz, which results in a vertical
resolution in the range 7-21 m assuming a velocity of 1700 m/s within the HSZ. Details on
the inline and crossline spacing are available for each seismic survey in Table S1 of the

Supplementary Material pdf file.

To identify hydrate systems using seismic data, we first calculate the BHSZ for each
seismic survey using the BHSZ calculation from the wells. To convert the BHSZ from depth
to time in seismic data, we use an average interval velocity in shallow sediments available
from the vertical seismic profiles (VSPs) in the well reports. We find that the average interval
velocity within the HSZ varies from ~1590 m/s to ~1800 m/s in the North Carnarvon Basin.
The BHSZ on the seismic surveys ranges from 50 — 600 ms two way travel time across the

North Carnarvon Basin.

We look for BSRs, faults and the presence of gas to identify hydrate systems. We use

zero phase American polarity where the seafloor is a positive amplitude reflection and the

14
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BSR a negative amplitude reflection (Boswell et al., 2012; Hillman et al., 2017; Portnov et
al., 2019). We use root-mean-square (RMS) amplitude maps to look for high amplitude areas
near the estimated BHSZ that might indicate BSRs or free gas (Portnov et al., 2019). Then we
manually inspect areas with high amplitudes. In the seismic data, we look for faults and
chimneys that may act as pathways for fluid migration from the deep thermogenic reservoirs

into the shallow sediments within HSZ.

3. Results and Discussion

Based on the well log interpretation from petroleum industry data, we find 52/120
wells (~43%) have evidence for natural gas hydrate in the North Carnarvon Basin (Figure 5
and Table 1). We also identify BSRs, gas chimneys, bright spots and faults in the North

Carnarvon Basin using 3D seismic data.

Category | Description Number of Wells
A 5 Qm or above increase in resistivity above 0
background resistivity for at least 10 m
B 2 Qm or more (but less than 5 Qm) increase in 2

resistivity above background resistivity for at
least 10 m, OR more than 5 Qm increase above
background resistivity but less than 10 m

C 0.5 Om to 2 Om increase in resistivity above 17
background resistivity for at least 10 m, OR

2 Qm or more (but less than 5 Qm) increase in
resistivity above background resistivity for less

than 10 m
D 0.5 Qm to 2 Qm increase above background 33
resistivity for less than 10 m
None 68
Total Wells 120

Table 1. Gas hydrate occurrence categorized based on the thickness of accumulation and
increase in resistivity above background resistivity. The categories are modified from
Majumdar et al., 2017.
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Figure 4 Well logs from Scarborough-2 with background resistivity (R,) calculated using
porosity from the bulk density log. The two depth tracks display depth in meters below sea
floor (mbsf) and meters below kelly bushing (mKB) respectively. Track 1 displays gamma
ray log (green) and caliper log (grey). Track 2 displays original bulk density (red) and
corrected bulk density (blue). The bulk density log was corrected for borehole size in the
shallow section. Track 3 displays the deep laterolog resistivity (purple) and Ro (black) using
Archie’s equation. Track 4 displays compressional velocity (pink). Track 5 displays hydrate
saturation computed from Archie’s equation (Equation (3)). The BHSZ is estimated to be at a
depth of 1176 mKB using a geothermal gradient of 39.3 C/km. The hydrate bearing intervals
are highlighted in blue (resistivity increase > 0.5 Qm), yellow (resistivity increase > 2 Qm)
and green (resistivity increase > 5 Qm). Based on the hydrate interpretation this well is
classified as Category B hydrate.
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Figure 5 A map showing the location and gas hydrate category (Table 1) for wells in the
North Carnarvon Basin.

3.1 Gas hydrate assessment using well data

We find that most of the wells in our dataset have increases in resistivity that are
between 0.5 Qm to 2 Qm and are therefore in C or D Category (96%) (Table 1), showing that
hydrate is present in low concentrations across the North Carnarvon Basin. For example,
Yellowglen-1 and Blackdragon-1 wells (Figures 2 and 3) are both D Category wells. Both
Yellowglen-1 and Blackdragon-1 wells host hydrate in thin intervals between 1470 to 1490
mKB and 1710 to 1730 mKB, respectively (Figure 2 and 3). Moreover, both Yellowglen-1

and Blackdragon-1 host hydrate present predominantly in carbonate ooze.

We also find that there are more hydrate accumulations in deeper water depths >1000
m (47/52 wells) in the North Carnarvon Basin (Figure 5 and Table 1). Interestingly, similar

ratio of 118/124 gas hydrate wells were found in water depths > 1000 m in the Gulf of
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Mexico from the results of Majumdar et al. (2017), though this result was not noted in the
publication. This suggests a higher likelihood of hydrate in deeper water as compared to
shallower water, and moreover, that this trend may persist across basins. This could simply
be that a thicker HSZ increases the likelihood of hydrate, or more gas or organic matter may

be present in deeper systems.

The two B Category wells (Scarborough-2 and Scarborough-3) are located ~4.5 km
apart in the North Carnarvon Basin. Scarborough-2 has a full suite of well logs, which
increases the confidence of our interpretation (Figure 4). In Scarborough-2, we interpret
hydrate using laterolog resistivity by calculating R, using Archie’s equation (Figure 4). We
choose m=1.85 for calculating R, so that the R, matches the laterolog resistivity in water
saturated intervals (Ellis & Singer, 2007). We interpret hydrate in two different depth
intervals from 1007 — 1050 mKB and below 1100 mKB (Figure 4). As observed on the
resistivity log hydrate present from 1007 — 1050 mKB occupies discrete, thin lenses (Figure
4). Below 1100 mKB, hydrate is present in thicker layers consisting primarily of carbonate
sediment (Figure 4). We do not observe an increase in compressional velocity below 1100
mKB, however, signifying that hydrate is present in relatively low saturation, likely less than
40% (Figure 4) (Yun et al., 2005). This agrees with our hydrate saturation calculation using
n=2.3 in Equation (3) suggesting the saturation of hydrate ranging from ~13% to ~50%
(Figure 4). In addition, we also observe an increase in resistivity above R, below the BHSZ
(Figure 4) from 1177 to 1188 mKB that we argue is more likely gas hydrate and not free gas.
This is because compressional velocity reduces substantially with the presence of free gas,
even a small amount of free gas (Murphy, 1984; Toth et al., 2014). There is only a very slight
increase in compressional velocity in this interval, however, suggesting that the increase in
resistivity is more likely to be caused by hydrate at a saturation of 40% or less. (Figure 4).

Moreover, the presence of gas hydrate below the BHSZ suggests the depth of the BHSZ is
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slightly underestimated at this well. For example, this might be the result of a slightly higher
geothermal gradient. Here a small decrease in the geothermal gradient, from 39.3 C/km to 38

C/km, could account for the 15 m needed to lower the BHSZ.
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Figure 6 BSR interpretation in the Bonaventure 3D survey. (A) Map showing the location of
BSRs and the four industry wells in Bonaventure 3D seismic survey. The location of the
survey is shown in white polygon in Figure 1. The four wells in the survey area are plotted to
indicate the background geothermal gradient (39 —43° C/km) as computed from formation
pressure tests. (B) RMS amplitude map at and near the BSR location with an offset of 300 ms
below the seafloor and a time window of 100 ms capturing the inferred BHSZ for the survey
area. The RMS amplitude map shows the BSR extent, and the geothermal gradient computed
using BSR depth from the seafloor. (C) and (D) show seismic lines with interpreted BSR, gas
chimneys and faults.
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364

365 3.2 Connection to deep hydrocarbon reservoirs

366 We assess the potential connection between the presence of hydrate in a well and
367  deeper hydrocarbon reservoirs using a similar approach as described by Cook et al. (2023).
368  We place each well into two categories based on the information from the well reports: a
369  hydrocarbon reservoir or no hydrocarbon reservoir. The well is categorized as a no

370  hydrocarbon reservoir if the well does not have producible hydrocarbons. In the reports, the
371 well may have been identified as a dry hole or a hole with only hydrocarbon shows (a small
372 amount of hydrocarbon that is not producible). The well is categorized as having a

373  hydrocarbon reservoir if it has producible hydrocarbons in the well reports.

374 In some cases, a well may be drilled at an angle (a deviated well) and the well

375  location in the HSZ may be laterally offset from the well location in the hydrocarbon

376  reservoir. We use available reservoir maps from the well reports to interpret if the well

377  location in the HSZ still lies above the hydrocarbon reservoir. In our dataset, all 17 deviated

378  wells still lie above the hydrocarbon reservoir.

Hydrate wells | Non-hydrate Total
wells number of
wells used
Wells occurring 30 47
above hydrocarbon
reservoirs 110
No hydrocarbon 19 14
reservoir

379  Table 2. Table shows number of hydrate vs non-hydrate wells occurring above a
380  hydrocarbon reservoir and the total number of wells used for this analysis.

381

382 We use a total of 110 wells for hydrocarbon reservoir analysis. Based on the

383  observation from data in Table 2, we consider the results in different ways to interpret the
384  source of hydrate formation in the vicinity of wells in the North Carnarvon Basin. When no
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hydrocarbon reservoir is present below the HSZ (33 wells total), it is more likely that a well
will be hydrate bearing (19/33 wells, Table 2). For these hydrate wells, the source of gas is
most likely microbial in origin. When a hydrocarbon reservoir is present below the HSZ (77
wells total), it is less likely that any given well will be hydrate bearing (30/77, Table 2). This
further implies that the source of gas in a hydrate system above a hydrocarbon reservoir is
likely not thermogenic in origin.

For hydrate bearing wells (49 wells total), it is more likely that a hydrate well lies
above a hydrocarbon reservoir (30/49 wells, Table 2). This could imply that there might be
some connection between the occurrence of hydrate and the presence of thermogenic gas
source below; however, it is also more likely that a non-hydrate well will lie above a
hydrocarbon reservoir (47/61, Table 2). This implies that presence of hydrate is less likely to
be connected to a thermogenic gas source below. All these observations, therefore, suggest
that the hydrate system in the vicinity of the wells in the North Carnarvon Basin is most

likely microbial in origin.

3.3 Hydrate interpretation using seismic data

Out of the 18 3D seismic surveys, we observe BSRs in only the Bonaventure 3D
(Figure 1) seismic survey. Paganoni et al. (2019) previously reported the presence of these
BSR-like features in the Bonaventure survey (Figure 1), and we agree the features described
in Paganoni et al. (2019) are BSRs. At this location, the BSRs are associated with gas
chimneys and faults implying a possible thermogenic source for the hydrate system (Figure

6).

We calculate the geothermal gradient locally using CSMHYD calculator with the

identified BSRs as the BHSZ and compare it with the background geothermal gradient
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computed from the borehole formation pressure tests within the Bonaventure 3D survey. We
find that the geothermal gradient within the extent of BSRs vary between ~54 — 63° C/km in
contrast to the geothermal gradient of 39 — 43° C/km at the wells in the area (Figure 6). This
elevated geothermal gradient is most likely the result of hot fluids advecting through the gas

chimneys (Loseth et al., 2009).

Depth (mbs!)

Figure 7 Examples from two different locations with gas chimneys breaching the estimated
BHSZ in the North Carnarvon Basin. (A) Seafloor map from Scarborough 3D survey (B)
Seafloor map from Laverda 3D survey (C) A seismic line from Scarborough 3D survey
shows free gas rising up from the thermogenic reservoir into the HSZ and the presence of
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bright spots and pockmarks that indicate the gas escaping out of the seafloor. (D) A gas
chimney and associated bright spots in the Laverda 3D survey.

Because so few BSRs were observed in the 3D seismic datasets, we further
investigate the frequency of gas chimneys feeding potential thermogenic hydrate systems by
identifying gas chimneys breaching the inferred BHSZ in the North Carnarvon Basin. We
find that only 17 chimneys breach the inferred BHSZ across all 3D seismic datasets (Figure
1). At these locations, thermogenic gas could source hydrate systems in the areas near the gas
chimneys (for example Figure 7C and 7D). In addition, there is more evidence that may
support the occurrence of gas migration: polygonal faults and bright spots associated with
fault systems. Polygonal faults are pervasive across the seismic datasets across the North
Carnarvon Basin (Zeng et al., (2022), see examples of polygonal faulting in Figures 6 and 7),

however, bright spots are less commonly observed in the seismic data.

3.4 Inferred gas source for hydrate systems

We find different hydrate systems in the North Carnarvon Basin that have microbial
and thermogenic gas sources, however, there is a strong bias towards hydrate systems with
microbial source gas. As first suggested by Paganoni et al. (2019), we agree that hydrate
systems at and near chimney features are more likely thermogenic in nature. In the 3D
seismic data that covers an area of 34,000 km?, we observe only 17 gas chimneys breaching
the base of hydrate stability. In addition, there are locations with bright spots associated with
faults in the North Carnarvon Basin, but they are not common. These observations suggest

that the gas transport through faults may be low.

Hydrate was found in ~43% wells, however, most hydrate is in low concentrations in
Categories C and D (Table 1). Low hydrate concentration that appears in different intervals

throughout the HSZ (for examples see Figures 3 and 4) suggests that the source for that gas is
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more likely to be locally generated methane than from gas advection. Microbial
methanogenesis of organic matter is likely sufficient to generate hydrate at low
concentrations in the HSZ (Davie & Buffett, 2001; Malinverno, 2010; Xu & Ruppel, 1999),

like the C and D Categories observed herein.

4. Conclusions

We use petroleum industry well logs and seismic data to understand the hydrate
system in the North Carnarvon Basin, offshore Western Australia. We analyse 120 wells and
find ~43% wells with evidence of hydrate. We observe that most of the hydrate is present in
low concentrations. We also observe most hydrate accumulations are distributed throughout
the HSZ and are not concentrated near the BHSZ. Moreover, we find that hydrate bearing
wells do not likely occur above a hydrocarbon reservoir implying that the gas source for
hydrate is not likely thermogenic in origin further implying a microbial source for gas. On the
seismic data, we observe BSRs only in one seismic survey out of 18 3D seismic surveys. We
also observe only 17 gas chimneys on seismic data breaching the inferred BHSZ. Moreover,
there are few locations with bright spots associated with faults implying low gas transport
through faults. These observations signify a weak thermogenic gas source for hydrate
formation near the vicinity of such a low number of gas chimneys, BSRs and bright spots. In
contrast, there are more well locations providing a strong evidence for a predominant

microbial gas source for hydrate in the North Carnarvon Basin.
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