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Recently, the next-to-next-to-leading order (NNLO) electroweak corrections with fermion loops to the
Higgsstrahling process were computed. Here we present numerical results for polarized electron/positron
beams, as well as for two input parameter schemes known as the @(0) and G, schemes. The size of the
NNLO corrections strongly depends on the beam polarization, leading to an increase of the ZH cross
section by 0.76% for e, eg beams, and a decrease of 0.04% for ey ef beams. Furthermore, inclusion of the
NNLO corrections is found to significantly reduce the discrepancy between the results in the a(0) and G,
schemes. Using the remaining difference, together with other methods, the theory uncertainty from missing
bosonic electroweak corrections is estimated to be less than 0.3%.
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I. INTRODUCTION

A high-luminosity e*e™ collider operating at center-of-
mass energies of 240-250 GeV can perform model-
independent precision measurements of the properties of
the recently discovered Higgs boson. Several collider con-
cepts have been proposed for this purpose; the International
Linear Collider (ILC) [1,2], the Future Circular Collider
(FCC-ee) [3], and the Circular Electron-Positron Collider
(CEPC) [4]. The cross section for the main production
process, ete™ — ZH, is projected to be measured with
percent level precision at these facilities (1.2% at ILC, 0.4%
at FCC-ee, and 0.5% at CEPC). Any deviations from the
Standard Model (SM) expectation can be interpreted as sign
of new physics beyond the SM.

Such an interpretation requires sufficiently accurate
theoretical predictions for ZH production within the SM,
including higher-order radiative corrections. While the
next-to-leading order (NLO) corrections have been known
since many years [5—7], the mixed electroweak-QCD next-
to-next-to-leading order (NNLO) corrections have been
computed more recently [8,9]. Very recently, the fermionic
electroweak NNLO corrections have been completed [10],
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where “fermionic” denotes contributions from diagrams
with closed fermion loops. There is also ongoing work to
compute the full electroweak NNLO corrections, including
“bosonic” contributions [11].

This article expands on the work of Ref. [10] by
including the effect of beam polarization and different
renormalization schemes. Beam polarization can help to
disentangle the nature of potential new physics effects in
ZH production. The SM NLO corrections to eTe™ — ZH
with polarized beams have been presented in Ref. [12].
Here, this is extended by also computing the fermionic
electroweak NNLO corrections.

In addition, we present NNLO results for two different
renormalization schemes. One scheme, called the a(0)
scheme, uses the electromagnetic coupling, together with
particle masses, as inputs to specify the SM parameters. This
scheme has been used in Ref. [10]. Alternatively, the G,
scheme instead uses the Fermi constant as an input to define
the electromagnetic coupling strength. The numerical differ-
ence between the predictions in the two schemes can be taken
as a proxy for the impact of missing higher-order corrections.

II. POLARIZED CROSS SECTIONS

The perturbative expansion of the squared matrix
element M takes the following form:

IMP? = Mg* (LO)
+2Re{ My M} (NLO)
+ Ml +2Re{ M M»} (NNLO), (1)
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where the subscript indicates the loop order. For the process
ete” — ZH, the matrix element has the form

M(n) = @(pﬁ)r’(ln)u(pe')gﬂv (2)

where p, - are the momenta of the incoming electron and
positron, respectively, and ¢, is the polarization vector of
the outgoing Z boson. For the unpolarized cross section,
one needs to average of initial spins, which is accomplished
by the Carsimir trace technique,

i Z MM

e spins

——Tr{F” Po T Pe- } (3)

where the electron mass has been neglected.

On the other hand, the results for left-/right-handed
polarized electron and positron beams are obtained by
inserting polarization projectors Pry = (1 £°)/2,

1 _
e*e; - ZTr{F}(lm)ﬂeJerrﬂv(")Pkﬁe’}

(j.k=L.R), (4)

After this step, the remaining calculation proceeds just
in the same way as for the unpolarized cross section. In
particular, the nontrivial two-loop integrals can be com-
puted with the techniques described in Refs. [10,13]. One
of the of the two subloops simplified using Feynman
parameters and then expressed in terms of an dispersion
integral. This allows one to solve the second subloop
integral analytically in terms of well-known one-loop
Passarino-Veltman functions. Ultraviolet divergencies are
removed with suitable subtraction terms, which can be
integrated analytically and then added back. Additional
technical aspects of the computation of the subtraction
terms are given in the Appendix. Finally, the finite
remainder integral is integrated numerically over the
Feynman parameters and the dispersion variable. See
Refs. [10,13] for more details.

Instead of separately going through all the steps of the
computation for left- and right-handed polarized beams,
one can alternatively derive the polarized matrix elements
from the unpolarized one, which seems more efficient for
calculating the two-loop diagrams. This is achieved by
grouping certain types of diagrams. Considering a two-loop
diagram where the incoming fermion line connects with N
gauge bosons (y or Z), the polarized matrix elements satisfy
the relationships

ceZ eeVl eeVy
491 9L
eeZ eV eeV ceZ eeVy eeVy

e;ez 9, 9. g V9 9 ' gR

Vi--Vyx
x [M(z) M(O>] unpol’

Vi---Vyx
M(z) M o)

49332 eeV, “geeVN

Vi Vs R
M(z) M(O ctex gegzgzevl gzeVN_FgggzgeeV]'_'g;eVN
Vi-Vyx
x |:M(2) M(O>] unpol’
Vi Vs Vi Vs
Me) " Mo, =My " Mol =0 )

where gee(v) is the left(right)-handed coupling of eeV

vertex.

If the fermion line connects only with W bosons, which
only interact with left-handed fermions, thus we end up
with very simple equations

MW]...

Wiy
) M )

— Wi Wiy
=4 [M(z) M(O)} unpol’

+ -
eper

MWIH.

Wy
(2) ! M )

.. =0 (6)
€Ler

Numerical results for the polarized cross section are
presented in Table I, using the following input parameters:

mSP = 80.379 GeV = my, = 80.352 GeV,
mZP =91.1876 GeV = my, = 91.1535 GeV,
my = 125.1 GeV,  m, = 172.76 GeV,
-1 =137.036,  Aa = 0.059,
Vs = 240 GeV, (7)

where /s represents the center-of-mass energy, and
the masses of all the other fermions are set to be O.
Furthermore, Aa =1 —a(my)/a(0) accounts for the
running of the electromagnetic coupling between the

TABLE I. Numerical results for the integrated ZH production
cross section, in fb, at LO, NLO, and fermionic electroweak
NNLO, for different beam polarizations. The results are for the
a(0) renormalization scheme and /s = 240 GeV. The electro-
weak NNLO corrections are also listed individually according to
the number of fermion loops symbolized as N .

+ -

eger er er
60 [fb] 541.28 350.55
oNLO [fb] 507.92 411.66
o NLO (] 507.51 418.68
(9(0:12\,/:2) 1.75 5.77
O(al%,r:l) -2.15 1.25
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Thomson limit and the weak scale, and it includes non-
perturbative hadronic effects.

Since the Z and W bosons have sizeable decay widths,
their masses (m and myy) are defined via the complex pole
of the gauge-boson propagators. This definition is theo-
retically well-defined but it differs from the one that is
commonly used in experimental studies. The relation
between the two is given by [14]

my = mSPL+ (5P /mP )12, (®)
Py =571+ (057 /mSP)2) 12, (9)

The numerical results presented in this paper do not include
QED initial-state radiation (ISR). At the order that we are
working, QED ISR factorizes and can be taken into account
through convolution with a universal structure function.'

As can be seen from Table I, the electroweak NNLO
corrections depend strongly on the beam polariza-
tion. The contributions with two closed fermion loops
(N; = 2) are significantly larger for right-handed electron
polarization and left-handed positron polarization than for
the opposite case. The contribution with one closed fermion
loop (N; = 1) has opposite signs for the two polarization,
which leads to an accidental cancellation for the unpolar-
ized cross section.

The higher-order corrections also modify the shape of
the differential cross section, and the specific form of this
modification depends on the beam polarization. This is
illustrated in Fig. 1, which shows the cross section as a
function of the scattering angle @ at different orders of
perturbation theory for two beam polarizations. As can be
seen from the figure, the shape distortions from the NNLO
corrections are not very large, but non-negligible.

III. RESULTS FOR DIFFERENT
RENORMALIZATION SCHEMES

The on-shell (OS) renormalization scheme defines
the masses of all elementary particles via the (complex)
propagator pole. In our calculation, this prescription is
applied to the gauge boson masses, m y, the Higgs boson
mass, my, and the top-quark mass, m,. All other fermion
masses are neglected. As already mentioned in the previous
section, the finite width of the Z and W bosons needs to be
taken into account, so that the poles of their propagators
become complex. In deriving the Z/W mass counterterms,
the power counting I'z y/mzw ~ O(a) is used, i.e., one
performs a simultaneous expansion in the coupling con-
stant and the gauge-boson widths. Since the Higgs-boson
width is very small and the top quark only appear inside of

For the bosonic NNLO corrections, which have not been
computed in this work, the infrared divergencies from ISR would
still factorize, but there would be a finite remainder from some
mixed QED-weak diagrams.
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FIG. 1. Differential cross sections, as a function of the
scattering angle 6, for two different beam polarizations. As
in Table I, the plots are based on the a(0) renormalization
scheme and /s = 240 GeV.

loop contributions, their widths can be neglected. More
details on the mass renormalization can be found, e.g.,
in Ref. [15].

In addition, one needs a renormalization prescription
for the electroweak coupling strength. In the following,
two different schemes for this purpose are compared. One
scheme, called the a(0) scheme, defines @ = 2/ (4x) as the
electromagnetic coupling at zero momentum, and the weak
coupling is defined via

e - e (10)

7= sinfy, /1 — m},/m%

to all orders in perturbation theory. This scheme is sensitive
to the running of a(Q) from Q = 0 to the weak scale, and it
needs Aa as a numerical input.

The second scheme, called the G, scheme, relates the
weak coupling to the Fermi coupling G,,

G 92

7%:%(1+Ar). (11)

The numerical value for G, is extracted from the measured
muon lifetime [16]. The quantity Ar contains radiative

corrections that are determined by matching the muon
decay matrix element in the Fermi theory and the full SM.
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TABLE II. Numerical results for the unpolarized integrated ZH
production cross section, in fb, for two different renormalization
schemes. Results are given for /s = 240 GeV at LO, NLO, and
fermionic electroweak NNLO. For the latter, the contributions
from two (N; = 2) and one (N = 1) closed fermion loops are
also shown individually.

a(0) scheme G, scheme
a0 [fb] 222.96 239.18
N0 [fb] 229.89 232.08
o"NLO [fb] 231.55 232.74
O(a,z\,fzz) 1.88 0.73
(Q(ajzvle) —-0.23 —-0.07

We use NLO and fermionic NNLO results for Ar from
Refs. [15,17] (also see Ref. [18]). The electromagnetic
coupling in the G, scheme is derived from g by again using
Eq. (10). Note that this scheme does not depend on the shift
Aa of the running electromagnetic coupling.

Using the input parameters in Eq. (7), together with
G, = 1.1663787 x 1075, the results obtained in the two
renormalization schemes are shown in Table II. As can be
seen from the table, the numerical agreement between the
results in the two schemes improves with each order in
perturbation theory, as expected.

In fact, this convergence is further improved when
including the mixed electroweak-QCD two-loop correc-
tions [8,9]. We use numerical results for this contribution
from Ref. [9]. In order to do so, we have to compute our
electroweak corrections for the same input parameters used
there. The results are shown in Table III.

The prediction for the cross section including all avail-
able results agrees very well between the two renormaliza-
tion schemes, with a difference of 0.12 fb. This difference is
due to missing higher-order corrections, where the dom-
inant impact is expected from the bosonic electroweak
NNLO corrections, i.e., from two-loop contributions with-
out closed fermion loops.

Therefore, one can use the difference between the two
renormalization schemes as an order-of-magnitude estimate
of the perturbative theory uncertainty. Since this estimate is
only a lower bound on the size of missing higher-order
contributions, we conservatively multiply it by a factor 2, to
arrive at an error estimate of 0.24 fb.

TABLE III. Similar to Table II, but using input values and
mixed EW-QCD corrections from Ref. [9].

a(0) scheme G, scheme
o0 [fb] 223.14 239.64
N0 [fb] 229.78 232.46
oNNLOEWXQED [fh] 23221 233.29
oNLO.EW [fh] 233.86 233.98

An alternative estimate of the bosonic NNLO corrections
could be obtained by considering a subset of the latter;
namely, those stemming from | M ; pos) 2, where M1 pos) 18
the matrix element of the bosonic NLO corrections.
This leads to a contribution of 0.65 fb to the cross section.
The contribution from genuine bosonic two-loop diagrams,
ZRG{ME‘O)M(ZMS)}, is expected to be smaller than this,
since the Born matrix element M contains several
suppression factors: (a) the e —e — Z couplings in the
initial state are smaller than the e —v — W couplings,
which appear in the 1-loop box diagrams, by a factor
273/2 ~0.35; (b) the s-channel Z propagator produces a
factor m% /(s —m%) ~0.17 for \/s = 240 GeV.

Thus, it seems plausible that the missing bosonic
electroweak NNLO corrections have an impact between
0.24 fb and 0.65 fb on the SM prediction for the ZH
production cross section. These theory error estimates
are lower than the anticipated experimental precision
(0.4-1%), but a direct calculation of these missing con-
tributions is still desirable.

IV. CONCLUSIONS

In this article, we present the calculation of the eTe™ —
ZH cross section with polarized beams, while also address-
ing the renormalization scheme dependence. The electro-
weak NNLO corrections exhibit a strong dependence on the
beam polarizations. The corrections are found to be large for
e} ex beam polarization, while small for e} e} case due to
numerical cancellation. By computing the cross section
in the @(0) and G, schemes, we have shown that the
renormalization scheme dependence decreases by including
the two-loop electroweak corrections, and reduces further by
adding mixed EW-QCD corrections. Renormalization
scheme dependence can be utilized to estimate missing
higher order corrections. Combining this with partial results
for the missing bosonic electroweak NNLO corrections, we
estimate the latter to be about 0.1-0.3%, thus lower than the
anticipated experimental precision (0.4—1%).
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APPENDIX: UV SUBTRACTION TERMS

The UV divergent subtraction terms must be expanded
appropriately to get the correct finite term. As stated in
Ref. [10], there are three types of subtraction terms; two for
subloop divergences and one more for a global divergence.
The latter corresponds to vacuum diagrams, the analytical
formulas of which can be obtained and expanded to higher
orders in ¢ with TVID [19]. The general form for the
subloop divergences can be expressed as the multiplication
of two one-loop scalar integrals. Taking the two-loop vertex

053006-4



FERMIONIC ELECTROWEAK NNLO CORRECTIONS TO e*e™ — ZH...

PHYS. REV. D 108, 053006 (2023)

fa AVAVAV
i
fi f2
\ 2
ol ___ _

FIG. 2. Two-loop VZH vertex diagram.

diagram Fig. 2 as an example, the tensor integral can be
written as

] — /dDCh dDQl
N in? i’

N1y, ngy ny n
E Cij x {Pi 41 -9 }j

10,1012, 1.]
% 1
(43 = m,) (2 + p)* = m3 ) (42 + q1)* = m3))
1
X 9
(a1 = m3,)((q1 = a)? = m}) (a1 = p)* = m3,)

70 :/d q,d° il
subtr .

¥/ lﬂ'
i.J

where {p}°, ¢\", ¢5*} denotes dot products among external
momentum p; and loop momentum g, ,, and n; denote the
power of each of them. The index j labels all possible dot
product conditions. For example for ny = 0, ny = n, =2,
the possible dot products read

'C]1)(Q2'6]2)’
“q2)(q1 - 42)-

{r.at. a3} = (@

{r).at. a3}, = (¢ (A2)

The SM Feynman rules require that n; <4, n, <2,
ng+mny +ny <6. "™ s the coefficient of a dot
product, and it is a function of masses and dimension D.
The integral (A1) contains a subloop divergence from the
g1 loop, which originate from the numerators ¢|' with
n; > 4. To make the g, integral UV finite, the following
subtraction term is constructed:

[ 0 {pt gt a3 + it < {plat al}; 4 P x {p?. qt. 43,

140 0.4.1 0.4,0
0 x {ploat gl + e x {p0 gt gkl + e x {pl. gt ad |

1
X

1

(43 —m3,) (g2 + p)* = m, ) (g7 — m3,

From Eq. (A3), one can see that the loop integrals of ¢, and
g, are disentangled. After performing the loop integration,
one obtains

e = Bolp iy o) < [ana(o, ) + azAo(o)|.
(A4)

where a; are functions of masses, external momenta and
dimension D. A similar subloop subtraction term needs to
be introduced in the vacuum integrals for the global
divergence. Combining the two subloop subtraction terms,
we obtain

Tyuper = [BO(p mVZ mV) BO(O sz m%/ )}

X [ale(m]%]) + a2A0(m}2)} ) (AS)

This term can now be expanded in powers of
€ = (4 — D)/2, resulting in the expressions

) (q7 = m3) (g7

(A3)

—mj ) (g —m3)’

[
IdIV — [

subtr

0 0
BY (p2, %, ) = B (0,m0%, i3 )|

0) (-1 0) (-1
X [a(l )A(() )(mj%l) + aé )Af) )(mj%z)},

0
I?LFbtr = {B(())(P2 mvz mv)

)4
1

Bo (O mv2 m%/ )}
a m%l) +alA

1) (=1 1) (=1
+ a(1 )Aé )(mf«l) + ag )AE) )(mjzcz)

(A7)

where (n) denote the expansion order in e. Eq. (A7)
indicates that O(e) parts of one-loop scalar functions must
be taken into account. Analytical expressions for these can
be found in Ref. [20].
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