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Recently, the next-to-next-to-leading order (NNLO) electroweak corrections with fermion loops to the

Higgsstrahling process were computed. Here we present numerical results for polarized electron/positron

beams, as well as for two input parameter schemes known as the αð0Þ and Gμ schemes. The size of the

NNLO corrections strongly depends on the beam polarization, leading to an increase of the ZH cross

section by 0.76% for eþL e
−
R beams, and a decrease of 0.04% for eþRe

−
L beams. Furthermore, inclusion of the

NNLO corrections is found to significantly reduce the discrepancy between the results in the αð0Þ and Gμ

schemes. Using the remaining difference, together with other methods, the theory uncertainty from missing

bosonic electroweak corrections is estimated to be less than 0.3%.
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I. INTRODUCTION

A high-luminosity eþe− collider operating at center-of-

mass energies of 240–250 GeV can perform model-

independent precision measurements of the properties of

the recently discovered Higgs boson. Several collider con-

cepts have been proposed for this purpose; the International

Linear Collider (ILC) [1,2], the Future Circular Collider

(FCC-ee) [3], and the Circular Electron-Positron Collider

(CEPC) [4]. The cross section for the main production

process, eþe− → ZH, is projected to be measured with

percent level precision at these facilities (1.2% at ILC, 0.4%

at FCC-ee, and 0.5% at CEPC). Any deviations from the

Standard Model (SM) expectation can be interpreted as sign

of new physics beyond the SM.

Such an interpretation requires sufficiently accurate

theoretical predictions for ZH production within the SM,

including higher-order radiative corrections. While the

next-to-leading order (NLO) corrections have been known

since many years [5–7], the mixed electroweak-QCD next-

to-next-to-leading order (NNLO) corrections have been

computed more recently [8,9]. Very recently, the fermionic

electroweak NNLO corrections have been completed [10],

where “fermionic” denotes contributions from diagrams

with closed fermion loops. There is also ongoing work to

compute the full electroweak NNLO corrections, including

“bosonic” contributions [11].

This article expands on the work of Ref. [10] by

including the effect of beam polarization and different

renormalization schemes. Beam polarization can help to

disentangle the nature of potential new physics effects in

ZH production. The SM NLO corrections to eþe− → ZH
with polarized beams have been presented in Ref. [12].

Here, this is extended by also computing the fermionic

electroweak NNLO corrections.

In addition, we present NNLO results for two different

renormalization schemes. One scheme, called the αð0Þ
scheme, uses the electromagnetic coupling, together with

particle masses, as inputs to specify the SM parameters. This

scheme has been used in Ref. [10]. Alternatively, the Gμ

scheme instead uses the Fermi constant as an input to define

the electromagnetic coupling strength. The numerical differ-

ence between the predictions in the two schemes can be taken

as a proxy for the impact of missing higher-order corrections.

II. POLARIZED CROSS SECTIONS

The perturbative expansion of the squared matrix

element M takes the following form:

jMj2 ¼ jMð0Þj2 ðLOÞ
þ 2RefM�

ð0ÞMð1Þg ðNLOÞ
þ jMð1Þj2 þ 2RefM�

ð0ÞMð2Þg ðNNLOÞ; ð1Þ
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where the subscript indicates the loop order. For the process

eþe− → ZH, the matrix element has the form

MðnÞ ¼ v̄ðpeþÞΓμ

ðnÞuðpe−Þεμ; ð2Þ

where pe� are the momenta of the incoming electron and

positron, respectively, and εμ is the polarization vector of

the outgoing Z boson. For the unpolarized cross section,

one needs to average of initial spins, which is accomplished

by the Carsimir trace technique,

1

4

X

e�spins

M�
ðmÞMðnÞ ¼

1

4
Tr
n

Γ̄
μ

ðmÞ=peþΓμ;ðnÞ=pe−

o

; ð3Þ

where the electron mass has been neglected.

On the other hand, the results for left-/right-handed

polarized electron and positron beams are obtained by

inserting polarization projectors PR;L ¼ ð1� γ5Þ=2,

M�
ðmÞMðnÞ

�

�

�

eþ
j
e−
k

¼ 1

4
Tr
n

Γ̄
μ

ðmÞ=peþPjΓμ;ðnÞPk=pe−

o

ðj; k ¼ L;RÞ; ð4Þ

After this step, the remaining calculation proceeds just

in the same way as for the unpolarized cross section. In

particular, the nontrivial two-loop integrals can be com-

puted with the techniques described in Refs. [10,13]. One

of the of the two subloops simplified using Feynman

parameters and then expressed in terms of an dispersion

integral. This allows one to solve the second subloop

integral analytically in terms of well-known one-loop

Passarino-Veltman functions. Ultraviolet divergencies are

removed with suitable subtraction terms, which can be

integrated analytically and then added back. Additional

technical aspects of the computation of the subtraction

terms are given in the Appendix. Finally, the finite

remainder integral is integrated numerically over the

Feynman parameters and the dispersion variable. See

Refs. [10,13] for more details.

Instead of separately going through all the steps of the

computation for left- and right-handed polarized beams,

one can alternatively derive the polarized matrix elements

from the unpolarized one, which seems more efficient for

calculating the two-loop diagrams. This is achieved by

grouping certain types of diagrams. Considering a two-loop

diagram where the incoming fermion line connects with N

gauge bosons (γ or Z), the polarized matrix elements satisfy

the relationships

M
V1���VN�
ð2Þ Mð0Þ

�

�

�

eþ
R
e−
L

¼ 4geeZL g
eeV1

L � � �geeVN

L

geeZL g
eeV1

L � ��geeVN

L þgeeZR g
eeV1

R �� �geeVN

R

×
h

M
V1���VN�
ð2Þ Mð0Þ

i

unpol
;

M
V1���VN�
ð2Þ Mð0Þ

�

�

�

eþ
L
e−
R

¼ 4geeZR g
eeV1

R � � �geeVN

R

geeZL g
eeV1

L � ��geeVN

L þgeeZR g
eeV1

R �� �geeVN

R

×
h

M
V1���VN�
ð2Þ Mð0Þ

i

unpol
;

M
V1���VN�
ð2Þ Mð0Þ

�

�

�

eþ
L
e−
L

¼M
V1���VN�
ð2Þ Mð0Þ

�

�

�

eþ
R
e−
R

¼0; ð5Þ

where geeV
LðRÞ is the left(right)-handed coupling of eeV

vertex.

If the fermion line connects only with W bosons, which

only interact with left-handed fermions, thus we end up

with very simple equations

M
W1���WN�
ð2Þ Mð0Þ

�

�

�

eþ
R
e−
L

¼ 4

h

M
W1���WN�
ð2Þ Mð0Þ

i

unpol
;

M
W1���WN�
ð2Þ Mð0Þ

�

�

�

eþ
L
e−
R

¼ 0: ð6Þ

Numerical results for the polarized cross section are

presented in Table I, using the following input parameters:

m
exp
W ¼ 80.379 GeV⇒ mW ¼ 80.352 GeV;

m
exp
Z ¼ 91.1876 GeV⇒ mZ ¼ 91.1535 GeV;

mH ¼ 125.1 GeV; mt ¼ 172.76 GeV;

α−1 ¼ 137.036; Δα ¼ 0.059;
ffiffiffi

s
p

¼ 240 GeV; ð7Þ

where
ffiffiffi

s
p

represents the center-of-mass energy, and

the masses of all the other fermions are set to be 0.

Furthermore, Δα ¼ 1 − αðmZÞ=αð0Þ accounts for the

running of the electromagnetic coupling between the

TABLE I. Numerical results for the integrated ZH production

cross section, in fb, at LO, NLO, and fermionic electroweak

NNLO, for different beam polarizations. The results are for the

αð0Þ renormalization scheme and
ffiffiffi

s
p ¼ 240 GeV. The electro-

weak NNLO corrections are also listed individually according to

the number of fermion loops symbolized as Nf.

eþRe
−
L eþL e

−
R

σLO [fb] 541.28 350.55

σNLO [fb] 507.92 411.66

σNNLO [fb] 507.51 418.68

Oðα2Nf¼2
Þ 1.75 5.77

Oðα2Nf¼1
Þ −2.15 1.25
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Thomson limit and the weak scale, and it includes non-

perturbative hadronic effects.

Since the Z and W bosons have sizeable decay widths,

their masses (mZ andmW) are defined via the complex pole

of the gauge-boson propagators. This definition is theo-

retically well-defined but it differs from the one that is

commonly used in experimental studies. The relation

between the two is given by [14]

mZ ¼ m
exp
Z ½1þ ðΓexp

Z =m
exp
Z Þ2�−1=2; ð8Þ

ΓZ ¼ Γ
exp
Z ½1þ ðΓexp

Z =m
exp
Z Þ2�−1=2: ð9Þ

The numerical results presented in this paper do not include

QED initial-state radiation (ISR). At the order that we are

working, QED ISR factorizes and can be taken into account

through convolution with a universal structure function.
1

As can be seen from Table I, the electroweak NNLO

corrections depend strongly on the beam polariza-

tion. The contributions with two closed fermion loops

(Nf ¼ 2) are significantly larger for right-handed electron

polarization and left-handed positron polarization than for

the opposite case. The contribution with one closed fermion

loop (Nf ¼ 1) has opposite signs for the two polarization,

which leads to an accidental cancellation for the unpolar-

ized cross section.

The higher-order corrections also modify the shape of

the differential cross section, and the specific form of this

modification depends on the beam polarization. This is

illustrated in Fig. 1, which shows the cross section as a

function of the scattering angle θ at different orders of

perturbation theory for two beam polarizations. As can be

seen from the figure, the shape distortions from the NNLO

corrections are not very large, but non-negligible.

III. RESULTS FOR DIFFERENT

RENORMALIZATION SCHEMES

The on-shell (OS) renormalization scheme defines

the masses of all elementary particles via the (complex)

propagator pole. In our calculation, this prescription is

applied to the gauge boson masses, mZ;W , the Higgs boson

mass, mH, and the top-quark mass, mt. All other fermion

masses are neglected. As already mentioned in the previous

section, the finite width of the Z and W bosons needs to be

taken into account, so that the poles of their propagators

become complex. In deriving the Z=W mass counterterms,

the power counting ΓZ;W=mZ;W ∼OðαÞ is used, i.e., one

performs a simultaneous expansion in the coupling con-

stant and the gauge-boson widths. Since the Higgs-boson

width is very small and the top quark only appear inside of

loop contributions, their widths can be neglected. More

details on the mass renormalization can be found, e.g.,

in Ref. [15].

In addition, one needs a renormalization prescription

for the electroweak coupling strength. In the following,

two different schemes for this purpose are compared. One

scheme, called the αð0Þ scheme, defines α ¼ e2=ð4πÞ as the
electromagnetic coupling at zero momentum, and the weak

coupling is defined via

g ¼ e

sin θW
¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −m2
W=m

2
Z

p ð10Þ

to all orders in perturbation theory. This scheme is sensitive

to the running of αðQÞ fromQ ¼ 0 to the weak scale, and it

needs Δα as a numerical input.

The second scheme, called the Gμ scheme, relates the

weak coupling to the Fermi coupling Gμ,

Gμ
ffiffiffi

2
p ¼ g2

8m2
W

ð1þ ΔrÞ: ð11Þ

The numerical value for Gμ is extracted from the measured

muon lifetime [16]. The quantity Δr contains radiative

corrections that are determined by matching the muon

decay matrix element in the Fermi theory and the full SM.

FIG. 1. Differential cross sections, as a function of the

scattering angle θ, for two different beam polarizations. As

in Table I, the plots are based on the αð0Þ renormalization

scheme and
ffiffiffi

s
p ¼ 240 GeV.

1
For the bosonic NNLO corrections, which have not been

computed in this work, the infrared divergencies from ISR would
still factorize, but there would be a finite remainder from some
mixed QED-weak diagrams.
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We use NLO and fermionic NNLO results for Δr from

Refs. [15,17] (also see Ref. [18]). The electromagnetic

coupling in the Gμ scheme is derived from g by again using

Eq. (10). Note that this scheme does not depend on the shift

Δα of the running electromagnetic coupling.

Using the input parameters in Eq. (7), together with

Gμ ¼ 1.1663787 × 10−5, the results obtained in the two

renormalization schemes are shown in Table II. As can be

seen from the table, the numerical agreement between the

results in the two schemes improves with each order in

perturbation theory, as expected.

In fact, this convergence is further improved when

including the mixed electroweak-QCD two-loop correc-

tions [8,9]. We use numerical results for this contribution

from Ref. [9]. In order to do so, we have to compute our

electroweak corrections for the same input parameters used

there. The results are shown in Table III.

The prediction for the cross section including all avail-

able results agrees very well between the two renormaliza-

tion schemes, with a difference of 0.12 fb. This difference is

due to missing higher-order corrections, where the dom-

inant impact is expected from the bosonic electroweak

NNLO corrections, i.e., from two-loop contributions with-

out closed fermion loops.

Therefore, one can use the difference between the two

renormalization schemes as an order-of-magnitude estimate

of the perturbative theory uncertainty. Since this estimate is

only a lower bound on the size of missing higher-order

contributions, we conservatively multiply it by a factor 2, to

arrive at an error estimate of 0.24 fb.

An alternative estimate of the bosonic NNLO corrections

could be obtained by considering a subset of the latter;

namely, those stemming from jMð1;bosÞj2, whereMð1;bosÞ is
the matrix element of the bosonic NLO corrections.

This leads to a contribution of 0.65 fb to the cross section.

The contribution from genuine bosonic two-loop diagrams,

2RefM�
ð0ÞMð2;bosÞg, is expected to be smaller than this,

since the Born matrix element Mð0Þ contains several

suppression factors: (a) the e − e − Z couplings in the

initial state are smaller than the e − ν −W couplings,

which appear in the 1-loop box diagrams, by a factor

2−3=2 ∼ 0.35; (b) the s-channel Z propagator produces a

factor m2
Z=ðs −m2

ZÞ ∼ 0.17 for
ffiffiffi

s
p ¼ 240 GeV.

Thus, it seems plausible that the missing bosonic

electroweak NNLO corrections have an impact between

0.24 fb and 0.65 fb on the SM prediction for the ZH
production cross section. These theory error estimates

are lower than the anticipated experimental precision

(0.4–1%), but a direct calculation of these missing con-

tributions is still desirable.

IV. CONCLUSIONS

In this article, we present the calculation of the eþe− →
ZH cross section with polarized beams, while also address-

ing the renormalization scheme dependence. The electro-

weak NNLO corrections exhibit a strong dependence on the

beam polarizations. The corrections are found to be large for

eþLe
−
R beam polarization, while small for eþRe

−
L case due to

numerical cancellation. By computing the cross section

in the αð0Þ and Gμ schemes, we have shown that the

renormalization scheme dependence decreases by including

the two-loop electroweak corrections, and reduces further by

adding mixed EW-QCD corrections. Renormalization

scheme dependence can be utilized to estimate missing

higher order corrections. Combining this with partial results

for the missing bosonic electroweak NNLO corrections, we

estimate the latter to be about 0.1–0.3%, thus lower than the

anticipated experimental precision (0.4–1%).
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APPENDIX: UV SUBTRACTION TERMS

The UV divergent subtraction terms must be expanded

appropriately to get the correct finite term. As stated in

Ref. [10], there are three types of subtraction terms; two for

subloop divergences and one more for a global divergence.

The latter corresponds to vacuum diagrams, the analytical

formulas of which can be obtained and expanded to higher

orders in ϵ with TVID [19]. The general form for the

subloop divergences can be expressed as the multiplication

of two one-loop scalar integrals. Taking the two-loop vertex

TABLE III. Similar to Table II, but using input values and

mixed EW-QCD corrections from Ref. [9].

αð0Þ scheme Gμ scheme

σLO [fb] 223.14 239.64

σNLO [fb] 229.78 232.46

σNNLO;EW×QCD [fb] 232.21 233.29

σNNLO;EW [fb] 233.86 233.98

TABLE II. Numerical results for the unpolarized integrated ZH
production cross section, in fb, for two different renormalization

schemes. Results are given for
ffiffiffi

s
p ¼ 240 GeV at LO, NLO, and

fermionic electroweak NNLO. For the latter, the contributions

from two (Nf ¼ 2) and one (Nf ¼ 1) closed fermion loops are

also shown individually.

αð0Þ scheme Gμ scheme

σLO [fb] 222.96 239.18

σNLO [fb] 229.89 232.08

σNNLO [fb] 231.55 232.74

Oðα2Nf¼2
Þ 1.88 0.73

Oðα2Nf¼1
Þ −0.23 −0.07
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diagram Fig. 2 as an example, the tensor integral can be

written as

I ¼
Z

dDq2

iπ2
dDq1

iπ2

X

n0;n1;n2;i;j

c
n0;n1;n2
ij ×

n

p
n0
i ; q

n1
1
; q

n2
2

o

j

×
1

ðq2
2
−m2

V2
Þððq2 þ pÞ2 −m2

V1
Þððq2 þ q1Þ2 −m2

f1
Þ

×
1

ðq2
1
−m2

f2
Þððq1 − phÞ2 −m2

f2
Þððq1 − pÞ2 −m2

f2
Þ ;

ðA1Þ

where fpn0
i ; q

n1
1
; q

n2
2
g denotes dot products among external

momentum pi and loop momentum q1;2, and ni denote the

power of each of them. The index j labels all possible dot

product conditions. For example for n0 ¼ 0, n1 ¼ n2 ¼ 2,

the possible dot products read

fp0

i ; q
2

1
; q2

2
g1 ¼ ðq1 · q1Þðq2 · q2Þ;

fp0

i ; q
2

1
; q2

2
g2 ¼ ðq1 · q2Þðq1 · q2Þ: ðA2Þ

The SM Feynman rules require that n1 ≤ 4, n2 ≤ 2,

n0 þ n1 þ n2 ≤ 6. c
n0;n1;n2
ij is the coefficient of a dot

product, and it is a function of masses and dimension D.

The integral (A1) contains a subloop divergence from the

q1 loop, which originate from the numerators q
n1
1

with

n1 ≥ 4. To make the q1 integral UV finite, the following

subtraction term is constructed:

I
q1
subtr ¼

Z

dDq2

iπ2
dDq1

iπ2

X

i;j

h

c2;4;0ij × fp2
i ; q

4

1
; q0

2
gj þ c1;4;1ij × fp1

i ; q
4

1
; q1

2
gj þ c0;4;2ij × fp0

i ; q
4

1
; q2

2
gj

þ c1;4;0ij × fp1
i ; q

4

1
; q0

2
gj þ c0;4;1ij × fp0

i ; q
4

1
; q1

2
gj þ c0;4;0ij × fp0

i ; q
4

1
; q0

2
gj
i

×
1

ðq2
2
−m2

V2
Þððq2 þ pÞ2 −m2

V1
Þðq2

1
−m2

f1
Þ

1

ðq2
1
−m2

f2
Þðq2

1
−m2

f2
Þðq2

1
−m2

f2
Þ : ðA3Þ

From Eq. (A3), one can see that the loop integrals of q1 and
q2 are disentangled. After performing the loop integration,

one obtains

I
q1
subtr ¼ B0ðp2; m2

V2
; m2

V1
Þ ×

h

a1A0ðm2

f1
Þ þ a2A0ðm2

f2
Þ
i

;

ðA4Þ

where ai are functions of masses, external momenta and

dimension D. A similar subloop subtraction term needs to

be introduced in the vacuum integrals for the global

divergence. Combining the two subloop subtraction terms,

we obtain

Isubtr ¼
h

B0ðp2; m2
V2
; m2

V1
Þ − B0ð0; m2

V2
; m2

V1
Þ
i

×
h

a1A0ðm2

f1
Þ þ a2A0ðm2

f2
Þ
i

: ðA5Þ

This term can now be expanded in powers of

ϵ ¼ ð4 −DÞ=2, resulting in the expressions

Idivsubtr ¼
h

B
ð0Þ
0
ðp2; m2

V2
; m2

V1
Þ − B

ð0Þ
0
ð0; m2

V2
; m2

V1
Þ
i

×
h

a
ð0Þ
1
A
ð−1Þ
0

ðm2

f1
Þ þ a

ð0Þ
2
A
ð−1Þ
0

ðm2

f2
Þ
i

; ðA6Þ

Ifinsubtr ¼
h

B
ð0Þ
0
ðp2; m2

V2
; m2

V1
Þ − B

ð0Þ
0
ð0; m2

V2
; m2

V1
Þ
i

×
h

a
ð0Þ
1
A
ð0Þ
0
ðm2

f1
Þ þ a

ð0Þ
2
A
ð0Þ
0
ðm2

f2
Þ

þ a
ð1Þ
1
A
ð−1Þ
0

ðm2

f1
Þ þ a

ð1Þ
2
A
ð−1Þ
0

ðm2

f2
Þ
i

þ
h

B
ð1Þ
0
ðp2; m2

V2
; m2

V1
Þ − B

ð1Þ
0
ð0; m2

V2
; m2

V1
Þ
i

×
h

a
ð0Þ
1
A
ð−1Þ
0

ðm2

f1
Þ þ a

ð0Þ
2
A
ð−1Þ
0

ðm2

f2
Þ
i

; ðA7Þ

where (n) denote the expansion order in ϵ. Eq. (A7)

indicates that OðϵÞ parts of one-loop scalar functions must

be taken into account. Analytical expressions for these can

be found in Ref. [20].

FIG. 2. Two-loop VZH vertex diagram.
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