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Abstract
Near-term, iterative ecological forecasts can be used to help understand and proactively manage
ecosystems. To date, more forecasts have been developed for aquatic ecosystems than other
ecosystems worldwide, likely motivated by the pressing need to conserve these essential and
threatened ecosystems. Forecasters have implemented many different modelling approaches to
forecast freshwater variables, which have demonstrated promise at individual sites. However, a
comprehensive analysis of the performance of varying forecast models across multiple sites is
needed to understand broader controls on forecast performance. Forecasting challenges (i.e.,
community-scale efforts to generate forecasts while also developing shared software, training
materials, and best practices) present a useful platform for bridging this gap to evaluate how a
range of modelling methods perform across axes of space, time, and ecological systems. Here,
we analysed forecasts from the aquatics theme of the National Ecological Observatory Network
(NEON) Forecasting Challenge hosted by the Ecological Forecasting Initiative. Over 100,000
probabilistic forecasts of water temperature and dissolved oxygen concentration for 1-30 days
ahead across seven NEON-monitored lakes were submitted in 2023. We assessed how forecast
performance varied among models with different structures, covariates, and sources of
uncertainty relative to baseline null models. More models outperformed the baseline models in
forecasting water temperature (ten models) than dissolved oxygen (six). These top-performing
models came from a range of classes and structures. For water temperature, we found that
process-based models and models that included air temperature as a covariate generally exhibited
the highest forecast performance across all sites, and that the most skillful forecasts often
accounted for more sources of uncertainty than the lower-performing models. The most skillful

forecasts were observed at sites where observations were most divergent from historical
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conditions (resulting in poor baseline model performance). Overall, the NEON Forecasting
Challenge provides an exciting opportunity for a model inter-comparison to learn about the
relative strengths of a diverse suite of models and advance our understanding of freshwater

ecosystem predictability.

1 Introduction

Ecological forecasting is a growing field that leverages predictions of future ecological
states to help understand and manage ecosystems (Tulloch et al., 2020; Lewis et al., 2023; Dietze
et al., 2018). Here, we define forecasts as predictions of future conditions with specified
uncertainty (Lewis et al. 2022). As environmental conditions increasingly change in response to
altered climate and land use (IPCC, 2023), ecological forecasts have considerable potential for
improving management to support ecosystem services now and in the future (Bradford et al.,
2018, Dietze et al., 2018). Moreover, forecasting future conditions that have yet to occur
inherently requires out-of-sample implementation of models, which can lead to insights into
optimal modelling approaches (Lewis et al., 2023).

In freshwater ecosystems, rapid environmental change has led to conditions that are both
more variable and outside of historically observed states, motivating a particular need for near-
term, iterative ecological forecasts (e.g., Carey, 2023, Richardson et al., 2024; Siam & Eltahir
2017). Near-term (i.e., sub-daily to decadal) forecasts allow researchers to evaluate models
within management-relevant timescales (Dietze et al., 2018), and iteratively updating and
evaluating forecasts enables rapid improvement in forecast performance by integrating
observational data and updating parameters (Dietze et al., 2018, Loescher et al., 2017). These

near-term iterative ecological forecasts will help protect critical provisioning, regulating,
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supporting, and cultural services (Sterner et al., 2020; Dodds et al., 2013; Lofton et al. 2023) that
these highly threatened systems provide (Carrizo et al., 2017; Dudgeon, et al., 2006; Reid et al.,
2019), thereby improving management and mitigation (e.g. Huang et al., 2011; Carey et al.,
2022; Zwart et al., 2023).

Although the number of near-term, iterative water quality forecasts of freshwater
ecosystems is growing (Lofton et al., 2023), challenges remain in producing reliable and accurate
predictions of changes in these environments. To date, researchers have implemented many
classes of models to forecast freshwater variables (reviewed by Lofton et al. 2023), including
process-based (PB) models (Baracchini et al, 2020; Clayer et al., 2023, Thomas et al., 2020, Page
et al., 2018), machine learning (ML) models (Di Nunno 2023; Cheng et al., 2020; Read et al.,
2019; Zwart et al., 2023), statistical models (Woelmer et al. 2022, McClure et al. 2021; Caissie et
al., 2017), and multi-model and hybrid approaches (Olsson et al., 2024c¢, Saber 2020; Qu et al.,
2017). In addition, forecasts have been generated using a range of model covariates (i.e., driver
variables). In many cases, weather forecasts are used as covariates because meteorology is a key
driver of many ecosystem processes in freshwater ecosystems (Hipsey et al 2019; Livingstone &
Padisak, 2007, Rousso et al., 2020). Additionally, some models include autoregressive terms as
covariates (e.g., ARIMA models). While forecasting methods have demonstrated promise at
individual freshwater sites or a handful of sites (e.g., Barrachini et al., 2020; Thomas et al., 2020;
Zwart et al., 2023; Oullex-Proulx et al., 2017, Page et al., 2018; Chen et al., 2024), to date there
has yet to be a comprehensive analysis of the performance of forecasting models across a large
range of model classes and model covariates across multiple sites.

Forecasting challenges present a useful platform for bridging this gap and learning about

how a range of modelling methods perform across axes of space, time, and ecological systems
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(Thomas et al., 2023; Humphries et al., 2018). Forecasting challenges typically entail an open
call to the research community with a ‘challenge’ to forecast a specific variable, standardised
requirements, and formal evaluation of out-of-sample time steps. Some challenges have aimed to
identify a “winner” or best approach, while others have focused more on community and
knowledge building (Thomas et al., 2023; Makridakis et al., 2020; Humphries et al., 2018). By
bringing together individuals and teams from broad backgrounds, challenges provide
opportunities for innovation and community-building, and the development of community
cyberinfrastructure can accelerate discipline-wide progress (Fer et al., 2021). Altogether, this
collaborative effort can facilitate the development of new methods, standardisation of forecasting
targets and formats, and tools and templates that expand the training and education to improve
accessibility of forecasting (Thomas et al., 2023). While forecasting challenges are common in
the fields of finance, business, demography (Makridakis et al., 2020; Bojer & Meldgaard 2021),
and epidemiology (Johansson et al., 2019; Viboud et al., 2018; Biggerstaft et al., 2018), few have
existed in ecology until recently (e.g., Humphries et al., 2018, Wheeler et al., 2024), providing
new opportunities for advancing the discipline. For example, previous efforts to compare
outcomes among ecological forecasting methods have been hindered by differences in evaluation
metrics, sites, and variables being forecasted (e.g., Ruosso et al., 2020), which can be addressed
by a standardised forecasting challenge framework.

The National Ecological Observatory Network (NEON) Forecasting Challenge (hereafter
NEON Challenge), hosted by the Ecological Forecasting Initiative (EFI) Research Coordination
Network, was designed to initiate these advances in ecological forecasting. The NEON
Challenge is “an open platform for the ecological and data science communities to forecast

NEON data before they are collected” (Thomas et al., 2023). The challenge aims to galvanise the
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forecasting community around a common framework, with the goals of: improving forecasting
tools (e.g., Dietze et al., 2023), learning about ecological predictability (e.g., Wheeler et al.,
2024), and advancing training (e.g., Willson et al., 2023).

The NEON Challenge provides a unique case study for examining the performance of
freshwater forecasts across space, time, and ecological systems. Ecological time-series present
specific complexities compared to previous forecasting challenges given the variability in
ecological data collection, irregularities in data resolution, and the inherent variability of the
observations (Farley et al., 2018; Michener & Jones, 2012). Moreover, unlike previous
forecasting challenges, the NEON Challenge is on-going and accepts submissions of as-yet-
unmeasured conditions on a rolling basis with scoring occurring continuously as new data are
collected and made available in near real-time (Thomas et al., 2023). In the aquatics lake theme
of the NEON Challenge, participants were invited to submit 1 to 30 day-ahead probabilistic
forecasts of daily surface mean water temperature (hereafter, Tw) and dissolved oxygen
concentration (DO) of seven NEON lake sites, with new forecasts accepted daily (Thomas et al.
2023). Due to issues relating to data quality, submitted forecasts of chlorophyll a were omitted
from our analysis. Forecasts were solicited across a range of sites, dates, and variables to
understand how skill varies across these three axes. Forecasts could be generated using any
method but had to include an estimate of uncertainty.

The inclusion of, and emphasis on, uncertainty was a novel component of the NEON
Challenge, as uncertainty has been rarely included in previous forecasting challenges.
Meaningful representations of uncertainty are critical to forecast interpretation and comparison,
but uncertainty quantification is still not ubiquitous across ecological forecasts (reviewed by

Lewis et al., 2022), and freshwater forecasts in particular. In a review of freshwater forecasts by
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Lofton et al. (2023), only 16 out 61 near-term (sub-daily to decadal) forecasts of water quality
variables included an estimate of the uncertainty associated with a prediction. Uncertainty can
arise from a variety of sources: model process, model parameters, model initial conditions,
model drivers, and observations (Table 1). The relative importance of each source is often
dependent on the ecosystem process or state being forecasted and the forecast horizon (Thomas
et al., 2020; Lofton et al., 2022; Ouellet-Proulx et al., 2017).

We were specifically focused on uncertainty in our analysis because forecasts that have
good accuracy and good precision (e.g., accurate uncertainty) have been shown to improve
decision-making outcomes (Mylne 2009; Nadav-Greenberg et al., 2009; Ramos et al., 2013).
NEON forecast submissions were thus evaluated in two ways that captured different attributes of
accuracy and precision: the continuous rank probability score (CRPS) and a CRPS comparison
with a baseline (null) model that acted as a benchmark to assess relative gains in forecast skill
(Pappenberger et al., 2015; Murphy 1992).

In this study, we analysed a year of submissions to the aquatics theme of the NEON
Challenge and assessed how model performance varied among model class, model covariates,
and forecast sites. We used the forecast analysis to answer the following research questions: Q1)
How does model class and inclusion of covariates affect forecast performance?; Q2) To what
extent is relative forecast skill affected by the inclusion of different sources of uncertainty?; and
Q3: How consistent are the patterns in forecast performance across sites? We included all Tw
and DO forecasts in the analysis of Q1, but focused primarily on Tw forecasts for Q2 and Q3 due
to the much higher number of submissions for that variable (see below). To the best of our

knowledge, our study is the first analysis that investigates the performance of freshwater
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168  forecasts across multiple model classes, model covariates, and sites using genuine forecasts of
169  the future.
170
171 2 Methods
172 2.1 NEON Challenge Overview
173 The NEON Challenge has five forecasting themes that cover a range of ecological
174  populations, communities, and ecosystems across the NEON network of monitored freshwater
175  and terrestrial sites. Our co-author team represents a group of the Challenge organisers,
176  cyberinfrastructure developers, and/or forecast submitters.
177 Submissions were accepted to the aquatics theme of the NEON Challenge starting in
178 2021 and continuing to the present (>3 years) for forecasts of water quality. Here, we focus on
179  the forecasts of Tw and DO submitted to lake sites within the aquatics theme of the NEON
180  Challenge during 2023, which represented the first full year with sufficient submissions for a
181  robust inter-model comparison.
182
183 2.2 Challenge design
184  2.2.1 NEON data
185 Water quality data were collected at seven lakes across the US (Figure 1). Tw and DO
186  were collected using in-situ sensors. Full descriptions of the sensors and protocol are included in
187  the data product metadata provided by NEON (DP1.20264.001, NEON TSD) for Tw and
188  DP1.20288.001 for DO (NEON water quality). At each lake, data were only available at one
189  location (generally at the centre, near the deepest point). For the purposes of the Challenge,

190  unpublished data were made available to participants by NEON at a data latency of 2-3 days
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after collection. The Tw and DO NEON data products extend back to 2016 but their temporal
coverage varies across sites in three ways. First, there is variability in the duration of time-series
data available for each site and variable (Figure S1), ranging from 3.1 to 6.6 years (up to 1
January 2023, the beginning of our focal forecasting period). Second, at five lake sites, sensors
are removed during winter due to ice formation. Finally, maintenance issues resulted in data gaps
at some sites. Consequently, total data availability varied between 167 and 2154 days for each

site/variable combination (Figure S1).

2.2.2 Data processing and targets generation

We, as challenge organisers, converted the Tw and DO data supplied by NEON in near-
real time to “targets” - observations specific to the challenge - by subsetting the sensor locations,
performing additional quality control, and aggregating 30-minute sensor data to daily means.
First, the data were subset to include only the surface measurements (top 1 m of the water
column). Second, we filtered the data using the existing NEON flags (see metadata) and applied
additional quality control measures (e.g., additional filtering for maximum and minimum
allowable values for each variable; see Olsson et al. 2024a). The targets data could then be used
by teams to calibrate and train models and were used for forecast evaluation.

These processed target data were publicly available to all Challenge teams at a persistent
URL location and were updated daily as new data became available. To further support
modelling efforts by the teams, we also provided supplementary hourly water temperature profile
data collected by NEON at each of the lake sites (derived from NEON DP1.20264.001, see
Olsson et al., 2024a). These supplemental data were available to teams to use in model

development and training but were not used in forecast evaluation.

10
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2.2.3 Ancillary driver data

NOAA’s Global Ensemble Forecasting System (GEFS; Hamill et al., 2022) weather
forecast data were made available to forecast teams via functions in the custom R package
neon4cast (Boettiger & Thomas, 2024). NOAA weather data for all NEON sites were
downloaded each day and standardised to be used as driver data and covariates in forecast
models. Teams were not required to use weather covariates but providing standardised NOAA
weather forecasts ensured that the teams that used weather covariates had consistent data, and
weather forecast skill was therefore not the primary driver of differences in aquatic forecast skill
among model submissions. Two NOAA data products were used by forecast teams: an ensemble
forecast of future weather and a historic weather product. The ensemble weather forecast
consisted of 31 ensemble members up to 35 days into the future at each of the 34 sites. The
historic product consisted of stacked one day-ahead forecasts from each day as an estimate of
observed historical conditions that was consistent with the ensemble weather forecast data
available to teams to forecast (i.e., having similar biases, compared to observational weather
data) and could be used to calibrate models. Teams were also able to use any other openly-

available covariate data in their forecasts, although none chose to do this.

2.2.4 Forecast submission guidelines

Challenge teams were invited to forecast Tw and DO in all of the lakes or in any subset of
sites or variables. Forecast submissions were required to have a daily time step of the focal
variable(s) over a forecast horizon of at least 1 to 30 days into the future and include an estimate

of uncertainty in the forecast. Uncertainty could be represented by submitting a probabilistic

11
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237  forecast (Gneiting & Katzfuss, 2014), either in the form of a mean and a standard deviation for a
238  normally distributed forecast or as an ensemble forecast for which the uncertainty was
239  represented as a series of predictions that represent a range of future conditions (Gneiting &
240  Katzfuss, 2014). Submissions were required to follow a standardised format (Thomas, et al.,
241  2023; Dietze et al., 2023) to enable automated evaluation and processing. New forecasts were
242 accepted every day and evaluated as new observational data became available (see Section 2.4).
243 During 2022 and 2023, we ran multiple workshops to introduce the Challenge to a cross-
244  section of aquatic and data scientists and managers to increase forecast submissions to this theme
245  (Meyer et al. 2023; Olsson et al., 2023). In total, more than 300 people attended the workshops in
246  person or online. Workshop materials were also available online for individuals or groups to use
247  independently (Olsson et al., 2023).
248
249  2.2.5 Baseline model
250 Following forecast evaluation best practices (Harris et al., 2018; Lewis et al., 2022), we
251  generated a baseline model that represents a limited (naive) understanding of the system for
252 comparison to the submitted forecast models. It can be helpful to compare submitted forecasts
253  with forecasts generated from baseline models as part of forecast evaluation to identify whether
254  new methods provide additional, useful information beyond uninformed models (Pappenberger
255  etal., 2015; Makridakis et al., 2020; Joliffe & Stephenson, 2012). Specifically, we generated a
256  model that assumes the forecast for a particular day-of-year (DOY) is equal to the mean of
257  historical data on that DOY. The DOY baseline model assumes dynamics will follow the mean
258  conditions for that date in previously observed years (Hyndman & Athanasopoulos, 2021;

259  Jolliffe & Stephenson, 2012). The uncertainty in this DOY forecast was generated by calculating
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the standard deviation of the past observations (see Supplementary Information Text S1). The
standard deviation of the daily average for the forecast period was used to represent the
uncertainty for the whole horizon. The DOY forecast was assumed to follow a normal
distribution, given by a mean and standard deviation for each day of year calculated separately
for each site and variable.

The baseline model was selected based on the observed dynamics of the variable of
interest (Jolliffe & Stephenson, 2012; Pappenberger et al., 2015) as well as being a common
baseline for ecological forecasts (e.g., Wheeler et al., 2024; Thomas et al., 2020; Lewis et al.,
2022). The DOY model is particularly useful as a baseline when the target variable’s dynamics
follow a seasonal cycle (Pappenberger et al., 2015), such as variables primarily driven by
meteorological forcing. A second baseline model that assumes a forecast is equal to the last
observation (persistence; Joliffe & Stephenson, 2012) was also included in submissions but had a

lower overall performance for both variables so was not used as a reference.

2.2.6 Forecast evaluation

Forecasts were evaluated against observations using the continuous rank probability score
(CRPS), as implemented in the scoringRules R package (Jordan et al., 2019). CRPS evaluates the
probability distribution of the forecast and assesses both the accuracy and precision of the
forecast relative to observations. Specifically, we used a relative forecast skill (hereafter,
CRPSskinn) metric to describe how much additional information is gained in each model over a
naive model. CRPSgkin was calculated based on the difference in CRPS score between the
submitted forecast and the DOY baseline model, following Equation 1:

Equation 1. CRPSsiiu= forecast _score - DOY score
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with positive values indicating a submitted forecast showing lower skill relative to the DOY

model, and negative values indicating that the DOY model performed better.

2.3 Analyses

We assessed the performance of the forecast models across different horizons and sites
by aggregating raw CRPSqiin metrics at different temporal and spatial scales. To identify the best
performing models per variable, we calculated the mean CRP S aggregated across all forecast
submission dates, horizons, and sites. To ensure that the comparisons among models were based
on a similar number of submissions, we only included models in the analysis that had
submissions for 80% of evaluated days (i.e., days with observations). We allowed teams to
‘catch-up’ their forecasts (i.e., submit forecasts which were not ‘real-time’ but ‘retroactive
forecasts’ following Joliffe & Stephenson, 2012) when they missed submissions due to any
issues with automated cyberinfrastructure. Retroactive forecasts could only use target data and
forecasted covariates that would have been available if the forecast was generated in real-time
(i.e., a retroactive forecast of water temperature for 1 July 2023 only used observations before
this date for model training and was driven by NOAA weather forecasts generated on 30 June
2023 or earlier). No model was represented only by retroactive forecasts. In our analysis, we
removed the 16 day-ahead horizon from evaluation because of processing issues when
downloading NOAA weather forecasts. The 16 day-ahead horizon had artificially low variance
in the forecast that was not present in the other horizons (the 1- to 16 day-ahead forecast
becomes available for download from NOAA earlier than the 17- to 35 day-ahead forecast). The
processing issue was resolved during the period of evaluation but we excluded the 16 day-ahead

horizon regardless so that we could compare forecasts throughout all of 2023.
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The reliability of the confidence intervals (CI) was calculated by estimating the number

of observations that fell within the confidence intervals specified and thus the degree to which a
predicted distribution matches the true underlying distribution of the data. Reliability refers to
the statistical agreement of forecast probabilities with observed relative frequencies of events
(Gneiting, Balabdaoui & Raftery, 2007; Schepen et al., 2016). A forecast that has perfectly
reliable confidence intervals will have the equivalent proportion of the observations falling
within the CI (Joliffe & Stephenson, 2012, Thomas et al., 2020): e.g., 80% of observations
falling within the 80% confidence interval and 95% of observations falling within the 95%
confidence interval. Forecasts with too many observations falling within the CI are said to be
‘underconfident’, while have too few in the CI is ‘overconfident’ (as Thomas et al., 2020; Zwart

et al., 2020; Ouellet-Proulx et al., 2017).

3 Results
3.1 Forecast inventory

Individuals and teams submitted a total of 100,475 daily forecasts for 1-30 day-ahead
horizons using 28 different models to the aquatics lake theme of the NEON Challenge in 2023.
Here, we define one forecast as a collection of predictions for 1 to 30 days in the future for a
unique combination of forecast starting date, forecast site, forecasted variable, and forecasting
model. The 28 models were used in addition to the two baseline models (persistence and DOY
models) submitted by Challenge organisers (» = 30 models total). The forecasted variables were
unevenly represented in the submissions: 14 models (plus two baselines) were used to submit
forecasts for both variables (Tw, DO), 14 models were used to submit forecasts for only Tw, and

no models submitted forecasts for only DO (total model submissions for each variable: Tw = 30,
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DO = 16). Across all submissions, forecasts of water temperature for the lake sites were most
numerous (7 = 63,189; 63% of total lake forecasts) and had a greater diversity of model classes
and covariates. We note that the 30 Tw models represent only the models that were used to
continuously submit forecasts throughout 2023. We omitted 42 other models from one-off
forecast submissions that were submitted as part of training tutorials, courses, or workshops;
were uploaded for the purposes of model testing; or were submitted by unregistered participants.

The 30 Tw models included a range of model classes and exogenous covariates. The self-
reported model classes included empirical models (statistical and time series), machine learning,
and process-based models, as well as multi-model ensembles (MME; i.e., predictions were based
on an aggregation of other model forecast submissions). Forecast models included a range of
exogenous covariates from the NOAA GEFS weather forecasts, with forecasted air temperature
being the most commonly used covariate (n = 19, Table S1). No other exogenous covariates (i.e.,
non-NOAA GEFS weather covariates) were included in any model. Details of all of the models
that submitted forecasts in 2023 that met the criteria for inclusion in this analysis are provided in
Supplementary Information Text S1.

The 16 DO models represented less diversity in model classes and covariates than the Tw
models (Figure 2). The model classes for the DO models included only empirical and ML
models (in addition to the baseline models), and air temperature was used as a covariate in six of

the 16 DO models (38%).

3.2 How does model class affect forecast performance across all variables?
More Tw forecast models (n = 10) outperformed the baseline than the DO forecast

models (n = 6; Figure 2). Only six of the submitted DO models outperformed the DOY baseline
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model across all forecast dates and sites (i.e., models had mean positive CRPSgkin, with a mean
relative skill between 0.01 and 0.08 mg/L aggregated across the 1-30 day-ahead horizon (Figure
2c¢). These six highest performing DO models included both ML and empirical models, of which
the highest performing models were ML models that used air temperature as a covariate
(Random Forest, Lasso, and XGBoost). The models that did not out-perform the baseline were
all empirical, and no PB models were used to forecast DO in lakes.

Unlike DO, the best performing models for water temperature (Tw) were from the full
range of model classes (Figure 2a,b). Of the 30 submitted models, ten Tw forecast models
outperformed the DOY baseline model when forecasts were aggregated across all sites and
horizons for the year of forecasts. Across all sites and forecasts, a PB model had the highest skill
(Figure 2a), with a mean CRPSgin of 0.22 °C aggregated across the 1-30 day-ahead horizon.
Although the overall top three models were PB models, not all PB models were high performing,
as four PB models had a negative mean CRPSskin (Figure 2b).

Altogether, of the different model classes used to submit forecasts of Tw, four of the
eight PB models, one of the 13 empirical models, two of the four MME, and all three of the ML
models outperformed the baseline DOY model on average over the year (Figure 2a). Machine
learning models accounted for three models in the top 10 Tw forecast models, as XGBoost,
Random Forest, and Lasso models all had positive CRPSgii1. Empirical models exhibited the
worst performance among the model classes, as only one (the Prophet model, Figure 2a)
outperformed the DOY baseline model across all forecasts. Given the higher performance of
forecasts for Tw (ten models beating the baseline), as well as the higher diversity of model
classes represented in these higher performing models (n = 4), further analyses for addressing

Q1, Q2, and Q3 were conducted on the Tw forecasts only.
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3.3 Among Tw models, how does model class and inclusion of covariates affect performance
across the forecast horizon?

Nine out of the 10 Tw models that outperformed the baseline model included air
temperature as a covariate (Figure 2a). The specific inclusion of air temperature as a covariate
appeared to confer some skill, as it was not included in any of the five lowest performing models
(Figure 2b). However, the inclusion of exogenous covariates did not guarantee high performance
of a model, as ten of the models exhibiting negative CRPSgi included air temperature as a
covariate, as well as other NOAA weather covariates such as humidity and precipitation
(Supplementary Text S1). There was only one model that outperformed the baseline model, the
empirical Prophet model, which was based solely on observations and included no exogenous
covariates (Figure 2a).

Focusing on Tw, CRPSgn in the most skillful forecasts generally degraded across the
forecast horizon (Figure 3a), and, on average, were unable to outperform the DOY baseline at
horizons of 15 to 25 days-ahead. The exceptions to this pattern were the Lasso and Random
Forest ML models, which showed increases in skill for the first 7-8 days-ahead and then
decreases in skill at longer horizons. Generally, the PB models and MME forecasts showed
larger rates of degradation compared to the ML and empirical models (Figure 3a). The Prophet
ML model exhibited the lowest degradation in skill (0.16 °C to -0.08 °C) across the 30 days,
although its skill at 7-16 day-ahead horizons was the lowest of any model that out-performed the
baseline (Figure 3a). In comparison, two MME forecasts showed the highest rates of degradation
(LER baselines MME and FLARE-LER MME), from high performance at short horizons (0.58
°C and 0.64 °C) to negative relative skill at the longest horizons (-0.24 °C and -0.32 °C). Only

one model had positive CRPSin across the full forecast horizon, the XGBoost ML model, which
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had a low rate of skill degradation across the 30 days (0.32 °C, Figure 3a). The models which
exhibited negative skill throughout the 30-day forecast horizon generally showed consistently
decreasing performance into the future (Figure S2), although the worst performing models had
low performance irrespective of forecast horizon.

Out of all Tw models that outperformed the DOY baseline (as determined by the
aggregation of skill over the full forecast horizon; Figure 2a), XGBoost had positive relative skill
for the full forecast horizon with the FLARE-GLM PB model, and the Random Forest ML model
had the next longest durations of positive relative skill (i.e., 19 and 27 days, respectively, over
the 30-day forecast horizon), but differed in the timing of these days. The Random Forest model
had negative CRPSgin at the start of the forecast horizon and FLARE-GLM had negative relative
skill at the end of the forecast period (Figure 3a), although both were only marginally worse-
performing than the baseline on the days when their CRPSsiin was negative. FLARE-GLM was
the most skillful model for the first 16 days of the forecast horizon, dropping only to the 4th
highest performer overall at other horizons. In contrast, the best performing model at 30 days

ahead, the Random Forest model, was the second worst-performing model at 1-4 days-ahead.

3.4 To what extent is relative forecast skill affected by the inclusion of different sources of
uncertainty?

Although submissions were required to include an estimate of forecast uncertainty
(Thomas et al., 2023), the sources of uncertainty varied among the models. The most commonly
represented source of uncertainty in Tw models was driver uncertainty (n = 22, Table S1), with
13 models including only one source of uncertainty, seven models including two sources, one

model including three sources, and eight models including all five sources of uncertainty
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(defined in Table 1).

Of the 10 Tw models that had mean positive skill aggregated over the forecast horizon
for Tw (Figure 2a), seven included at least three sources of uncertainty and six included five
sources (Table 2). All but one model (n =9) included driver uncertainty (in the form of the
NOAA GEFS weather ensembles as covariates), with parameter and process uncertainty the next
most common uncertainty source included with these top models (n = 8 models represented this
source of uncertainty). In comparison, Tw models that performed less well than the baseline
rarely included sources of uncertainty other than driver data uncertainty (Table S1).

The degradation in relative skill for the majority of Tw models at longer horizons was
concurrent with an increase in bias (i.e., lower accuracy; Figure 3c) and standard deviation (i.e.,
lower precision; Figure 3b). The increased relative skill exhibited by two ML models (Lasso and
Random Forest) across the first seven days of the forecast horizon (Figure 3a) was concurrent
with reductions in absolute bias (Figure 3¢). Across the first 10 days, the PB models (FLARE-
GLM, FLARE-GOTM) and MMEs that included the PB models (FLARE-LER MME and LER
baselines MME) exhibited the lowest absolute bias, which increased steadily across the horizon
up to ~20 days ahead. In comparison, the forecast accuracy and to a certain extent, precision, in
the Prophet, XGBoost, and Random Forest ML models degraded less, resulting in lower bias and
SD at longer horizons (Figure 3c¢).

Increased standard deviation (i.e., greater uncertainty) across the forecast horizon may
indicate a reduction in precision in the forecasts, which can degrade CRPSskin and reliability of
the forecast confidence intervals (CI). The top performing Tw models were primarily
underconfident (Figure 4a) for the 80% confidence intervals, meaning that >80% of observations

fell within the 80% confidence intervals. Generally, the confidence of the forecasts changed little
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over the horizon, especially beyond the first five days (Figure 4a). Beyond this horizon, only the
Random Forest and Lasso ML models showed shifts in confidence beyond 5 days, becoming less
overconfident and eventually becoming underconfident at horizons greater than 8 days (Figure
4). The XGBoost ML model yielded the most reliable forecasts, with 80.4% of observations in
the 80% CI when averaged across horizons (Figure 4). The Prophet model was the only model
that out-performed the baseline that was overconfident for the whole forecast horizon, with its
uncertainty changing little across the forecast horizon (74-79% of observations in the 80% CI;
Figure 4a). The two MME models showed the highest rates of underconfidence, with 91.5% and
96.2% points falling on average into the 80% CI (Figure 4). Among the poorer performing Tw
models, there was a greater rate of overconfidence, especially at horizons less than 7 days ahead,
with 9 out of the 18 models overconfident. The rate of overconfidence increased among all
models at the 95% CI (Figure 4b,d), demonstrating poor calibration for models when forecasting

observations at the tails of the distribution.

3.5 Are the patterns in performance consistent across sites?

Within model classes, Tw forecast CRPSskin showed similar patterns among sites, with
the exception of empirical models (Figure 5a). Generally, ML, PB models, and MMEs had
positive CRPSgiinat PRLA, PRPO, and TOOK, though the latter had a limited number of
forecasts given its much shorter buoy deployment duration (Figure S1). In comparison, ML
models, PB models, and MMEs generally exhibited negative CRPSqin at SUGG, BARC, and
CRAM (Figure 5a).

Mean CRPSqskin (from the Tw models that outperformed the baseline, as shown in Figure

2a) degraded across the forecast horizon for all sites, but remained positive at PRPO and PRLA
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for the full 30-day horizon and at TOOK for the first 18 days (Figure 5b). In contrast, at CRAM,
LIRO, BARC, and SUGG, CRPSskii was positive between 1 and 12 days-ahead. This high
CRPSskin at PRPO, PRLA, and TOOK is likely due to the relative gains against more poorly-
performing DOY baseline forecasts at these sites (Figure S3). Focusing on the four months when
all lakes had data availability (i.e., when all lakes had buoys deployed) vs. longer time periods
did not substantially alter the differences in CRPSskin observed among lakes (Figure S4).

Climate variability may have influenced why some models performed better than others
in forecasting out-of-sample conditions. Observations for water temperatures in 2023 show that
PRPO and PRLA were warmer than historical conditions represented in the DOY model,
especially in May and June (Figure 6). In comparison, CRAM and LIRO, for which models
performed worse than the baseline on average, exhibited water temperatures generally within
around 2 °C of historical conditions (Figure 6). BARC and SUGG exhibited a smaller range of
water temperatures that fell within 2 °C of historical conditions for all months except March

(Figure 6).

4 Discussion

Among the 29 models that forecasted water quality variables across seven lakes, 10
models out-performed the baseline model for Tw, and six for DO (Figure 2). Of the 10 best-
performing Tw models, there were four PB models that included multiple exogenous weather
covariates, three ML models, two multi-model ensembles, and one empirical model,
demonstrating that multiple different model classes can yield skillful forecasts for lake water
temperature. Our uncertainty analysis showed that poor-performing Tw models were generally

more overconfident, likely due to insufficient representation of uncertainty in the forecasts.
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Finally, model skill was inconsistent across sites for the best-performing lake temperature
forecast models, which may be related to climate variability. Below, we discuss how our findings

addressed our research questions, with a focus on the Tw models.

4.1 How do model class and model covariates affect forecast performance?

No individual model submitted to the challenge was the best performing model for both
variables, although four models outperformed the baselines for both Tw and DO. These four
models — the ML models XGBoost, Random Forest, and Lasso and the empirical model Prophet
— show that a range of model types were useful for a range of variable forecasts. High
performing models for DO were in both empirical and ML categories, although no PB or MME
models were submitted for DO, necessitating further investigation of both model types to
potentially improve forecast performance (Olsson et al., 2024c; Hagedorn et al., 2005). In
contrast, models outperforming the baseline for Tw came from four model classes (ML, PB,
empirical, and MMEs).

In an analysis of Tw models specifically (because of the higher diversity of model classes
that were submitted for this variable), we found that PB models that included air temperature as a
covariate performed best across all sites (Figure 2a). Air temperature is likely a key covariate for
high-performing surface water temperature forecasts because Tw dynamics are primarily driven
by processes at the air-water interface of lakes (Schmid & Read, 2021; Piccolroaz et al., 2024),
with air temperature a causal forcing variable (Livingstone & Padisak, 1989). PB models that
used additional meteorological parameters (e.g., incoming short-wave radiation, relative
humidity, wind speed) to calculate heat fluxes to mechanistically derive water temperatures

resulted in even higher performing forecasts (Figure 2). One exception was a simple-physics PB
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model that had insufficient uncertainty representation and thus was not able to out-perform the
baseline model (Supplementary Text S1). Altogether, our results strongly support that including
the dominant drivers of water temperature (namely, air temperature) not surprisingly improved
the performance of lake water temperature forecasts.

In contrast to the Tw PB models, the domain-agnostic models (i.e., models that do not
include any mechanistic information about lake functioning; ML and empirical models) showed
less degradation across the forecast horizon, which may be potentially due to the non-dynamic
nature of the methods (Supplementary Table S1). In comparison, the PB models were more
skillful at short horizons, suggesting that forecasters might choose different Tw models based on
the horizon needed. XGBoost, Lasso, and Random Forest ML models and the empirical Prophet
model were less skillful than the PB models and PB-MME:s in the first 10 days, but become more
skillful than the PB models at longer horizons due to their low rates of degradation. XGBoost
was the only model to have a positive skill across the full forecast horizon (on average for all
forecasts and sites), highlighting a robust method for forecasting Tw at any site in our study. Our
results are similar to other ecological forecasting studies: for example, domain-agnostic models
outperformed PB models in a penguin population forecasting competition in which annual
populations were forecasted up to 3 years ahead (Humphries et al., 2019). Similarly, simple time-
series models have shown promise in other ecological population forecasts (Ward et al., 2014).
In the NEON Challenge, the same ML and empirical models that performed well for Tw also
performed well for DO forecasts, on average out-performing the DOY baseline, and thereby
representing robust methods across multiple variables.

Reduction in skill of Tw forecasts over the forecast horizon may be linked to a reduction

in skill of the air temperature forecasts being used as model driver data. The Prophet model,
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which was the only model that out-performed the baseline that did not include air temperature as
a covariate (or any covariates at all), showed less degradation in forecast performance than the
overall better performing PB models, although this represents only a single model. The PB
models, generally, benefit from high weather forecast skill at shorter horizons (Petchey et al.,
2015, Zhou et al., 2021), but degrade in performance along with the performance of their
covariates. Beyond 10 days-ahead, when the weather forecasts are less skillful (Zhou et al.,
2021), the PB models performance suffered, suggesting that forecasters seeking to optimise
performance at longer horizons should focus on models that are less dependent upon
meteorological driver data (e.g., time series models).

The differences in the forecast horizons at which each Tw model was most skillful may
present opportunities for generating MMEs or hybrid models (e.g., combining domain-agnostic
models with PB models) to exploit the strengths of multiple model types across the forecast
horizon. Hybrid model approaches have shown high performance in other forecasting challenges
and competitions (Makridakis et al., 2020; Clark et al., 2022) and MMEs are most successful
when the individual model structures are more diverse (Olsson et al., 2024c; Petropoulos et al.,
2022; Dormann et al., 2018). The performance of the MMEs in this NEON Challenge synthesis
was not consistent with previous studies and other forecasting challenges, in which MMEs
showed the best performance (Makridakis et al., 2020; Clark et al., 2022). For example, in
forecasts of tick disease incidence, the simple model average of four individual models was
better than any individual model (Clark et al., 2022), and the winner of the M4 forecasting
competition (a wide-ranging timeseries forecasting challenge) as a combination of statistical and
empirical models (Makridakis et al., 2020). Similarly, in a recent single-site lake study, forecasts

generated by an MME composed of three PB and two baseline models outperformed the
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559  individual models across two years (Olsson et al., 2024c). Conversely, in this analysis, the same
560  MME had lower relative skill, higher bias, and higher uncertainty than some of the individual
561  models from which it was derived (Figure 2). This discrepancy in MME performance could be
562  caused by poor calibration in the individual models at some of the lake sites. The individual
563  models included in this study were almost all underconfident (Figure 4), which resulted in very
564  large uncertainty in the MMESs and likely contributed to their poor performance, as MME
565  forecasts have been shown to be most successful when the individual constituent models are
566  slightly overconfident (Wang et al., 2022; Hagedorn et al., 2005). Methods such as trimming,
567  where distributions are narrowed, could help constrain MME uncertainty, increasing the overall
568  skill of these forecasts (Howerton et al., 2023).
569
570 4.2 To what extent is relative forecast skill affected by the inclusion of different sources of
571 uncertainty?
572 Our synthesis suggests that representation of forecast uncertainty is important for
573  determining the overall forecast performance of probabilistic Tw forecasts. The top performing
574  Tw models often included multiple sources of uncertainty (up to n =5, Table 2), unlike the lower
575  performing models, which frequently only included driver uncertainty. Consequently, many
576  poor-performing models were overconfident in their predictions, suggesting there was
577  insufficient uncertainty included in those forecasts, especially at shorter horizons (Figure 4).
578  These results suggest that driver uncertainty alone is not a sufficient representation of the total
579  uncertainty, especially given that weather forecasts are themselves often overconfident at these
580  horizons (Zhou et al., 2022). When these weather forecasts are used as driver data for overfitted

581  lake models (Zwart et al., 2023), overconfidence in water quality forecasts is even more likely to
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occur. Overconfidence of forecasts was also reported in a forest phenology forecast synthesis, in
which forecasts that included covariates were overconfident at shorter horizons (Wheeler et al.,
2024). In our analysis, the Lasso and Random Forest ML models, which only included driver
uncertainty, showed performance improvements at longer horizons as the uncertainty from the
weather forecasts increased and the water temperature forecasts became less overconfident
(Figure 4). Furthermore, the ML XGBoost model, which included process uncertainty in addition
to driver uncertainty, outperformed the other ML models at shorter horizons.

Improving the representation of uncertainty in forecasts, as quantified by the reliability of
forecast confidence intervals, is important for management (Ramos et al., 2013; Crochemore et
al., 2021). Use of ecological forecasts by decision makers is likely to improve if forecast
uncertainty is well quantified and confidence intervals are appropriate (Ramos et al., 2013;
Buizza 2008; Nadav-Greensberg & Joslyn, 2009). Underconfidence and overconfidence limit the
use of forecasts for management, as underconfident forecasts provide too wide of a range of
potential future conditions and overconfident forecasts underestimate the possible range of
conditions, with both leading to inappropriate management actions (Crochemore et al., 2021).
Consequently, our results suggest that including more than one source of uncertainty may help

increase the usability of forecasts as decision support tools.

4.3 Is model forecast performance consistent across sites?

Tw forecast performance varied among sites, with the relative gain in skill likely due to
the lower performance of baseline models at some lakes, especially at PRPO and PRLA, two
lakes in North Dakota. The DOY baseline model had the lowest performance at PRPO and

PRLA, potentially because 2023 conditions in these two lakes were substantially different from
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historical observations, resulting in a lower performing baseline forecast (Figures 6, S3). This is
consistent with a previous single-model forecasting study (FLARE-GLM) that also showed
improved performance above a DOY baseline for these two sites, especially at shorter horizons
(Thomas et al., 2023). Differences from historical conditions that exceeded 3 °C resulted in poor
DOY baseline performance in that study. Our results suggest that if there is a divergence of
water temperature of this magnitude, using a PB or ML model provides a much stronger
forecasting approach than a baseline model. All model classes except the empirical model class
showed positive skill compared to the DOY baseline at PRLA and PRPO as well as at TOOK, to
a lesser extent. As environmental conditions further exceed historical means due to global
change, models that only consider patterns from long-term historical observations may be less
valuable than models that are able to infer ecological processes or use recently-observed data in

generating forecasts.

4.4 Value and refinements for forecasting challenges

Forecasting challenges provide a compelling opportunity to learn about ecological
predictability over gradients of time, space, ecological level of organization, and forecasting
methods. The submissions from 30 models (including two baselines) to the aquatics lake theme
of the NEON Challenge covered a range of model classes and approaches. However, since the
NEON Challenge was open to the community and we did not specifically guide the types of
submissions, the breadth of models was not exhaustive and therefore some questions remain.
Specifically, quantifying the value of different covariates to different models (e.g., XGBoost,
linear models, Random Forest) would be best done by comparing forecasts with the same

modelling approach but with differing covariates and quantitatively seeing how forecast skill
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changes with their addition or removal. It is possible that this ‘model selection” was done by
teams before forecasts were submitted and that the final model submitted to the Challenge was
the optimal structure, but we cannot know from the submitted metadata whether these models
represent each team’s “best” attempt at producing a forecast.

We also saw uneven representation in the variables being forecasted, with more
submitted forecasts of Tw than DO. We identified several potential factors that contributed to
this uneven representation. First, NEON Challenge training materials were focused on lake
temperature forecasting, which may have skewed submissions to this variable because
participants in workshops may have been more likely to modify pre-existing code for submitting
a new model type to Tw, rather than develop new code for DO submissions. Second, water
temperature may have been an easier, more “introductory” forecast target variable as there are
well-established mechanistic processes linked to driver datasets (e.g., meteorology) that were
made readily available for teams to use. Conversely, the drivers of DO concentrations are much
more complex, drawing from physical, chemical, and biological processes (Langman et al., 2010,
Carey, 2023; Hanson et al., 2006). Additional driver data needed to model lake DO processes,
such as nutrients and inflows, were not as easily accessible as the historical and forecasted
meteorological drivers from the Challenge organisers. Overall, the best performing models for
lake water temperature are unlikely to be optimal for a wide range of other variables and
ecosystems, motivating future work and the need for more submissions to the NEON Challenge
to understand how their forecast model performance varies across lake variables.

The NEON Challenge aims to both provide training for the larger ecological community
and enable quantifying the fundamental predictability of ecological variables. While the

submitted forecasts have limitations relative to a standardised modelling exercise (e.g., a
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formalised multi-model intercomparison project), the Challenge trained >300 individuals and
teams, resulted in the development of novel ecological models, and introduced forecasting to a
broad community of researchers. The NEON Challenge recruited participants as a fun, training-
focused, educational, and accessible opportunity to learn forecasting in a low-stakes
environment, with flexible deadlines and registration. Therefore, despite the potential drawbacks
of an open forecasting challenge (vs. a standardized multi-model comparison), it is worth noting
that even the forecasts that were omitted from the final analysis still represent participants who
may have never generated even a single ecological forecast without the inclusive atmosphere of
the NEON Challenge and its training materials.

The NEON Challenge also sets the stage for future forecasting model analyses. For
example, future work could address whether the inclusion of exogenous covariates in models
produces forecasts that are overconfident at shorter horizons for other ecological variables,
which could be corrected using multiple sources of uncertainty. Similarly, it would be useful to
investigate whether the domain-agnostic models that outperformed the baseline for DO and Tw
perform similarly well when forecasting other ecological variables. The spatial and temporal
extent of NEON data, as well as the range of ecological variables on which data are collected,
provides a suite of opportunities to continue to investigate these questions and as a platform to

grow the field of ecological forecasting.

5 Conclusion
Our synthesis of >100,000 submissions to the NEON Forecasting Challenge
demonstrates that a number of model classes were able to out-perform a DOY baseline model to

forecast water temperature and dissolved oxygen across seven lake sites, providing insight into
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optimal forecasting approaches for different contexts. Water temperature models that included
air temperature as an exogenous covariate and those that included multiple sources of uncertainty
generally performed well and came from process-based, empirical, machine learning, and multi-
model ensemble model classes. The relative skill of these models was shown to be highest at
sites that exhibited conditions outside of historical observations. These forecasting methods are
likely to become increasingly valuable for guiding decision-making in a world in which
ecosystems are become more variable and continue to move outside of historically observed
conditions. Overall, our results highlight the value of forecasting challenges to advance the

development of ecological forecasts for both theory and management.
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Table 1. Definitions of forecast uncertainty sources included in the submitted models, modified

from Dietze (2017), Thomas et al. (2020), and Lofton et al. (2023).

of a fitted model.

Source of Definition Example of how the uncertainty
uncertainty source could be quantified
Process Uncertainty from the inability of the | Calculating the error from the residuals
model to replicate the dynamics of of the model fit to historical data.
the forecasted state.
Parameter Uncertainty in the parameter values Sampling from a distribution of

parameter values and assigning different
parameter values to each ensemble

member.

Initial condition

Uncertainty in estimates of current
conditions at the time of forecast
generation (e.g., as a result of
observation uncertainty, missing

observations, and data assimilation).

Quantifying the spread in updated states
following data assimilation or the

previous day’s forecast.

in the state being forecasted
(difference between actual state and

measured state).

Driver Uncertainty from driver data (e.g. Using an ensemble of weather forecasts
future air temperature). as drivers to the model.
Observation Uncertainty from measurement error | Calculating the standard deviation of

replicate water temperature

observations.
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Table 2. Representation of uncertainty within the best-performing water temperature (Tw)

models (sorted in descending order) that had positive mean CRPSgn over the 1-30 day-ahead

forecast horizon. See Table 1 for definitions of uncertainty types. For the comprehensive list of

uncertainty sources for all submitted models and all variables, see Table S1.

Source of uncertainty represented

Model
Driver Parameter Process coillzliittiiaolns Observation

FLARE-GLM X X X X X
FLARE-GLM-noDA X X X X X
FLARE-GOTM X X X X X
XGBoost X X

Random Forest X

LER-Baselines MME X X X X X
FLARE-LER MME X X X X X
FLARE-GOTM-noDA X X X X X
Prophet X X

Lasso X
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Figure Captions
Figure 1. Map of National Ecological Observatory Network (NEON) lake sites located across
the contiguous U.S., with map inset showing Alaska. Co-occurring sites are shown by the black
centroid and the coloured points are offset from this location. The points are labelled with their
four-character NEON site code: BARC (Barco Lake), CRAM (Crampton Lake), LIRO (Little
Rock Lake), PRLA (Prairie Lake), PRPO (Prairie Pothole Lake), SUGG (Suggs Lake), and
TOOK (Toolik Lake).
Figure 2. Mean relative skill (CRPSskii, compared to day-of-year (DOY) baseline model) of
water temperature (Tw) and dissolved oxygen (DO) forecasts for the submitted models (averaged
across sites, submission dates, and 1-30 day-ahead horizons). Positive values indicate that a
submitted model performed better, on average, than the DOY baseline and negative values
indicate that the baseline performed better. Panel (a) shows the Tw models that outperformed the
DOY baseline as defined by CRPSskin and panel (b) shows all Tw models. Panel (c) shows
CRPSgkin for DO models. The shading of the bars indicates the model structure; colour = model
class (empirical, machine learning (ML), multi-model ensemble (MME), process), and pattern =
inclusion of air temperature as a covariate. A second baseline model (Persistence), is shown in
grey (panels b,c) and models that outperformed the DOY baseline are highlighted by the grey
background shading.
Figure 3. Relative skill (a), mean standard deviation (b), and mean absolute bias (c) across the
30 day-ahead forecast horizon for the models that outperformed the day-of-year baseline for
water temperature. Relative skill was calculated as the difference in CRPS between the focal

model and the day-of-year baseline. The metrics in each panel were averaged across all sites and
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forecast submission dates. Models are listed in the legend in descending order of mean skill
aggregated over the forecasting period.
Figure 4. Reliability plot (% of observations falling within the 95% and 80% confidence
interval) for the water temperature models that out-performed the day-of-year baseline (a and b)
and those that did not (grey lines, ¢ and d). Perfectly confident forecasts would have an equal
percentage of observations within the confidence interval as the percentage covered by the
confidence interval. Values above the dashed line indicate that the forecast is underconfident
(forecast precision is too wide) and values below the line indicate that the forecast is
overconfident (forecast precision is too narrow). Values above the dotted threshold indicate that
the forecast is underconfident (i.e., there are too many observations falling within the specified
confidence interval) and values below the line indicate that the forecast is overconfident. Note
the differences in scale between the panels a/b and c/d that show the 80% and 95% confidence
intervals, respectively.
Figure 5. (a) Relative skill of water temperature forecasts compared to the baseline (day-of-year)
for each site compared among model classes: empirical, machine learning (ML), multi-model
ensemble (MME), and process-based. Positive values indicate the submitted model performed
better, on average, than the baseline and negative values indicate that the baseline performed
better. The n value indicates the number of models represented in each model class. (b) Mean
relative skill for the top ten performing models among sites across the forecast horizon.
Figure 6. Difference in median monthly surface water temperature (depths < 1 m) between 2023
and historical observations (2015-2022) at the seven lake sites. Shaded regions show delta values
that exceed 1 °C from median historical conditions. Not all lakes have historical observations for

the full eight-year historical period or observations during all months.
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Figure 6.
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the four-character NEON site code.
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Table S1. A summary of model structure (type, covariates), sources of uncertainty, and use of historical data to produce initial conditions and
update parameters for 30 forecast models submitted to the aquatics theme of the NEON Forecasting Challenge. A full description of the models
can be found in Supplementary Text 1. Definitions for uncertainty types can be found in Table 2 in the main manuscript. *MME = multi-model

ensemble.
Includes Sources Of
Model Name 1}’[0deel f;;?;ﬁzs Model Covariates Initial g 121/[;:139 Uncertainty ggfaalile:ters"
yp Conditions? y *  Represented )
Air2Water Empirical Temperature, Air Temperature No No Driver Yes
Oxygen
Baseline MME MME Temperature - Yes Yes Process No
Prophet Empirical Temperature, No Yes Parameter, Yes
Oxygen Process
Day-Of-Year Null Temperature, No No No
Oxygen
.. . Process,
fARIMA Empirical Temperature  Air Temperature Yes Yes Driver Yes
ﬁﬁlé\gA-DOY MME Temperature  Air Temperature Yes Yes Process Yes
Air Temperature, Air
Pressure, Relative
. Parameter,
Humidity, Surface
. Process,
Downwelling Initial
LER MME* MME Temperature Longwave, Surface Yes Yes . Yes
’ Conditions,
Downwelling .
Driver,
Shortwave, Observation
Precipitation, Eastward
Wind, Northward Wind
Air Temperature, Air
Pressure, Relative
. Parameter,
Humidity, Surface
Downwelling Procelss,
LER-Baselines Initia
MME* MME Temperature Longwavef Surface Yes Yes Conditions, es
Downwelling .
Driver,
Shortwave, .
Observation

Precipitation, Eastward
Wind, Northward Wind




Air Temperature, Air
Pressure, Relative

Humidity, Surface Parameter,
. Process,
Downwelling Initial
FLARE-GLM Process Temperature Longwave, Surface Yes Yes .. Yes
; Conditions,
Downwelling .
Driver,
Shortwave, Observation
Precipitation, Eastward
Wind, Northward Wind
Air Temperature, Air
Pressure, Relative Parameter
Humidity, Surface ’
. Process,
Downwelling Initial
FLARE-GLM- noDA Process Temperature Longwave, Surface No No . No
K Conditions,
Downwelling .
Driver,
Shortwave, Observation
Precipitation, Eastward
Wind, Northward Wind
Air Temperature, Air
Pressure, Relative
e 1 Parameter,
Humidity, Surface
| Process,
Downwelling Initial
FLARE-GOTM Process Temperature Longwave, Surface Yes Yes . Yes
; Conditions,
Downwelling .
Driver,
Shortwave, Observation
Precipitation, Eastward
Wind, Northward Wind
Air Temperature, Air
Pressure, Relative Parameter
Humidity, Surface ’
Downwelling PI"()PCSS,
FLARE-GOTM- Process Temperature Longwave, Surface No No Imtlal. . No
noDA ; Conditions,
Downwelling .
Driver,
Shortwave, .
Observation

Precipitation, Eastward
Wind, Northward Wind




Air Temperature, Air
Pressure, Relative

Humidity, Surface Parameter,

. Process,
Downwelling Initial

FLARE-Simstrat Process Temperature Longwave, Surface Yes Yes .. es

; Conditions,

Downwelling .
Driver,

Shortwave, Observation
Precipitation, Eastward
Wind, Northward Wind
Air Temperature, Air
Pressure, Relative Parameter
Humidity, Surface ’

. Downwelling Pr.ogess,
FLARE-Simstrat- Process Temperature Longwave, Surface No No In1t1a1. . No
noDA ; Conditions,

Downwelling .
Driver,
Shortwave, Observation
Precipitation, Eastward
Wind, Northward Wind
.. . Process,
TSLM-Lag Empirical Temperature  Air Temperature No No Driver Yes
JR-Physics Process Temperature  Air Temperature Yes Yes Driver No
Air Temperature,
Relative Humidity,
GLEON-Physics Process Temperature  Surface Downwelling Yes Yes Process No
Shortwave, Eastward
Wind, Northward Wind
Persistence Null Temperature, Yes Yes Process No
Oxygen
ARIMA Empirical Temperature, Yes Yes Process Yes
Oxygen
ETS Empirical Temperature, Yes Yes Process Yes
Oxygen
LM-Humidity Empirical Temperature, Relative Humidity No No Driver Yes
Oxygen
LM-Humidity-All Empirical Temperature, Relative Humidity No No Driver Yes

Oxygen




Air Temperature, Air
Pressure, Relative
Humidity, Surface

Downwelling
Lasso ML Temperature, Longwavef Surface No No Driver No
Oxygen Downwelling
Shortwave,
Precipitation Flux,
Northward Wind,
Eastward Wind
LM-Precip Empirical Temperature, Precipitation No No Driver Yes
Oxygen
LM-Precip-All Empirical Temperature, Precipitation No No Driver Yes
Oxygen
Air Temperature, Air
Pressure, Relative
Humidity, Surface
Temperature Downwelling
Random Forest ML p > Longwave, Surface No No Driver No
Oxygen ;
Downwelling
Shortwave,
Precipitation, Eastward
Wind, Northward Wind
TBATS Empirical Temperature, Yes Yes Process Yes
Oxygen
LM-Temp Empirical Temperature, Air Temperature No No Driver Yes
Oxygen
LM-Temp-All Empirical Temperature, Air Temperature No No Driver Yes
Oxygen
Air Temperature,
Temperature, Surface Downwelling Process,
XGBoost ML Oxygen Shortwave, Relative No No Driver Yes

Humidity




Text S1. This supplementary text contains descriptions of the submitted models included in this paper.
The model descriptions are provided by the forecast teams and include a description of the model’s

structure and general forecasting methodology. Links to the automated repositories are provided.

air2water (air2waterSat_2)

The air2water model is a linear model fit using the function Im() in R and uses air temperature as
a covariate. The model fits water temperature (Tw) as a function of air temperature (Ta) and generates a
forecast using forecasted water temperatures, following:

Tw = Tax* By + B4
where [ is a slope term and f; is an intercept. The uncertainty in drivers was obtained by using the 31
ensemble members from the NOAA GEFS forecast.

From these forecasted water temperatures, the dissolved oxygen concentration was estimated
assuming 100% saturation of oxygen within the water (based on the temperature and elevation-dependent
state calculation). To estimate the concentration of dissolved oxygen at saturation, the Eq.Ox.conc() in the
rMR R package was used.

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted separately for each site.

Team members: This model was generated as an example model by EFI-NEON Challenge
Organisers.

Code repository: https://github.com/rgthomas/neon4cast-example/blob/main/forecast model.R

Baseline MME (Baseline_ensemble)

The Baseline MME is a multi-model ensemble (MME) comprised of the two baseline models
(day-of-year, persistence) submitted by Challenge organisers. To generate the MME, an ensemble
forecast was generated by sampling from the submitted models (either from the ensemble members in the

case of the persistence, or from the distribution for the day-of-year forecasts). The forecast included 200
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ensemble members, represented equally across the 2 individual models (100 per forecast). The steps to
generate the MME were:

1. Access submitted forecasts for the site and variable of interest (lake temperatures only)
from the submissions S3 bucket.

2. Subset by individual model ID.

3. If the forecast is a distributional forecast: sample from the distribution using the
forecasted mean and standard deviation to generate a sample of n = 100.

4. If the forecast is an ensemble forecast: subsample the existing individual forecast
ensemble members to generate n = 100 ensemble members. The parameter numbers (ensemble members)
were consistent across the forecast horizon.

Only sites with all individual forecasts present were submitted (a site, variable, and date had to be
represented by both models).

This model was used to forecast water temperature in the lake sites (BARC, CRAM, LIRO,
PRLA, PRPO, SUGG, TOOK). See information about the individual forecast models for information of
forecast uncertainty representation in each of the forecasts.

Team members: Freya Olsson

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/baseline_ensemble.R

Prophet model (cb_prophet)

The Prophet model is an empirical model, specifically a non-linear regression model that includes
seasonality effects (Taylor & Letham, 2018). The model relies on Bayesian estimation with an additive
white noise error term:

y(t) = g(t) + s(t) + h(t) + \epsilon _t,
where g is a piecewise linear ‘growth’ term (with changepoints estimated by the algorithm), s is a

seasonal effect (Fourier term), h is the effect of ‘holidays’, and epsilon is the white noise (error term). The
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model does not include any covariate. We use the implementation of the Prophet model provided in the

darts Python package (Herzen et al., 2022). See https://github.com/unit8co/darts

This model was used to forecast water temperature and dissolved oxygen concentration in the
seven lake sites, with the model fitted separately for each site.

Code repository: https://github.com/cboettig/forecasts-darts-framework

Team members: Carl Boettiger, Marcus Francois Lapeyrolerie, Felipe Montealegre-Mora

Day-of-year (climatology)

The day-of-year (climatology) is a baseline model that assumes that forecasted conditions will be
the same as the average of historical observations for that day-of-year (DOY). For each variable/site
combination, the model calculates the mean (p) and the standard deviation (o) of the historical
observations for each DOY. We assume that ¢ is consistent across the forecast horizon and so the median
DOY o is calculated for each new forecast (which can change between forecast dates but not across a
forecast horizon).

Because of differences in sensor deployment (e.g., some lake sensors are removed in winter), not
all DOY's have observations. Missing DOY means are filled using a linear interpolation, as long as at least
two DOY's have values during the forecast period.

For the year 2023, the forecasts for each DOY do not change among forecast dates as no new data
were collected during the forecast period (1 January 2023 - 31 December 2023) that would contribute to
updated means or standard deviations.

This model was used to forecast water temperature and dissolved oxygen concentration in the
seven lake sites, with the model fitted separately for each site.

Team members: this model was generated as a baseline model by EFI-NEON Challenge

Organisers

Code repository: https://github.com/eco4cast/neon4cast-

ci/blob/main/baseline_models/models/aquatics_climatology.R
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fARIMA (fARIMA)

The fARIMA is an empirical model that fits an ARIMA model using the fable R package
(O’Hara-Wild, Hyndman, & Wang 2023) as a function of a linear model with air temperature. The default
ARIMA() function automatically chooses the best ARIMA model for the time-series, using a step-wise
procedure.

The process uncertainty is generated from the standard deviation in the residuals of the fitted
model. We could not assume a normal distribution in residuals and so opted to generate an ensemble
forecast using a bootstrap approach within the generate() function from fable. In addition, we used the 31
ensemble members from the NOAA GEFS as driver uncertainty. For each NOAA ensemble member, an
ensemble forecast with six ensemble members was generated using the generate() function resulting in a
total of 31 x 6 = 186 ensemble members per forecast.

Not all sites have observations for all days due to differences in maintenance (e.g., some lake
sites have sensors removed in winter). Therefore, to account for the difference in the time since last
observation, the forecast was started at the day after the last observation, and the horizon modified to
cover up to 30 days into the future from the forecast date. During this ‘catch-up’ period, the pseudo-
observation of air temperature used in model training was used to generate water temperature rather than
forecasted air temperature.

This model was used to forecast water temperature in the seven lake sites, with the model fitted
separately for each site.

Team members: Freya Olsson, R. Quinn Thomas

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/ARIMA_model.R
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fARIMA-DOY MME (fARIMA_clim_ensemble)

The fAMIRA-DOY MME is a multi-model ensemble (MME) composed of two empirical
models: an ARIMA model (fARIMA) and day-of-year model. To generate the MME, an ensemble
forecast was generated by sampling from the submitted models’ ensemble members. The forecast
included 200 ensemble members, represented equally across the two individual models (n=100). The
steps to generate the MME were:

1. Access submitted forecasts for the site and variable of interest (lake temperatures only)
from the submissions S3 bucket.

2. Subset by individual model ID.

3. Subsample the existing individual forecast ensemble members to generate 100 ensemble
members. The parameter numbers (ensemble members) were consistent across the forecast horizon.

4. Only sites with all individual forecasts present were submitted (a site, variable and date
had to be represented by both models).

This model was used to forecast water temperature in the seven lake sites, with the model fitted
separately for each site. See information about the individual forecast models for information of forecast
uncertainty representation in each of the forecasts.

Team members: Freya Olsson

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/fARIMA clim_ensemble.R

LER MME (flare ler)

The LER MME is a multi-model ensemble (MME) derived from the three process models from
FLARE (FLARE-GLM, FLARE-GOTM, and FLARE-Simstrat). To generate the MME, an ensemble
forecast was generated by sampling from the submitted models’ ensemble members. The forecast
included 198 ensemble members, represented equally across the 3 individual models (n=66). The steps to

generate the MME were:
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1. Access submitted forecasts for the site and variable of interest (lake temperatures only)
from the submissions S3 bucket.

2. Subset by individual model ID.

3. Subsample the existing individual forecast ensemble members to generate 66 ensemble
members. The parameter numbers (ensemble members) were consistent across the forecast horizon.

4. Only sites with all individual forecasts present were submitted (a site, variable and date
had to be represented by all 3 models).

This model was used to forecast water temperature in six lake sites (BARC, CRAM, LIRO,
PRLA, PRPO, SUGG), but not TOOK, with the model fitted separately for each site. See information
about the individual forecast models for information of forecast uncertainty representation in each of the
forecasts.

Team members: Freya Olsson

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/flare_ler ensemble.R

LER-baselines MME (flare_ler_ baselines)

The LER-baselines model is a multi-model ensemble (MME) comprised of the three process
models from FLARE (FLARE-GLM, FLARE-GOTM, and FLARE-Simstrat) and the two baseline
models (day-of-year, persistence), submitted by Challenge organisers. To generate the MME, an
ensemble forecast was generated by sampling from the submitted model’s ensemble members (either
from an ensemble forecast in the case of the FLARE models and persistence, or from the distribution for
the day-of-year forecasts). The forecast included 200 ensemble members, represented equally across the 5
individual models (40 per forecast). The steps to generate the MME were:

1. Access submitted forecasts for the site and variable of interest (lake temperatures only)
from the submissions S3 bucket.

2. Subset by individual model ID.
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3. If the forecast is a distributional forecast: sample from the distribution using the
forecasted mean and standard deviation to generate a sample of n = 40.

4. If the forecast is an ensemble forecast: subsample the existing individual forecast
ensemble members to generate n = 40 ensemble members. The parameter numbers (ensemble members)
were consistent across the forecast horizon.

5. Only sites with all individual forecast present were submitted (a site, variable, and date
had to be represented by all 5 models).

This model was used to forecast water temperature in six of the lake sites (BARC, CRAM, LIRO,
PRLA, PRPO, SUGG), but not TOOK. See information about the individual forecast models for
information of forecast uncertainty representation in each of the forecasts.

Team members: Freya Olsson

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/ler_baselines _ensemble.R

FLARE-GLM (flareGLM)

The FLARE-GLM is a forecasting framework that integrates the General Lake Model
hydrodynamic process model (GLM; Hipsey et al., 2019) and data assimilation algorithm to generate
ensemble forecasts of lake water temperature. FLARE’s ensemble-based forecasting algorithm generates
forecasts using GLM that quantifies the uncertainty from driver data (weather forecasts from NOAA’s
Global Ensemble Forecasting System; Hamill et al., 2022), initial conditions, model process, and model
parameters and then samples from these sources of uncertainty to generate probability distributions for
water temperature at multiple lake or reservoir depths (see Thomas et al., 2020).

Daily forecasts were generated for the lake sites using the following steps: Step 1) access the
FLARE-GLM forecasts from the day before (or, in the case of the first forecast, following a 60 day spin-
up); Step 2) use this prediction to initialise a GLM run that starts 5 days ago and runs to current day; Step

3) use the ensemble Kalman filter (Evensen, 2003) to assimilate new observations collected over the past
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5 days to update GLM’s states and parameters; and Step 4) use the updated states and parameters as initial
conditions for a 1- to 30 day-ahead forecast that starts today. Each forecast includes 256 ensemble
members that quantify the uncertainty from driver data (weather forecasts), initial conditions, model
process, and model parameters.

Driver uncertainty: GLM requires the following weather covariates obtained from NOAA GEFS:
air temperature, air pressure, relative humidity, wind speed (calculated from the north and east wind
speeds), precipitation, and incoming shortwave and incoming longwave radiation. The water balance
method was set to include no inflows or outflows and maintain a water level. Bathymetry data for the
lakes were obtained from NEON. Uncertainty from drivers was generated based on the 31 ensemble
members from NOAA GEFS.

Initial conditions uncertainty: Initial conditions uncertainty was based on the spread of model
states on Day 0 of the forecast that was set by spread in the 256 ensemble members following data
assimilation on Day 0.

Model process uncertainty: Process uncertainty was generated by adding random noise to each
ensemble, drawing from a normal distribution with a standard deviation of 0.75 °C (after Thomas et al.,
2020).

Model parameter: parameter uncertainty was generated using a unique parameter value assigned
to each of the 256 ensemble members that was determined through data assimilation. The parameters that
are tuned in the data assimilation algorithm are specific to the hydrodynamic model. In total, two
parameters were tuned in the data assimilation process: lw_factor (longwave radiation scaling factor), and
sed temp mean (annual mean sediment temperature, °C).

Forecasts of daily surface water temperature were generated from the profiles output from
FLARE-GLM by averaging temperatures forecasted in the top 1 m of the water column as a “surface”
forecast. FLARE-GLM outputs forecasts for 00:00:00 and this is given as the daily forecast to the

Challenge.
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This model was used to forecast water temperature at the seven lake sites with the model
parameters calibrated separately for each site. Additional information about FLARE configuration can be
found in Thomas et al. (2020) and Thomas et al. (2023).

Team members: Freya Olsson, R. Quinn Thomas, Cayelan C. Carey

Code repository: https://github.com/FLARE-forecast/ NEON-forecast-code/workflows/default

FLARE-GLM-noDA (flareGLM_noDA)

FLARE-GLM-noDA uses the same configuration as FLARE-GLM with the exception of the data
assimilation (DA) algorithm. Within the noDA configuration, model states and parameters were not
updated prior to forecast generation. Model parameters were calibrated before using observations of water
temperatures and then brought ‘online’ to generate real-time forecasts using forecast drivers (NOAA
weather data). Parameter uncertainty was calculated (as in FLARE-GLM), but the distributions were not
updated between forecasts. The parameters calibrated were Ilw_factor (longwave radiation scaling factor),
and sed_temp mean (annual mean sediment temperature, °C).

Forecasts of daily surface water temperature were generated from the profiles output from
FLARE-GLM-noDA by averaging temperatures forecasted in the top 1 m of the water column as a
“surface” forecast. FLARE-GLM-noDA outputs forecasts for 00:00:00 and this is given as the daily
forecast to the Challenge.

This model was used to forecast water temperature at the seven lake sites, with the model
parameters calibrated separately for each site. Additional information about FLARE configuration can be
found in Thomas et al., (2020) and Thomas et al. (2023).

Team members: Freya Olsson, R. Quinn Thomas

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/default
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FLARE-GOTM (flareGOTM)

FLARE-GOTM uses the same principles and overarching framework as FLARE-GLM, with the
hydrodynamic model replaced with the General Ocean Turbulence Model (GOTM). GOTM is a 1-D
hydrodynamic turbulence model (Umlauf et al., 2005) that estimates water column temperatures. The
integration of FLARE and GOTM was achieved using the LakeEnsembIR R package (Moore et al.,
2021). Sources of uncertainty remain the same and are generated using equivalent methods. The
parameters that were tuned in the data assimilation algorithm were specific to the hydrodynamic model
and in the case of GOTM are swr_scale (short-wave radiation scaling factor) and/or wind_scale (wind
speed, ulO0, scaling factor), depending on the site’s sensitivity. See FLARE-GLM for a full description of
the sources of uncertainty and the forecast generation method.

Forecasts of daily surface water temperature were generated from the profiles output from
FLARE-GOTM by averaging temperatures forecasted in the top 1 m of the water column as a “surface”
forecast. FLARE-GLM outputs forecasts for 00:00:00 and this is given as the daily forecast to the
Challenge.

This model was used to forecast water temperature in 6 of the lake sites (BARC, CRAM, LIRO,
PRLA, PRPO, SUGG), but not TOOK, with the model parameters calibrated separately for each site.
Additional information about FLARE configuration can be found in Thomas et al., (2020) and Thomas et
al. (2023).

Team members: Freya Olsson, R. Quinn Thomas

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler

FLARE-GOTM-noDA (flareGOTM_noDA)

FLARE-GOTM-noDA uses the same configuration as FLARE-GLM with the exception of the
data assimilation (DA) algorithm. Within the noDA configuration, model states and parameters are not
updated prior to forecast generation. Model parameters were calibrated before using observations of water

temperatures and then brought ‘online’ to generate real-time forecasts using forecast drivers (NOAA
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weather data). Parameter uncertainty was calculated (as in FLARE-GOTM) but the distributions were not
updated between forecasts. The parameters calibrated were swr_scale (short-wave radiation scaling
factor), and/or wind_scale (wind speed, ul0, scaling factor).

Forecasts of daily surface water temperature were generated from the profiles output from
FLARE-GOTM-noDA by averaging temperatures forecasted in the top 1 m of the water column as a
“surface” forecast. FLARE-GOTM-noDA outputs forecasts for 00:00:00, which is submitted as the daily
forecast to the Challenge.

This model was used to forecast water temperature in six of the lake sites (BARC, CRAM, LIRO,
PRLA, PRPO, SUGG), but not TOOK, with the model parameters calibrated separately for each site.
Additional information about FLARE configuration can be found in Thomas et al. (2020) and Thomas et
al. (2023).

Team members: Freya Olsson, R. Quinn Thomas

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler

FLARE-Simstrat (flareSimstrat)

FLARE-Simstrat uses the same principles and overarching framework as FLARE-GLM with the
hydrodynamic model replaced with Simstrat. Simstrat is a 1-D hydrodynamic turbulence model
(Goudsmit et al., 2002) that estimates water column temperatures. The integration of FLARE and
Simstrat was achieved using the LakeEnsemblR R package (Moore et al., 2021). Sources of uncertainty
remain the same and are generated using equivalent methods. The parameters that are tuned in the data
assimilation algorithm are specific to the hydrodynamic model and in the case of Simstrat were
p_sw_water (short-wave radiation scaling factor) and/or f wind (wind speed scaling factor), depending
on the site’s sensitivity. See FLARE-GLM for a full description of the sources of uncertainty and the
forecast generation method.

Forecasts of daily surface water temperature were generated from the profiles output from

FLARE-Simstrat by averaging temperatures forecasted in the top 1 m of the water column as a “surface”
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forecast. FLARE-Simstrat outputs forecasts for 00:00:00, which is submitted as the daily forecast for the
Challenge.

This model was used to forecast water temperature at the seven lakes, with the model parameters
calibrated separately for each site. Additional information about FLARE configuration can be found in
Thomas et al. (2020) and Thomas et al. (2023).

Team members: Freya Olsson, R. Quinn Thomas

Code repository: https://github.com/FLARE-forecast/ NEON-forecast-code/workflows/ler

FLARE-Simstrat-noDA (flareSimstrat noDA)

FLARE-Simstrat-noDA uses the same configuration as FLARE-Simstrat with the exception of
the data assimilation (DA) algorithm. Within the noDA configuration, model states and parameters were
not updated prior to forecast generation. Model parameters were calibrated before using observations of
water temperatures and then brought ‘online’ to generate real-time forecasts using forecast drivers
(NOAA weather data). Parameter uncertainty was calculated (as in FLARE-Simstrat) but the distributions
were not updated between forecasts. The parameters calibrated were p_sw_water (incoming short-wave
radiation scaling factor), and/or f wind (wind speed scaling factor).

Forecasts of daily surface water temperature were generated from the profiles output from
FLARE-Simstrat-noDA by averaging temperatures forecasted in the top 1 m of the water column as a
“surface” forecast. FLARE-Simstrat-noDA outputs forecasts for 00:00:00 and this is given as the daily
forecast to the Challenge.

This model was used to forecast water temperature at the seven lake sites, with the model
parameters calibrated separately for each site. Additional information about FLARE configuration can be
found in Thomas et al. (2020) and Thomas et al. (2023).

Team members: Freya Olsson, R. Quinn Thomas

Code repository: https://github.com/FLARE-forecast/NEON-forecast-code/workflows/ler
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TSLM-lag (fTSLM_lag)

This is a simple time series linear model in which water temperature is a function of air
temperature of that day and the previous day’s air temperature. The TSLM was fit using the TSLM()
function from the fable R package (O’Hara-Wild M, Hyndman R, Wang E, 2023).

The process uncertainty is generated from the standard deviation in the residuals of the fitted
model. We could not assume a normal distribution in residuals and so opted to generate an ensemble
forecast using a bootstrap approach within the generate() function from fable. In addition, we used the 31
ensemble members from the NOAA GEFS as driver uncertainty. For each NOAA ensemble member, an
ensemble forecast with six ensemble members was generated using the generate() function resulting in a
total of 31 x 6 = 186 ensemble members per forecast.

Not all sites have observations for all days due to differences in maintenance (e.g., some lake
sites have sensors removed in winter). Therefore, to account for the difference in the time since last
observation, the forecast was started at the day after the last observation, and the horizon modified to
cover up to 30 days into the future from the forecast date. During this ‘catch-up’ period the pseudo-
observation of air temperature, used in model training, was to generate water temperature rather than
forecasted air temperature.

This model was used to forecast water temperature at the seven lake sites, with the model fitted
separately for each site.

Team members: Freya Olsson, R. Quinn Thomas

Code repository: https://github.com/OlssonF/NEON-simple-

baselines/blob/main/Models/TSLM _lags.R

JR-physics (GLEON_JRabaey temp physics)
The JR-physics model is a simple process model based on the assumption that surface water

temperature should trend towards equilibration with air temperature with a lag factor.
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Initial conditions for the model were set using the most recently available temperature data for

each site. Forecasted water temperature was calculated as:

Twepr = Twe + U(Tagy — Twy)
where Tw is surface water temperature, Ta is forecasted air temperature, and / is the air-water
equilibration lag factor. / was set to 0.2 for all sites.

Each forecast is generated using the 31 ensemble air temperature forecasts from the NOAA GEFS
weather forecast. The model is iteratively fit each day as new data are generated by NEON.

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS
weather forecast. No uncertainties from initial conditions or model process were included in the overall
forecast uncertainty.

This model was used to forecast water temperature at the seven lake sites, with the model fitted
separately for each site.

Team members: Joseph Rabaey

Code Repository: https://github.com/jrabaey/Neon4cast-JR-Physics

GLEON-physics (GLEON_physics)
A simple, process-based model was developed to replicate the water temperature dynamics of a
surface water layer sensu Chapra (2008). The model focus was only on quantifying the impacts of

atmosphere-water heat flux exchanges on the idealized near-surface water temperature dynamics:

dT 1 (Q+H)
ot Az CpPw

where T is water temperature, ¢ is time (fixed time step of 3600 s), Az is the thickness of the near-surface
layer which is assumed to be 1 m, Q is the net heat flux, H is internal heat generation due to incoming
short-wave radiation, ¢, is the heat capacity of water, and p,, is water density. Q represents the amount of

energy from short-wave radiation that is absorbed directly in the surface layer:
Q=(1-a)Qsw
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with « as a constant albedo of 0.1. The net heat flux H is the sum of four terms:

H = H,, + Hy,, + H, + H,
where the terms on the right-hand side represent incoming long-wave radiation, emitted long-wave
radiation from the water, the latent heat flux, and the sensible heat flux, respectively.

The heat fluxes were derived using the formulations from Livingstone and Imboden (1989),
Goudsmit et al. (2002), and Verburg and Antenucci (2010). Note that the latent and sensible heat fluxes
were calculated by including the actual surface area of the respective lake. To replicate the heat flux
dynamics, the model used mean forecasted air temperature, relative humidity, air pressure, short-wave
radiation, and wind speed from NOAA GEFS. Air vapor pressure was quantified from air temperature
and relative humidity. Cloud cover was calculated using the empirical formulation from Martin and
McCutcheon (1998). Whenever water temperatures became less than the freezing point temperature of
water (assumed to be 0 °C), water temperatures were set to 0 °C.

We approximated the water temperature of the next time step using an explicit Euler forward

scheme, and also by including an error term on the right-hand side to account for stochastic fluctuations:

4t (Q +H)

T =T + + N(u,
t+1 t T, (u,0)

pFPw
where p was set to 0 °C, and o to 0.05 °C. For every prediction, we ran 100 model runs to quantify
process uncertainty through the error term. No uncertainties from initial conditions, drivers, or parameter
estimations were included in the overall forecast uncertainty.

This model was used to forecast water temperature at the seven lake sites, with the model fitted
separately for each site.

Team members: Robert Ladwig, Xiao Yang

Code repository: https://github.com/robertladwig/NEON-simple-baselines/tree/main

Persistence (persistenceRW)
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The persistence (persistenceRW; random walk) is a baseline model that assumes, on average,
conditions over the forecast horizon will be the same as the last observation, with uncertainty driven by a
random walk process.

Yre1 = Yr tery
where yris today’s observation or forecast, er+; is random noise, and yr+; is the next day’s forecast. The
uncertainty (er,q) in the persistence model forecasts was generated using a bootstrapping method with no
assumption placed on the distribution of the forecast. We assumed that future uncertainty will be drawn
from the same distribution of the residual error in the fit to historical data. We fit the model to historical
observations, using the RW() (Random walk) function in the fable R package (version 0.3.2; O’Hara-
Wild et al., 2022), and the model error or residual (e) was calculated between the model and observations.
At each timestep, a value of er,; was drawn from the distribution of these historic error values for each
ensemble member. Overall, 200 ensemble members were generated for each timestep using this method
using the fable generate() function and a bootstrap value of 200 (number of ensemble members).

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted separately for each site and variable.

Team members: this model was generated as a baseline model by EFI-NEON Challenge
Organisers.

Code repository: https://github.com/eco4cast/neon4cast-

ci/blob/main/baseline_models/models/aquatics_persistenceRW.R; https://github.com/eco4cast/neon4cast-

ci/blob/main/baseline_models/R/fablePersistenceModelFunction.R

ARIMA (tg_arima)

The tg_arima model is an AutoRegressive Integrated Moving Average (ARIMA) model fit using
the function auto.arima() from the forecast package in R (Hyndman et al. 2023; Hyndman et al., 2008).
This is an empirical time series model with no covariates. The model is fit every day as new data are

made available, and is fit separately for each site/variable combination. For sites/variables where all
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observations were non-negative, we set the Box-Cox transformation parameter (lambda) in
forecast::auto.arima() to “auto”, allowing a Box-Cox transformation to be automatically selected.
Forecasts were generated based on the model fit using the forecast::forecast() function, and were
submitted as normal distributions using the mean and standard deviation of the forecast output.

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted separately for each site.

Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast _submissions/blob/main/Generate forecasts

ETS (tg_ets)

The tg_ets model is an Error, Trend, Seasonal (ETS) model fit using the function ets() from the
forecast package in R (Hyndman et al. 2023; Hyndman et al., 2008). This is an empirical time series
model with no covariates. The model is fit every day as new data are made available, and is fit separately
for each site/variable combination. We interpolated all missing data in the time series for each
site/variable combination using forecast::na.interp(). For sites/variables where all observations are non-
negative, we set the Box-Cox transformation parameter (lambda) in forecast::na.interp() to “auto”,
allowing a Box-Cox transformation to be automatically selected. Forecasts were generated based on the
model fit using the forecast::forecast() function, and were submitted as normal distributions using the
mean and standard deviation of the forecast output.

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted separately for each site.

Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts
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TBATS (tg_tbats)

The tg_tbats model is a TBATS (Trigonometric seasonality, Box-Cox transformation, ARMA
errors, Trend and Seasonal components) model fit using the function tbats() from the forecast package in
R (Hyndman et al. 2023; Hyndman et al., 2008). This is an empirical time series model with no
covariates. The model is fit every day as new data are made available, and is fit separately for each
site/variable combination. We interpolated all missing data in the time series for each site/variable
combination using forecast::na.interp(). For sites/variables where all observations are non-negative, we
set the Box-Cox transformation parameter (lambda) in forecast::na.interp() to “auto”, allowing a Box-
Cox transformation to be automatically selected. Forecasts were generated based on the model fit using
the forecast::forecast() function, and were submitted as normal distributions using the mean and standard
deviation of the forecast output.

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted separately for each site.

Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts

LM-humidity (tg_humidity Im)

The tg_humidity Im model is a linear model fit using the function Im() in R. This is a very simple
model with only one covariate: relative humidity. The model is fit every day as new data are made
available, and is fit separately for each site/variable combination.

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS
weather forecast. No uncertainties from initial conditions or model process were included in the overall
forecast uncertainty.

This model was used to forecast water temperature and dissolved oxygen concentration at the

seven lake sites, with the model fitted separately for each site.
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Team members: Abigail S.L. Lewis, Caleb J. Robbins
Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts

LM-humidity-all (tg_humidity Im_all_sites)

The tg_humidity Im_all_sites model is a linear model fit using the function Im() in R. This is a
very simple model with only one covariate: relative humidity. The model is fit every day as new data are
made available, and is fit across all sites, using site ID as a factor in the regression.

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS
weather forecast. No uncertainties from initial conditions or model process were included in the overall
forecast uncertainty.

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted for all sites together.

Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts

LM-precip (tg_precip_Im)

The tg_precip Im model is a linear model fit using the function Im() in R. This is a very simple
model with only total precipitation used as a model covariate. The model is fit every day as new data are
made available, and is fit separately for each site/variable combination.

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS
weather forecast. No uncertainties from initial conditions or model process were included in the overall
forecast uncertainty.

This model was used to forecast water temperature and dissolved oxygen concentration at the

seven lake sites, with the model fitted separately for each site.
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Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts

LM-precip-all (tg_precip_Im_all_sites)

The tg_precip_Im_all_sites model is a linear model fit using the function Im() in R. This is a very
simple model with only one covariate: total precipitation. The model is fit every day as new data are made
available, and is fit across all sites, using site ID as a factor in the regression.

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS
weather forecast. No uncertainties from initial conditions or model process were included in the overall
forecast uncertainty. This model was used to forecast water temperature and dissolved oxygen
concentration at the seven lake sites, with the model fitted for all sites together.

Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts

LM-temp (tg_temp_lm)

The tg_temp Im model is a linear model fit using the function Im() in R. This is a very simple
model with only one covariate: air temperature. The model is fit every day as new data are made
available, and is fit separately for each site/variable combination.

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS
weather forecast. No uncertainties from initial conditions or model process were included in the overall
forecast uncertainty.

This model was used to forecast water temperature and dissolved oxygen concentration in the

seven lake sites, with the model fitted separately for each site.
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Team members: Abigail S.L. Lewis, Caleb J Robbins

Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts

LM-temp-all (tg_temp Im_all_sites)

The tg_temp_Im_all sites model is a linear model fit using the function Im() in R. This is a very
simple model with only one covariate: air temperature. The model is fit every day as new data are made
available, and is fit across all sites, using site ID as a factor in the regression.

Driver uncertainty was included by using the 31 ensemble members from the NOAA GEFS
weather forecast. No uncertainties from initial conditions or model process were included in the overall
forecast uncertainty.

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted for all sites together.

Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast_submissions/blob/main/Generate_forecasts

Random Forest (tg_randfor)

Random Forest is a machine learning model that is fitted with the ranger() function in the ranger
R package (Wright & Ziegler 2017) within the tidymodels framework (Kuhn & Wickham 2020). The
model drivers are unlagged air temperature, air pressure, relative humidity, surface downwelling
longwave and shortwave radiation, precipitation, and northward and eastward wind. Only data prior to
2023-01-01 were used for any model training; similarly, model fits were not updated with any 2023 data
when generating forecasts in 2023. Hyperparameters were selected for each site using 10-fold cross
validation (repeated 5 times per site), selecting the hyperparameter combination with the lowest average

RMSE. The number of trees was set to 500 but we tuned two hyperparameters for a) the minimum node
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size for each tree and b) the number of randomly selected predictors. Model predictions are independent
in time. The random forest model predicts observations for every NOAA GEFS ensemble member and
forecast horizon of the predicted drivers, so only driver uncertainty is represented.

This model was used to forecast water temperature and dissolved oxygen concentration in the
seven lake sites, with the model fitted separately for each site.

Team members: Abigail S.L. Lewis, Caleb J. Robbins

Code repository:

https://github.com/eco4cast/Forecast submissions/blob/main/Generate_forecasts/tg_randfor/train

_model.R

https://github.com/eco4cast/Forecast submissions/blob/main/Generate forecasts/tg_randfor/forec

ast model.R

Lasso (tg_lasso)

Lasso is a machine learning model implemented in the same workflow as tg_randfor, but with
different hyperparameter tuning. The model drivers are unlagged air temperature, air pressure, relative
humidity, surface downwelling longwave and shortwave radiation, precipitation, and northward and
eastward wind. Only data prior to 2023-01-01 were used for any model training; similarly, model fits
were not updated with any 2023 data when generating forecasts in 2023. Hyperparameters were selected
for each site using 10-fold cross validation (repeated 5 times per site), selecting the hyperparameter
combination with the lowest average RMSE. Lasso regressions were fitted with the function glmnet() in
the package glmnet (Tay et al. 2023), where the regularization hyperparameter (lambda) is tuned and
selected with 10-fold cross validation.

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted separately for each site.

Team members: Abigail S.L. Lewis, Caleb J. Robbins
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Code repository:

https://github.com/eco4cast/Forecast _submissions/blob/main/Generate forecasts/tg_lasso/train_model.R\

https://github.com/eco4cast/Forecast submissions/blob/main/Generate forecasts/tg_lasso/forecast model

R
XGBoost (xgboost_parallel)

The XGBoost model is an extreme gradient boosted random forest (XGBoost) machine learning
model that uses predicted atmospheric conditions and day of year as covariates. This model utilises the
xgboost R package (Chen & Guestrin 2016; Chen et al., 2023).

A new model was trained for each site daily using air temperature, solar radiation (surface
downwelling shortwave flux in air), relative humidity, and day of year. Models were trained on a random
sample of 80% of the historic data, reserving 20% for evaluation. Models have 15 trees and for each tree
to have a maximum depth of 10. The model was then evaluated on the remaining samples, the error
variance being recorded. A forecast with 31 ensemble members was generated for each day in the
forecasting horizon using the ensemble members from the NOAA GEFS weather forecast, representing
driver uncertainty. Those predictions then have normally distributed random noise added to them
matching the recorded error variance. Model uncertainty is derived from NOAA ensemble members as
well as random noise based on estimated model accuracy (process uncertainty).

This model was used to forecast water temperature and dissolved oxygen concentration at the
seven lake sites, with the model fitted separately for each site.

Team members: Gregory Harrison, R. Quinn Thomas

Code Repository:

Original: https://github.com/Grepath/XGBoostNeon4Casts/blob/main/Aquatics_ParallelXGB.R

Forked (running automation): https://github.com/FLARE-

forecast/XGBoostNeon4Casts/blob/main/Aquatics_ParallelXGB.R
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