Integrating Materials and Manufacturing Innovation (2024) 13:445-452
https://doi.org/10.1007/540192-024-00356-4

THEMATIC SECTION: HARNESSING THE POWER OF MATERIALS DATA q

Check for
updates

Annotating Materials Science Text: A Semi-automated Approach

for Crafting Outputs with Gemini Pro

Hasan M. Sayeed" - Trupti Mohanty' - Taylor D. Sparks’

Received: 26 February 2024 / Accepted: 10 April 2024 / Published online: 13 May 2024

© The Minerals, Metals & Materials Society 2024

Abstract

Recent advancements in large language models (LLMs) have paved the way for automated information extraction in the
materials science domain. However, fine-tuning these models, crucial for effective machine learning pipelines in materials
science, is hindered by a lack of pre-annotated data. Manual annotation, a laborious process, exacerbates the challenge. To
address this, we introduce a tailored semi-automated annotation process, using Google’s Gemini Pro language model. Our
approach focuses on two key tasks: extracting information in structured JSON format and generating abstractive summaries
from materials science texts. The collaborative process, a symbiotic effort between human annotators and the LLM, driven
by structured prompts and user-guided examples, enhances the annotation quality and augments the LLM’s capacity to
comprehend materials science intricacies. Importantly, it streamlines human annotation efforts by leveraging the LLM’s

proficient starting point.

Introduction

In the realm of materials science research, where a vast
repository of knowledge is encapsulated within peer-
reviewed scientific literature, the extraction of structured
information and concise summaries plays a pivotal role in
advancing the field. The intricate details and discoveries
within these texts hold the key to unlocking new insights
and driving innovation. Structured information, organized
in a machine-readable format, not only facilitates efficient
data retrieval but also lays the groundwork for systematic
analysis and comparison. Similarly, concise summaries dis-
till the essence of comprehensive research articles, offering
researchers, scientists, and industry professionals a quick
and insightful overview.

A significant portion of experimental data in materials
science remains locked within the confines of literature [1,
2]. Unlocking this wealth of high-quality data presents an
opportunity to revolutionize materials informatics, poten-
tially leading to the creation of databases that could, over-
night, transform the field. Indeed, such databases have
already demonstrated their utility in constructing models
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capable of identifying regions in materials composition
space conducive to superconductivity [3], designing high-
entropy alloys [4], predicting the emergence of novel mag-
nets [5], and forecasting the ZT thermoelectric figure of
merit in inorganic materials [6], among other applications.

However, existing databases in the field often revolve
around calculated materials properties [7-10], introducing
potential systematic errors and limiting the scope of data
to quantities amenable to rapid computations. Additionally,
there exists the risk that such calculations may not accu-
rately reflect real-world scenarios. This suboptimal reliance
on calculated properties highlights the need for more com-
prehensive and accessible experimental databases. While
some attempts at constructing experimental databases
exist, they often remain proprietary due to the associated
labor costs [11-13]. Although a few open-access initiatives
have initiated database construction efforts [14, 15], there
is still ample room for the development of workflows aimed
at enhancing accessibility and performance in automated
materials database construction from literature—a fertile
area for investigation. Our JSON structured data extraction
method emerges as a promising avenue in this exploration.

Previous attempts to extract data from literature show-
case the potential for automation. Pipelines facilitating auto-
mated extraction of compound—property relationships from
unstructured battery-specific texts [16] and the extraction
of a database of 300,000 polymer property records from
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650,000 abstracts [17] exemplify the strides made. Fine-
tuned GPT models have been employed to extract general
chemistry information from literature abstracts [18], demon-
strating the versatility of such approaches. Domain-specific
pre-training and fine-tuning have proven effective in enhanc-
ing transformer-based models’ performance in domain-spe-
cific tasks [19-21]. As the emerging large language models
(LLMs) are transformer-based, optimizing LLM pipelines
for relevant domains becomes imperative, necessitating
annotated data for fine-tuning.

Recent advancements in LLMs have presented exciting
prospects for automating information extraction pipelines.
Fine-tuning LLMs is crucial for constructing effective
pipelines, especially in materials science. However, the
scarcity of pre-annotated data poses a formidable chal-
lenge to realizing the full potential of LLMs. Manual
annotation, a labor-intensive process, emerges as a bot-
tleneck in this context. Relying solely on human anno-
tation proves both expensive and time-consuming, while
exclusive dependence on LLMs through few-shot learning
risks errors due to the models’ tendency to hallucinate.
The urgent need for innovative annotation approaches is
evident, aiming to facilitate the automation of pipelines
that unlock the wealth of information embedded in scien-
tific literature. A few previous semi-automatic approach

exists like the semi-automatic annotation methodology for
disinformation detection in news articles [22], labeling
documents with noisy labels by LM followed by human
correction of the labels [23], partially trained LLM in
a human-in-the-loop annotation process to gradually
decrease annotation time [24].

In this work, we advocate for a collaborative method-
ology that bridges human expertise with the capabilities
of large language models (LLMs). We introduce a semi-
automated text annotation process that harnesses the
power of Google’s Gemini Pro language model through
structured prompts, ensuring the efficient handling of this
annotation task (Fig. 1). The structured prompt feature
of Gemini Pro facilitates incorporating examples directly
in the prompt to leverage in-context learning which has
already been proven effective by several previous studies
[25-28]. Although our initial emphasis lay in annotating
data for JSON extraction from plain text, it is crucial to
acknowledge the occasional challenge posed by the token
size limitations of LLMs, particularly when dealing with
lengthy input texts. To address this limitation effectively,
we expanded our annotation efforts to encompass an
abstractive summarization task. This strategic augmenta-
tion provides a flexible solution to mitigate the mentioned
constraint, also demonstrating the adaptability and versa-
tility of our collaborative approach.

-
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Fig. 1 Illustration of the semi-automated annotation workflow: The
figure showcases the structured prompt methodology using Google’s
Gemini Pro language model for annotating materials science litera-
ture. The structured prompt, encompassing detailed instructions for
extracting JSON or generating abstractive summaries, includes exam-
ple input and desired output pairs. The provided examples, originat-
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ing from literature, are human annotated gold standards. A test input
is then processed by the model, and users evaluate the output’s sat-
isfaction. If satisfactory, the output is added to the example pool;
otherwise, users can rerun the model or manually refine the output
before inclusion in the pool. This semi-automated workflow combines
human expertise with model guidance for efficient text annotation
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Methodology

In this work, our approach revolves around leveraging
Google’s Gemini Pro language model through Google Al
Studio leveraging structured prompts to annotate text data
from materials science literature. The structured prompt
capabilities of Gemini Pro play a crucial role in guiding
the model to generate structured JSON and abstractive
summaries.

Creating a structured prompt involves defining the
instruction format, which, in our case, aligns with the task
of generating structured JSON or abstractive summaries
for materials science texts. Following the instructions
provided in the documentation, we initiate the structured
prompt by defining columns that represent the input and
output structure. For the task of JSON extraction, this
would entail a clear definition of the input text and the
desired output in a structured JSON format. Similarly, for
the abstractive summarization task, the columns would
reflect the input text and the expected abstractive summary.

The creation of examples within the structured prompt
is a critical step. Users provide input—output pairs as exam-
ples to guide the model in generating outputs that align
with the desired format. In our context, these examples
showcase the expected structure of the structured JSON or
abstractive summaries for materials science texts. Impor-
tantly, these examples serve as the basis for the model’s
subsequent output when presented with test examples.

User-guided interaction with the model forms an inte-
gral part of our semi-automated workflow. This involves
running the model with test examples and evaluating the
generated output against the provided examples within the
structured prompt. Users have the flexibility to determine
whether the output is satisfactory. If deemed satisfactory,
the output can be added to the example pool for future ref-
erence. In cases where the output needs refinement, users
have the option to rerun the model for a new output or
manually edit the output before adding it to the example
pool.

As examples we provided text from materials science
literature each section at a time. We opted to segment each
paper by its sections to ensure that similar kinds of informa-
tion remain together, enhancing the clarity and coherence of
the annotations. By processing each section as independent
examples, we also aimed to mitigate the token size limita-
tions inherent in the language models. This strategic seg-
mentation of texts not only facilitates the management of
complex information but also enables more effective utiliza-
tion of the LLM model’s capabilities, ultimately contributing
to the overall efficiency of the annotation process.

We illustrated this workflow, in Fig. 2 showcasing
the structured prompt creation process. This figure help

visualize the steps involved in creating structured prompts
and running the model with user-guided examples, provid-
ing a comprehensive understanding of our semi-automated
annotation approach.

Example Datasets

Our primary task involved annotating materials science text
to generate datasets of structured JSONs, aiming to convert
unstructured content into a machine-readable format. The
structured JSON extraction task was meticulously guided
by a detailed prompt, allowing the model to transform indi-
vidual excerpts into coherent and well-organized JSON files,
capturing vital information such as chemical compositions,
processing conditions, characterization methods, and per-
formance properties. As our main focus, this task provided
a foundation for creating a valuable resource for materi-
als informatics. Additionally, recognizing the token size
limitations of LLMs when handling lengthy input texts, we
extended our efforts to include an abstractive summarization
task. While the summaries were not used for our primary
objective, they can serve as a fallback strategy for cases
where the token capacity of the LLM is exceeded, showcas-
ing the versatility of our approach. Leveraging the NOUGAT
tool [29] for parsing PDF files, we efficiently obtained text
data in markup format from literature, facilitating our anno-
tation endeavors.

We selected a diverse set of 10 articles spanning vari-
ous domains within materials science, encompassing top-
ics such as supercapacitors, high-entropy alloys, batteries,
and ceramics. Each paper was meticulously segmented into
its respective sections, resulting in a total of 86 individual
sections across the 10 papers. By treating each section as
an independent example, we aimed to maintain a focused
approach, maximizing the model’s ability to extract relevant
information without being encumbered by details from pre-
vious sections. This strategic segmentation not only facili-
tated efficient processing but also ensured that the model
could effectively capture the unique characteristics and
nuances present within each section, ultimately contribut-
ing to the accuracy and coherence of the annotation process.

Structured JSON

To showcase the effectiveness of our semi-automated
annotation workflow for structured JSON extraction from
materials science literature, we employed a detailed prompt
designed for accurate data transformation. The prompt
served as a guiding framework, asking the model to act as
an efficient data transformation assistant, specializing in
materials science. This assistant was tasked with processing
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2 Experimental Details
The polycrystalline sample of BLFMWO was prepared by a high-temperature solid-state reaction method. ... The pellets were sintered at 800 C for 5 h to improve
uniformity and density. ... The SEM was used to investigate the sample's micro-structure qualities. The dielectric and electrical characteristics of the sample were
I N p ut —— performed usingan LCR meter of model No-N4L PSM, 1735, in a wide frequency range (1 kHz -1 MHz) at varied temperatures (25 C~500 C). ... The specific capacitance

(C ¢) of the synthesized BLFMWO compound is 69.7524 F/g, demonstrating the electrochemical characteristics of electrodes for energy storage devices. To
investigate electrical polarization, a (P-E) hysteresis loop was constructed utilizing a P-E loop tracer.

As an efficient data transformation assistant specializing in materials
science, your task is to process individual excerpts from materials science
papers, translating any markup language into clear text. Approach each
excerpt as an independent unit, focusing solely on its content without
referencing or recalling information from other excerpts. Convert these
excerpts into a structured JSON format. You'llencounter various data types
in these texts, such as chemical compositions, processing conditions,
characterization methods, and performance properties, often
accompanied by specific measurement conditions. Your challenge is to
Pro m pt > organize this information coherently in a single JSON file. In your approach,

pay special attention to the 'compositions'. Each composition should be
listed separately, creating a clear and distinct entry within the
‘compositions’ array. Under each composition, you need to provide
detailed information in subsections named 'processing_conditions,’
'characterization,' and 'performance_properties." When dealing with
numerical data, such as measurements or values, remember to include
these figures in a 'value' field and specify their corresponding units in a

‘unit’ field.

{
"compositions": [
{
"material": "BLFMWO",
"processing_conditions": [

: "Sintering",
: "The pellets were sintered at 800° C for 5 h to improve
uniformity and density"

}

1
"characterization": [

{

"type": "Dielectric and electrical characterization”,

"details": "The dielectric and electrical characteristics of the sample
were performed using an LCR meter of model No-N4L PSM, 1735, in a
wide frequency range (1 kHz -1 MHz) at varied temperatures (25° C-500°
Q)

Output —

}
]

"performance_properties": [

Fig.2 Example tasks: The image illustrates the application of our
semi-automated annotation process to materials science literature. At
the top, a sample input text is provided, showcasing the complexity
of scientific content. Below, on the left, the structured JSON extrac-
tion task is demonstrated, where the input text is transformed into a
structured JSON format using our approach. This process provides

individual excerpts from materials science papers, presented
in a markup language format.

We provided text from materials science literature each
section at a time. The comprehensive instructions instructed
the assistant to treat each section independently, focusing
solely on its content without referencing or recalling infor-
mation from other sections it has seen before. The goal
was to meticulously convert each excerpt into a structured
JSON format, treating each section as a distinct entity. The
annotated data includes various entities found in materials
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As a skilled summarizer, your task is to succinctly summarize a materials
science paper, translating any markup language into clear text. Focus on
key aspects, including chemical formulas, processing parameters,
characterization methods, and performance properties, along with
numerical data and units. Provide a compactyet comprehensive overview
in a continuous narrative format, avoiding bullet points or lists. Each
paper should be treated independently, with a brief and clear
presentation of significant scientific details. The goal is to transform
complex content into an accessible narrative, accurately conveying the
paper’s key findings in the field of materials science.

A lead-free complex perovskite compound, (Bi1/2Li1/2)
(Fe1/3Mn1/3W1/3)03 (BLFMWO), was prepared via a high-temperature
solid-state reaction method. The constituents, namely bismuth oxide
(Bi203), lithium carbonate (Li2CO3), iron oxide (Fe203), manganese
oxide (Mn203), and tungsten oxide (WO3), were carefully weighed and
mixed in stoichiometric ratios. The proportion of the constituents such as
Bi203, Fe203, Mn203, Li2CO3, and WO3 are 6.8748,1.5707, 1.5528,
1.0901, and 4.5608 in grams, respectively. The purity of Bi203, Fe203,
Mn203, Li2CO3, and WO3 are 99%, 95%, 99%, 99% and 98%
respectively. After thorough grinding, the mixture underwent calcination
at 750 C for 5 hours to initiate phase formation. Subsequently, the
calcined powder was blended with polyvinyl alcohol (PVA) and
hydraulically pressed into cylindrical pellets. The pellets were then
sintered at 800 C for 5 hours to enhance uniformity and density. The
microstructure of the sample was characterized using SEM, while the
dielectric and electrical properties were analyzed using an LCR meter
over awide frequency (1 kHz -1 MHz) and temperature range (25 C-500 C).
A UV-visible spectrophotometer provided insights into the
semiconducting behavior and band gap energy of the material. FTIR
spectroscopy was employed to investigate the bonding nature of the
BLFMWO compound. Furthermore, cyclic voltammetry was used to
assess the electrochemical performance of the material, revealing its
potential for energy storage applications. Finally, a P-E hysteresis loop
was constructed to examine electrical polarization.

a solid foundation for human annotators to edit and correct any mis-
takes, ensuring accuracy and refinement. On the right, the abstractive
summary extraction task is showcased, with the input text condensed
into a concise summary. We have also included the prompt used for
both the task

science texts, such as chemical compositions, processing
conditions, characterization methods, and performance
properties accompanied by specific measurement conditions.

For clarity and coherence, special emphasis was placed
on the ‘compositions’ entity. Each composition was listed
separately, creating clear and distinct sub-entries within the
‘compositions’ array. Within each composition, detailed
information was organized into subsections named ‘process-
ing_conditions,” ‘characterization,” and ‘performance_prop-
erties.” Numerical data, such as measurements or values, was
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included with corresponding units in a ‘value’ field and a
‘unit’ field, respectively.

To maintain the integrity and distinction of each composi-
tion, particularly when multiple compositions were present
in the text, careful organization was instructed to avoid over-
lap and ensure clarity in representation. In instances where
texts lacked the specified information, an empty JSON file
was returned as an indication of no relevant data found.

To illustrate the structured JSON extraction process, we
present one example in Fig. 2, highlighting the transforma-
tion of a materials science excerpt into a well-organized
JSON file. Additionally, for researchers interested in access-
ing the annotated data, we have made it publicly available on
Figshare, offering a valuable resource for further scientific
analysis. This dataset serves as a testament to the precision
and clarity embedded in our semi-automated annotation
approach, showcasing its potential for efficient text annota-
tion in the materials science domain.

Summaries

To demonstrate the effectiveness of our semi-automated
annotation workflow for abstractive summarization of
materials science literature, we employed a carefully crafted
prompt tailored for skilled summarization. The prompt
guided the model to distill the essence of materials science
papers originally provided in markup language into well-
structured and concise paragraphs.

In this summarization task, the focus was on eloquently
capturing key aspects of the paper, including chemical for-
mulas, processing parameters, characterization methods,
and performance properties along with their respective
measurement conditions. The model was instructed to cre-
ate summaries that are shorter than the provided section,
offering compact yet comprehensive overviews. Emphasis
was placed on translating markup language notation into
plain, easily understandable text, ensuring a fluid narrative
that presents facts and tells the story of the paper.

Separate sections from each paper were treated as a dis-
tinct entity, and the model was directed to focus solely on
the information provided in the current section without refer-
encing or recalling details from previous papers or sections.
The goal was to create summaries that weave in all relevant
numerical data and units reported in the paper, maintaining
scientific accuracy and integrity.

To illustrate the abstractive summarization process, we
present one example in Fig. 2, showcasing the transforma-
tion of a materials science excerpt into a concise yet com-
prehensive summary. Additionally, for researchers interested
in accessing the annotated data, we have made it publicly
available on Figshare, offering a valuable resource for fur-
ther scientific analysis. This dataset serves as evidence of
the capability of our semi-automated annotation approach in

producing informative and succinct summaries in the materi-
als science domain.

Results

Our semi-automated annotation process yielded significant
efficiency gains and improvements in annotation speed for
both structured JSON extraction and abstractive summaries.
Quantitative metrics were employed to evaluate the quality
of the annotations, including ROUGE and BERTScore.

To provide insights into the model’s performance without
human intervention, we generated five additional examples
solely using Gemini Pro. We then compared these exam-
ples with the gold standard examples prepared by our semi-
automated approach, which involved human annotators col-
laborating with Gemini Pro. The average scores of these five
examples were calculated for each metric, considering the
stochasticity inherent in language models. These results will
help us to assess the model’s performance and provided val-
uable insights into the level of human intervention required
to achieve high-quality annotations.

In evaluating structured JSON extraction, we encountered
significant complexity stemming from the diverse types of
entries found in materials science literature. Each JSON
entry encapsulates a unique facet of scientific information,
ranging from chemical compositions and processing condi-
tions to characterization methods and performance proper-
ties. This diversity poses a significant challenge in devising
a singular metric to comprehensively evaluate the fidelity of
the extracted data. The heterogeneous nature of structured
data complicates the application of traditional evaluation
metrics such as F1 score, ROUGE, and BERTScore. Thus,
quantifying the accuracy of JSON extraction proves to be
a multifaceted task, demanding a more nuanced approach.
While our initial attempt to establish a definitive evaluation
metric encountered obstacles, we recognize the importance
of devising an appropriate assessment framework. In future
endeavors, we aim to develop a robust metric tailored to
the intricacies of structured JSON extraction tasks like this,
facilitating a more comprehensive evaluation of the model’s
performance in handling structured data. In the interim, we
focused our evaluation efforts on the abstractive summari-
zation task, which offered clearer insights into the model’s
performance and the requisite level of human intervention
for data annotation.

Moving to the evaluation of abstractive summaries, we
employed both ROUGE and BERTScore metrics to evalu-
ate the quality of the generated summaries. The ROUGE
score measured the similarity between the generated sum-
maries and the gold standard summaries provided by human
annotators, offering a quantitative assessment of the sum-
marization process’s fidelity to the original text. ROUGE-1,
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ROUGE-2, and ROUGE-L scores of 0.58, 0.36, and 0.56
respectively were obtained, indicating a substantial overlap
between the generated and gold standard summaries. Addi-
tionally, the BERTScore provided a more nuanced evalua-
tion by assessing the semantic similarity between the gener-
ated and gold standard summaries, offering insights into the
coherence and meaningfulness of the generated summaries.
A BERTScore of 0.92 was achieved, indicating a high level
of semantic similarity between the generated and gold stand-
ard summaries.

While evaluating the abstractive summaries offers valu-
able insights into the model’s performance in summarizing
the content of materials science literature, it is important to
recognize that this assessment alone does not directly con-
firm the fidelity of the JSON extraction task. However, it
is worth noting that abstractive summarization itself is a
form of information extraction, albeit on a higher level of
abstraction. Therefore, while our evaluation focuses on sum-
marization, it indirectly sheds light on the model’s capabil-
ity to comprehend and extract meaningful information from
the input text. This shared aspect of information extraction
underscores the interconnectedness of the two tasks and
suggests that the proficiency demonstrated in one task can
inform our understanding of the model’s performance in the
other.

Our findings highlight the efficiency and effectiveness
of our semi-automated annotation process in maintaining
high levels of accuracy and quality. While manual annota-
tion from scratch typically requires an average of 55 min
per paper, our approach significantly reduces this labor-
intensive process. The collaborative workflow with Gemini
Pro streamlines the annotation process, with manual editing
and corrections averaging around 15 min per paper for both
structured JSON extraction and abstractive summarization
tasks. This demonstrates the potential for our approach to
minimize manual effort while ensuring high-quality annota-
tions, making it a promising solution for accelerating data
extraction from materials science literature.

Discussion

The semi-automated annotation workflow presented in this
study represents a promising approach for extracting struc-
tured information from materials science literature. How-
ever, despite its efficacy, several challenges were encoun-
tered during the annotation process, highlighting areas for
potential refinement. One significant challenge stems from
the fact that the language model utilized, Google’s Gemini
Pro, is not fine-tuned specifically for materials science. Con-
sequently, the model’s performance may vary when applied
to domain-specific texts, necessitating a substantial amount
of human intervention to ensure annotation accuracy. To
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address this challenge, future refinements could involve fine-
tuning language models specifically tailored to the materi-
als science domain. Notably, our semi-automated approach
has the potential to play a pivotal role in this refinement
process. By providing high-quality annotated training data-
sets, our approach facilitates the development of more spe-
cialized fine-tuned models capable of accurately extracting
information from materials science literature. This iterative
loop, wherein our approach enhances its own efficiency and
effectiveness, holds promise for continuously improving the
semi-automated annotation process and advancing toward
the development of fully automated language models tai-
lored for seamless and accurate data extraction from materi-
als science literature.

Another challenge we faced during the annotation process
was the evaluation of the accuracy of the JSON extraction
task. The absence of a well-defined metric for evaluating
structured JSON extraction hindered our ability to compre-
hensively assess the fidelity of the extracted data. Develop-
ing a robust evaluation metric tailored specifically to the
complexities of structured data extraction from materials
science literature could be a focus for future work, enabling
more nuanced assessments of the model’s performance.
By addressing this need, future refinements could further
enhance the effectiveness and reliability of semi-automated
annotation workflows, ultimately advancing the development
of fully automated language models tailored for materials
science literature.

While our study focused on utilizing a single language
model, it is worth considering the implications of employ-
ing multiple models for benchmarking purposes. Introducing
multiple models into the annotation workflow could lead to
variations in data extraction preferences, resulting in differ-
ences in the extracted data even when all models produce
valid outputs. This variability would significantly impact
benchmarking practices, particularly concerning the estab-
lishment of ground truth annotations. Exploring how differ-
ent language models interpret and extract information from
materials science literature could provide valuable insights
into the robustness and generalizability of annotation work-
flows. Future research endeavors may consider conducting
comparative analyses across multiple language models to
elucidate the extent of variability in data extraction and its
implications for benchmarking fairness and accuracy in
materials science literature annotation.

Given the subjective nature of summarization, explor-
ing the ROUGE score across summaries by multiple
experts could provide deeper insights into the evaluation
metric’s comprehensiveness. However, in this work, we did
not utilize summaries from multiple experts. Notably, the
BERTScore metric, employed in our study for assessing
semantic similarity between generated and gold standard
summaries, focuses on contextual embeddings, which are
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less dependent on subjective judgments. Therefore, the use
of BERTScore mitigates the need for multiple expert sum-
maries, as it primarily evaluates the semantic relevance of
the generated summaries to the reference summaries, rather
than relying on subjective interpretations of summary
quality.

In addition to addressing challenges, the practical impli-
cations and applications of semi-automated annotation for
structured JSON and summaries are profound. One nota-
ble advantage is the potential to significantly reduce the
financial and labor costs associated with manual annotation
efforts. By combining human expertise with the capabilities
of language models, our workflow streamlines the annota-
tion process, enabling efficient extraction of structured
information from large volumes of text data. Furthermore,
the semi-automated nature of the workflow minimizes the
risk of errors commonly associated with manual annotation,
ensuring the production of high-quality annotations suitable
for various downstream applications. Overall, the adop-
tion of semi-automated annotation holds great promise for
accelerating research in materials science by facilitating the
creation of comprehensive and machine-readable datasets
essential for advancing scientific discovery and innovation.

Conclusion

In conclusion, our study introduces a semi-automated anno-
tation methodology tailored for materials science literature,
leveraging Google’s Gemini Pro language model. This
approach offers a promising avenue for structured informa-
tion extraction, enhancing the efficiency of annotation tasks
while ensuring the creation of high-quality datasets essential
for training domain-specific language models. By utilizing
structured prompts, we have demonstrated the model’s capa-
bility to accurately extract information and generate concise
summaries from complex scientific texts. Our work high-
lights the potential of semi-automated annotation workflows
in bridging the gap between manual annotation and fully
automated processes, paving the way for more efficient and
accurate data extraction in materials science research.
Moving forward, future research directions include refin-
ing language models specifically optimized for materials
science literature through fine-tuning and domain-specific
training. Additionally, exploring strategies such as active
learning, where the model interacts with the user to identify
areas requiring further annotation, and integrating domain
knowledge bases to provide context-specific information,
could enhance the efficiency and accuracy of the annotation
process. These advancements aim to reduce the need for
extensive human intervention while ensuring the creation
of high-quality annotated datasets essential for training and
improving language models tailored to the materials science

domain. By pursuing these avenues for improvement, we
can continue to advance semi-automated annotation tech-
niques, ultimately facilitating more efficient and accurate
data extraction in materials science research.
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