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NLP meets materials science:
Quantifying the presentation
of materials data in literature

Hasan M. Sayeed,’ Wade Smallwood," Sterling G. Baird,"?

and Taylor D. Sparks’*

Large language models (LLMs) revolutionized how we engage with
information. In materials science, we aim to leverage natural lan-
guage processing to transform progress and discovery. Analyzing
diverse materials science papers, we annotate data types and sour-
ces, laying the groundwork for targeted information extraction and

LLM development.

Introduction

Materials science, an interdisciplinary
field merging principles from physics,
chemistry, and engineering, plays a
pivotal role in technological advance-
ment and societal progress. At its core,
materials science focuses on the explo-
ration and development of new mate-
rials. While the availability of structured
data, particularly through advance-
ments in machine learning, plays a
pivotal role in expediting the discovery
process,' materials science lags behind
other physical sciences in this regard.
This lag is mainly due to the diverse na-
ture of data sources and the lack of
centralization. The solution to this data
challenge in materials science lies in
making use of scientific publications,
which are the primary means of commu-
nication in the field.” The extensive aca-
demic literature in this domain holds a
wealth of data concerning material
compositions, processing conditions,
and performance properties. However,
this valuable information is often scat-
tered across the textual content, tables,
and figures of research papers, posing a
formidable challenge for data extrac-
tion and subsequent analysis.

Methods for data extraction in materials
science encompass a combination of
manual curation and automated tech-
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niques. Manual curation offers preci-
sion but is labor intensive and struggles
to keep pace with the growing
volume of materials science literature.
Conversely, automated techniques are
still evolving, grappling with the intri-
cacies and diversity of data found in
materials science papers.’

This informal study aims to delve into
the patterns of data expression in mate-
rials science papers and uncover the
relationships between data sources,
laying the foundation for more efficient
data extraction methods as a stepping
stone toward our broader objective: to
extract data from materials science pa-
pers and train a natural language pro-
cessing (NLP) model to transform these
data into a more machine-readable
format. The insights gained from this
analysis will play a pivotal role in inform-
ing the development of our model and
may contribute to more efficient data
extraction and analysis in materials sci-
ence research.

Method
We randomly selected ten research
papers spanning diverse subfields

within materials science. This selection
ensured a representative sample, en-
compassing a wide range of topics
from superionic conductors to lattice
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anisotropy. The goal was to capture
the breadth of data presentation prac-
tices in materials science literature.

The source or vehicle by which the data
were presented within the papers was
categorized by one of the following
three definitions:

Text: This source refers to informa-
tion presented within the narrative
text of the research papers. It com-
prises descriptions, explanations,
and discussions related to the mate-
rials, their compositions, processing
conditions, and performance prop-
erties.

Tables: Organized tables in the pa-
pers were another key source of
data. These tables typically offer
structured and tabulated data, mak-
ing it easier to access and interpret
key information such as numerical
values, experimental results, and
comparative data.

Figures: Figures, including graphs,
charts, diagrams, and micrographs,
represent another significant data
source. These visual representations
often convey complex information
succinctly and can include details
about material properties, experi-
mental results, and graphical depic-
tions of scientific findings.

Within each paper, we focused on
identifying four key data types or
categories:

Chemical composition: Information
related to the materials used,
including chemical compositions, el-
ements, and compounds.
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Figure 1. Example annotation format output

Data are distributed via three sources: (A) text, (B) table, and (C) ﬁgure The type of data is either

composition ( , processing conditions (“‘() characterization (), or performance property

("%"). Multiple compositions were often discussed in the same paper. In this illustration, for

examp\e we found three different compositions and denoted them as [£]] (Co,MnGag 55no.s), [Z]

(Co,MnGa), and [£]] (CooMnSn).

Processing conditions: Information
related to the conditions under
which materials were synthesized or
processed, encompassing variables
such as temperature, pressure, and
synthesis methods.

Characterization data: Information
pertaining to the characterization
of materials,

physical,

encompassing their
structural, and chemical
properties.

Performance parameters: Information

related to the performance properties
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of the materials, including mechanical,

electrical, thermal, or other relevant

performance metrics.

For clarity and brevity, we used emojis
to represent data types. We have repre-
sented four types of data using emojis:
for composition, ¥X for processing
conditions s for characterization,

and "% for performance property.

The data were hand-annotated by sys-

tematically isolating each sentence
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throughout the paper including the
main body of the text, supplementary
tables, then
determining whether a relevant expres-

material, and figures,
sion of data was presented. If it was
determined that relevant data were
presented, the source through which
the data were presented along with
the type or category of that data point
was annotated. The most consistent
test for whether relevant information
was presented in a given sentence was
whether the meaning of that sentence
related to or progressed understanding
with respect to one of the four defined
data types or categories.

The output of this process is illustrated
in Figure 1. This approach had the
benefit of providing a visual display of
the interplay of data types across text,
tables, and figures while promoting

consistency across each paper.

Results

A summary of the presence of data types
in each of the data sources (text, tables,
and figures) is provided in Table 1.

Similarly, Figure 2 provides a visual
representation of the distribution per-
centages of each of the four data types
across the three data sources, both
individually across each paper and
then
data sources as the x axis. This sum-

in a combined view with the

mary provides a holistic view of how
the four key data types are distributed
across these sources within the ten pa-
pers. Figure 2 serves as a valuable
source for understanding and visual-
izing the broader patterns in data
presentation.

Our investigation into the distribution
of data within materials science papers
revealed several noteworthy patterns
and
sources.

interconnections between data

Data types across sources: In our anal-
ysis, we observed that textual content
almost universally contains all four
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Table 1. The presence of materials science data in various manuscripts on a distinct material topic

DOI Material topic odCount

1. 10.1016/j.actamat.2009.02.024 spin polarization 3

2. 10.1038/nmat3066 superionic conductivity 1

3. 10.1103/PhysRevB.85.144109 pressure-dependent band gap 1

4.10.1016/j.jallcom.2012.01.122 bulk modulus and thermal expansion 14

5.10.1016/j.matchemphys.2011.07.080  specific heat and magnetic susceptibility 4

6. 10.1103/PhysRevB.76.085110 thermoelectricity 1

7.10.1016/j.jallcom.2011.01.006 thermoelectricity 2

8. 10.1038/nature09120 superconductivity 1

9. 10.1016/}.physc.2010.12.001 superconductivity 4 v
10. 10.1103/PhysRevB.87.064509 superconductivity 1

Composition count is listed as more than one where a single manuscript provided relevant information across multiple chemical compositions. The data
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types determined as relevant for the purposes of this informal study were composition (, processing conditions (‘“)t), characterization (-&E), performance

property (8, or "missing” (). For example, the tables within the spin polarization manuscript (10.1016/j.actamat.2009.02.024) contain compositions, charac-

terization data, and performance properties but lack any information about processing conditions. This is then labeled ”

column.

2 _§ " within the table (m)

types of data under investigation,
namely: chemical composition, pro-
cessing conditions, characterization,
and performance parameters. Tables
are predominantly used to report the
performance properties of materials
while occasionally including character-
ization data. Figures, on the other
hand, are predominantly utilized to
present characterization data and per-
formance properties.
Data isolation and interconnec-
tions: A critical observation from
our data source analysis was that
only processing conditions were
consistently isolated in text alone.
For other data types, particularly
characterization and performance
data, we noted a high degree of
interconnection across all three
sources. For instance, researchers
commonly reported a performance
parameter of interest in the tex-
tual content, such as ionic conduc-
tivity at room temperature, while
providing detailed data, like a
range of ionic conductivity values
across various operating tempera-
tures, in organized tables or figures.
This interconnected presentation of
data emphasizes the multifaceted
nature of materials science research
and the importance of accessing
comprehensive information across
various sources.

Challenges in textual content: An
intriguing challenge emerged when
considering the perspective of lan-
guage model (LM) applications. It
was evident that in the introduction
sections of papers, researchers
often discussed materials beyond
the specific material of interest in
the paper. These discussions typi-
cally provided context, such as the
properties of related materials from
similar crystal structures or other-
wise recent findings from other
research teams relevant to the
study at hand. This

context-setting practice, while valu-

informal

able for human readers, may pose

challenges for large language
models (LLMs), potentially leading
to confusion. LMs might have diffi-
culty discerning whether the mate-
rial discussed in the introduction is
the primary focus of the paper or
contextual

serves a secondary

purpose.

These findings underscore the intricate
nature of data distribution within mate-
rials science papers and highlight the
complexity of interconnections across
different sources. Additionally, the po-
tential challenges identified in textual
content emphasize the need for further
research and the development of more
sophisticated NLP models tailored to

the unique characteristics of materials
science research papers.

Discussion

The predominant presence of all four
data types within textual content is indlic-
ative of the role of narrative in materials
science papers. Researchers often pro-
vide comprehensive details, descriptions,
and contextual information about mate-
rials, processes, and properties in the
text. This practice ensures that essential
information is readily accessible to
readers. Tables and figures, in contrast,
are frequently employed for succinctly
summarizing performance properties
and presenting visual representations of
data such as characterization and perfor-
mance parameters.

The high degree of interconnected
data across all three sources under-
scores the multidimensional nature of
materials science research. Researchers
often convey a performance parameter
of interest in the text while offering a
detailed dataset, including multiple
operating conditions or characteriza-
tions, in tables or figures. This intercon-
nected approach aids in presenting a
comprehensive view of the material’s
behavior under various conditions. It
promotes a holistic understanding of
material properties, which is vital for
advancing materials science research.
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Figure 2. Per-paper summary of data distribution

(A-C) Per-paper summary of data distribution across three sources: (A) text, (B) table, and (C) figure.
(D) A view of the combined distribution of data types when considering all sources (text, tables, and
figures). Data type is either composition (X), processing conditions (Si)' characterization (‘?f)
performance property ({lf), shown as the percentage of each data type present in the data source.
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Notably, our informal study revealed a
potential challenge in textual content.
The practice of discussing materials
other than the primary focus of the pa-
per in the introduction may pose diffi-
culties for NLP models. NLP models
could misconstrue the intended focus
of the paper, potentially impacting
their ability to accurately extract and
interpret data.

Conclusion

In conclusion, this informal study un-
veils essential insights into the intricate
landscape of data distribution within
materials science papers. Key take-
aways include the prevalence of
data in textual content, the focused
use of tables and figures, and the
strong interconnections between data

types.

The importance of our informal study
extends beyond academic curiosity.
It can have profound implications
for the broader materials science
research community. The efficient
extraction and integration of data,
enabled by a deeper understanding
of data sources and interconnections,
enhances the accessibility and utility
of valuable information contained in
research papers. This is especially
crucial in a field where insights can
drive technological innovation and sci-
entific progress.

Future directions

Building upon this preliminary analysis,
several potential areas for further
research and improvements in data
extraction techniques emerge:

Semantic interoperability: Exploring
techniques to enhance the semantic
interoperability of data across text,
tables, and figures may yield im-
provements in data integration.
Developing standardized formats
for data presentation could facilitate
more efficient data extraction and
analysis.
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Multi-modal information extraction
models: As a major finding from
this informal study is that much of
the bulk of any structured data is pre-
sented through tables and figures,
development of optical character
recognition (OCR) tools will be para-
mount to extracting the full extent of
information presented in any given
materials science literature.

Token reduction: A limitation of cur-
rent LLMs is token quantity input, or
the number of words you can enter
into an LM in a single entry. The pre-
sent informal study’s findings have
implications for the development of
machine learning techniques to
automate data extraction from text.
These machine learning algorithms
could be fine-tuned to accurately
identify and categorize data types
across diverse sources, which can in
turn become an abbreviated text
input for an LLM, ensuring main-
tained context.

In summary, this informal study
serves as a stepping stone toward
improved data accessibility and inte-
gration in materials science research.
It paves the way for future en-
deavors, with the potential to shape
the development of more sophisti-
cated NLP and machine learning
techniques tailored to the unique
challenges and opportunities pre-
sented by materials science research

papers.
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