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Live 360◦Video Streaming to Heterogeneous
Clients in 5G Networks
Jacob Chakareski and Mahmudur Khan

Abstract—We investigate rate-distortion-computing optimized
live 360◦video streaming to heterogeneous mobile VR clients in
5G networks. The client population comprises devices that feature
single (LTE) or dual (LTE/NR) cellular connectivity. The content is
compressed using scalable 360◦tiling at the origin and sent towards
the clients over a single backbone network link. A mobile edge
server then adapts the incoming streaming data to the individual
clients and their respective down-link transmission rates using
formal rate-distortion-computing optimization. Single connectivity
clients are served by the edge server a baseline representation/layer
of the content adapted to their down-link transmission capacity
and device computing capability. A dual connectivity client is
served in parallel a baseline content layer on its LTE connectivity
and a complementary viewport-specific enhancement layer on its
NR connectivity, synergistically adapted to the respective down-
links’ transmission capacities and its computing capability. We
formulate two optimization problems to conduct the operation
of the edge server in each case, taking into account the key
system components of the delivery process and induced end-to-
end latency, aiming to maximize the immersion fidelity delivered
to each client. We explore respective geometric programming
optimization strategies that compute the optimal solutions at lower
complexity. We rigorously analyze the computational complexity of
the two optimization algorithms we formulate. In our evaluation,
we demonstrate considerable performance gains over multiple
assessment factors relative to two state-of-the-art techniques.
We also examine the robustness of our approach to inaccurate
user navigation prediction, transient NR link loss, dynamic LTE
bandwidth variations, and diverse 360◦video content. Finally,
we contrast our results over five popular video quality metrics.
The paper makes a community contribution by publicly sharing a
dataset that captures the rate-quality trade-offs of the 360◦video
content used in our evaluation, for multiple contemporary quality
metrics, to stimulate further studies and follow up work.

Index Terms—360◦ video, 5G networks, cooperative edge-
client computation, dual connectivity transmission, geometric
programming, live streaming, mobile VR systems, rate-distortion
analysis and optimization, scalable 360◦tiling.
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Fig. 1. System setting: Compressed live 360◦video content is sent over a
backbone link through an edge server to heterogenous mobile VR clients.

I. INTRODUCTION

360
◦video streaming to virtual reality (VR) headsets has
applications in education and training, telepresence and

telecommuting, healthcare, environmental monitoring, and first
responders[1],[2]. Societal changes introduced due to the
recent pandemic, e.g., online classes, work from home, and
telemedicine, highlight the importance of remote 360◦video im-
mersion/communication. Compared to traditional streaming[3],
VR-based 360◦video streaming introduces further challenges,
particularly in the mobile domain, as it requires very high trans-
mission rate, hyper intensive computation, and very low la-
tency[4]. The emergence of 5G networks offers possibilities
to address these challenges, as they enable much higher rates
and lower latencies, while providing edge-based computation
capabilities, relative to existing wireless systems.
In this paper, we explore live 360◦video streaming to het-
erogeneous mobile VR clients in 5G networks. The client pop-
ulation comprises devices that feature single 4 G/LTE or dual
LTE/NR (New Radio) cellular connectivity[5]. The captured
content is compressed at the origin using scalable 360◦tiling
and sent over a backbone link to an edge server collocated with
the base station serving the clients. The server provides com-
putational assistance, while adapting the incoming data to the
individual clients’ down-link transmission rates and computing
capabilities, using formal optimization. The system setting we
study is shown in Fig.1.
Mobile clients featuring single connectivity are served by the

edge server a base layer representation of the content adapted
to their down-link transmission capacity and device computing
capability, such that their 360◦viewport quality is maximized.
For enhanced quality of experience, a dual connectivity client
is served in parallel a base layer representation of the content
on its LTE connectivity and a complementary viewport-specific
enhancement layer representation on its NR connectivity,
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Fig. 2. 360◦video capture and streaming, and user viewportVc.

synergistically adapted to the respective down-links’ transmis-
sion capacities and its computing capability, such that its 360◦

viewport quality stemming from the two integrated content lay-
ers is maximized and higher.
We formulate two optimization problems to guide the opera-

tion of the edge server in each case, accounting for key system
components of the delivery process and the induced end-to-end
latency, and aiming to maximize the immersion fidelity expe-
rienced by each client. We explore respective geometric pro-
gramming optimization strategies that compute the optimal so-
lutions at lower complexity. The problem analysis, formulation,
and optimization build upon our earlier advances that include
rate-distortion modeling of compressed 360◦tiles, design of
scalable 360◦tiling, and statistical analysis of a client’s 360◦nav-
igation actions[6]. We demonstrate considerable performance
gains over multiple assessment factors over the state-of-the-art
and examine the robustness of our approach to inaccurate user
navigation prediction, transient NR link loss, dynamic LTE
bandwidth variations, and diverse 360◦video content. We con-
trast our results over five popular video quality metrics, and
demonstrate consistent performance benefits.
We advance the state-of-the-art with the following contribu-
tions. (i) We explore jointly optimizing the allocation of com-
munication and computing resources of the edge server and
VR users’ mobile devices. (ii) We introduce and explore for
the first time dual-connectivity 5G NR links for enhanced live
streaming of360◦videos. (iii) We pursue a rigorous analysis
of the fundamental trade-offs between computation and com-
munication that arise in this context. Building upon it, we for-
mulate effective rate-distortion-computation optimization tech-
niques to identify key system resource allocation decisions and
maximize the delivered viewport quality across the mobile VR
client population. (iv) We rigorously analyze the computational
complexity of the two optimization algorithms we formulate.
(v) We carry out a comprehensive performance evaluation, ad-
dressing a broad set of real-world conditions and scenarios, and
demonstrate considerable benefits relative to state-of-the-art ref-
erence methods, over five popular video quality metrics (PSNR,
WS-PSNR, SSIM, MSE, VMAF).
We make a community contribution by publicly sharing a

dataset that captures the rate-quality trade-offs of the 360◦video
content used in our evaluation, for multiple contemporary qual-
ity metrics, to stimulate further studies and follow up work.

II. BACKGROUND ANDRELATEDWORK

360◦video is a recent video format captured by an omnidi-
rectional camera that records light rays incoming from every
direction (see Fig.2, top left). It enables a 3D 360◦look-around
of the surrounding scene for a remote user, virtually placed at

the camera location, on his VR headset (see Fig.2, right). Af-
ter capture, the raw spherical video frames are first mapped to
an equirectangular panorama (see Fig.2, bottom left) and then
compressed planar video compression, e.g., HEVC. The for-
mer intermediate step is introduced, as compression techniques
operating directly on spherical data are much less mature and
performing relative to traditional video compression operating
on 2D video frames.
Streaming services typically deliver the entire monolithic

360◦panorama to a user, using standards-based methods, e.g.,
MPEG-DASH[7]. This negatively impacts the quality of ex-
perience, as huge volume of data needs to be sent, typically
exceeding by a wide margin the available network bandwidth
C. Moreover, the user only looks at a small portion of the spa-
tial panorama, denoted as viewport (see Fig.2, right). Hence,
only lower-quality and lower-resolution 360◦videos are deliv-
ered online presently. Yet, as traditional server-client Internet
architectures are used, the desired low-latency interactivity is
also impacted. Finally, the operating conditions are even more
challenging in a wireless setting, due to the more constrained
communication and computation resources.
The above challenges motivate novel communications sys-

tems that holistically integrate the 5G capabilities of edge
computing and high rate dual connectivity transmission, with
viewport-adaptive scalable 360◦streaming, to enable novel high-
quality mobile VR applications. This is our goal here.
Similarly to our approach, several studies of single-user on-

demand 360◦Internet streaming[8],[9],[10]have considered
splitting the360◦video content into spatial tiles. We advance
these studies by: (i) considering a different and more challenging
system setting; (ii) pursuing a rigorous analysis of the fundamen-
tal trade-offs between viewport quality, user navigation patterns,
coding efficiency, and available system resources; and (iii) en-
abling much lower latency via holistic integration of edge-based
delivery, scalability, and360◦tiling.
Other more broadly related studies include[11], which pur-

sues the design of a view synthesis-based 360◦VR caching sys-
tem over a cloud radio access network, where both mobile edge
computing (MEC) and hierarchical caching are supported, to
address network bandwidth limitations. Similarly,[12]explores
edge cache-assisted 360◦live video streaming, to increase the
overall quality of the delivered content to users. Ref.[13]investi-
gates reinforcement learning based rate adaptation with adaptive
view prediction and content tiling for 360◦video streaming, to
improve the quality of experience delivered to users. Ref.[14]
presents a field-of-view tracking enabled VR streaming system
for mobile platforms.
User collaboration in live 360-degree video delivery for ac-
curate field of view (FoV) prediction via an LSTM neural
network, coupled with an optimal rate allocation strategy, is
explored in[15]. Similarly, deep learning based FoV predic-
tion for proactive adaptive 360-degree video streaming in mo-
bile networks is explored in[16]. Lastly, MEC-based 360◦video
VR streaming with field-of-view (FoV) prediction, together with
joint video coding, proactive caching, computation offloading,
and data transmission, is studied in[17].
Multi-path transmission as known as network path diversity
has been studied for Internet video delivery in sender-driven
and receiver-driven settings. The study in[18]explored the
rate-distortion trade-offs of multi-path content delivery in both
settings and formulated optimization techniques to address each
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case. The study in[19]considered sender-driven path diversity
for video communication using unbalanced multiple descrip-
tion coding, to accommodate the prospective heterogeneity in
network bandwidth across the employed paths. The trade-offs
of video streaming over multiple paths using layered coding or
multiple descriptions have been investigated in[20]. Distributed
rate-distortion optimized sender-driven multi-path video deliv-
ery from multiple servers has been explored in[3]. Most re-
cently, parallel 360◦video transmission over multiple wireless
technologies has been considered for indoor on-demand mobile
VR streaming in[21],[22].
Finally, recent studies examined live360◦video multicast

in cellular networks. In[23], a method denoted asVRCastis
proposed that uses a grouping algorithm to optimally separate
mobile users into multicast groups and allocates radio resources
among them. We have implemented VRCast as a state-of-the-art
reference method in our experimental evaluation. In[24], a joint
unicast-multicast streaming system over a cellular network is
proposed that optimizes the resource allocation for a group of
users to enhance their experience. The system setting and scope
of work of these studies are simpler and narrower relative to ours,
as they consider 4G/LTE networks and focus on radio resource
allocation optimization only.
Our paper is motivated by a shorter study we carried out
in[25]that examined transmission of pre-stored360◦content
over parallel WiFi and millimeter wave links, in an indoor
setting. The major technical differences of the present paper
include the investigation of a different scenario, live360◦lay-
ered multicast streaming to heterogeneous mobile VR clients
in an outdoor setting, and the additional specific challenges it
introduces, the synergistic integration of 5G edge computing
and dual-connectivity transmission with scalable 360◦tiling
and streaming, a more accurate analysis of the end-to-end
system latency that integrates the impact of both content de-
coding and viewport rendering, and the formulation of rigorous
rate-distortion-computing optimization to identify key system
resource allocation decisions and trade-offs. Moreover, we
carry out performance evaluation and contrast our results over
two popular immersion video quality metrics.

III. 360◦CONTENTCODING ANDUSERNAVIGATION

A. Content and Navigation Modeling

The main problem analysis and optimization formulated in
this paper build upon modeling advances that we introduced
earlier. For completeness, we outline these advances here and
refer the reader to[6]for further details, to conserve space.
We leverage tiling of the 360◦video frames, as illustrated in

Fig.3, to capture effectively the user viewport over time and
exploit the uneven rate-distortion trade-offs that arise across the
spatial 360◦panorama. We denote as GOP tile(i, j)the collec-
tion of tiles across the video frames comprising a Group of Pic-
tures (GOP), at the same spatial location(i, j)in the tiling. Each
GOP tile is independently encoded and streamed to the user,
according to our analysis and optimization. The rate-distortion
trade-off of compressing a GOP tile(i, j)can be accurately cap-
tured with a power law functionDij(Rij)=aR

b
ij, where(a, b)

are model fit parameters.
The spatial 360◦tiling also facilitates developing a statistical
model of user navigation, where each tile(i, j)can be assigned

Fig. 3. An example6×4spatial tiling of a360◦video frame.

a navigation probabilityPijthat captures how often the tile
overlaps with the viewport over the duration of a GOP. Later,
we will integrate all these modeling advances into our analysis
and optimization to dynamically select the amount of resources
allocated over space and time, for a 360◦video as it is being
streamed to a user. We compress the GOP tiles into multiple
scalable layers to enable an effective implementation of our
analysis and optimization.

B. Navigation Modeling Challenges for Live Content

In our setting (live 360◦streaming), complete navigation
traces and probabilities will not be available in advance. The
edge server will need to develop them incrementally during
a session. Carrying out this task has been studied before1

and is beyond the scope of the present paper. Still, we will
effectively explore its impact on our analysis and optimization

by considering inaccurate navigation likelihoodsP̂ijin our
evaluation. Concretely, we will adapt the degree of inaccuracy

ΔPof the navigation probability distribution{̂Pij}relative
to the true distribution and examine the reliability or drop in
performance of our framework asΔPis increased.

IV. EDGESERVER ANDMOBILECLIENTMODELING

A. Outline

We consider a set of mobile clientsUserved by a 5G edge
server capable of communicating using dual (LTE/NR) cellular
connectivity. The server is also equipped with high-end Graph-
ics Processing Units (GPUs) to assist the mobile VR clients in
their computing needs to process (decode, render) the highly
demanding 360◦content delivered to them. Each client features
either a single or dual connectivity mobile device linked to a VR
headset. LetU1andU2denote respectively the subsets of sin-
gle and dual connectivity clients. Using navigation information
uplinked by the mobile VR clients, the edge server is able to
identify the present 360◦viewport of each client and optimize
the delivery of the content to the client using the analysis and
optimization we describe in SectionsVandVI. To single con-
nectivity clients, the server streams a lower-quality (baseline)
representation of the 360◦content optimized for their downlink
and device computing capabilities. To each dual-connectivity

1Sample approaches include regression-based prediction, static pyramid-
based prediction, and neural network-based prediction, all using navigation his-
tory to estimate present actions/likelihoods[26],[27],[28],[29].
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TABLE I
KEYNOTATION

client, the server streams in addition a viewport-specific en-
hancement representation of the content over the dual NR down
link in parallel, benefiting from the enhanced computing and
transmission capabilities of the edge server and the NR link, to
optimally construct and stream the enhancement representation.
The client then integrates synergistically the two representations
to produce a higher quality viewport for its user. We provide a
detailed description of our edge server and client modeling next.
We list the key notations used in the paper in TableI.

B. LTE/NR 5G Dual Connectivity Model

The 5G deployment model we consider has been standard-
ized and has been in use predominantly. It is referred to as
non-standalone (NSA). In this deployment method, a cellular
device is able to connect simultaneously to collocated 4 G/LTE
and NR base stations (a technique known as dual connectivity),
served by the same extended packet core network[5].
The NSA model is most suitable for providing enhanced
mobile broadband services since NR can act as a capacity over-
lay to the 4 G/LTE network, supplementing existing network
investments.

C. Edge Server Modeling

1) Back-End Server Operation:The remote server initiates
thelive360◦video streaming session and establishes a back-
bone link with the edge server. The back-end server encodes the
captured content into scalable 360◦tiling for every GOP and
transmits the compressed data to the edge server, where it is
cached for follow-up streaming to mobile clients. When a mo-
bile client makes a request to the back-end server to join the

live session, its request is redirected to the edge server, who
then initiates the streaming of the content from the present GOP
onwards to the client.
2) Baseline and Enhancement Representation Construction:

We denote withmijthe GOP tile at spatial location(i, j)and
withM the set of all GOP tiles. The edge server constructs a
base layer representation of the present GOP of the 360◦content,
for streaming to a client over its LTE link, by combining the first
nb(i, j)embedded layers for each tilemij∈M.LetR

1
ijdenote

the data rate of the base layer representation for tilemij.The
server selectsR1ijand thusnb(i, j)according to the analysis and
optimization presented later, distinguishing between a single or
dual connectivity client in this case. Similarly, the server con-
structs an enhancement representation, for streaming only to a
dual-connectivity clientu∈U2over its NR link, by combining
the subsequentne(i, j)embedded layers for each tilemijcom-
prising the client’s viewport. LetR2ijdenote the data rate of the
enhancement representation for tilemij∈Mu, whereMu⊂M
denotes the subset of tiles encompassing the user viewport of
clientu. The server selectsR2ijand thusne(i, j)according to

the analysis and optimization presented later, jointly withR1ij
for each tilemij. A GOP tilemijis reconstructed at highest
quality when all itsLlayers from the scalable 360◦tiling are
combined. LetRij,max denote the data rate of tilemijin that
case. The tile is reconstructed at lowest quality when only its
first embedded layer is used and the associated data rate of the
compressed tile in that case is denoted asRij,min.
3) Edge-Based Tile Decoding for Raw Data Transmission:

To explore broader performance trade-offs, we consider trans-
mission of raw (decoded) 360◦data for clients inU2. Using nav-
igation information, the edge server identifies the present view-
port of clientu∈U2comprising a subset of GOP tilesMu.A
portion of these tilesMru⊂Muare decoded by the server. Each
such tilemijis decoded/reconstructed at its highest quality from
its highest available data rateRij,max.LetZudenote the max-
imum decoding speed of the server assigned to clientu. Thus,
we can formulate the time delay induced to decode/reconstruct
the tiles comprisingMruas:

τ2u,ds=
(i,j)∈Mr

u
Rij,maxΔT

Zu
,

whereΔTdenotes the temporal playback duration of a GOP.
LetErdenote the decoded data size of GOP tilemij∈M

r
u.

4) Baseline Representation Streaming Over an LTE Link:
The server streams a baseline representation of the 360◦con-
tent to a clientu∈U1over its LTE link. LetC1denote the
transmission capacity of the link. The transmission latency of
sending the baseline representation can be formulated as:

τ1u=
(i,j)R

1
ijΔT

C1
.

5) Enhancement Representation Streaming Over an NR Link:
The server streams in parallel an enhancement representation
of the 360◦content to every clientu∈U2over its NR link.
It comprises|Mru|(complete) raw GOP tiles and enhancement
representations for the remaining compressed viewport tiles
mij∈M

e
u=Mu\M

r
u.LetC2denote the transmission capac-

ity of the link. Then, we can formulate the transmission latency
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of sending the enhancement representation as:

τ2u=
|Mru|Er+ (i,j)∈Me

u
R2ijΔT

C2
.

For ease of notation, we use single symbolsC1andC2to indi-
cate the transmission capacities of an LTE link and an NR link,
respectively. Still, our analysis is general and allows forC1to
be uniquely associated with a given single-connectivity client
u∈U1, in terms of value and spatiotemporal dynamics, due to
user mobility and network interference. The same applies to the
pair{C1,C2}associated with a wireless clientu∈U2equipped
with dual connectivity. Moreover, as our analysis is applied per
GOP (a short time segment of the content), it allows for consider-
able flexibility and effectiveness in carrying out client adaptation
by the edge server.

D. Mobile Client Modeling

1) 360◦Content Decoding and Rendering:A client’s mobile
device is equipped with a mobile GPU for decompressing and
rendering the received 360◦video for display on the client’s VR
headset. The maximum decoding speed of the device iszu.In
the case of single connectivity clients,zuis exclusively assigned
to decode the received baseline representation. Thus, we can
formulate the time delay of decoding the baseline representation
in this case as:

τ1u,dc=
(i,j)R

1
ijΔT

zu
.

In the case of dual connectivity clients, the decoding capabilities
of the device are shared to decompress the received baseline
representation and the compressed portion (tiles) of the received
enhancement representation. Letz1uandz

2
udenote the decoding

speeds allocated by the device for decompressing the baseline
representation and enhancement representation, respectively. It
should hold thatz1u+z

2
u≤zu. We can formulate the time delay

of decoding each representation equivalently to the expression
above:

τ2,1u,dc=
(i,j)R

1
ijΔT

z1u
, τ2,2u,dc=

(i,j)∈Me
u
R2ijΔT

z2u
.

Similarly, letrudenote the processing power of the mobile de-
vice for rendering the user viewport. In the case of single con-
nectivity clients,ruis exclusively assigned to render the view-
port from the decoded baseline representation. Thus, we can
formulate the time delay of rendering the viewport in this case
asτ1u,r=

Ev
rubh
, whereEvdenotes the data size of the viewport

after decoding andbhdenotes the computed data size per GPU
cycle on the device, for this activity.
In the case of dual connectivity clients, the rendering capabil-

ities of the device are shared to render the viewport at baseline
quality first, from the decoded baseline representation, and then
at enhanced quality, from the enhancement representation de-
coded jointly with the baseline representation. Letr1uandr

2
u

denote the rendering power allocated by the device to render
the baseline quality viewport and enhanced quality viewport,
respectively. It should hold thatr1u+r

2
u≤ru. We can formu-

late the time delay of rendering each viewport equivalently to

the expression above:τ2,iu,r=
Ev
riubh
,fori=1,2.

2) Expected Viewport Distortion Formulation:LetPuijde-
note the navigation likelihood of GOP tilemij∈Mufor user
u. Similarly, letwijdenote a tile-based WS-MSE weight that
captures the normalized surface area on the 360◦view sphere
covered by tilemij. We formally designwijas follows. Let the
size of the 360◦panorama beX×Ypixels. Following[30],we
first define a spherical pixel weightw(x, y)for location(x, y)in

the panorama asw(x, y)=cos((y+0.5−Y/2)πY ). We then formu-
late the target weights aswij= xy∈mij

w(x, y)/Wn,∀(i, j)∈

Mu, whereWn= xyw(x, y)is a normalizing factor. For a sin-
gle connectivity clientu∈U1, we formulate its expected view-
port distortion over that GOP as:

D1u {R
1
ij}=

(i,j)∈Mu

wijP
u
ijDijR

1
ij,

=
(i,j)∈Mu

wijP
u
ijaijR

1
ij
bij.

Similarly, for a dual connectivity clientu∈U2, we formulate
its expected viewport distortion over that GOP as:

D2u {R
1
ij,R

2
ij}=

(i,j)∈Mu

wijP
u
ijDijR

1
ij,R

2
ij,

=
ij∈Mr

u

wijP
u
ijaij(Rij,max)

bij

+
ij∈Me

u

wijP
u
ijaijR

1
ij+R

2
ij
bij.

V. MINIMIZING THEVIEWPORTDISTORTION

A. Outline

We formulate two optimization problems that aim to minimize
the expected viewport distortion experienced during a GOP by
single-connectivity and dual-connectivity clients, respectively.
Because they are applied on a GOP basis (a short time segment
of the content), they enable considerable effectiveness in maxi-
mizing the immersive quality of experience delivered to a client
dynamically. The optimization problems we pursue integrate
key system constraints in each case.
We recall that our key notation is listed in TableIand many

of the symbols used going forward have been defined earlier.

B. Single-Connectivity Clients

Our objective is to minimize the expected viewport distor-
tion for a clientu∈U1, given its LTE down link transmission
capacity and mobile device decoding and rendering computing
capabilities, and a system latency constraint. We formulate this
optimization problem of interest as:

min
{R1ij}

D1u {R
1
ij}, (1)

s.t.:τ1u+τ
1
u,dc+τ

1
u,r≤ΔT, (2)

Rij,min≤R
1
ij≤Rij,max,∀(i, j)∈Mu, (3)
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Constraint(2)captures the system latency requirement that im-
poses that the aggregate time consumed to stream the base-
line representation, decode it on the mobile device, and ren-
der the client’s viewport on the device must not exceedΔT.
Constraint(3)requires that the selected transmission ratesR1ij
for the tilesmij∈Mumust lie within the range of data rates
[Rij,min,Rij,max]enabled by the scalable 360

◦tiling. We for-
mulate an optimization method to solve the problem captured
by(1)–(3)in SectionVI-A.

C. Dual-Connectivity Clients

We aim to minimize the expected viewport distortion for a
clientu∈U2, given its LTE and NR down link transmission
capacities and mobile device decoding and rendering comput-
ing capability, the edge server’s decoding computing capability
assigned to clientu, and two system latency constraints. We
formulate this optimization problem of interest as:

min
{R1ij},{R

2
ij},

Mr
u,{z

i
u},{r

i
u}

D2u {R
1
ij,R

2
ij}, (4)

s.t.:τ1u+τ
2,1
u,dc+τ

2,1
u,r≤ΔT, (5)

τ2u,ds+τ
2
u+τ

2,2
u,dc+τ

2,2
u,r≤ΔT, (6)

Rij,min≤R
1
ij≤Rij,max,∀(i, j)∈Mu, (7)

0≤R2ij≤Rij,max−R
1
ij,∀(i, j)∈Mu, (8)

r1u+r
2
u≤ru,z

1
u+z

2
u≤zu, (9)

Constraint(5)captures the system latency requirement associ-
ated with the transmission of the baseline representation over the
LTE down link. It imposes that the aggregate time consumed to
stream the baseline representation, decode it on the mobile de-
vice, and render the client’s viewport at baseline quality on the
device must not exceedΔT. Constraint(6)captures the system
latency requirement associated with the transmission of the en-
hancement representation over the NR down link. It imposes
that the aggregate time consumed to decode the tilesmij∈M

r
u

at the edge server, stream the enhancement representation, de-
code the remaining tilesmij∈M

e
uat the client on the mobile

device, and render the client’s viewport at enhanced quality on
the device must not exceedΔT. Constraint(7)requires that
the selected transmission ratesR1ijfor the tilesmij∈Mumust
lie within the range of data rates[Rij,min,Rij,max]enabled by
the scalable 360◦tiling. Similarly, constraint(8)requires that
the selected transmission ratesR2ijfor the tilesmij∈M

e
umust

lie within the range of data rates[0,Rij,max−R
1
ij]. Finally,

the constraints in(9)capture the decoding speed and rendering
power limitations of the client’s mobile device.
We note that the transmission latency constraints(5)and(6)
are stricter than and imply the respective transmission capacity
constraints on the two wireless links, i.e., ijR

1
ij≤C1and

ijR
2
ij≤C2. The same applies to(2)in SectionV- B.

Equations(4)–(9)represents a mixed-integer programming
problem[31], which is hard to solve optimally in practice. The
optimal solution can be achieved via an exhaustive search, which
requires searching over all the possible options for the setMru,
and for every such option, finding the optimal streaming rates

Algorithm 1:Single Connectivity Optimal Rate Allocation

1: Initializet=0,R1ij(t)∈[Rij,min,Rij,max].
2:whiletruedo
3: t=t+1
4: Determine the optimum{R1ij(t)},D

1
u(t)by solving

(10)using GGPLAB.
5: if|D1u(t)−D

1
u(t−1)|≤then

6: Break
7: end if
8:end while
9:D1u =D

1
u(t)

10:{R1ij}={R
1
ij(t)}

{R1ij}and{R
2
ij}, and the client’s decoding speed and rendering

capability allocations{ziu}and{r
i
u}. Instead, we explore a lower

complexity approach in SectionVI-B.

VI. COMPUTING THEOPTIMALRESOURCEALLOCATION

A. Single Connectivity Clients

We note that (1)–(3)represents a Geometric Programming
(GP) problem, as the objective function and constraints represent
posynomial functions[32]. We formulate an iterative method to
solve this problem optimally following[33]. In particular, at
each iterationt, we defineD1u(t):=D

1
u({R

1
ij(t)}). Then, the

optimization problem to be solved at iterationtis:

min
{R1ij(t)}

D1u(t),

s.t.:(2)and(3). (10)

We carry out the optimization above iteratively until|D1u(t)−
D1u(t−1)|≤, for some small≥0. When this condition is
met, we obtain the optimal value of the optimization problem in
(10)asD1∗u =D

1
u(t)and the corresponding optimal streaming

rate selections as{R1∗ij}={R
1
ij(t)}.

A formal description of our proposed iterative optimization
method for solving(1)–(3)and computing the optimal baseline
representation streaming data rates{R1∗ij}is provided in Algo-
rithm1. In Line 4, we numerically implemented the geometric
programming solution to(10)using the Matlab GP toolbox GG-
PLAB[34]. We activate the algorithm everyΔTperiods of time,
at the onset of each subsequent GOP. Algorithm1provably con-
verges to the global optimal solution[33].
We assess the computational complexity of Algorithm1as

follows. The number of required iterations is
log(K1)/t0,1

logξ , where

K1is the number of constraints in(10),t0,1is the initial point
to approximate the accuracy of the interior point method used
to solve(10),0< <1is the stopping criterion for the interior
point method, andξis used for updating the accuracy of the inte-
rior point method[32]. Thus, the total number of computations

for Algorithm1is on the order of
log(K1)/t0,1

logξ . For streaming the

360◦contentRunner, the number of iterations for Algorithm1
is 2 when=0.0001and it is 1 when =0.001, for different
values ofZu(1.5 Gbps to 6 Gbps),zu(100 Mbps to 500 Mbps),
andru(1.88 GPixels/s to 28.2 GPixels/s). We can observe that
Algorithm1is quite robust to the choice of the optimization
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thresholdover a wide range of values, for diverse values of the
key system parameters under analysis.

B. Clients With Dual Connectivity

1) Outline:We first present an outline of our optimization
method here. To address the high-complexity nature of the
mixed-integer programming problem(4)–(9), we first intelli-
gently construct a small subset of prospective options for the
setMruto search over that captures the optimal solution with
high likelihood. We then compute the optimal solution to(4)–
(9)and the associated optimal value of the objective function
D2∗u({R

1∗
ij,R

2∗
ij})in(4), for every such (fixed) candidateM

r
u.

Finally, we select the optimal solution and respective candidate
setMruthat lead to the smallest value ofD

2∗
u({R

1∗
ij,R

2∗
ij}).

2) Optimization Method Formulation:We start by sorting
the GOP tilesmij∈Muin descending order of their products
wijP

u
ij.LetM

s
udenote the thereby obtained set of sorted tiles.

We then construct Mrusuch that it comprises the firstktiles
fromMsu,fork=0,...,|Mu|. We note that the setM

r
uwill

be empty (∅) for the casek=0. Then, all enhancement rep-
resentation tilesmij∈Muwill be transmitted as compressed
data over the NR down link, and each tile will comprisene(i, j)
embedded enhancement layers from the scalable 360◦tiling, as
introduced in SectionIV-C.
LetMru,kdenote the candidate set constructed for a given

value ofk. Similarly, letD2u,k({R
1
ij,R

2
ij})denote the objective

function in(4)for thatMru,kandk. Given these developments,
we can rewrite the problem(4)–(9)as

min
{R1ij},{R

2
ij},

{ziu},{r
i
u}

D2u,k {R
1
ij,R

2
ij},

s.t.:(5),(6),(7),(8),and(9). (11)

The above problem can be solved optimally by converting it
to GP. To do so, we first introduce an auxiliary variableR12ij=

R1ij+R
2
ij,for(i, j)∈M

e
u,k. Then, we reformulate accordingly

the transmission latency and client decoding latency associated
with the enhancement representation:

τ2u =
|Mru,k|Er+ (i,j)∈Me

u,k
(R12ij−R

1
ij)ΔT

C2
,

τ2,2u,dc=
(i,j)∈Me

u,k
(R12ij−R

1
ij)ΔT

z2u
.

Next, we reformulate the objective in(11)such that it captures
only the impact of tilesmijsent as compressed data as part
of the enhancement representation, i.e., tilesmij∈M

e
u,k,for

Meu,k=Mu\M
r
u,k. We formally define the reformulated ob-

jective function as:

D2,eu,k R
12
ij :=

ij∈Me
u,k

wijP
u
ijaijR

12
ij
bij.

Finally, given the above advances, we reformulate the optimiza-
tion problem(11)as:

min
{R12ij},

{ziu},{r
i
u}

D2,eu,k R
12
ij , (12)

s.t.:(5)and(9), (13)

τ2u,ds+τ
2
u +τ

2,2
u,dc+τ

2,2
u,r≤ΔT, (14)

R1ij≤R
12
ij≤Rij,max,∀(i, j)∈Mu. (15)

We convert the problem(12)–(15)to GP using the single conden-
sation method[33], to efficiently solve it. We will then integrate
this solution as a key step in our efficient lower complexity iter-
ative optimization procedure outlined earlier, to solve the entire
problem of interest(4)–(9). The design of the latter procedure
will be described in detail subsequently.
We set the rates{R1ij}as free parameters in(12)–(15), to en-

able the conversion to GP. We have empirically established that
settingR1ij=Rij,min,∀(i, j)∈Mu, leads to the best perfor-
mance, as it maximizes the likelihood of the baseline represen-
tation being streamed, decoded, and rendered at the client within
ΔT. Simultaneously, this enables allocating more of the client’s
computing resources to decode and render key enhancement rep-
resentation GOP tiles at higher quality, which in turn will aug-
ment the client’s viewport quality. Following the condensation
method, for a constraint which is a ratio of posynomial func-
tions, the denominator posynomial can be approximated into a
monomial. We formulate an iterative method to solve first(12)
optimally. At each iterationt, we convert the constraint(14)into
a posynomial as follows:

ΔTZuC2z
2
ur
2
ubh

δ1(t)

−δ1(t)

·

ΔTZuz
2
ur
2
ubh ij∈Me

u,k
R1ij

δ2(t)

−δ2(t)

·
ΔTZuC2r

2
ubh ij∈Me

u,k
R1ij

δ2(t)

−δ3(t)

·

⎛

⎝C2z
2
ur
2
ubhΔT

ij∈Mr
u,k

Rij,max

+Zuz
2
ur
2
ubh

⎛

⎝|Mru,k|Er+ΔT
ij∈Me

u,k

R12ij(t)

⎞

⎠

+ZuC
2
ur
2
ubhΔT

ij∈Me
u,k

R12ij(t)+ZuC
2
uz
2
uEv

⎞

⎠≤1,(16)

whereδi(t)=ci/cs,fori=1,2,3andcs=
3
i=1ci, and

c1=ΔTZuC2z
2
u(t−1)r

2
u(t−1)bh,

c2=Zuz
2
u(t−1)r

2
u(t−1)bh

(i,j)∈Me
u,k

R1ij,

c3=ZuC2r
2
u(t−1)bh

(i,j)∈Me
u,k

R1ij.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on September 24,2024 at 19:54:17 UTC from IEEE Xplore.  Restrictions apply. 



CHAKARESKI AND KHAN: LIVE 360◦VIDEO STREAMING TO HETEROGENEOUS CLIENTS IN 5G NETWORKS 8867

Now, letD2,eu,k(t):=D
2,e
u,k(R

12
ij(t)). The optimization problem

to be solved at iterationtis:

min
{R12ij},

{ziu},{r
i
u}

D2,eu,k(t),

s.t.(13),(14),(15),and(16). (17)

Here,(17)is a GP problem and we can solve it optimally. We
carry out the optimization iteratively until|D2,eu,k(t)−D

2,e
u,k(t−

1)|≤, for some small ≥0. When this condition is met,
we obtain the optimal value of the objective function in(17)
asD2,e,∗u,k =D

2,e
u,k(t). Similarly, we obtain the optimal stream-

ing data rate and client computing capability allocations as
{R12∗ij}={R

12
ij(t)}and{z

i∗
u}={z

i
u(t)},{r

i∗
u}={r

i
u(t)}.Fi-

nally, given these developments, we can formulate the optimal
value of the overall objective function in(11), for the givenMru,k
andk,as

D2∗u,k=
(i,j)∈Mr

u,k

wijP
u
ijaijR

bij
ij,max+D

2,e,∗
u,k. (18)

This completes the solution to(11). We repeat the above proce-
dure for everyMru,kandk, keeping track of the obtained solution

andD2∗u,kin each case. Then, we select the overall best solution
that integrates the choice of optimal setMruas

D2u =minD
2∗
u,k, (19)

{R12ij},M
r
u

{ziu },{r
i
u}

=arg min{R12∗ij},Mru,k
{zi∗u},{r

i∗
u}

D2∗u,k. (20)

To complete the solution to the original optimization prob-
lem of interest(4)–(9),weset{R2ij}={R

12
ij −R

1
ij}and re-

call that{R1ij}={Rij,min}. A formal description of our iter-
ative optimization framework described herein is provided in
Algorithm2, which is activated everyΔTperiods of time. In
Line 8, we numerically implemented the geometric program-
ming solution to(17)using the Matlab toolbox GGPLAB.
We assess the computational complexity of Algorithm2as

follows. Similarly to Algorithm1, for a given setMru,k,the

number of required iterations for Algorithm2is
log(K2)/t0,1

logξ ,

whereK2is the number of constraints in(17),t0,1is the initial
point to approximate the accuracy of the interior point method
used to solve(17),0< <1is the stopping criterion for the
interior point method, andξis used for updating the accuracy of
the interior point method[32]. This inner optimization is carried
out in Algorithm2|Msu|+1times, for different setsM

r
u,k. Thus,

the overall computational complexity of Algorithm2is on the

order of(|Msu|+1)
log(K2)/t0,1

logξ . TableIIshows the number of
iterations for Algorithm2for streaming different GOPs of the
360◦videoRunnerfor different values of the NR link capacity,
server decoding speed, headset decoding and rendering speeds,
and optimization threshold.

VII. SIMULATIONEXPERIMENTS ANDANALYSIS

A. 3-DOF Navigation Data Capture

We collected head navigation data from real VR users to
evaluate the performance of our proposed system. We used an

Algorithm 2: Dual Connectivity Optimal Resource
Allocation

1: InitializeD2∗,setu,k ={},R1ij=Rij,min,∀(i, j)∈Mu
2: Sort tilesmij∈Muin descending order using
wijP

u
ij⇒Produce sorted tile set|M

s
u|

3:fork=0to|Msu|do
4: SetMru,kto comprise firstkelements of|M

s
u|

5: Initial.t=0,riu(t)=ru/2,z
i
u(t)=zu/2,for

i=1,2,R12ij(t)∈[R
1
ij,Rij,max],∀(i, j)∈Mu, and

D2,eu,k(t)
6: whiletruedo
7: t=t+1
8: Determine the optimalr1u(t),r

2
u(t),z

1
u(t),z

2
u(t),

R12ij(t),D
2
u,k(t)by solving(17)using GGPLAB

9: if|D2u,k(t)−D
2
u,k(t−1)|≤then

10: Break
11: end if
12: end while
13: Set{R12∗ij}={R

12
ij(t)},{z

i∗
u}={z

i
u(t)}, and

{ri∗u}={r
i
u(t)}

14: ComputeD2∗u,kusing(18)

15: SetD2∗,setu,k =D2∗,setu,k ∪D
2∗
u,k

16:end for
17:D2u =minD

2∗,set
u,k

18:{R12ij},M
r
u,{z

i
u},{r

i
u}=arg minD

2∗,set
u,k

19: Set{R2ij}={R
12
ij −R

1
ij}

HTC Vive wireless headset and the software packages SteamVR
SDK[35]and Opentrack[36]to capture the navigation informa-
tion. We collected head movement traces for the two popular 8 K
360◦video sequencesRunnerandBasketball[37]. We captured
navigation data for ten volunteer users individually, in the case
of each content. 1080 navigation samples were captured per
session, at 30 samples per second. We considered half of these
users as single connectivity clients and the other half as dual
connectivity clients in our experimental assessment, as indicated
later on.

B. Experimental Setup

We evaluated the performance of our system through sim-
ulation experiments using the captured navigation data. We
assessed the delivered immersion fidelity (expected view-
port quality) enabled by our system using its expected
WS-PSNR (Peak Signal to Noise Ratio), formulated as
10 log10(255

2/ ij∈Mu
wijP

u
ijDij), whereDijdenotes the re-

construction error of GOP tilemij∈Mu, as introduced ear-
lier. We obtain the WS-PSNR for an entire video by computing
the WS-PSNR for each GoP and then averaging over them. We
streamed the 360◦videoRunnerorBasketballscalable encoded
at different data rates, at 8K-30fps spatial resolution and frame
rate to each user. We measured the WS-PSNR of the user view-
port in each case. We set the LTE channel capacity to 50 Mbps.
We list the key simulation parameter values used in our evalua-
tioninTableIII.
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TABLE II
THECOMPUTATIONALCOMPLEXITY OFALGORITHM2

TABLE III
SIMULATIONPARAMETERS

Fig. 4. Impact of NR channel capacity and server decoding speed on delivered
immersion fidelity.

C. Results and Analysis

1) Impact of NR Link Capacity and Server Decoding Speed:
In Fig.4, we show how the available NR link rate and the de-
coding capability of the edge server affects the delivered im-
mersion fidelity. We can see that for NR link capacities between
700 Mbps to 1.2 Gbps, increasing the server decoding speed
does not improve the WS-PSNR. At such link capacities, almost
all the GoP-tiles comprising the enhancement representation of
the user viewport are streamed in compressed format. Very few
GoP-tiles are decoded at the server to be streamed as raw data.
Thus, the server decoding speed does not impact the delivered
immersion fidelity significantly in such cases. As the NR link
capacity increases, the number of GoP-tiles to be decoded at the
server and streamed as raw data increases, and the GoP-tiles to be
streamed as compressed data are encoded at higher rates. Thus,
the immersion fidelity improves with an increase in the channel
capacity. For example, when the server decoding speed speed is

Fig. 5. Viewport quality for different client device computing capability.

6 Gbps, the WS-PSNR increases from 76.1 dB to 76.9 dB as the
NR link capacitiy increases from 700 Mbps to 1.2 Gbps.
2) Impact of Client Device Computing Capability:We show
the impact of the computing capability of a client device on the
delivered immersion fidelity in Fig.5for an NR link capacity of
800 Mbps and a server decoding speed of 1.5Gbps. We can see
that the WS-PSNR increases≈0.2 dB as the rendering speed in-
creases from 1.88 Gpixels/s to 9.4 Gpixels/s. Further increasing
the rendering speed does not impact the delivered immersion fi-
delity. But we can also observe that an increase in the decoding
speed of the device improves the WS-PSNR. For any value of
the rendering speed, a gain of≈2.5 dB is obtained as the de-
vice’s decoding speed is increased from 100 Mbps to 500 Mbps.
As the decoding speed increases, the device can decode GOP
tiles compressed at higher data rates, hence the improvement in
delivered viewport quality.
3) Impact of Client Decoding Speed and NR Link Capac-

ity:In Fig.6, we examine the joint impact of NR link capacity
and client device decoding capability on the delivered viewport
quality. We can see that the WS-PSNR improves significantly
as the NR capacity and the device decoding speed increase. For
example, the WS-PSNR increases more than 1.5 dB when the
NR capacity increases from 700 Mbps to 1.2 Gbps for head-
set decoding speed of 100 Mbps. Similarly, when the NR ca-
pacity is 700 Mbps, the WS-PSNR increases from 74.8 dB to
77.2 dB as the client’s decoding speed increases from 100 Mbps
to 500 Mbps. Moreover, a WS-PSNR gain of≈4 dB is achieved
when the link capacity is increased from 700 Mbps to 1.2 Gbps
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Fig. 6. Viewport quality for different client device decoding speeds and NR
link capacities.

Fig. 7. Comparison of delivered immersion fidelity and its variation between
single connectivity (Connectivity 1) clients and dual connectivity (Connectivity
2) clients for the 360◦contentRunner.

and the device decoding speed is increased from 100 Mbps to
500 Mbps. Increasing the value of either of these parameters al-
lows GOP tiles encoded at higher rates to be streamed from the
server and decoded in time on the client device, thus improving
the WS-PSNR significantly.
4) Single Connectivity vs. Dual Connectivity:In Fig.7,we

show the expected value and standard deviation (shown on top
of the respective bar) of WS-PSNR over the duration of the live
session, per client, for both single connectivity and dual con-
nectivity cases. We can observe that an up to 20 dB gain in
delivered immersion fidelity can be experienced by a client with
dual connectivity relative to a client with single connectivity.
This is expected as theConnectivity-1clients are served a base-
line representation of the 360◦content via a low capacity LTE
link. On the other hand, theConnectivity-2clients are served
with a viewport-specific enhancment representation over a high
capacity NR link in parallel to a baseline representation over
the LTE link. We can also see that the variation in WS-PSNR is
lower for single connectivity clients compared to dual connec-
tivity clients.

Fig. 8. Immersion fidelity and its variation for different 360◦content for clients
with dual connectivity (a) in terms of WS-PSNR and (b) in terms of PSNR.

5) Performance Consistency for Different 360◦Content:In
Fig.8(a), we examine the delivered expected immersion fidelity
per dual connectivity client under our framework (in terms of
WS-PSNR) and its standard deviation (shown on top of the re-
spective bar), for the two 360◦video sequencesRunnerand
Basketballused in our experiments. We can see that save for
the expected slight viewport quality variation across different
clients, due to their specific navigation patterns, spatial posi-
tion, and content served, our system consistently delivers high
quality immersion across all clients and for both 360◦videos we
examined. These advances are enabled by the synergistic inte-
gration within our framework of several emerging technologies
and our resource allocation optimization that maximizes the sys-
tem efficiency and delivered quality of experience, for a given
client and content.
We observe alike outcomes in Fig.8(b), which shows the same
results but with the delivered expected immersion fidelity and
its standard deviation expressed in terms of PSNR. Again, our
framework enables consistently high quality immersion across
different clients and streamed 360◦content, for another popu-
lar video quality metric. The minor relative performance differ-
ences across clients and content, when contrasting the results
in Fig.8(a)and(b), and the absolute performance differences
between WS-PSNR and PSNR results, are expected and stem
from the spherical distortion coefficientswnmemployed in the
WS-PSNR formulation.
6) Impact of Inaccurate Navigation Likelihoods:Here, we

investigate how inaccurate navigation likelihoods and navigation
prediction, as introduced in SectionIII-B, can impact the perfor-
mance of our system. In particular, for each GOP tilemij∈Mu,
for a given mobile clientu∈Uand 360◦video, we define a
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Fig. 9. Impact of inaccurate navigation likelihoods on delivered immersion
fidelity for the 360◦videoRunnerand dual connectivity streaming.

navigation likelihood errorΔPuij=ΔP·P
u
ij, whereΔPis a

constraint fraction or percentage point. We then construct in-

accurate navigation likelihoods for the current GOP{̂Puij},as
an output of a prospective navigation prediction method, using

P̂uij=P
u
ij±ΔP

u
ij,∀(i, j)∈Mu. The sign of the introduced er-

rorΔPuijis selected at random and the constructed inaccurate
likelihoods are re-normalized to one, to ensure they represent a
probability distribution. We then compute the optimal resource
allocation solution produced by our optimization strategies from

SectionVIusing these inaccurate likelihoods{̂Puij}. Finally, we
use the computed resource allocation to evaluate the actual per-
formance (delivered viewport quality) on clientunavigating the
given 360◦content using the original likelihoods{Puij}, as that
is what the client would be using in reality.
We can observe from Fig.9, that asΔPincreases, the client

viewport WS-PSNR decreases, as expected. For example, when
there is no error the average viewport WS-PSNR over the stream-
ing session is 76.26 dB. However, whenΔP=0.1,0.2,0.3,the
average WS-PSNR reduces to 75.91 dB, 75.54 dB, and 75.17 dB,
respectively. We can see that the drop in delivered immersion fi-
delity is only≈1.1 dB even whenΔP=0.3. These results show
that our proposed optimization strategies are robust to inaccurate
navigation likelihoods and user navigation prediction.
7) WS-PSNR vs. PSNR:In this section, we assess the immer-
sion fidelity enabled by our system, computed as the expected
PSNR (Peak Signal to Noise Ratio), which we formulate as
10 log10(255

2/ ij∈Mu
PuijDij).InFig.10(a)we show the cu-

mulative distribution of the delivered immersion fidelity for a
client with single connectivity both in terms of WS-PSNR and
PSNR. We can observe that for bothRunnerandBasketball,
the WS-PSNR is higher than the PSNR. This is expected as
the expression for PSNR does not contain the termwij, which
has values less than 1. Thus, the distortion is higher and results
in smaller values for PSNR. Similary in Fig.10(b),weshow
the PSNR and WS-PSNR for a client with dual connectivity.
We can see from both Fig. 10(a)and(b)that the WS-PSNR
achieved forRunneris slightly higher than that forBasketball.
We observe the same behaviour in performance also in terms
of PSNR. Thus, our results in terms of WS-PSNR and PSNR
are consistent.
8) Comparison With the State-of-the-Art:We implemented
a state-of-the-art reference method[9]that uses the latest
MPEG-DASH streaming standard, to deliver the HEVC-
compressed 3DOF 360◦content to clients in our system over
LTE. We also implemented the 360◦multicast methodVRCast

Fig. 10. PSNR and WS-PSNR for a client with (a) single connectivity and
(b) dual connectivity.

[23]in our 5G NR dual-connectivity setting. The performances
of these methods for streaming the 8K-30fps 360◦videosRunner
andBasketballare included in Fig.11(a)and(b), respectively.
It can be seen that MPEG-DASH enables moderate view-

port quality (63.68 dB forRunnerand 63.99 dB forBasket-
ball) at 8K-30fps. These outcomes are in line with present
wireless methods that can only stream 360◦videos at low to
medium quality. VRCast also provides moderate viewport qual-
ity (63.72 dB–64.88 dB) even though it is implemented in our
daul connectivity setting, since it does not decode any tiles at the
edge server and stream them utilizing the capacity of the NR link.
The decoding and rendering speeds of the client’s mobile device
affects the performance. On the other hand, our dual connectiv-
ity streaming enables high-fidelity viewport (72 dB–78 dB) at
8K–30fps for both 360◦videos, which considerably advances
the state-of-the-art. In particular, our approach enables gains
of up to 12.5–13 dB gain in immersion fidelity over the two
reference methods.
The performance gains of our approach are enabled by sev-

eral key novelties such as parallel LTE and NR link transmission,
scalable multi-layer 360◦tiling design, and optimal allocation of
communication and computing resources. Similarly, we can see
that our single connectivity streaming provides an up to 4.5 dB
gain forRunnerand an up to 3.8 dB gain forBasketballover
the reference methods, which is also enabled by the proposed
scalable multi-layer 360◦tiling and optimal allocation of com-
munication resources in this case.
9) Impact of Transient NR Link Loss:Here, we examine the

benefits and system reliability enabled by our LTE-NR dual
connectivity streaming. In Fig.12, we examine the delivered
immersion fidelity over time for a dual-connectivity user, where
we include as a reference a variant of our system that uses only
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Fig. 11. Performance comparison between our proposed methods (single and
dual connectivity) and the state-of-the-art methods MPEG-DASH and VRCast
(streamed 360◦content (a)Runner)and(b)Basketball).

Fig. 12. Performance comparison for our proposed method with and without
a parallel LTE link (for streaming the 360◦videoRunner).

the NR link (single connectivity) to stream the content. We can
observe Fig.12that notable WS-PSNR variation is observed
at some time instances for both methods under comparison.
These are due to transient NR link drops or a mismatch between
the delivered enhancement representation viewport content and
the actual user viewport, each caused by rapid head navigation
movements. Still, the observed immersion fidelity variation is
much lower for our dual-connectivity system, which consider-
ably increases its quality of experience and reliability, relative to
Connectivity 2 (No LTE)that experiences an application down-
time during such instances. Concretely, a viewport quality gain
of 4 dB and a six times smaller standard deviation of viewport
quality are enabled over the latter method, as seen from the two
respective graph insets in Fig.12. Similarly, we can also observe
that the user experienced a 5.5% application downtime under the
Connectivity 2 (No LTE)method, compared to 0% downtime

in the case of our method. These benefits merit the integrated
dual-connectivity streaming proposed by our framework.
10) Other Performance Measurement Metrics:In this sec-

tion, we compare the performance of our methods with MPEG-
DASH and VRCast with respect to multiple alternative per-
formance measurement metrics. We obtained these results for
two more videos,AcademicandBridge[37], in addition to
BasketballandRunner. TableIVcompiles the performance
of the different methods in terms of the video quality metrics:
PSNR, Mean-Squared-Error (MSE), Structural Similarity Index
Measure (SSIM)[38], and Video Multimethod Assessment Fu-
sion (VMAF)[39]. In particular, these results are shown in both
mean and standard deviation values, for each metric, 360◦video,
and method. Again, we can observe that our proposed meth-
ods (Connectivity 1 and Connectivity 2) perform better than
MPEG-DASH and VRCast for all four videos in terms of the
alternative metrics as well.
11) Impact of LTE Link Capacity:We set the LTE chan-

nel capacity to 50 Mbps for our simulation experiments. In
this section, we set this capacity uniformly distributed between
20 Mbps–100 Mbps[40]to observe its impact. We conducted
the simulation experiment in this setup using the videoRunner
for Connectivity 1, Connectivity 2, MPEG-DASH, and VR-
Cast. The results are presented in TableV. We can see that the
varying LTE channel capacity does not cause any significant
changes in the results for any of the methods under examina-
tion and that our approach continues to demonstrate consistent
performance gains.
12) Dataset Contribution:To carry out the evaluations in

TablesIVandV, we first generated and recorded the rate-quality
trade-offs for each 360◦GOP tile of all four 8 K (full UHD)
360◦video sequences used in our evaluation, for the four qual-
ity metrics considered in TablesIVandV. To promote further
research and follow up work, we have organized this informa-
tion in a dataset that we contribute to the community via this
publicly accessible web link[41]. The rate-distortion trade-offs
and navigation traces for the 360◦content we used have been
contributed earlier in[42], and they have been used similarly in
recent studies[21],[22].

VIII. CONCLUSION

We studied rate-distortion-computing optimized live 360◦

video streaming to heterogeneous mobile VR clients in 5G net-
works, featuring devices with single (LTE) or dual (LTE/NR)
cellular connectivity. We compress the live content using scal-
able 360◦tiling at the origin and send it towards the clients
over a single backbone network link. A mobile edge server then
adapts the incoming streaming data to the individual clients
and their respective down-link transmission rates using for-
mal rate-distortion-computing optimization. Single connectiv-
ity clients are served by the edge server a baseline representa-
tion/layer of the content adapted to their down-link transmission
capacity and device computing capability. A dual connectivity
client is served in parallel a baseline content layer on its LTE
connectivity and a complementary viewport-specific enhance-
ment layer on its NR connectivity, synergistically adapted to the
respective down-links’ transmission capacities and the client’s
computing capability.
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TABLE IV
PERFORMANCERESULTSACROSSFOURDIVERSEMETRICS AND360◦VIDEOS.MEAN ANDSTANDARDDEVIATIONVALUESARESHOWN

TABLE V
PERFORMANCERESULTSACROSSFOURDIVERSEMETRICS IN THECASE OF ATIME-VARYINGLTE CHANNELCAPACITY.MEAN ANDSTANDARDDEVIATION

VALUESARESHOWN

We formulated two optimization problems to conduct the op-
eration of the edge server in each case, taking into account the
key system components of the delivery process and induced end-
to-end latency, aiming to maximize the immersion fidelity deliv-
ered to each client. We explored respective geometric program-
ming optimization strategies that compute the optimal solutions
at lower complexity, and rigorously examined their computa-
tional complexity. We demonstrated viewport quality gains of up
to 4 dB and 13 dB respectively for 4 G/LTE and LTE/NR clients,
over two state-of-the art reference methods. We also showed that
our system is robust to imprecise navigation likelihood predic-
tion, transient NR link loss, dynamic LTE bandwidth variations,
and diverse 360◦video content. We contrasted our results over
five popular video quality metrics that verified our framework’s
consistent performance. Lastly, we demonstrated that 8K–30 fps
360◦videos can be streamed at high fidelity using our system.
We share with the broad TMM community a dataset that cap-
tures the rate-quality trade-offs of the 360◦video content used
in our evaluation, for multiple contemporary quality metrics, to
stimulate further studies and follow up work[41].
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