THE CONJUGATE UNIFORMIZATION VIA 1-MOTIVES

SEAN HOWE, JACKSON S. MORROW, AND PETER WEAR

ABSTRACT. We use the p-divisible group attached to a 1-motive to gen-
eralize the conjugate p-adic uniformization of lovita-Morrow—Zaharescu
to arbitrary p-adic formal semi-abelian schemes or p-divisible groups
over the ring of integers in a p-adic field. This mirrors a mixed Hodge
theory construction of the inverse uniformization map for complex semi-
abelian varieties.
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1. INTRODUCTION, STATEMENT OF RESULTS, AND CONTEXT

Let K be a p-adic field; that is, a complete discretely valued extension
of Q, with perfect residue field k. Let K be an algebraic closure of K
and let C' be the completion of K. We write K" C K for the maximal
unramified extension and & for the common residue field of K, K, and
C. For G a p-divisible group or p-adic formal semi-abelian scheme over
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Ok, we may evaluate points on a p-adically complete Og-algebra R by
G(R) := limy G(R/p*) (for a p-divisible group, the points & la Tate [16,
§2.4]). We write G[p™] for the p-divisible group, T,G = lim,, G[p"] for the
Tate module, and V,G = T,G ® Qp; the latter two are functors on Og-
algebras (since even in the formal case G[p"] promotes automatically to a
scheme over Of), but if we do not include an argument they are evaluated
on K and equipped with the action of Gal(K /K).

For G as above, we have the functorial Hodge—Tate exact sequence [16,
§4]

0 — LieG ®(9K C(l) — TpG ®Zp C — WaGpee]V ®(9K C —0.

It depends only on G[p*°], and by [16, Corollary 2] there is a unique Galois
equivariant splitting

(1.0.1) T,G — Lie G @0, C(1).

As in [10, Theorem A], the kernel of Eq. (1.0.1) is T,G(Oguw) = T,G(K"),
i.e. the Tate module of the maximal étale p-divisible subgroup of G: this is
evidently contained in the kernel by functoriality, but the kernel is crystalline
as a sub-representation of 7),G' and of Hodge-Tate weight zero by definition,
thus unramified by a standard result in p-adic Hodge theory.

We will usually assume that 7,G(K"") = 0, equivalently that G does not
contain a non-trivial étale p-divisible subgroup, equivalently that Eq. (1.0.1)
is injective. This condition is invariant under extension of p-adic fields and
is not too serious, as, e.g., in the p-divisible case one can just quotient by
the maximal étale p-divisible subgroup to reduce to this setting. However,
it simplifies statements considerably (see Lemma 5.8 for why!).

In this work, we construct an integration homomorphism

T: G(0k) — (Lie G ®0, C(1))/T,G,

by imitating with p-divisible groups a construction of the inverse of the
uniformization map for a complex semi-abelian variety via the extensions of
mixed Hodge structures attached to 1-motives. The map I is functorial and
compatible with extensions K C K’ C C of p-adic fields. The integration
homomorphism T is continuous (but see Remarks 1.5 and 6.9 for a subtlety
regarding compatibility with infinite extensions). Our main result is

Theorem 1.1. Let K be a p-adic field and let G be a p-divisible group or
p-adic formal semi-abelian scheme over Ok. If T,G(K"™) = 0, then
(1) Ker(I) = G(Ox)P~4Y, the subgroup of p-divisible elements (see Def-
inition 2.3).
(2) I(G[p™](Ok)) is the set of y € (Lie G ®o, C(1))/T,G such that
(a) y is stabilized by Gal(K/K),

ITo wit, if the Hodge—Tate weights are zero then the filtration on the associated filtered
isocrystal is trivial, thus it corresponds to an unramified Galois representation under
Fontaine’s equivalence. See [10, Appendix A] for another argument.
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and, for Vy = T, ® Q, where Ty, is the extension of Z, by T,G

obtained by pulling back along Z, — (Lie G ®o, C(1))/1,G, 1 — v,

(b) V, is a crystalline representation of Gal(K/K), and

(c) the mazimal unramified quotient of Vy, is a split extension of Q,
by V,G(R) as a Gal(R/k)-representation.

We make some clarifying remarks on the statement of Theorem 1.1.

Remark 1.2.
(1) Because T,G(Ok) = 0, any p-divisible Og-point is uniquely p-
divisible, and the Fontaine construction (Example 2.4) induces

Hom(Z[1/p], G(k)) = Hom(Z[1/p], G(Ok)) = G(O )P~4.

In particular, the p-divisible elements are insensitive to purely rami-
fied extension. Note that the prime-to-p torsion, which is in bijection
by reduction with prime-to-p torsion in G(k), is always p-divisible.
From this it also follows that if G(k)/G[p™](k) admits a set of p-
divisible representatives in G(k) then I(G[p>=](Ok)) = I(G(O))
— this occurs, e.g., when « is algebraically closed or finite.

(2) The crystalline condition (b) is necessary — for example, when G =
poe, the non-crystalline Tate module of the semistable elliptic curve
G2 /p” can be obtained from a y satisfying (a) and trivially (c).

(3) The condition (c) is automatically verified for G such that

Extaair/r) (Qp, VpG(R)) = 0.

For example, it suffices that k be algebraically closed, or that G[p*]
be connected, or that G be a semi-abelian scheme and s be finite
(see Theorem 1.3 below).

In the setting of a local field K and a p-adic formal semi-abelian scheme
over Ok, we prove that the integration map is actually injective on G[p*>*](Ok).

Theorem 1.3. Suppose [K : Q,] < oo, G is a p-adic formal semi-abelian
scheme over Ok, and T,G(Okw) = 0. Then I factors as the projection

(1'3.1) G(OK) — G[poo](OK) % G(OK)prime—to-p torsion N G[poo](OK)

composed with the injection I: G[p>®](O) — (Lie G ®o, C(1))/T,G. The
image consists of the points y stabilized by Gal(K/K) with V, crystalline
(notation as in the statement of Theorem 1.1).

Remark 1.4. In the proof of Theorem 1.3, we see how to extend this result
to certain p-divisible groups. Indeed, we will prove that for any p-divisible
group H/Ok with T,H(Ogw) = 0 and T,H (k) = 0, the Og-points of H
can be identified with the set of crystalline points in (Lie H ®p, C(1))/T,H.

We show in Section 6 that I can also be constructed using Fontaine in-
tegration [7], so that it agrees with the map studied in [10]. Theorem 1.3
thus generalizes the main result of [10], which treats the case where G is the
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base change to Ok of a good reduction abelian variety over a finite unram-
ified extension of Q. In [10], the trivial decomposition of Eq. (1.3.1) into
the points of the p-divisible group and the prime-to-p torsion is not clearly
described, so that one factor is never identified as being the points of the
p-divisible group. As a result, in [10], this uniformization is presented as a
result about abelian varieties.

By contrast, we wish to emphasize that this uniformization is purely a
result about p-divisible groups. Moreover, the main motivation for this work
was to give a simpler and more general construction of the uniformization
of loc. cit. rendering its key properties evident via the theory of p-divisible
groups. Beyond extending the field of definition, our generality allows for,
e.g.,

(1) the connected component of the Néron model of an arbitrary abelian
variety (after finite extension to obtain semi-abelian reduction), and
(2) non-algebraizable good reduction abeloid varieties.

We refer to the characterization of the Og-points of certain p-divisible
groups described in Theorem 1.3 and Remark 1.4 as the conjugate uni-
formization because the splitting of the Hodge—Tate filtration is an analog
of the conjugate filtration in complex Hodge theory (and to distinguish it
from the Scholze-Weinstein uniformization, recalled below in Section 7).

Remark 1.5. In [10] an emphasis is placed on the continuity properties of
I on G(Of) = UK'QC,[K':KKOO G(Ok+) — this aspect did not appear in
Theorem 1.1 or Theorem 1.3 because it plays no role in the construction
and because we have stated these results using points in a single p-adic field
while the subtle topological issue in question apears only if we consider all
Oz-points at once. See Remark 6.9 for further discussion.

Before describing our construction of I and explaining how it leads to
a proof of Theorem 1.1, we take a brief detour to explain the analogous
construction of the inverse uniformization map for complex abelian varieties.

1.6. Uniformization of complex semi-abelian varieties. Let G be a
semi-abelian variety over C, that is, an extension of an abelian variety by a
torus. Via exponentiation, we obtain a uniformization

exp: LieG/H(G(C),Z) — G(C).

The inverse can be constructed by integration: if we identify Lie G with the
dual to the space of invariant differentials on G, then € G(C) maps to

Ic(x): w|—>/€xw.

This integral factors through the category of 1-motives [5, §10] — that
is, to the point x we can associate the 1-motive G, : Z — G where the map
sends 1 to z. Taking homology gives an extension of mixed Hodge structures

0— Hi(G,Z) — H(Gy,Z) - Z — 0.
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Concretely, Hi(Gy,Z) is the homology of G relative to {e,z}, so that the
class 1 in the quotient trivial mixed Hodge structure Z corresponds to any
path from e to x. The integration map can then be obtained by quotienting
by the Hodge filtration Fil~! in the first two terms to obtain

0 — H1(G,Z) —— Hi(G.,7) > 7 > 0
0 — LieG =——— LieG, —— Lie G/H\(G, 7).

Tracing through the construction, we find I¢(z) is the image of 1 € Z.

Example 1.7. When G = G,,, if we trivialize Lie G via the vector field
x0,, then the uniformization can be identified with the complex exponential

exp: C/Z(1) — C*

whose inverse is the logarithm map obtained by integrating the dual basis
d?z for wex from 1 to . It is a linear algebra exercise to see that there
is a natural identification Extz_nms(Z,Z(1)) = C/Z(1), and to verify that
the mixed Hodge structure on the first homology of the (twice punctured)
nodal cubic obtained from C* by glueing 1 and z, which is canonically an
extension of Z by Z(1), is matched in this identification with log(z).

1.8. Construction of the map I and outline of proof. Returning to the
setup at the start of the introduction, we now construct the homomorphism

I: G(Ok) — (LieG ®p, C(1))/T,G.

The construction is functorial and compatible with extension K ¢ K’ C C.
To construct it, to any point x € G(Ok) we attach the Kummer extension
& 0= Gp™] = G[p™] = Q,/Zy, — 0
of p-divisible groups over Ok given by formally adjoining p-power roots
of —x to G. When G is a p-adic formal semi-abelian scheme, this can be

identified with the p-divisible group of the p-adic formal 1-motive Z RNyl
with the extension structure coming from the weight filtration.
We then take Tate modules and apply Eq. (1.0.1) to obtain

0 y T,G y T,Gy Z,

| | |

0 — LieG @0, C(1) = Lie G, @0, C(1) — (LieG ®0, C(1))/T,G.

~

We define () to be the image of 1 € Z, in (Lie G ®0, C(1))/T,G.

To prove Theorem 1.1, we first establish that all rigidified extensions
(Definition 4.3) of Q,/Z, by G[p™] are of the form &, for z € G[p>](Ok)
(cf. Theorem 4.4). Using that &, is split if and only if z is p-divisible and a
simple argument again using that crystalline representations of Hodge—Tate
weight zero are unramified, we can characterize the kernel on all of G(Ok)
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as the p-divisible elements. The crystalline characterization of the image is
then immediate from the equivalence between lattices in crystalline repre-
sentations with Hodge-Tate weights {0,1} and p-divisible groups (see e.g.,
[12] or [14, Corollary 6.2.3]) — indeed, this gives an extension of Q,/Z, by
G[p™>] attached to any y satisfying (a) and (b), and the analysis of exten-
sions indicated already shows it comes from an z € G[p*](Ok) if and only
if it also satisfies (c).

1.9. Outline. In Section 2, we recall some constructions regarding p-divisible
groups, p-adic formal semi-abelian schemes, universal covers, and p-divisible
elements. In Section 3, we give a construction of the p-divisible group at-
tached to a 1-motive, and in Section 4, we discuss rigidified extensions of
p-divisible groups. Because it is of independent interest and the proofs are
not any more difficult, in Section 3 and Section 4, we work in more generality
than will be needed for the application to Theorem 1.1 and also discuss some
complements (e.g., the p-divisible group of a Raynaud-uniformized abeloid
variety) — for the proof of Theorem 1.1, the key result is the identification
of a p-divisible group G with the moduli of rigidified extensions of Q,/Z,
by G. In Section 5, we prove Theorem 1.1, and in Section 6, we show the
equivalence with the definition of I via the Fontaine integral and give an-
other construction using the crystalline incarnation of the universal cover.
In Section 7, we discuss geometric aspects of the conjugate uniformization.

1.10. Acknowledgements. We thank the referee for their detailed reading
of our work and for many helpful comments.

2. PRELIMINARIES

In this section, we recall the construction of the universal cover of a p-
divisible group or p-adic formal semi-abelian scheme and its basic properties.

Let R be a p-adically complete ring, and let G be a p-divisible group or
a p-adic formal semi-abelian scheme over R. The universal cover of G is the
functor on p-adically complete R-algebras

G = Hom(Z[1/p],G) = lim(G & G & ---), S+ Homg(Z[1/p], G(S)).

When G is a p-divisible group, we can replace Homz(Z[1/p], -) with Homz, (Qj, -).
Inside of G, we have the Tate module

T,G = Hom(Z[1/p]/Z, G) = Hom(Q,/Z,, G) = lim(1 & Gp] & Gp?*] & ---).

Of course, T,G only depends on G[p™], and it is the kernel of the projection
G- G given by evaluation at 1 (an fpqc surjection when restricted to the
category of p-nilpotent R-algebras endowed with the fpqc topology).

The key property of G is that, by a construction due to Fontaine, it is
invariant under topologically nilpotent thickenings:



THE CONJUGATE UNIFORMIZATION VIA 1-MOTIVES 7

Proposition 2.1. Let S be a p-adically complete R-algebra and let I be a
topologically nilpotent ideal in S. Then reduction induces an isomorphism

G(S) = G(S/I).

Proof. By considering liftings from S/(I,p*) to S/I and passing to the limit,
it suffices to suppose p*¥ = 0 on S and that I is nilpotent. In this case, let
(91,92,...) € G(S/I), and choose arbitrary element-wise lifts g1, ga, ... to
G(S). Then, we claim that for N sufficiently large,

(pN§N7PN§N+17 .- )

is independent of choices and furnishes a lift to G/(S) that is independent, of
the choices thus unique. Indeed, two different lifts of g; differ by an element
of ker(G(S) — G(S/I)), and the Drinfeld construction [11, Lemma 1.1.2]
shows a large power of p annihilates this subgroup. ([

Remark 2.2. We note that Proposition 2.1 for G a p-divisible group appears
as [14, Proposition 3.1.3(ii)], and the proofs are similar.

Definition 2.3. We say an element of G(S) is (uniquely) p-divisible if it
admits a (unique) compatible system of p-power roots in G(.5).

Note that an element of G(5) is p-divisible if and only if it is in the image
of G(S) — G(S), and that the p-divisible elements are uniquely p-divisible
if and only if T,,G(S) = 0.

Example 2.4. If K is a p-adic field with residue field x and G/Of, then
Proposition 2.1 gives
G(Ok) = G(k).

In particular, G(Ok) and the p-divisible elements of G(Ok) are invariant
under finite totally ramified extensions. Note that a p-divisible element lies
in the formal neighborhood of the identity if and only if it comes from an
element of T,G(k), and when G is semi-abelian, it lies in the p-divisible
group if and only if it comes from an element of V,G(k) = T,G(k) ® Qp.

Note that T),G (k) is often much larger than T,,G(Og) — for example, if
K is algebraically closed, then G.[p™] = G2 x (Qp/Z,)" where G2 is the
connected component of the identity” and r is the rank of T,G(k), but for a
generic lift of G to Ok no copy of Q,/Z, will lift to a subgroup so we will
have T,G(Ok) = 0. In this case, T,G(k) is identified with the subgroup of
G (Of) consisting of points that are (uniquely) p-divisible in G(Ok), and
in fact this subgroup determines the extension structure for the connected-
étale sequence (see Example 4.9).

Remark 2.5. It also follows from Proposition 2.1 that, for H; and Hs
p-divisible groups over R and I an open topologically nilpotent ideal of R,

Hom(H;, Hy) = Hom(H, g7, Har/1) @ Qp.

QEquivalently, we may consider this as a formal group.
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In other words, to give a map of universal covers is the same as to give a
map in the isogeny-category of p-divisible groups over R/I. This is a helpful
way to encode the independence of the latter on the choice of I while also
bringing to the forefront the Fontaine lifts as in the proof of Proposition 2.1.
We use this only in the case when H; is étale, which immediately reduces
to the case that Hy = Q,/Z, where it is an immediate consequence of

Proposition 2.1 and the identity T),Ho(A) ® Q, = Ha(A) for any R-algebra
A such that p is nilpotent in A.
3. THE p-DIVISIBLE GROUP OF A 1-MOTIVE

In this section, we construct the p-divisible group of a 1-motive. First,
we recall the notion of a 1-motive (see [5, §10], [2]). Let R be a ring.

Definition 3.1. A 1-motive over Spec R is a homomorphism ¢: M — G
where G is a semi-abelian scheme over R and M is an étale Z-local system
on Spec R.

Given a 1-motive @ and a prime p, we can construct an extension of group
schemes over R

£, 0=G— Gy, - M®(Z[]1/p]/Z) =0
by formally adjoining p-power roots along ¢. Precisely, G, is the push-out

M——— G

(3.1.1) i ’ l

M ®Z[1/p] — G,

This push-out can be realized concretely as a carrying law: if M is trivialize-
able then, fixing a trivialization M = Z™ and writing I, = Z[1/p| N [0,1) C Q,

(3.1.2) Go2 | | G gs+hi=(g+h—o(ls+t])ser)
telm

where here |- | denotes floor and {-} denotes the fractional part. The general
case is reduced to the case of M trivializeable by descent from a finite étale
cover.

Remark 3.2. If we take the short exact sequence
0—>M-—>M®Z]1/p| - M & (Z[1/p)/Z) — 0
and apply the functor Hom(-, G), the boundary map
Hom(M,G) — Ext(M ® (Z[1/p]/Z), G).
sends ¢ to the extension &,.

Again, after taking a trivialization of M, we have that

(3.2.1) G,lp"] = | ] Golp":
te(1/p™ZN[0,1))™
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where G, [p"]; is the fiber of multiplication by p™ on G above p(p"t).
In particular, G, [p*] is a p-divisible group, and &£,[p*°] is an extension
by p-divisible groups

Eslp™]: 0 = Gp™] = Gu[p™] = M ® (Qy/Zy) — 0.

Definition 3.3. The p-divisible group attached to the 1-motive ¢: M — G
is G,[p™], and the extension structure £,[p>] is the weight filtration.

Remark 3.4. Over C, Eq. (3.2.1) agrees with the p™ torsion of a 1-motive
as constructed in [5, (10.1.5)] (in particular, the minus sign in the push-
out diagram Eq. (3.1.1) arises naturally from the Koszul sign rule). More
generally, this construction agrees with the construction of the p-divisible
group attached to a l-motive in [2, §2.4].

Next, we define a p-adic formal 1-motive.

Definition 3.5. If R is p-adically complete, a p-adic formal 1-motive is a
homomorphism M — G where M is an étale Z-local system on Spf R (or
just Spec R/p) and G is a p-adic formal semi-abelian scheme over Spf R.

If G is a p-adic formal semi-abelian scheme over R, then applying the
previous construction over R/p™ for all n yields an extension of p-divisible
groups E,[p™°] over R. Note that if ¢ factors through G[p>], then in the
construction of G,[p™] we may dispense with G altogether and work from
the beginning with G[p*°] in its place. Note that the maps ¢: Z — G[p™]
correspond exactly to the points a la Tate,

Gp™|(R) := liin colim, G[p"](R/p"),

which typically is much larger than G(R)[p].

On the other hand, there are sometimes very interesting extensions of
G[p™>] that can only be seen by considering points in G, as the following
example illustrates.

Example 3.6. Let E/Z((q)) be the Tate elliptic curve, and let ¢: Z —
Gm(Z((q))) sending 1 to g. Then there is a canonical isomorphism E[p™] =
(Gm)p[p™]. Even if we p-adically complete, this extension of Q,/Z, by fip
still does not arise from a 1-motive factoring through piye, which see only
Serre-Tate extensions; this version was treated in detail in [8], where the
construction of &, for G = G, and M = Z was referred to as the theory of
Kummer extensions and was used to unify computations for p-adic modular

forms in Serre-Tate and cuspidal coordinates.

Example 3.7. There is a completely analogous construction for rigid ana-
lytic 1-motives, and using this one can construct the p-divisible group of a
Raynaud uniformized abeloid variety in the same way using a rigid 1-motive.
In this case one obtains a p-divisible group over K that does not extend to
Ok (but can sometimes still be made sense of algebraically over a complete
Og-algebra in the limit by adding a formal variable as in Example 3.6).
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These kinds of examples will not play a serious role in the remainder of this
work because of Theorem 4.6 below, which implies that for H a p-divisible
group over the ring of integers in a p-adic field, up to a minor discrepancy
all extensions of Q,/Z, by H can be obtained already from points of H.

4. RI1GIDIFED EXTENSIONS

In this section, we define rigidifed extensions and prove Theorem 4.6. Let
R be a p-adically complete ring, and let H/R be a p-divisible group. Suppose
M is a Zy-local system on Spf R (equivalently Spec R/p) and ¢: M — H is
a Zp-linear homomorphism. We note also that the datum of M is equivalent
to the étale p-divisible group M ® Q,,/Z, (from which M is recovered as the
Tate module).

Remark 4.1. It is tempting to call ¢ a p-divisible 1-motive, but this would
be a mistake (see Remark 4.10).

Example 4.2. Suppose ¢: M — G is a p-adic formal 1-motive over Spf R
such that ¢ factors through G[p>]. Then ¢ extends uniquely to

0 ® Ly: M @ Ly, — Gp™].

Given ¢: M — H, we form the pushout H, in the category of sheaves
on p-nilpotent R-algebras with the fpqc topology. This is analogous to the
earlier construction Eq. (3.1.1) with 1-motives but replacing Z[1/p] with @,
and Z with Z,:

M —" s H

| |

M®Q, — H,.

Note that Q, and Z, are equipped with their natural topologies and should
be interpreted here as topological constant sheaves — that is, for any p-
nilpotent R-algebra S, Q,(S) (resp. Z,(S)) is the set of continuous maps
from Spec S to Q, (resp. Z,).

After a pro-finite étale cover to trivialize M, this admits an identical
explicit description via a carrying law. In particular, we obtain a short
exact sequence

E,: 0+ H - H, - M® (Qy/Zy) = 0
and at the level of universal covers we have the short exact sequence
£, 0 H—H, > M®Q, =0

in the category of sheaves on p-nilpotent R-algebras with the fpqc topology.
In fact, there is another important piece of data in the mix: there is a
canonical section s,: M ® Q, — ﬁw of the induced extension of universal
covers ‘cjso coming from the canonical map M ® Q, — H, extending —¢.
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Definition 4.3. With the notation as above, we refer to an extension £ of
M ® (Qp/Z,) by H equipped with a section s of E-M® Qy as rigidified.
We let RigExt(M ® (Q,/Zy), H) be the functor on p-adically complete R-
algebras sending .S to the set of isomorphism classes of rigidified extensions
of Mg ® (Qp/Zp) by Hg.

We now describe how one can interpret the functor RigExt(M®(Q,/Z,), H)
in terms of p-adic 1-motives.

Theorem 4.4. The assignment ¢ — (E,,5,) is an isomorphism of functors
from p-adically complete R-algebras to abelian groups

Hom(M, H) — RigExt(M ® (Q,/Z,), H)
where the right-hand side is equipped with the Baer sum.

Proof. 1If (€, s) is a rigidified extension, let sy denote the composition of s
with projection to the first coordinate from & — &:

0—— H——E—— MoQ, —— 0

|1

0 > H ® (Qp/Zp) —— 0

When we restrict so to M = M ® Z, — M ® Qp, this morphism factors
through the kernel of the bottom right map, and so we recover a map M —
H. In other words, sg lies in Hom(M, H), and hence we obtain a canonical
isomorphism from the push-out property

E_sg — &
compatible with the sections. Note that £_,, = &, and so we have an
isomorphism & = &, .
The assignment (£,s) — so is well-defined and gives an inverse to the
map in the statement of the theorem. That the map is compatible with the

group structures is immediate by comparing the push-outs in the definition
of £, and of the Baer sum of extensions. ([l

Lemma 4.5. The kernel of the induced map
Hom(M, H)(R) — Ext(M ® (Qp/Zp), H)(R)
obtained by forgetting the rigidification is the image of Hom(M ®Q,, H)(R).

Proof. Indeed, by the push-out property any element of Hom(M ®Q,, H)(R)
restricting to a given ¢ € Hom(M, H)(R) gives rise to an isomorphism of
&, with the trivial extension, and vice versa. [l

In our main case of interest, we can also understand the image:

Theorem 4.6. Suppose R/p is Artinian local with residue field k. Then a
rigidification of € € Ext(M ® (Qp/Zy), H) is equivalent to a splitting of &
in the isogeny category of p-divisible groups over k. In particular,
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(1) If the residue field k is algebraically closed, then any extension of an
€tale p-divisible group by H can be rigidified.

(2) If the residue field k is perfect, then to give a rigidification it is equiv-
alent to give a splitting in the isogeny category of p-divisible groups
over k of the induced extension of Q,/Z, by H. In particular, if
H, is connected, then any extension of an étale p-divisible group by
H can be uniquely rigidified.

Proof. The first part of the theorem follows from Remark 2.5. Suppose given
an extension &£ as in (1) or (2). Then to split £ it is equivalent to split &, up
to isogeny. In the first case, the category of p-divisible groups up to isogeny
over k is semi-simple, so it is always split. In the second case, the category
may not be semi-simple but the slope decomposition still descends to k, so
that a splitting occurs purely in the slope zero (étale) part. O

Remark 4.7. The p-divisible group of the Tate curve over F,((¢g)), an ex-
tension of Q,/Zy, by pp~ (see Example 3.6), shows that the assumption that
the residue field is perfect in (2) cannot be removed.

Example 4.8. Consider the projection map

7: Gal(Q,/Qp) — Gal(F,/F,) = Z — L.

The Galois representation is the Tate module of a non-trivial exten-

1 7
0 1
sion of Q,/Z, by itself over Z, that cannot be rigidified even if we allow
passage to arbitrary finite extensions.

Example 4.9. In this example, we describe how the canonical splitting of
the connected-étale sequence over k is related to Theorem 4.6-(1). Suppose
(for simplicity) that & is algebraically closed, and let G be a p-divisible group
over Ok. If T,G(Ok) = 0, then T,G(r) C G(r) = G(Ok) is identified via
projection to the first coordinate with the Z,-module M of elements in
G (Ok) that are p-divisible in G(Ok). We refer the reader to Example 2.4
for further discussion. The connected-étale sequence

0G"=G—=G* >0

induces an isomorphism of M ® (Q,/Z,) with G®, and this is the exten-
sion of G” determined by the inclusion map ¢: M < G”*. Moreover, the
rigidification s, from Theorem 4.6-(1) comes from the map ¢.

Remark 4.10. The category of rigidified Breuil-Kisin—Fargues modules
(see [1], [3, §4] provides a natural category of cohomological motives over C,
(for example, for a smooth proper formal scheme over Oc, with torsion-free
crystalline cohomology, there is a rigidified Breuil-Kisin—Fargues module in
each cohomological degree that recovers all other p-adic cohomology theories
and their comparisons). The category of p-divisible groups over Oc, is
equivalent to the full sub-category of the category of Breuil-Kisin—Fargues
modules with slopes in [0,1], but if Hyg is not isoclinic then there is no
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canonical choice of a rigidification for H — a rigidification here amounts
to the choice of an isogeny HFP <F, Oc,/p — H@Cp /p inducing the identity
modulo mg¢,. If H is connected and equipped with a rigidification, then a
rigidified extension as considered in this section is exactly an extension in the
category of rigidified Breuil-Kisin—Fargues modules. The natural category
analogous to 1-motives here is the category of rigidified Breuil-Kisin—Fargues
modules with slopes in [0, 1], and Theorem 4.6-(2) expresses the fact that
the choice of a rational structure over a discretely valued subfield induces a
canonical rigidification.

5. PROOF OF MAIN THEOREM

In this section we construct the map I and prove Theorem 1.1. Before
doing so, we recall the setup and restate our main result.

Let K be a p-adic field and let G be a p-divisible group or p-adic formal
semi-abelian scheme over Og. We will construct an integration homomor-
phism

I: G(Ok) — (LieG ®p, C(1))/T,G,

and prove the following results.

Theorem 5.1. If T,G(K") =0, then

(1) Ker(I) = G(Og )P~V the subgroup of p-divisible elements (see Def-
inition 2.3).

(2) 1(G[p™](Ok)) is the set of y € (Lie G ®o, C(1))/T,G such that
(a) y is stabilized by Gal(K/K),
and, for Vy, = T, ® Q, where T, is the extension of Z, by T,G
obtained by pulling back along Z, — (Lie G ®0,. C(1))/T,G, 1 — v,
(b) V, is a crystalline representation of Gal(K/K), and
(c) the mazimal unramified quotient of Vy, is a split extension of Q,

by V,G(R) as a Gal(R/k)-representation.

5.2. Construction of the map I. We construct I as the composition of
the following two homomorphisms:
(1) The homomorphism &: G(Ok) — Ext(Q,/Z,, G[p™]), v — &, [p™],

where
E: 0= G — Gy —Qy/Zy, — 0

is the extension attached to ¢: Z — G, 1 — z by the construction
of Section 4.

(2) The homomorphism ¢: Ext(Q,/Z,, G[p™]) — (Lie GRo, C(1))/T,G
sending

0— Gp™] — H — Qp/Z, — 0.

to the image of 1 € Z, under the right vertical arrow of the dia-
gram induced by applying the canonical splitting of the Hodge—Tate
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filtration (Eq. (1.0.1)) in the left two terms,
0 > 1,G > TpH Ly

| | !

0 — LieG @0, O(1) = LieG ®0, C(1) — (LieG @0, C(1))/T,G.

Vv
@)

Remark 5.3. Note that the map Z[1/p] — G, extending —¢ in the push-
out construction of G gives rise to a canonical system of p-power roots of —z
in G;(Ok) via the images of 1/p". We compile these as an element —Zcap
of G;(Ok) lifting —z € G(Ok) C G4(Ok) and projecting to 1 € Q, =
Qp/Z, = Hom(Z[1/p],Qp/Zy). In the explicit coordinates of Eq. (3.1.2),

—Zcan ‘= ((—l‘, O)a (03 1/}7), (07 1/]02), cee )

When G is a p-divisible group, —can = 5,(1) for s, the canonical rigidifica-
tion from Section 4. We will use the element —zcay, in our comparison with
other constructions in Section 6.

Remark 5.4. We note that the homomorphism £ arises naturally as a
boundary map as follows. If we take the short exact sequence

0—=7Z—Z1/p] = Qy/Zy — 0
over Ok and apply the functor Hom(-, G), we get
T,G(0k) — G(Ok) — G(Ok) — Ext(Q,/Z,, G).
The image of a point © € G(Ok) in Ext(Q,/Z,, G) gives us G, and after

passage to the p-divisible group G.[p°], we get an extension of G[p*°].

5.5. Proof of Theorem 1.1. In this section, we prove Theorem 1.1. To
begin, we establish two lemmas concerning the maps ¥ and &£ defined in
Section 5.2

Lemma 5.6. If k is algebraically closed, then the map v is injective.

Proof. Suppose we have an extension such that 1 — 0. That means there is
a pre-image v of 1 in T,,H such that v maps to zero in Lie H ® C(1). The
Qp-span M of the Galois orbit of v is thus contained in the kernel of this
map, so M ®C C wyv ®p, C C T,H®C. Thus M is of Hodge-Tate weight
zero and crystalline (as a subrepresentation of V,H), so the Galois action is
trivial since k is algebraically closed. Thus we obtain a splitting

veM CT,H(K)=Hom(Q,/Z,, H[p™]).

Lemma 5.7. If « is algebraically closed, then Ker(€) = G(O )P4V,

Proof. We first observe that if  is algebraically closed, then by Theorem 4.4

and Theorem 4.6, & 1O is surjective. Then by Lemma 4.5 it induces

(5.7.1) GIp™)(Ox)/Glp™)(Ox )P~ = Ext(Qp/Zp, Glp™]).
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Since G[p™](Ox)P~4" is a divisible Z-module (it is a Z,-module and p-
divisible), it is injective and thus a direct summand of the Z-module G[p*°](Ok).
Thus Eq. (5.7.1) implies Ext(Q,/Z,, G[p*°]) has no non-zero p-divisible ele-
ments, so we conclude G(Of )P~ is contained in the kernel of £. On the
other hand, since every element of G(k) is p-divisible thus admits a lift to a
p-divisible element of G(Ok) by Example 2.4, we have the factorization as
an amalgamated sum

G(OK) = G[poo](OK) uG[poo](OK)p—div G(OK)pidiV.

Combined with Eq. (5.7.1), we conclude® the kernel is identically G(O )P~4v,
O

Thus, for a general K, we find the kernel of T is G(O(Kur)A)p_diVﬁG(OK).
The claim about the kernel in Theorem 1.1 then follows from

Lemma 5.8. If T,G(K") =0, then
G(O(Kur)/\)pfdiv NG(Ok) = G(OK)pfdiV

Proof. Since T,G(K™) = T,G((K"™)") = 0, any p-divisible element is
uniquely p-divisible. Thus, by considering the Galois action, we find that if

then z'/7" is also in G(Ok) for any n so z € G(Og )P~4V, O

It remains to show the crystalline characterization of the image in The-
orem 1.1. On the one hand, any point in the image of G[p™](Ok) satisfies
(a) — (c) because the Tate module of any p-divisible group is crystalline
and from the construction the extensions are rigidified. Conversely, suppose
given y satisfying (a) — (¢). Then the lattice T, in the crystalline repre-
sentation V;, has Hodge-Tate weights zero and one and thus comes from a
p-divisible group H. By full-faithfulness of the Tate module, the extension

0= T,Gp™] = T,H = Zy, — 0
comes from a diagram of p-divisible groups
0—Gp*]—-H—Q,)/Z, —0

which is an extension. It admits a rigidification by condition (c), Theo-

rem 4.4, and Theorem 4.6, and so it comes from a point in G[p*°](Ok), thus

we find y is in the image of I. This concludes the proof of Theorem 1.1.
To conclude the section, we will prove Theorem 1.3, which we now recall.

Theorem 5.9. Suppose [K : Q,] < oo, G is a p-adic formal semi-abelian
scheme over Ok, and T,G(Okw) = 0. Then I factors as the projection

G(OK) _ G[poo](OK) % G(OK)prime—to—p torsion — G[poo](OK)

3Instead of using the amalgamated sum, one could alternatively use the fact that
G(Ok) is generated by G[p™](Ox) and G(Ox)?~" to deduce the desired claim.
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composed with the injection I: G[p>®](O) — (Lie G ®o, C(1))/T,G. The
image consists of the points y stabilized by Gal(K/K) with V, crystalline
(notation as in the statement of Theorem 1.1).

Proof. Note the decomposition in Eq. (1.3.1) is immediate from the following
properties of G and the reduction map Red: G(Ok) — G(k):

(1) G(k) is a finite abelian group.

(2) The map Red induces an isomorphism

G((/)K)prlme-to-p torsion ~ G(ﬁ)prlme-to-p torsion

(3) G[p™](Ox) = Red ™ (G[p™](r)) = Red ™ (G(k)[p™)).
Now, as noted in Remark 1.2-(1), reduction induces
G(Ox )P~ = Hom(Z[1/p], G(Ok)) = Hom(Z[1/p], G(k)).

Since G(k) is a finite abelian group, the right-hand-side is identified by
evaluation at 1 with the prime-to-p torsion in G(k), thus the left-hand side
is also prime-to-p torsion. Since every prime-to-p torsion point is p-divisible,

G(OK)p—div — G(OK)prime—to—p torsion'

It remains only to show that in this case condition (c¢) in the characteriza-
tion of the image in Theorem 1.1 is superfluous. But this follows since here
the Galois representation is determined by a single matrix corresponding to
Frobenius, but the sub-representation V,G(x) does not have 1 as an eigen-
value (since otherwise there would be a non-trivial fixed vector giving rise
to infinitely many points in G(k)), thus the extension is split. O

Remark 5.10. In Theorem 1.3, the identification of G[p™°](Ok) with the
set of crystalline points in (Lie G ®o, C(1))/T,G is formulated entirely in
the world of p-divisible groups over Ok — the source, the map T|G[poo]((')K)7
and the target all only depend on G[p™]. Indeed, the only place we use
the semi-abelian scheme in the proof of Theorem 1.3 is to conclude that
G[p*](k) has finitely many points. Thus this part of the theorem holds
for any p-divisible group H/Og with the same properties, which can be
formulated by requiring that T, H(K"") = 0 and T, H (k) = 0.

6. INTEGRATION ON THE UNIVERSAL COVER AND OTHER CONSTRUCTIONS

For G a p-divisible group or a p-adic formal semi-abelian scheme over O,
in this section we write I for the integration map defined in Section 5.2
to emphasize the dependence on G. The integration map I lifts to a
homomorphism

(6.0.1) I: G(Oc¢) xg(op) G(Ok) = Lie G ®0, C(1)

which we define now: recall from Remark 5.3 that, given z € G(Ok) we have
a canonical compatible systems of p-power roots of -z, “Tean € G.(Ok).
Given a compatible system of p-power roots of z, & € G(O¢), the element
& + (—Zean) lies in T,G.(O¢), and we define I(Z) to be the image of & +
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(—Zean) in Lie G ®0, C(1) = Lie G, ®0, C(1) under the canonical splitting
of the Hodge—Tate filtration. It is immediate from the construction that this
lifts 7@.

In Section 6.2 and Section 6.4, we explain two other ways to construct
the map I. The first is via Fontaine integration as in [10], while the second
passes through the crystalline incarnation of the universal cover of a p-
divisible group as in [14]. That all three constructions agree is a consequence
of the following uniqueness result:

Theorem 6.1. Let C be the full subcategory of group-valued functors on
Nilpp,. consisting of functors represented by p-divisible groups over O or
by p-adic formal abelian schemes over Ok . The natural transformation of
functors from C to abelian groups

G Ig: G(Oc) xg(op) G(Ok) = Lie G ®0, C(1)
is the unique natural transformation that is Galois equivariant and agrees
with the canonical splitting of the Hodge—Tate filtration on

T,G(Oc) C G(O¢) xcop) G(Ok).

Proof. We first verify that I satisfies these properties. The Galois equiv-
ariance is immediate; to show it agrees with the canonical splitting of
the Hodge-Tate filtration on T,G(O¢), note that if x € G[p"](Ok) then
“Tean € VpGz(Ok) thus its image under the canonical splitting of the
Hodge—Tate filtration is zero (because zero is the only Galois invariant vector
in LieG ®p,. C(1) by [16, Theorem 2]).

Suppose now given another natural transformation I’ satisfiying these
properties and let & = (z,z1,...) € G(O¢) Xa(0e) G(Ok). Consider the
extension

Er: 0= Gp™] = G[p™] = Q,/Zy, — 0

and the induced sequence of universal covers
—_ —

0 — G[p>®] = Gz[p>] - Q, — 0.

Again by Galois equivariance, I’Gz(::/ncan) =0 and IGZ(:ECCM) = 0. Thus
I6(#) = I,(2) = 15, (T + (~Tean)) = I, (& + (~2can)) = Ic, (T) = 16(7)
where we have used functoriality and the inclusions G C G, and Lie G QO
C(1) = Lie G;®0, C(1) to make sense of the first and last equality, while the

middle equality follows since both I and I’ agree with the canonical splitting
of the Hodge-Tate filtration on 7,G,(Oc¢) and 4+ (—Zcan) € 1pG(Oc¢). O

6.2. Construction via Fontaine integration. For G an abelian scheme
or p-divisible group over Ok, in [7], Fontaine gave an explicit construction of
the canonical splitting of the Hodge—Tate filtration via “integration” along
elements of 7,GG. Concretely, when G is an abelian scheme, given (z;) €
T,G(Of) we may pullback any differential w on G to obtain

(IE:UJ) € V;?QO?/OK = C(l)v
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where the last equality follows from [7, Théoréme 1']. For abelian schemes,
it was observed in [10] that this definition extends naturally to a map

(6.2.1) I: G(Oc) (o0 G(Ok) — Lie G ®0, C(1)

In fact, just as with the extension to p-divisible groups in [7, §5], the defini-
tion works also for any p-adic formal semi-abelian scheme G/ Spf Ok given
an element (z;) € G(O¢) Xa(00) G(Ok), each z; gives a map Spf Ok, — G
where K;/K is a finite extension, thus there is no problem with the pull-
back of differentials in the formation of the Fontaine integral (the a priori
“issue” we need to circumvent is that one cannot run the argument with
arbitrary Oc-points, but for a p-adic formal semi-abelian scheme there is no
such thing as an Oz-point since O is not p-adically complete).

Proposition 6.3. Let I (resp. I) denote the homomorphism from Eq. (6.0.1)
(resp. Eq. (6.2.1)) We have that I = 1.

Proof. We will verify that the Fontaine integral I satisfies the conditions of
Theorem 6.1. The Galois equivariance is immediate from the construction,
and the agreement with the canonical splitting of the Hodge—Tate filtration
is established in [7, §5] (for p-divisible groups, which suffices by functorial-
ity). O

6.4. Construction via crystalline incarnation of the universal cover.
We first restrict to the case that G is a p-divisible group over O. Let
Bctys C BCTR, Berys € Bgr denote the usual Fontaine period rings for K,
0: B;R — C the usual map, and Fil'Bgg = tiB:er C Bgr for t any generator
of ker . By Hensel’s lemma, 6 is a map of K-algebras.

We write D for the covariant isocrystal of G, which is the Dieudonné
module of G, with p inverted and Frobenius divided by p (so, e.g., if G =
Qp/Zy, then the Frobenius is 1, while if G = Gy, it is 1/p). We write
T =T,G(O¢) and V = T[1/p]. Evaluation of Dieudonné crystals on Berys
induces (by [14, Corollary 5.1.2]) an identification of G(O¢) with (D @
BC*;},S)G":1 (note that this differs from the ¢ = p in [14] because in our
normalization we have divided the Frobenius on D by p), and the map

qlog: G(O¢) = (D ® B,

crys

)*=!' - D® Bl % Do

is the quasi-logarithm of [14, Definition 3.2.3]. We write qTo/g for the first
arrow B
G(O¢) - D ® Bjy.

Remark 6.5. Alternatively, if we interpret the universal cover as the global
sections of the corresponding vector bundle on the Fargues—Fontaine curve,
then glog is the restriction of global sections to the canonical point coc while
glog is the restriction to a formal neighborhood of co¢.

As in [14, Lemma 3.2.5], the logarithm
log: G(O¢) — G(O¢) = (Lie G)¢
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can be realized as the composition of glog with the projection

D¢ — LieGe = GrY{(Dg)e = (Di /Fil’Dg) ¢,
where Fil’Dg = wgv is the non-trivial step in the Hodge filtration on Dy
with quotient Lie G = Gr~}(Dg) = D /Fil°Dg. We thus write

10/% : é(@c) XG(00) G(OK) — LieGBCJer

for the lift of log given by composing q/l?)/g with the projection
. 10
DB:{R — LleGB$R = (DK/Fll DK)BIR'

On the other hand, we also have the constant lift log ® KB:{R coming from
the section K — B;R of 6. The difference

log — log ®K Bl
is a Galois equivariant homomorphism
£ G(Oc¢) xg(op) G(Ok) — Lie G @ Fil' Biy
and we write f for the map obtained by quotienting by Lie G @k Fﬂ?B:{R
(6.5.1) f: G(Oc) xgo0) G(Ok) — Lie G @0, C(1).

Remark 6.6. To extend this definition to p-adic formal semi-abelian schemes
G/ Spf Ok, we may assume k is algebraically closed then use the decompo-
sition from Example 2.4

G(Oc) = GMNOc) x G(x)
and projection onto G/ followed by f.

Proposition 6.7. Let I (resp. f) denote the homomorphism from Eq. (6.0.1)
(resp. Eq. (6.5.1)) We have that I = f.

Proof. We will verify the properties from Theorem 6.1 First, we have that
f is Galois equivariant since l/(;g —log® KB;'R is Galois equivariant.

We claim that f agrees on the Tate module T with the canonical splitting
of the Hodge—Tate filtration. To see this, first note that log is identically
zero on T, so that 7|T is just the reduction of 1&;. We need to check that
this is the canonical splitting of the Hodge—Tate filtration.

To that end, we note that the inclusion

T — G(O¢) = (D® B

)=
crys
is the restriction to T of the crystalline comparison isomorphism
Ve Bcrys =D® Bcrys-

As with any de Rham representation, the ith component of the Hodge—Tate
grading

Ve C=PCr Dk ek C(i)

i
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is induced by first multiplying Fil ' D with Fil' Byr to land in Fil’(Dp,,) =
VBJ{R and then projecting to V. The identification then follows from the

following commutative diagram. To better navigate the diagram, recall the
following identifications:

Fil’(Dg ® Bar) = V @ Fil'Bgr = V @ Bjy, Fil ' D = Dy,
Gr'(Dg) =Fil®(Dg) = wev @ K, and Gr 'Dg = LieG @ K

Now the first two rows of the diagram illustrate the canonical splitting of
the Hodge-Tate filtration and whose bottom row illustrates the definition

of log The above discussion shows that the image of T" under log will land
in (Gr™1Dg) ® Fil' Bqr, which we have indicated in the third row.

(Fi’Dg) @ C ————= VoC 7 (Gr''Dg)®C(1)

| l

(Fil'Dg) @ Fil’Bgr — Fil®(Dg ® Bqr) +—— (Fil"'Dg) @ Fil' Bgr

_ l

T log (Gr~'Dg) ® Fil' Byg

(Fil®Dg) ® Bgr «—— (Fil™'Dg) ® B —— (Gr 'Dg) ® Bar

O
Example 6.8. When G = pip, one obtains the explicit formula
b
a2, () = toull) ~ tog(lal = 111~ 1 (mod (er)?)
q

where ¢ € 1+my, ¢ = (q, qt/P, v ) € (14+m¢)” is a compatible family
of p power roots of ¢, and [-] denotes the multiplicative lift to W(Op) C
Bir. We refer the reader to [10, Remark 3.1.2] for an additional discussion.

Remark 6.9. Although log and log are both continuous on

U G0c) xao0) G(Ok)
[K':K]<oco0
K'CK
for the Banach-Colmez topology on G (Oc) log ® B /t? is not continuous
because the canonical section K < B r/ t? provided by Hensel’s lemma is
not continuous for the p-adic topology 1nduced by K C C. Because of this,
I is not continuous on this set (and this gives another way to explain why it
does not extend to G(O¢)). As in [10], this can be rectified at the level of

I |J GOk)— (LieG ao, C(1)/T,G,
[K":K]<oo
K'CK
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by replacing the p-adic topology on the left with a stronger topology induced
locally by the inclusion of K C Bl /t? (cf. [10, Remark 2.4]). This issue is
invisible if we only work with Og-points where the two topologies agree.

7. GEOMETRIC STRUCTURE OF THE CODOMAIN OF |

In this short section, we discuss the geometric structure of the codomain
of the integration map I. Let G be a p-divisible group over Ox. Below we
work exclusively with the adic generic fibers as in [14] of G, G, and LieG.

The universal cover G is an effective Banach—Colmez space and admits
a natural geometric structure as a diamond [15, §15.2]. The projection to
G realizes G = G/T,G (where the equality here is as diamonds), i.e. it
gives a profinite étale Scholze-Weinstein uniformization of G' by an effective
Banach—Colmez space.

Although the conjugate uniformization is not geometric, its codomain
does have a natural geometric structure: consider the maps

Lie G ®0, C(1) - (Lie G ®0, C(1))/T,G — (Lie G @0, C(1))/V,G.

The space Lie G ®p, C(1) is the C-points of an effective Banach-Colmez
space over K (a very non-trivially twisted affine space), while the space
(LieG ®p, C(1))/V,G is a negative Banach-Colmez space over K in the
sense of [6]. Thus (LieG ®o, C(1))/T,G can be thought of as either a
profinite-étale quotient of an effective Banach—Colmez space or as an étale
cover of a negative Banach—Colmez space; in particular, all three spaces in
the diagram are naturally diamonds over K.

We thus have an identification of the classical K-valued points of the
diamond G with a subset of the classical K-valued points of the diamond
(LieG ®0o, C(1))/T,G cut out by a p-adic Hodge theoretic condition.

Question 7.1. Are there any higher dimensional rigid analytic subdiamonds
of (Lie G ®p, C(1))/T,G? If so, can any be distinguished by conditions in
relative p-adic Hodge theory and matched with rigid analytic subvarieties of
G parameterizing rigidified extensions of Q,/Z, by G?

We note that this question is not asking about identifying morphisms from
any rigid analytic space over K to these diamonds. Rather, the question fo-
cuses on understanding the relationship between rigid analytic subdiamonds
of (Lie G ®op, C(1))/T,G and rigid analytic subvarieties of G.

In some related contexts there are interesting answers to these kinds of
questions. For example, the non-miniscule open Schubert cells in B;R-afﬁne
Grassmannians are diamonds which are not rigid analytic, but their rigid
analytic subvarieties still admit a nice description via p-adic Hodge theory
— via the Bialynicki-Birula map of [4, Proposition 3.4.3], they are identified
with maps to a flag variety satisfying Griffiths transversality (cf. [9, §5] and
[13, §6]). Some related questions in the context of moduli spaces of rigidified
Breuil-Kisin-Fargues modules (see Remark 4.10 for the connection to the
present work) are treated in [9].



22

(1]
2]

3]
4]
(5]
(6]
(7]
(8]
(9]

(10]

(11]

(12]

(13]
(14]
(15]

[16]

SEAN HOWE, JACKSON S. MORROW, AND PETER WEAR

REFERENCES

Johannes Anschiitz. Breuil-Kisin—Fargues modules with complex multiplication. J.
Inst. Math. Jussieu, 20(6):1855-1904, 2021.

Luca Barbieri-Viale. On the theory of 1-motives. In Algebraic cycles and motives.
Vol. 1, volume 343 of London Math. Soc. Lecture Note Ser., pages 55—101. Cambridge
Univ. Press, Cambridge, 2007.

Bhargav Bhatt, Matthew Morrow, and Peter Scholze. Integral p-adic hodge theory.
Publ. Math. de 'IHES, 128:219-397, 2018.

Ana Caraiani and Peter Scholze. On the generic part of the cohomology of compact
unitary Shimura varieties. Ann. of Math. (2), 186(3):649-766, 2017.

Pierre Deligne. Théorie de Hodge. I1L. Inst. Hautes Etudes Sci. Publ. Math., (44):5-
77, 1974.

Laurent Fargues and Peter Scholze. Geometrization of the local Langlands correspon-
dence. arXiv:2102.13459.

Jean-Marc Fontaine. Formes différentielles et modules de Tate des variétés abéliennes
sur les corps locaux. Invent. Math., 65(3):379-409, 1981/82.

Sean Howe. A unipotent circle action on p-adic modular forms. Trans. Amer. Math.
Soc. Ser. B, 7:186—226, 2020.

Sean Howe and Christian Klevdal. Admissible pairs and p-adic Hodge structures ii:
The bi-analytic Ax-Lindemann theorem. arXiv:2308.11064.

Adrian Jovita, Jackson S. Morrow, and Alexandru Zaharescu. On p-adic uniformiza-
tion of abelian varieties with good reduction. Compos. Math., 158(7):1449-1476, 2022.
With an appendix by Yeuk Hay Joshua Lam and Alexander Petrov.

Nicholas Katz. Serre-Tate local moduli. Lecture Notes in Mathematics, 868:138—-202,
1981.

Mark Kisin. Crystalline representations and F-crystals. In Algebraic geometry and
number theory, volume 253 of Progr. Math., pages 459-496. Birkhduser Boston,
Boston, MA, 2006.

Peter Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi, 1:el,
77, 2013.

Peter Scholze and Jared Weinstein. Moduli of p-divisible groups. Camb. J. Math.,
1(2):145-237, 2013.

Peter Scholze and Jared Weinstein. Berkeley Lectures on p-adic Geometry. Princeton
University Press, 2020.

J. T. Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages
158-183. Springer, Berlin, 1967.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CiTy UT 84112
Email address: sean.howe@utah.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH TEXAS, DENTON TX 76201
Email address: jackson.morrow@unt.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE City UT 84112
Email address: peter.wear@utah.edu



	1. Introduction, statement of results, and context
	1.6. Uniformization of complex semi-abelian varieties
	1.8. Construction of the map I and outline of proof
	1.9. Outline
	1.10. Acknowledgements

	2. Preliminaries
	3. The p-divisible group of a 1-motive
	4. Rigidifed Extensions
	5. Proof of main theorem
	5.2. Construction of the map I.
	5.5. Proof of theorem.main

	6. Integration on the universal cover and other constructions
	6.2. Construction via Fontaine integration
	6.4. Construction via crystalline incarnation of the universal cover

	7. Geometric structure of the codomain of I
	References

