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Abstract
In this paper we consider coloring problems on graphs and other combinatorial struc-
tures on standard Borel spaces. Our goal is to obtain sufficient conditions under
which such colorings can be made well-behaved in the sense of topology or mea-
sure. To this end, we show that such well-behaved colorings can be produced using
certain powerful techniques from finite combinatorics and computer science. First,
we prove that efficient distributed coloring algorithms (on finite graphs) yield well-
behaved colorings of Borel graphs of bounded degree; roughly speaking, determin-
istic algorithms produce Borel colorings, while randomized algorithms give measur-
able and Baire-measurable colorings. Second, we establish measurable and Baire-
measurable versions of the Symmetric Lovász Local Lemma (under the assumption
p(d+1)8 � 2−15, which is stronger than the standard LLL assumption p(d+1) � e−1

but still sufficient for many applications). From these general results, we derive a
number of consequences in descriptive combinatorics and ergodic theory.

1 Introduction

A coloring, broadly construed, is a mapping that assigns to each element of a given
structure one of a (typically finite) number of “colors” in a way that fulfills a pre-
scribed set of constraints. The prototypical example is a proper k-coloring of a graph
G, i.e., a mapping f : V (G) → [k] such that f (x) �= f (y) whenever the vertices x

and y are adjacent in G. Classical problems in combinatorics often seek to identify
sufficient conditions under which a coloring of a certain type exists.

In the last twenty or so years, a rich theory has emerged concerning the behavior of
colorings and other combinatorial notions under additional regularity requirements.
For instance, suppose that G is a graph whose vertex set V (G) is a standard proba-
bility space (e.g., the unit interval [0,1] with the usual Lebesgue measure). Does G

admit a proper k-coloring f : V (G) → [k] that is measurable, meaning that f −1(c) is
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a measurable subset of V (G) for every color c? Questions of this type are the subject
matter of descriptive combinatorics, which facilitates the fusion of ideas from com-
binatorics and descriptive set theory. For a state-of-the-art introduction to this area,
see the survey [32] by Kechris and Marks.

Throughout this paper, we shall work under the assumption that the set of all avail-
able colors is countable (although there are interesting questions about uncountable
colorings as well, see [32, §§3 and 6]). For concreteness, we can then assume that
the colors form a subset of N = {0,1,2, . . .}, so a coloring of a structure X induces
a partition X = X0 � X1 � X2 � . . . of X into countably many labeled pieces, called
the color classes. Assuming that X is a standard Borel space, we can then classify
such colorings according to the regularity properties of their color classes. For in-
stance, one can study Borel colorings, i.e., colorings in which every color class Xi is
a Borel subset of X. This notion turns out to be rather restrictive, so one often con-
siders colorings in which every color class is not necessarily Borel but measurable
with respect to some probability Borel measure μ on X or Baire-measurable with
respect to some compatible Polish topology τ on X. On the other hand, sometimes
one can aim for something even stronger than Borel; for instance, one might consider
continuous colorings, in which every color class is a clopen set.

The goal of this paper is to adapt certain powerful techniques from finite combi-
natorics to the descriptive setting. Specifically, we establish the following two groups
of results:
(A) If a coloring problem on finite graphs can be solved by an efficient distributed

algorithm, then on infinite graphs the same problem admits solutions with some
regularity properties. (See Theorems 2.10, 2.13, 2.14, and 2.15 in §2.2 for the
precise statements.)

(B) There is a measurable/Baire-measurable version of the Symmetric Lovász Local
Lemma. (See Theorem 2.20 in §2.3 for the precise statement.)

From these general facts, we derive a variety of new results in descriptive combi-
natorics, presented in §3. Here are just two examples (see §3 for the definitions of the
terms used):

Theorem 1.1 (see Theorem 3.4) There is �0 ∈ N with the following property. Fix
integers � � �0 and c. Let G be a Borel graph of maximum degree at most � and
let μ be a probability Borel measure on V (G). If c �

√
� + 1/4 − 5/2, then the

following statements are equivalent:
(i) the chromatic number of G is at most � − c;

(ii) the μ-measurable chromatic number of G is at most � − c.

Theorem 1.2 (see Theorem 3.9) For every ε > 0, there is �0 ∈ N with the following
property. Let G be a Borel graph of finite maximum degree � � �0 and let μ be
a probability Borel measure on V (G). If G contains no cycles of length 3 (resp. at
most 4), then the μ-measurable chromatic number of G is at most (4 + ε)�/ log�

(resp. (1 + ε)�/ log�).

Theorem 1.1 was previously known only for c � 0: the c < 0 case is due to
Kechris, Solecki, and Todorcevic [34, Proposition 4.6] and the c = 0 case is due to
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Conley, Marks, and Tucker-Drob [17]. The upper bound on c in the statement of The-
orem 1.1 is within 2 of best possible (see Proposition 3.6). The only previously known
general upper bound on the measurable chromatic number of Borel graphs without 3-
cycles, or even with no cycles at all, in terms of their maximum degree was �, which
is implied by the result of Conley, Marks, and Tucker-Drob [17]. Lyons and Nazarov
[37] observed (see also [32, Theorem 5.46]) that there are acyclic Borel graphs with
maximum degree � and measurable chromatic number at least (1/2+o(1))�/ log�,
which means that the bounds in Theorem 1.2 are optimal up to a constant factor, even
for acyclic graphs.

Let us now give some more details about bullet points (A) and (B). Distributed
computing is an area of computer science that, among other things, investigates ques-
tions of the following form: Given a graph coloring problem, how far in the graph
should an individual vertex be allowed to “see” in order to be able to compute its
own color? This idea is formalized in the LOCAL model of distributed computation
introduced by Linial [36]. We describe this model here in a somewhat informal way;
a precise definition, in the form needed for our purposes, is given in §2.1.

In the LOCAL model an n-vertex graph G abstracts a communication network
where each vertex plays the role of a processor and edges represent communication
links. The algorithm proceeds in rounds. During each round, the vertices first perform
arbitrary local computations and then synchronously broadcast messages to all their
neighbors. At the end, each vertex should output its own part of the global solution
(i.e., its own color). There are no restrictions on the complexity of the local compu-
tations involved or on the length of the messages that the vertices send to each other,
and the only measure of efficiency for such an algorithm is the number of communi-
cation rounds required.

We emphasize that in the LOCAL model, every vertex is executing the same algo-
rithm. This means that, to make this model nontrivial, the vertices must be given a
way of breaking symmetry. There are two standard symmetry-breaking approaches,
leading to the distinction between deterministic and randomized LOCAL algorithms:

• In the deterministic LOCAL model, each vertex is assigned, as part of its input,
a unique �(logn)-bit identifier. The algorithm executed at each vertex is deter-
ministic and must always output a correct solution to the problem, regardless of
the specific assignment of the identifiers.

• In the randomized LOCAL model, each vertex may generate an arbitrarily long
finite sequence of independent uniformly distributed random bits. The algorithm
may fail to produce a correct solution to the problem, but the probability of
failure must not exceed 1/n.

We remark that deterministic LOCAL algorithms can be simulated in the randomized
LOCAL model: each vertex can simply generate a random sequence of �3 log2 n� bits
and use it as an identifier—the probability that two identifiers generated in this way
coincide is less than 1/n.

Notice that in a LOCAL algorithm that runs on a graph G for T rounds, each
vertex only has access to information in its radius-T neighborhood. Conversely, every
T -round LOCAL algorithm can be transformed into one in which every vertex first
collects all the information contained in its radius-T neighborhood and then makes
a decision, based on this information alone, about its color. This alternative way of
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thinking about LOCAL algorithms makes it clear how they measure the “locality” of
graph coloring problems and is often more convenient to work with. (Indeed, this is
the approach we shall use in §2.1 to define LOCAL algorithms formally.) For further
background on distributed coloring algorithms, see the book [6] by Barenboim and
Elkin.

Now we can describe some of our results in group (A); for their precise statements,
see §2.2. Fix � ∈ N. We show that if a coloring problem can be solved by a determin-
istic LOCAL algorithm that runs in o(logn) rounds on n-vertex graphs of maximum
degree �, then the same problem for Borel graphs of maximum degree � admits
Borel solutions (see Theorem 2.10). Furthermore, under extra topological assump-
tions, “Borel” here may be replaced by “continuous” (see Theorem 2.13). Similarly,
randomized LOCAL algorithms that run in o(logn) rounds yield both measurable and
Baire-measurable colorings (see Theorem 2.14), and “measurable” may be upgraded
to “Borel” under additional assumptions on the growth rate of the underlying graph
(see Theorem 2.15). These general facts enable one to prove new results in descrip-
tive combinatorics simply by alluding to known distributed algorithms; for several
such examples, see §3.

While the proofs of Theorems 2.10 and 2.13 (dealing with deterministic algo-
rithms) are relatively straightforward, Theorem 2.14 (concerning randomized algo-
rithms) is more involved. In particular, it relies on a novel measurable version of the
Lovász Local Lemma that we establish in this paper, which brings us to bullet point
(B).

The Lovász Local Lemma (the LLL for short) is a powerful tool in probabilistic
combinatorics, introduced by Erdős and Lovász in the mid-1970s [23]. The LLL is
mostly used to obtain existence results, and it is particularly well-suited for finding
colorings that satisfy some “local” constraints. Roughly speaking, in order for the
LLL to apply in this context, two requirements must be met: First, a random coloring
must be “likely” to fulfill each individual constraint; second, the constraints must not
interact with each other “too much.” The precise statement of the LLL requires a few
technical definitions, so we postpone it until §2.3.1.

It has been a matter of interest to determine if the LLL can yield “constructive”
conclusions (rather than pure existence results). The first such “constructive” version
of the LLL was the algorithmic LLL due to Beck [7]. Beck’s result requires somewhat
stronger numerical assumptions than the ordinary LLL. This discrepancy has been
eventually eliminated in the breakthrough work of Moser and Tardos [43]; for the
long list of intermediate results, see the references in [43].

The Moser–Tardos method was later adapted to derive “constructive” analogs of
the LLL in a variety of different contexts. For example, Rumyantsev and Shen [49]
proved a computable version of the LLL. Here we are interested in the behavior of the
LLL in the descriptive setting. When can the LLL be used to obtain Borel, measur-
able, or Baire-measurable colorings? Partial answers to this question have been given
in [8] by the present author and in [20] by Csóka, Grabowski, Máthé, Pikhurko, and
Tyros. The main results of both [8] and [20] only apply under rather special circum-
stances: [8, Theorem 6.6] is a measurable version of the LLL for structures induced
by the Bernoulli shift actions � � [0,1]� of countable groups �, while [20, Theorem
1.3] is a Borel LLL for coloring problems on graphs of subexponential growth.
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In this paper we establish the first measurable/Baire-measurable version of the
LLL that works without any such special restrictions (see Theorem 2.20). The draw-
back is that, as in the seminal algorithmic LLL of Beck, we require stronger nu-
merical bounds than in the ordinary LLL. Nevertheless, just like Beck’s result, our
measurable LLL is sufficient for many combinatorial applications. In particular, as
mentioned above, it plays the central role in our proof that sublogarithmic random-
ized LOCAL algorithms yield measurable/Baire-measurable colorings, and hence it
lies at the heart of the measurable coloring results presented in §3. Of course, our
measurable LLL can also be used without any reference to distributed algorithms.
We give an example of such a direct application to a problem in ergodic theory in
§3.5.

We remark that, while we use the measurable LLL to establish a relationship be-
tween randomized LOCAL algorithms and measurable colorings, our proof of the
measurable LLL itself relies on the randomized LOCAL algorithm for the LLL that
was recently developed by Fischer and Ghaffari [24] and sharpened by Ghaffari, Har-
ris, and Kuhn [26]. Curiously, both the Fischer–Ghaffari algorithm and our proof of
the measurable LLL do not invoke the Moser–Tardos method and instead go back
essentially to the original ideas of Beck.

The remainder of this paper is organized as follows. We give the necessary defini-
tions and state our main results precisely in §2. Next we present a variety of applica-
tions in §3. In §4, we explain how to turn distributed algorithms into colorings with
regularity properties. Specifically, §4 contains the proofs of our results concerning de-
terministic LOCAL algorithms and reduces the results about randomized algorithms
to the LLL. Finally, we prove our measurable LLL in §5.

2 Main definitions and results

2.1 Distributed algorithms for graph coloring problems

In this section we formally introduce the terminology pertaining to the LOCAL model
of distributed computation. The nature of our main results requires us to be some-
what more pedantic with our definitions than is standard in the distributed algorithms
literature. The reader who is already familiar with the LOCAL model is encouraged
to only skim this section in order to familiarize herself with our notation and quickly
move on to §2.2, where we connect LOCAL algorithms to Borel/measurable color-
ings.

2.1.1 Graphs and structured graphs

Given a set A, we write A<∞ (resp. [A]<∞) to denote the set of all finite sequences
(resp. finite sets) of elements of A. Unless otherwise specified, by a “graph” we mean
a simple undirected graph. Our graph-theoretic terminology and notation are stan-
dard; see, e.g., Diestel’s book [21]. In particular, the vertex and edge sets of a graph
G are denoted by V (G) and E(G) respectively. As usual, we write |G| := |V (G)|
and ‖G‖ := |E(G)|. For U ⊆ V (G), the neighborhood of U in G (i.e., the set of all
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vertices with a neighbor in U ) is denoted by NG(U). For a vertex x ∈ V (G), we set
NG(x) := NG({x}) and use degG(x) := |NG(x)| to denote the degree of x in G. The
maximum degree of G is defined by �(G) := supx∈V (G) degG(x). A graph G is said
to be locally finite if degG(x) < ∞ for all x ∈ V (G). Throughout this paper we only
work with locally finite graphs; in fact, we mostly focus on graph whose maximum
degree is finite.

Sometimes one needs to consider graphs that support some additional structure.
For instance, one might wish to work with directed graphs, weighted graphs, or
graphs with a fixed coloring of the vertices. We capture this idea in the general notion
of a “structured graph”:

Definition 2.1 (Structured graphs) A structure map on a graph G is a partial func-
tion σ : V (G)<∞ ⇀N such that for some 	 ∈N, every tuple x ∈ dom(σ ) is of length
at most 	. A structured graph is a pair G = (G,σ ), where G is a graph and σ is a
structure map on G.

In the above definition, we only use N as the range of σ for convenience, as having
the range of σ fixed once and for all will simplify some of the forthcoming definitions.
In applications, any countable set could be used instead of N, and indeed we shall
often abuse terminology by referring to structured graphs whose structure maps range
over different countable sets. For instance, we can view a graph G equipped with a
finite sequence σ1, . . . , σk of structure maps as a structured graph by replacing the
tuple (σ1, . . . , σk) with the single function

σ :
k⋃

i=1

dom(σi) → (N∪ {∗})k : x �→ (σ1(x), . . . , σk(x)),

where ∗ is a special symbol distinct from all the elements of N and σi(x) = ∗ means
that σi(x) is undefined. This is an acceptable construction since the set (N ∪ {∗})k
is countable. As a special case, given a structured graph G = (G,σ ) and another
structure map τ on G, we can interpret the pair (G, τ ) as a new structured graph (with
some “extra structure” added to that of G). This convention will become important
when we formally define LOCAL algorithms.

Example 2.2 (Directed graphs) A directed graph G can naturally be viewed as a struc-
tured graph, since we can encode the directions of the edges of G using the function
V (G)2 → {0,1} that sends a pair (x, y) to 1 if and only if there is a directed edge
from x to y in G.

Example 2.3 (Multigraphs) If the edges of a graph G are allowed to have (finite)
multiplicities, then we can view G as a structured graph equipped with the function
V (G)2 → N that assigns to each pair (x, y) the multiplicity of the edge xy.

Example 2.4 (List-coloring) Sometimes, instead of assigning to each vertex of a graph
G a color from a fixed set, such as [k], one is required to pick a color for every
x ∈ V (G) from its own list L(x) of available colors (this is called the list-coloring
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problem; see [21, §5.4]). If every list L(x) is a finite subset of N (or of any other
countable set), then the pair (G,L) can be naturally viewed as a structured graph
(since the set [N]<∞ is countable).

We naturally extend all the standard graph-theoretic notation, such as V , �, etc.,
to structured graphs; that is, for a structured graph G = (G,σ ), we write V (G) :=
V (G), �(G) := �(G), etc.

Given a graph G and a subset U ⊆ V (G), G[U ] denotes the subgraph of G

induced by U , i.e., the graph with vertex set U in which two vertices x, y ∈ U

are adjacent if and only if they are adjacent in G. Similarly, if G = (G,σ ) is
a structured graph and U ⊆ V (G), then G[U ] is the structured graph given by
G[U ] := (G[U ], σ |U<∞). (Here and in what follows we use the notation f |X to
indicate the restriction of a function f onto the set X ∩ dom(f ).)

As usual, the distance distG(x, y) between two vertices x, y ∈ V (G) is the small-
est number of edges on a path in G that starts at x and ends at y (if there is no such
path, then distG(x, y) := ∞). For a vertex x ∈ V (G) and a number R ∈ N, we define
BG(x,R) to be the ball of radius R around x in G, i.e., the subgraph of G induced
by the set {y ∈ V (G) : distG(x, y) � R}. The definition of BG(x,R) for structured
graphs G is the same, mutatis mutandis.

We say that two structured graphs G1 = (G1, σ1) and G2 = (G2, σ2) are isomor-
phic if there is an isomorphism between their underlying graphs G1 and G2 that turns
the function σ1 into σ2. More formally, each function ϕ : V (G1) → V (G2) can be ex-
tended to a map V (G1)

<∞ → V (G2)
<∞ in the obvious way; namely, given a tuple

x = (x1, . . . , xk) ∈ V (G1)
<∞, define

ϕ(x) := (ϕ(x1), . . . , ϕ(xk)) ∈ V (G2)
<∞.

An isomorphism between G1 and G2 is a function ϕ : V (G1) → V (G2) such that:

• ϕ is an isomorphism of the graphs G1 and G2;
• dom(σ2) = ϕ(dom(σ1)); and
• for all x ∈ dom(σ1), σ1(x) = σ2(ϕ(x)).

We say that G1 and G2 are isomorphic, in symbols G1 ∼= G2, if there is an iso-
morphism between G1 and G2. The isomorphism class of a structured graph G is
denoted by [G]. The set of all the isomorphism classes of finite structured graphs is
denoted by FSG. Notice that FSG is a countable set (here we exploit the fact that the
range of σ in Definition 2.1 is assumed to be the fixed set N).

A rooted graph is a pair (G,x), where G is a graph and x ∈ V (G) is a distin-
guished vertex, called the root. Isomorphisms between rooted graphs are required
to preserve the roots. One similarly defines rooted structured graphs (G, x). To
simplify the notation, we denote the isomorphism class of a rooted structured graph
(G, x) by [G, x] (instead of [(G, x)]). The set of all the isomorphism classes of finite
rooted structured graphs is denoted by FSG•. Again, the set FSG• is countable.

2.1.2 LOCAL algorithms

Now we have enough notation to start defining the LOCAL model.
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Definition 2.5 (LOCAL algorithms) A LOCAL algorithm is a function A : FSG• →
N. Given a locally finite structured graph G and a natural number T ∈ N, the output
of A on G after T rounds is the function A(G, T ) : V (G) →N given by

A(G, T )(x) := A ([BG(x, T ), x]) for all x ∈ V (G).

Note that since G is locally finite, BG(x, T ) is finite, so this definition makes sense.

Informally, Definition 2.5 says that a LOCAL algorithm A operates on a locally
finite structured graph G as follows. Each vertex x ∈ V (G) “sees” the isomorphism
type of its radius-T ball BG(x, T ), which is viewed as a structured graph rooted at
x. The algorithm A is then a “rule” that uses this information to output a “color”
A(G, T )(x) ∈ N. The same comment as after Definition 2.1 applies here: instead of
the set N in Definition 2.5, any other countable set of possible outputs could be (and
often is) used.

So far we have defined how LOCAL algorithms operate. Now we need to describe
what problems they can solve. The problems we consider are sometimes called “lo-
cally checkable labeling problems” in the distributed computing literature (this term
was introduced in the seminal work of Naor and Stockmeyer [44]). However, in order
to stay closer to the terminology in descriptive combinatorics and in graph theory, we
prefer to use the word “coloring” instead of “labeling.”

Recall that if G is a structured graph and f : V (G) ⇀ N is a partial function
(or, more generally, a structure map), then the pair (G, f ) can be thought of as a
structured graph in its own right, in which the function f is “added” to the structure
(see the comments after Definition 2.1). For brevity, we denote this structured graph
by Gf .

Definition 2.6 (Local coloring problems) A local coloring problem (or a locally
checkable labeling problem) is a pair � = (t,P), where t ∈ N and P : FSG• →
{0,1}. Here we interpret P as a LOCAL algorithm. Let G be a locally finite graph and
suppose that we are given a function f : V (G) → N. We say that f is a �-coloring
of G if P(Gf , t)(x) = 1 for all x ∈ V (G), i.e., if the output of the algorithm P on
the structured graph Gf after t rounds is the constant 1 function.

What Definition 2.6 says is that, for a local coloring problem, there is a LOCAL
algorithm, P , that, given a coloring f , can verify whether f is “correct” in a constant
number of rounds, namely t . To put this another way, whether or not a coloring f is
“correct” is completely determined by the restrictions of f to balls of radius t .

Example 2.7 (Proper coloring) The prototypical example of a local coloring problem
is proper k-coloring of graphs, since whether or not a coloring is proper is deter-
mined by its restrictions to radius-1 balls. Explicitly, let k ∈ N and define a LOCAL
algorithm P : FSG• → {0,1} as follows: Given (the isomorphism type of) a finite
rooted structured graph of the form (G,f, x) with f : V (G) → [k] and a root x, set
P([G,f,x]) := 1 if and only if f (y) �= f (z) for every pair of adjacent vertices y,
z ∈ V (G); in all other cases set P to 0. Now if we let � := (1,P), then a �-coloring
of a locally finite graph G is exactly the same as a proper k-coloring of G.
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2.1.3 Complexity of local coloring problems

As mentioned in the introduction, we must distinguish between the deterministic and
the randomized versions of the LOCAL model.

Definition 2.8 (Deterministic LOCAL complexity) Let � be a local coloring problem
and let G ⊆ FSG. Given n ∈ N

+ and T ∈ N, we write Det�,G(n) � T if and only if
there is a LOCAL algorithm A with the following property:

Let G be an n-vertex structured graph such that [G] ∈ G and let id : V (G) → [n]
be an arbitrary bijection. Then the function A(Gid, T ) is a �-coloring of G.

For n ∈ N
+, define Det�,G(n) to be the least T ∈ N such that Det�,G(n) � T if

such T exists, and ∞ otherwise. The function Det�,G : N+ → N ∪ {∞} is called
the deterministic LOCAL complexity of the problem � on the class of structured
graphs G.

Let us make a few remarks about the above definition. The set G in Definition 2.8
is the collection of (the isomorphism classes of) the finite structured graphs on which
we attempt to solve the given coloring problem �. For example, G may contain all
graphs of maximum degree at most �, all triangle-free graphs, all trees, all cycles,
all directed graphs, etc. If Det�,G(n) � T , it means that there is a LOCAL algorithm
A that solves the problem � on n-vertex graphs G from the class G in T rounds,
given as part of its input an arbitrary assignment id of unique identifiers from the set
[n] to the vertices of G. The reader may recall from the introduction that usually the
identifiers are sequences of bits of length �(logn), or, equivalently, elements of [nc]
for some constant c � 1. In practice it does not matter what constant c one uses, so,
for concreteness, we fix c to be 1 (technically, making c as small as possible only
makes our main results stronger).

Definition 2.9 (Randomized LOCAL complexity) Let � be a local coloring problem
and let G ⊆ FSG. Given n ∈N

+ and T ∈N, we write Rand�,G(n) � T if and only if
there are m ∈ N

+ and a LOCAL algorithm A with the following property:

Let G be an n-vertex structured graph such that [G] ∈ G. Pick a function
ϑ : V (G) → [m] uniformly at random (that is, each function V (G) → [m] is cho-
sen with probability 1/mn). Then

P
[
A(Gϑ ,T ) is a �-coloring of G

]
� 1 − 1

n
.

For n ∈ N
+, define Rand�,G(n) to be the least T ∈ N such that Rand�,G(n) � T if

such T exists, and ∞ otherwise. The function Rand�,G : N+ → N ∪ {∞} is called
the randomized LOCAL complexity of the problem � on the class of structured
graphs G.

In Definition 2.9, G is again the class of finite structured graphs on which we
wish to solve a given coloring problem. The algorithm A takes, as part of its input,
an assignment of random numbers from [m] to the vertices of G, and, while it may
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fail to output a �-coloring, the probability of failure cannot exceed 1/n. Notice that
there is no a priori upper bound on m, i.e., the algorithm is allowed to use “unlimited
randomness.” However, we do require that the same m must work for all n-vertex
graphs G with [G] ∈ G. This restriction is harmless, at least for our purposes, as we
shall only apply Definition 2.9 to classes G that contain finitely many isomorphism
types of n-vertex graphs for each n.

2.2 From distributed algorithms to descriptive combinatorics

2.2.1 Deterministic algorithms and Borel colorings

We use standard descriptive set-theoretic terminology; see, e.g., Kechris’s book [30]
or Tserunyan’s notes [51]. Recall that a separable topological space is Polish if
its topology is induced by a complete metric. A standard Borel space is a set X

equipped with a σ -algebra B(X) of Borel sets generated by a Polish topology on
X. We say that a Polish topology on a standard Borel space X is compatible if it
generates B(X).

By a Borel graph we mean a graph G whose vertex set V (G) is a standard Borel
space and such that {(x, y) : x and y are adjacent in G} is a Borel subset of V (G) ×
V (G). Similarly, a Borel structured graph is a structured graph G = (G,σ ) such
that G is a Borel graph and σ : V (G)<∞ ⇀ N is a Borel function (which just means
that for every c ∈N, σ−1(c) is a Borel subset of V (G)<∞).

Let G ⊆ FSG be a collection of isomorphism types of finite structured graphs and
let R, n ∈ N. We say that a structured graph G is (R,n)-locally in G if for each
vertex x ∈ V (G), there is an n-vertex structured graph H with [H ] ∈ G such that
[BG(x,R), x] = [BH (y,R), y] for some y ∈ V (H ). For instance, suppose that G is a
class of finite graphs (with no other structure) closed under adding isolated vertices.
Examples of such classes are the class of all planar graphs, the class of all graphs
of maximum degree at most � for some fixed � ∈ N, the class of all triangle-free
graphs, etc. It is not hard to see that in this case a graph G is (R,n)-locally in G
provided that for all x ∈ V (G), [BG(x,R)] ∈ G and |BG(x,R)| � n. Now we can
state our first result:

Theorem 2.10 (Deterministic LOCAL algorithms yield Borel colorings) Let � =
(t,P) be a local coloring problem and let G ⊆ FSG. Fix n ∈ N

+ such that
Det�,G(n) < ∞ and set R := Det�,G(n) + t . If G is a Borel structured graph that
is (R,n)-locally in G and such that |BG(x,2R)| � n for all x ∈ V (G), then G has a
Borel �-coloring.

Note that a structured graph G satisfying the assumptions of Theorem 2.10 must
have finite maximum degree, since |BG(x,R)| � n < ∞ for all x ∈ V (G).

Usually the precise value of Det�,G(n) is not known and one only has access to
asymptotic upper bounds. For instance, assume that G is a class of finite graphs (with
no other structure) closed under adding isolated vertices, and let G be a Borel graph
of finite maximum degree � all of whose finite induced subgraphs are in G. We claim
that if � = (t,P) is a local coloring problem such that Det�,G(n) = o(logn), then
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G has a Borel �-coloring. Indeed, since t is a constant independent of n, R(n) :=
Det�,G(n) + t = o(logn) as well. Hence, for each x ∈ V (G),

|BG(x,R(n))| � |BG(x,2R(n))| � 1 + �2R(n) = 1 + �o(logn) = no(1). (2.11)

Therefore, Theorem 2.10 may be applied for any large enough value of n.
It is possible to incorporate into such calculations extra assumptions on the growth

rate of G. For example, say that a graph G is of subexponential growth if for each
ε > 0, there is R0 ∈ N such that if x ∈ V (G) and R � R0, then |BG(x,R)| < (1+ε)R .
As before, let G be a class of graphs closed under adding isolated vertices, and let G

be a Borel graph of subexponential growth all of whose finite induced subgraphs
are in G. The same calculation as in the last paragraph shows that G has a Borel
�-coloring whenever � is a local coloring problem with Det�,G(n) = O(logn).
Stronger assumptions on the growth rate of G enable one to further relax the nec-
essary bound on Det�,G(n).

The reasoning in the preceding two paragraphs will apply, almost verbatim, to all
the other results in this section.

2.2.2 Deterministic algorithms and continuous colorings

Under certain circumstances, the word “Borel” in the conclusion of Theorem 2.10
can be replaced by “continuous.” In order to state this result precisely, we require
a few definitions. In what follows, we view N as a discrete topological space. Let
(X,d) be a metric space and let G1, G2 be finite structured graphs with V (G1),
V (G2) ⊆ X. Given ε > 0, we say that G1 and G2 are ε-isomorphic (with respect
to the metric d) if there is an isomorphism ϕ : V (G1) → V (G2) between G1 and
G2 such that d(x,ϕ(x)) < ε for all x ∈ V (G1). Recall that a topological space is
zero-dimensional is it has a base consisting of clopen sets.

Definition 2.12 (Topological graphs) A topological structured graph is a locally
finite structured graph G whose vertex set V (G) is a zero-dimensional Polish space
and that has the following property for some (hence any) metric d inducing the topol-
ogy on V (G): For each x ∈ V (G), R ∈ N, and ε > 0, there is δ > 0 such that if
y ∈ V (G) satisfies d(x, y) < δ, then the rooted structured graphs (BG(x,R), x) and
(BG(y,R), y) are ε-isomorphic.

Note that the above definition is indeed independent of the choice of the met-
ric d (we could have stated it purely topologically, by fixing an open neighborhood
for each vertex in BG(x,R) instead of using the parameter ε). If we are hoping to
find continuous colorings of G, it is natural to assume that the topology on V (G) is
zero-dimensional, so that V (G) has enough clopen subsets and hence there are many
continuous functions V (G) → N. The rest of Definition 2.12 describes the interplay
between the combinatorics of G and the topology on V (G). In particular, if G is a
topological graph, then the map V (G) → FSG• : x �→ [BG(x,R), x] is continuous
for all R ∈N, where we view the countable set FSG• as a discrete space.

We prove a continuous version of Theorem 2.10 for topological graphs:
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Theorem 2.13 (Deterministic LOCAL algorithms yield continuous colorings) Let
� = (t,P) be a local coloring problem and let G ⊆ FSG. Fix n ∈ N

+ such that
Det�,G(n) < ∞ and set R := Det�,G(n) + t . If G is a topological structured graph
that is (R,n)-locally in G and such that |BG(x,2R)| � n for all x ∈ V (G), then G
has a continuous �-coloring.

Observe that Theorem 2.13 is a strengthening of Theorem 2.10. Indeed, it follows
from standard results in descriptive set theory that if G is a locally finite Borel struc-
tured graph, then there is a compatible zero-dimensional Polish topology on V (G)

that makes G a topological structured graph [30, §13]. (Nevertheless, we will give a
direct proof of Theorem 2.10 as well.)

An ample supply of natural examples of topological graphs is provided by contin-
uous actions of finitely generated groups. Let X be a zero-dimensional Polish space
and let � be a group generated by a finite set S ⊆ �. Assume additionally that S does
not contain the identity element of � and that S is symmetric, meaning that if γ ∈ S,
then γ −1 ∈ S as well. Given a free action α : � �X of � on X by homeomorphisms,
let the Schreier graph of α be the graph Gα with vertex set X in which two vertices
x, y ∈ X are adjacent if and only if x = γ ·α y for some γ ∈ S. Because α is free, it is
easy to see that Gα is a topological graph. If S is not assumed to be symmetric, one
can similarly define a directed version of the Schreier graph, which is a topological
directed graph.

2.2.3 Randomized algorithms

Recall that a set or a function is measurable (resp. Baire/measurable) if it differs
from a Borel set or function on a null (resp. meager) set. In order to obtain measurable
or Baire-measurable colorings, it is enough to work with randomized rather than
deterministic LOCAL algorithms:

Theorem 2.14 (Randomized LOCAL algorithms yield measurable colorings) Let
� = (t,P) be a local coloring problem and let G ⊆ FSG. Fix n ∈ N

+ such that
Rand�,G(n) < ∞ and set R := Rand�,G(n) + t . Let G be a Borel structured graph
that is (R,n)-locally in G and such that |BG(x,2R)| � n1/8/4 for all x ∈ V (G).
Then the following conclusions hold:

(i) If μ is a probability Borel measure on V (G), then G has a μ-measurable �-
coloring.

(ii) If τ is a compatible Polish topology on V (G), then G has a τ -Baire-measurable
�-coloring.

Although the bound on |BG(x,2R)| required in Theorem 2.14 is stronger than
that in Theorem 2.10, it remains polynomial in n. In particular, inequalities (2.11)
still show that if G is a class of finite graphs closed under adding isolated vertices
and if G is a Borel graph of finite maximum degree all of whose finite induced sub-
graphs are in G, then G is measurably and Baire-measurably �-colorable provided
that Rand�,G(n) = o(logn). Furthermore, if G is of subexponential growth, then
Rand�,G(n) = O(logn) suffices. Actually, in this case we can even make the color-
ing Borel:



Distributed algorithms, the Lovász Local Lemma. . . 507

Theorem 2.15 (Randomized LOCAL algorithms yield Borel colorings of subexpo-
nential growth graphs) Let � = (t,P) be a local coloring problem and let G ⊆
FSG. Fix n ∈ N

+ such that Rand�,G(n) < ∞ and set R := Rand�,G(n) + t . If G is a
Borel structured graph of subexponential growth that is (R,n)-locally in G and such
that |BG(x,2R)| � n/e for all x ∈ V (G), then G has a Borel �-coloring.

In the statement of Theorem 2.15, e = 2.71 . . . is the base of the natural logarithm.
Theorem 2.15 contributes to the growing body of results showing that various combi-
natorial problems on graphs of subexponential growth can be solved in a Borel way,
whereas in general one can only hope for a measurable solution; see, e.g., [19, 20, 50].

2.3 The Lovász Local Lemma

As mentioned in the introduction, the key ingredient in our proof of Theorem 2.14
is a new measurable version of the Lovász Local Lemma (the LLL for short), which
is an interesting result in its own right. Indeed, the original motivation for this paper
was to develop a better understanding of the behavior of the LLL in the measurable
setting.

2.3.1 Constraint satisfaction problems and the LLL

Recall that for a set A, [A]<∞ denotes the set of all finite subsets of A. Similarly, for
sets A and B , let [A ⇀ B]<∞ be the set of all partial functions ϕ : A ⇀ B with finite
domains.

Definition 2.16 (CSPs) Fix a set X and m ∈ N
+. An (X,m)-constraint (or simply a

constraint if X and m are clear from the context) is a set B ⊆ [X ⇀ [m]]<∞ such that
dom(ϕ) = dom(ψ) for all ϕ, ψ ∈ B . If a constraint B is nonempty, then its domain
is the set dom(B) := dom(ϕ) for some (hence all) ϕ ∈ B; the domain of the empty
constraint is defined to be ∅. A constraint satisfaction problem (a CSP for short)
B on X with range [m], in symbols B : X →? [m], is a set of (X,m)-constraints. A
solution to a CSP B : X →? [m] is a function f : X → [m] such that for all B ∈ B,
the restriction f |dom(B) of f onto dom(B) is not a member of B .

In other words, in a CSP B : X →? [m], each constraint B ∈ B is interpreted as a
set of “forbidden patterns” that are not allowed to appear in a solution f : X → [m].
There are obvious similarities between CSPs in the above sense and local colorings
problems in the sense of Definition 2.6, and, indeed, a CSP can be viewed as local
coloring problem on an auxiliary graph (see §5.4 for details).

Fix a CSP B : X →? [m]. The probability P[B] of a constraint B ∈ B is defined
by

P[B] := |B|
m|dom(B)| .

Notice that if we form a random coloring f : X → [m] by assigning to each x ∈
X a color from [m] uniformly at random, then P[B] equals the probability that
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f |dom(B) ∈ B , i.e., that the constraint B is violated by f . The neighborhood of
a constraint B ∈ B is the set N(B) ⊂ B given by

N(B) := {B ′ ∈ B \ {B} : dom(B ′) ∩ dom(B) �= ∅}.
The most widely used form of the LLL, called the Symmetric LLL, invokes the pa-
rameters

p(B) := sup
B∈B

P[B] and d(B) := sup
B∈B

|N(B)|.

Theorem 2.17 (Symmetric LLL; see [3, Corollary 5.1.2]) If B is a CSP such that

p(B) · (d(B) + 1) � e−1, (2.18)

where e = 2.71 . . . is the base of the natural logarithm, then B has a solution.

Theorem 2.17 is a special case of a stronger result, known as the General LLL,
in which instead of bounding p(B) and d(B) uniformly, one establishes a more
delicate—but somewhat less transparent—relationship between P[B] and |N(B)| for
each constraint B ∈ B:

Theorem 2.19 (General LLL; see [3, Theorem 5.1.1]) If B is a CSP such that there is
a function η : B → [0,1) satisfying

P[B] � η(B)
∏

B ′∈N(B)

(1 − η(B ′)), for all B ∈ B,

then B has a solution.

A standard calculation (see [3, proof of Corollary 5.1.2]) shows that the bound
(2.18) implies the existence of a function η as in Theorem 2.19, and hence the Sym-
metric LLL is indeed a special case of the General LLL. We remark that, due to its
origin in finite combinatorics, the LLL is often stated in the case when the ground set
X is finite; however, the case of infinite X follows via a straightforward compactness
argument (see, e.g., [3, proof of Theorem 5.2.2]).

Several applications of the LLL in combinatorics and graph theory can be found
in [3, 41]. For most applications, the full power of the General LLL is not needed and
the Symmetric LLL is sufficient. Furthermore, in many cases the bound (2.18) is quite
far from being sharp: one can often prove that p(B) is at most exp(− log1+ε d(B))

or even exp(−d(B)ε) for some constant ε > 0. For example, this usually happens
when the upper bound on p(B) is obtained via a concentration of measure argument.

2.3.2 Measurable Symmetric LLL

If X is a standard Borel space, then [X]<∞ also carries a natural standard Borel
structure. Namely, a subset of [X]<∞ is said to be Borel if and only if its preimage
in

⊔∞
k=0 Xk under the map (x0, . . . , xk−1) �→ {x0, . . . , xk−1} is Borel. Next, for any
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standard Borel space Y , the set [X ⇀ Y ]<∞ also becomes a standard Borel space
when viewed as a Borel subset of [X × Y ]<∞ by identifying each partial function
ϕ ∈ [X ⇀ Y ]<∞ with its graph, i.e., with the set {(x,ϕ(x)) : x ∈ dom(ϕ)}. Finally,
since, by definition, every (X,m)-constraint is a finite set of partial functions with a
common finite domain, the set of all (X,m)-constraints is a Borel subset of [[X ⇀

[m]]<∞]<∞. Therefore, we may speak of Borel CSPs B : X →? [m], i.e., Borel sets
of (X,m)-constraints.

Given a Borel CSP, it is natural to ask whether it has a solution with some regular-
ity properties. To that end, we establish the following measurable/Baire-measurable
analog of Theorem 2.17 under a stronger polynomial bound on p(B) and d(B):

Theorem 2.20 (Measurable Symmetric LLL) Let B : X →? [m] be a Borel CSP such
that

p(B) · (d(B) + 1)8 � 2−15. (2.21)

Assume additionally that sup{|dom(B)| : B ∈ B} < ∞. Then the following conclu-
sions hold:

(i) If μ is a probability Borel measure on X, then B has a μ-measurable solution.
(ii) If τ is a compatible Polish topology on X, then B has a τ -Baire-measurable

solution.

As mentioned earlier, one can often bound p(B) from above by a super-
polynomially small function of d(B), making Theorem 2.20 applicable. We call
CSPs B such that sup{|dom(B)| : B ∈ B} < ∞ bounded. The boundedness as-
sumption in Theorem 2.20 can likely be eliminated by a routine modification of the
proof. However, we are not aware of any applications where this assumption is not
satisfied, and so we elected to include it in order to make our arguments more trans-
parent.

Theorem 2.20 is implied by Theorem 2.14: a CSP B can be encoded as a local
coloring problem on an auxiliary graph (see §5.4 for details), and Fischer and Ghaf-
fari [24] designed a randomized LOCAL algorithm that finds solutions to such local
coloring problems in a sublogarithmic number of rounds under a polynomial bound
on p(B) and d(B) similar to (2.21). The actual bound that we use comes from a
sharpened version of the Fischer–Ghaffari algorithm developed in [26] by Ghaffari,
Harris, and Kuhn. Together with Theorem 2.14, their algorithm immediately yields
Theorem 2.20. The logic of our argument, however, goes in the opposite direction:
We shall first prove Theorem 2.20 and then derive Theorem 2.14 from it. Neverthe-
less, our proof of Theorem 2.20 does invoke the Ghaffari–Harris–Kuhn algorithm,
albeit in a more subtle way.

2.3.3 Comparison with prior work

The current state of the knowledge concerning the behavior of the LLL in the descrip-
tive setting is summarized in Table 1. Conley, Jackson, Marks, Seward, and Tucker-
Drob [16, Theorem 1.6] constructed examples showing that the Symmetric LLL
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Table 1 What is known about the LLL in the descriptive setting

Symmetric LLL General LLL

Borel? YES for subexponential growth [20]
NO in general [16]

(NO in general)

Measurable? YES when p(d + 1)8 � 2−15 (this paper) YES for [0,1]-shifts [8]
(NO in general)

With ε error? YES [8] NO in general [8]

Baire-measurable? YES when p(d + 1)8 � 2−15 (this paper) ???

cannot, in general, produce Borel solutions. On the other hand, Csóka, Grabowski,
Máthé, Pikhurko, and Tyros [20] showed that a Borel version of the Symmetric LLL
holds under certain subexponential growth assumptions on the CSP B (and we use
their result to derive Theorem 2.15).

In the presence of a measure μ, one can relax the requirements and only ask for
a measurable function f : X → [m] that satisfies the constraints on a set of measure
1 − ε, for any given ε > 0. In this regime, the Symmetric LLL always succeeds
[8, Theorem 5.1], while the General LLL may fail [8, Theorem 7.1]. In fact, the
General LLL may even fail to produce colorings that satisfy the constrains on a set
of arbitrarily small positive measure. On the other hand, there are certain situations
of particular interest in ergodic theory when the General LLL can be used to obtain
measurable colorings satisfying all the constraints; namely, this happens when the
structure of the CSP B is, in a certain technical sense, “induced” by the Bernoulli
shift action � � [0,1]� of a countable group � [8, Theorem 6.6].

Theorem 2.20 provides the first Baire-measurable variant of the LLL (with the
exception of the subexponential Borel LLL of Csóka–Grabowski–Máthé–Pikhurko–
Tyros). The following question remains open:

Open Problem 2.22 Does there exist a Baire-measurable version of the General LLL?

3 Applications

3.1 Colorings with the number of colors close to �

Recall that the chromatic number χ(G) of a graph G is the smallest cardinality
of a set Y such that G admits a proper coloring f : V (G) → Y . In the descriptive
setting, one defines the Borel chromatic number χB(G) of a Borel graph G as the
smallest cardinality of a standard Borel space Y such that G has a Borel proper col-
oring f : V (G) → Y . Similarly, given a probability Borel measure μ or a compati-
ble Polish topology τ on V (G), the μ-measurable chromatic number χμ(G) and
the τ -Baire-measurable chromatic number χτ (G) are defined to be the smallest
cardinality of a standard Borel space Y such that G admits a μ-measurable, resp. τ -
Baire-measurable, proper coloring f : V (G) → Y . It is clear that χ(G) � χμ(G),
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χτ (G) � χB(G). We shall only work with bounded degree graphs, and for them all
these parameters are finite:

Theorem 3.1 (Kechris–Solecki–Todorcevic [34, Proposition 4.6]) Let G be a Borel
graph of finite maximum degree �. Then χB(G) � � + 1.

In general, the bound χ(G) � �(G) + 1 is best possible, since a graph of max-
imum degree � may contain � + 1 pairwise adjacent vertices (i.e., a (� + 1)-
clique), all of which would have to receive distinct colors in a proper coloring of
G. Conversely, a classical theorem of Brooks (see [21, Theorem 5.2.4]) asserts that if
χ(G) = �(G)+1 for a graph G with 3 � �(G) < ∞, then G contains a (�(G)+1)-
clique.

It is natural to ask whether Brooks’s theorem can be extended to the setting of
Borel, measurable, or Baire-measurable colorings. Marks [38] showed that, in the
Borel context, Brooks’s theorem fails in a very strong sense. A graph G is called �-
regular if every vertex in G has degree �, and acyclic if it contains no cycles (acyclic
graphs are also known as forests). It is easy to see that acyclic graphs are bipartite,
i.e., have chromatic number at most 2. Nevertheless, Marks proved the following:

Theorem 3.2 (Marks [38]) For each � ∈ N, there exists an acyclic �-regular Borel
graph G such that χB(G) = � + 1.

In contrast to Theorem 3.2, Conley, Marks, and Tucker-Drob [17] succeeded in
extending Brooks’s theorem to the setting of measurable and Baire-measurable col-
orings:

Theorem 3.3 (Measurable Brooks; Conley–Marks–Tucker-Drob [17]) Let G be a
Borel graph of finite maximum degree � � 3 without a (� + 1)-clique.

(i) If μ is a probability Borel measure on V (G), then χμ(G) � �.
(ii) If τ is a compatible Polish topology on V (G), then χτ (G) � �.

In view of Brooks’s theorem, an equivalent way of phrasing Theorem 3.3 is that
a Borel graph G of finite maximum degree � � 3 is measurably/Baire-measurably
�-colorable if and only if it is �-colorable abstractly, i.e., without any regularity
restrictions. Can this result be extended to colorings with fewer colors? We show that
the answer is positive for (� − c)-colorings, where c can be as large as roughly

√
�:

Theorem 3.4 There is �0 ∈ N with the following property. Fix integers � � �0 and
c. Let G be a Borel graph of maximum degree at most � and let μ (resp. τ ) be
a probability Borel measure (resp. a compatible Polish topology) on V (G). If c �√

� + 1/4 − 5/2, then the following statements are equivalent:

(i) χ(G) � � − c;
(ii) χμ(G) � � − c;

(iii) χτ (G) � � − c.
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Proof Implications (ii), (iii) =⇒ (i) are trivial, so we only need to argue that (i)
=⇒ (ii), (iii). For each k ∈ N, let �(k) denote the local coloring problem that en-
codes proper k-coloring of graphs (see Example 2.7). Fix � ∈ N and c ∈ Z with
c �

√
� + 1/4 − 5/2 and let G(�, c) be the set of all isomorphism classes of fi-

nite graphs G of maximum degree at most � satisfying χ(G) � � − c. Assuming
� is large enough, Bamas and Esperet [4, Theorem 1.3] established the following
bounds on the randomized LOCAL complexity of proper (� − c)-coloring of graphs
in G(�, c):

Rand�(�−c),G(�,c)(n) � exp(O(
√

log logn)) = o(logn). (3.5)

(Here the implicit constants in the asymptotic notation may depend on �, which we
treat as fixed.) If G is a Borel graph with �(G) � � and χ(G) � � − c, then every
finite induced subgraph of G is in G(�, c). Since the class G(�, c) is closed under
adding isolated vertices, Theorem 2.14, combined with (3.5), yields that G is both
measurably and Baire-measurably (� − c)-colorable, as desired. �

Note that if in the statement of Theorem 3.4 we additionally assume that G is
of subexponential growth, then, replacing Theorem 2.14 by Theorem 2.15, we may
conclude that for such G, statements (i)–(iii) are also equivalent to

(iv) χB(G) � � − c.

Marks’s Theorem 3.2 shows that the subexponential growth assumption cannot be
removed.

The distributed algorithm of Bamas and Esperet [4] from which we derive Theo-
rem 3.4 is inspired by the earlier work of Molloy and Reed [42] on sequential algo-
rithms for (� − c)-coloring. Among other results, Molloy and Reed established the
following remarkable extension of Brooks’s theorem: If � is large enough, G is a
graph of maximum degree at most �, and c �

√
� + 1/4 − 5/2, then χ(G) � � − c

if and only if χ(BG(x,1)) � � − c for all x ∈ V (G) [42, Theorem 5].
The bound on c in the statement of Theorem 3.4 is almost sharp, in the sense that

it cannot be relaxed to c �
√

� − 3/4 − 1/2:

Proposition 3.6 Let k, � ∈ N be such that � � k � 2 and � − k �
√

� − 3/4 −
1/2. Then there exist a Borel graph G and a probability Borel measure μ (resp. a
compatible Polish topology τ ) on V (G) such that �(G) � � and χ(G) � k but
χμ(G) > k (resp. χτ (G) > k).

Proof We adapt the proof of [22, Theorem 1.4] due to Embden-Weinert, Hougardy,
and Kreuter. We shall give the argument for the measurable chromatic number, the
Baire-measurable case being virtually identical. Fix k � 2. To begin with, observe
that there exists a Borel graph G of finite maximum degree with a probability Borel
measure μ on V (G) such that χ(G) = k but χμ(G) > k. For instance, let (X,μ) be
a standard probability space and let T : X → X be a measure/preserving transfor-
mation such that for all n ∈ Z \ {0}, T n is ergodic and T n(x) �= x for all x ∈ X. An
example of such a transformation is the map T : [0,1) → [0,1) : x �→ (x +α)mod 1,
where α is a fixed irrational number. Let G be the graph with vertex set X in which
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two distinct vertices x and y are adjacent if and only if y = T n(x) with |n| � k − 1.
It is easy to verify that χ(G) = k and every proper k-coloring f : X → [k] of G is
T k-periodic, meaning that f (T k(x)) = f (x) for all x ∈ X. To show that χμ(G) > k,
suppose that f : X → [k] is a measurable proper k-coloring. Then every color class
of f is a T k-invariant measurable subset of X. Since the map T k is ergodic, this
implies that precisely one color class of f is conull, while the other k − 1 classes
are null. This is a contradiction, as the map T cyclically permutes the color classes,
showing that they all must have the same measure.

Now let � � k satisfy � − k �
√

� − 3/4 − 1/2 and let G be a Borel graph
with a probability Borel measure μ on V (G) such that χ(G) � k, χμ(G) > k, and
�(G) is the smallest among all graphs with these properties. Set d := �(G) and c :=
d −k. Suppose, toward a contradiction, that d > �. Then c >

√
d − 3/4−1/2, which

implies that c(c+1) > d −1. Since c and d are integers, this yields c(c+1) � d . Fix
a Borel linear order < on V (G) (such an order exists since, by [30, Theorem 15.6],
V (G) is isomorphic to a Borel subset of R). For each x ∈ X and 1 � i � degG(x), let
Ni(x) be the i-th neighbor of x in the order <; that is, we have

NG(x) = {N1(x), . . . ,NdegG(x)(x)} and N1(x) < · · · < NdegG(x)(x).

For α ∈ Z/(c + 1)Z, let Nα(x) := {Ni(x) : α = i mod (c + 1)}. Note that |Nα(x)| �
�degG(x)/(c + 1)� � c, where we are using that c(c + 1) � d . Define a graph H as
follows. The vertex set of H is

V (H) := V (G) × ((Z/(c + 1)Z) � [k − 1]).
For clarity, let uα(x) := (x,α) and vi(x) := (x, i) for all x ∈ V (G), α ∈ Z/(c + 1)Z,
and i ∈ [k − 1]. Make the following pairs of vertices adjacent in H :

• vi(x) and vj (x) for all x ∈ V (G) and distinct i, j ∈ [k − 1];
• vi(x) and uα(x) for all x ∈ V (G), i ∈ [k − 1], and α ∈ Z/(c + 1)Z;
• uα(x) and uβ(y) for all adjacent x, y ∈ V (G) with y ∈ Nα(x) and x ∈ Nβ(y).

Let ν be the pushforward of μ under the map V (G) → V (H) : x �→ u0(x). We will
show that H satisfies χ(H) � k, χν(H) > k, and �(H) � d − 1, which contradicts
the choice of G and thus completes the proof of Proposition 3.6.

To see that H is k-colorable, let f : V (G) → [k] be any k-coloring of G and
define h : V (H) → [k] as follows: For all x ∈ V (G) and α ∈ Z/(c + 1)Z, set
h(uα(x)) := f (x), and assign to the vertices v1(x), . . . , vk−1(x) the k − 1 colors
distinct from f (x). Then h is a proper k-coloring of H , so χ(H) � k. To show that
χν(H) > k, suppose that h : V (H) → [k] is a ν-measurable k-coloring of H . By
the definition of ν, the map f : V (G) → [k] : x �→ h(u0(x)) is μ-measurable, and
we claim that it is a proper k-coloring of G, which is impossible. Consider any two
adjacent vertices x, y ∈ V (G). Since the vertices v1(x), . . . , vk−1(x) are pairwise
adjacent in H , there is precisely one color that is not used by h on any of them,
and that must be the color assigned to every vertex of the form uα(x). Similarly, all
the vertices of the form uβ(y) have the same color. Let α, β ∈ Z/(c + 1)Z be such
that y ∈ Nα(x) and x ∈ Nβ(y). Then the vertices uα(x) and uβ(y) are adjacent, so
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f (x) = h(u0(x)) = h(uα(x)) �= h(uβ(y)) = h(u0(y)) = f (y), as desired. It remains
to verify that �(H) � d − 1. To this end, note that every vertex of the form vi(x) has
degree

degH (vi(x)) = (k − 2) + (c + 1) = d − 1,

while every vertex of the form uα(x) has degree

degH (uα(x)) = (k − 1) + |Nα(x)| � k − 1 + c = d − 1. �

There is a small gap between the bounds in Theorem 3.4 and Proposition 3.6. We
leave closing this gap as an open problem:

Open Problem 3.7 For each � ∈ N, determine precisely the largest value of c ∈ Z for
which the conclusion of Theorem 3.4 holds.

Theorem 3.4 implies Theorem 3.3, i.e., the measurable version of Brooks’s theo-
rem, for all large enough �. One can actually use distributed algorithms to deduce
Theorem 3.3 for all � � 3. Indeed, Ghaffari, Hirvonen, Kuhn, and Maus [27] devel-
oped a randomized LOCAL algorithm that, given an n-vertex graph G of maximum
degree � � 3 and without a complete subgraph on � + 1 vertices, finds a proper �-
coloring of G in O((log logn)2) = o(logn) rounds (here, as in (3.5), the implicit con-
stants in the asymptotic notation may depend on �). Combined with Theorem 2.14,
this yields Theorem 3.3.

3.2 Graphs without short cycles

The distinctions between the three regularity notions—“Borel,” “measurable,” and
“Baire/measurable”—are clearly demonstrated by colorings of acyclic graphs. Recall
that, by Marks’s Theorem 3.2, the Borel chromatic number of an acyclic Borel graph
of maximum degree � ∈ N can be as large as � + 1. In contrast to this, the Baire-
measurable chromatic number of a locally finite acyclic graph is always at most 3,
which is a consequence of the following general result of Conley and Miller:

Theorem 3.8 (Conley–Miller [18]) Let G be a locally finite Borel graph and let τ be
a compatible Polish topology on V (G). If χ(G) is finite, then χτ (G) � 2χ(G) − 1.

Since χ(G) � 2 for an acyclic graph G, Theorem 3.8 implies that the Baire-
measurable chromatic number of an acyclic locally finite Borel graph is indeed at
most 2 · 2 − 1 = 3. It is also not hard to see that this upper bound is best possible; see,
e.g., [17, §6].

Now we turn to measurable colorings. Lyons and Nazarov [37] (see also [32, The-
orem 5.46]) constructed acyclic Borel graphs with maximum degree � ∈ N and mea-
surable chromatic number at least (1/2 + o(1))�/ log�. This shows that acyclic
Borel graphs of bounded degree can have arbitrarily large measurable chromatic num-
bers, contrary to the situation with Baire-measurable colorings. Although the present
author showed [8, Corollary 1.2] that �(�/ log�) is the correct order of magnitude
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in the Lyons–Nazarov examples, the best heretofore known general upper bound on
measurable chromatic numbers of acyclic graphs in terms of their maximum degree
was �, which is a consequence of the measurable Brooks’s Theorem 3.3 of Conley–
Marks–Tucker-Drob. Here we improve this to (1+o(1))�/ log�, which falls within
a factor of 2 of best possible. Furthermore, we do not even require acyclicity—it
suffices to only forbid cycles of length at most 4.

Theorem 3.9 For every ε > 0, there is �0 ∈ N with the following property. Let G be
a Borel graph of finite maximum degree � � �0 and let μ be a probability Borel
measure on V (G).

(i) If G contains no cycles of length at most 4, then χμ(G) � (1 + ε)�/ log�.
(ii) If G contains no cycles of length 3, then χμ(G) � (4 + ε)�/ log�.

Proof To derive this theorem, we invoke the LOCAL algorithms for graph coloring
developed by Chung, Pettie, and Su in [15]. We shall first prove (ii). For each k ∈ N,
let �(k) denote the local coloring problem that encodes proper k-coloring of graphs
(see Example 2.7). Fix ε > 0 and � ∈N and set k := �(4+ε)�/ log��. Let G(�) be
the set of all isomorphism classes of finite graphs of maximum degree at most � with
no 3-cycles. It follows from [15, Theorem 9] that there exist positive real numbers C

and δ, depending only on ε, such that, for all large enough � and n,

Rand�(k),G(�)(n) � C�−δ logn. (3.10)

Even though this upper bound is weaker than o(logn), it still suffices for an applica-
tion of Theorem 2.14. Indeed, let G be a Borel graph of maximum degree � without
cycles of length 3 and set R(n) := Rand�(k),G(�)(n) + 1. If � is large enough and n

is much larger than �, then for each vertex x ∈ V (G),

|BG(x,2R(n))| � 1 + �2C�−δ logn+2 = 1 + exp(2C�−δ log� logn + 2 log�)

< n1/8/4.

Similarly, |BG(x,R(n))| < n, and, since G(�) is closed under adding isolated ver-
tices, G is (R(n),n)-locally in G(�). Hence, Theorem 2.14 allows us to conclude
that G is measurably k-colorable, which proves (ii). The proof of (i) is virtually the
same, except that [15, Theorem 9] is replaced by the randomized LOCAL algorithm
of Chung, Pettie, and Su for ((1 + o(1))�/ log�)-coloring graphs without cycles of
length at most 4 (see the remark in [15] after [15, Theorem 9]). �

Again, if G is of subexponential growth, then, due to Theorem 2.15, the upper
bounds on χμ(G) given by Theorem 3.9 also hold for χB(G).

We remark that, although this was not needed in the proof of Theorem 3.9, the
bound (3.10) can actually be improved to Rand�(k),G(�)(n) = o(logn). Indeed, the
algorithm developed by Chung, Pettie, and Su in order to prove (3.10) invokes as a
subroutine a certain distributed version of the LLL. Fischer and Ghaffari [24] later de-
signed a more efficient distributed version of the LLL, and using their result reduces
the complexity of the Chung–Pettie–Su algorithm to o(logn).
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The upper bound χ(G) � (1 + o(1))�/ log� for finite graphs G without cycles
of length at most 4 is due to Kim [35]. The existence of a constant C > 0 such that
χ(G) � (C+o(1))�/ log� for finite graphs G without 3-cycles was first established
by Johansson [29] (Johansson’s original paper is hard to access, but a detailed presen-
tation of his argument can be found in [41, §13]). Johansson’s original proof gave the
value C = 9. Pettie and Su [45] improved this to C = 4 (which is the value appearing
in Theorem 3.9). Recently, Molloy [39] further reduced the constant to C = 1. We
leave the question of whether Molloy’s result also holds for measurable colorings as
an open problem:

Open Problem 3.11 Is it true that for every ε > 0, there is �0 ∈ N with the follow-
ing property? Let G be a Borel graph of finite maximum degree � � �0 and let μ

be a probability Borel measure on V (G). If G contains no cycles of length 3, then
χμ(G) � (1 + ε)�/ log�.

One way to solve Problem 3.11 would be to develop a sublogarithmic randomized
LOCAL algorithm for ((1 + o(1))�/ log�)-coloring graphs without 3-cycles.

3.3 A result on list-coloring

In this section we apply Theorem 2.14 to obtain a useful result concerning list-
colorings of Borel graphs. For an introduction to the theory of list-coloring, see [21,
§5.4]. A list assignment for a graph G is a function L : V (G) → [N]<∞. For each
vertex x ∈ V (G), the set L(x) is called the list of x, and the elements of L(x) are
the colors available to x. An L-coloring of G is a map f : V (G) → N such that
f (x) ∈ L(x) for all x ∈ V (G). An L-coloring f is proper if f (x) �= f (y) whenever
x and y are adjacent in G. We say that L is an (	, d)-list assignment if it has the
following two properties:

• for all x ∈ V (G), |L(x)| � 	; and
• for all x ∈ V (G) and α ∈ L(x), |{y ∈ NG(x) : α ∈ L(y)}| � d .

The following is a result of Reed and Sudakov:

Theorem 3.12 (Reed–Sudakov [48]) For every ε > 0, there is d0 ∈N with the follow-
ing property. Let G be a graph and let L be an (	, d)-list assignment for G, where
d � d0 and 	 � (1 + ε)d . Then G admits a proper L-coloring.

A version of Theorem 3.12 with the bound 	 � (1 + ε)d replaced by 	 � 2ed was
first proved by Reed [47]; this was then improved by Haxell [28] to 	 � 2d . While it
is weaker than Theorem 3.12 for large d , Haxell’s result holds for all positive integers
d and not only for sufficiently large ones. Reed [47] conjectured that in fact 	 � d +1
should suffice, but this conjecture was refuted by Bohman and Holzman [10].

Theorem 3.12 (or its weaker versions mentioned in the previous paragraph) is a
somewhat technical but rather useful fact that plays a crucial role in the proofs of
many graph coloring results (see [41] for a number of examples). Here we establish
a version of Theorem 3.12 for measurable and Baire-measurable colorings:
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Theorem 3.13 For every ε > 0, there is d0 ∈ N with the following property. Let G be
a Borel graph and let L be a Borel (	, d)-list assignment for G, where d � d0 and
	 � (1 + ε)d . Let μ (resp. τ ) be a probability Borel measure (resp. a compatible Pol-
ish topology) on V (G). Then G admits a μ-measurable (resp. τ -Baire-measurable)
proper L-coloring.

Proof We shall use another LOCAL algorithm due to Chung, Pettie, and Su [15]. As
explained in Example 2.4, we can interpret pairs (G,L), where G is a graph and L a
list assignment for G, as structured graphs in the sense of Definition 2.1. Furthermore,
proper list-coloring can naturally be encoded as a local coloring problem �. Explic-
itly, let P : FSG• → {0,1} be the LOCAL algorithm defined as follows: Given (the
isomorphism type of) a finite rooted structured graph of the form (G,L,f, x) with L

a list assignment for G and f : V (G) → N, set P([G,L,f, x]) := 1 if and only if f

is a proper L-coloring of G; in all other cases set P to 0. Now if we let � := (1,P),
then a �-coloring of (G,L) is precisely the same as a proper L-coloring of G.

Let G(	, d) ⊂ FSG denote the set of all isomorphism types of finite structured
graphs corresponding to pairs of the form (G,L), where G is a finite graph and L is
an (	, d)-list assignment for G. The result of Chung, Pettie, and Su presented in [15,
§4.4] implies that for every ε > 0, there exist positive real numbers C and δ such that,
for all large enough d and n,

Rand�,G((1+ε)d,d)(n) � Cd−δ logn. (3.14)

As in the proof of Theorem 3.9, this upper bound is weaker than o(logn) but sufficient
for an application of Theorem 2.14. Indeed, let G be a Borel graph and let L be a
Borel ((1+ ε)d, d)-list assignment for G, where d is a large positive integer. Without
loss of generality, we may assume that |L(x)| = 	 for all x ∈ V (G), and, by removing
from G all the edges xy such that L(x) ∩ L(y) = ∅, we may arrange that �(G) �
(1 + ε)d2 � d3. Set R(n) := Rand�,G((1+ε)d,d)(n) + 1. For all x ∈ V (G),

|BG(x,2R(n))| � 1 + d6Cd−δ logn+6 = 1 + exp(6Cd−δ logd logn + 6 logd)

< n1/8/4,

where the last inequality holds whenever d and n are large enough. Similarly,
|BG(x,R(n))| < n, and hence the pair (G,L) is (R(n),n)-locally in G((1 + ε)d, d).
Therefore, by Theorem 2.14, G admits a measurable/Baire-measurable proper L-
coloring, as desired. �

Again, for graphs of subexponential growth, we can use Theorem 2.15 to upgrade
the conclusion of Theorem 3.13 to a Borel proper L-coloring. Like (3.10), the bound
(3.14) can be improved to Rand�,G((1+ε)d,d)(n) = o(logn) by using the Fischer–
Ghaffari distributed LLL [24].

3.4 Sparse graphs

Among the oldest topics in graph theory is studying colorings of planar graphs. For
the purposes of this paper, we say that an infinite graph is planar if all its finite sub-
graphs are planar. One of the most celebrated results in graph theory is the Four
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Color Theorem of Appel and Haken [21, Theorem 5.1.1] that asserts that χ(G) � 4
for all planar graphs G. Furthermore, if G is a planar graph without 3-cycles, then
χ(G) � 3—this is a theorem of Grötzsch [21, Theorem 5.1.3]. On the other hand, the
Lyons–Nazarov examples [37] mentioned in §3.2 (see also [32, Theorem 5.46]) show
that bounded degree acyclic (hence planar) Borel graphs can have arbitrarily large
measurable chromatic numbers. Nevertheless, we show that under the additional as-
sumption of subexponential growth, Borel chromatic numbers of planar Borel graphs
are bounded by 5, and can be further lowered for graphs without short cycles:

Theorem 3.15 Let G be a planar Borel graph of subexponential growth and define

k :=

⎧
⎪⎨

⎪⎩

3 if G contains no cycles of length at most 4;
4 if G contains a 4-cycle but no 3-cycles;
5 otherwise.

Then χB(G) � k. Furthermore, if G is also a topological graph (in the sense of
Definition 2.12), then G admits a continuous proper k-coloring.

Proof This is a consequence of the recent work of Postle [46]. Let P denote the set
of all isomorphism classes of finite planar graphs and let P(g) ⊆ P be the set of all
isomorphism classes of finite planar graphs without cycles of length strictly less than
g. Letting �(k) denote the local coloring problem corresponding to proper k-coloring
(see Example 2.7), Postle [46, Theorem 1.3] established the following bounds:

max{Det�(5),P(n), Det�(4),P(4)(n), Det�(3),P(5)(n)} = O(logn).

Combined with Theorems 2.10 and 2.13, this yields the desired results. (Theorems 2.10
and 2.13 may be applied as graphs of subexponential growth have finite maximum
degree.) �

An important feature of planar graphs is their sparsity: by Euler’s formula, a planar
graph G with n � 3 vertices can have at most 3n − 6 edges. A convenient measure
of sparsity for an arbitrary graph is its arboricity, defined as follows. Recall that |G|
and ‖G‖ are the cardinalities of the vertex and the edge sets of G, respectively. The
arboricity of a graph G with |G| � 2 is the quantity

a(G) := sup
H

⌈ ‖H‖
|H | − 1

⌉
,

where the supremum is taken over all the finite subgraphs H of G with |H | � 2. For
graphs G with |G| � 1, a(G) := 0 by definition. A theorem of Nash-Williams [21,
Theorem 2.4.4] asserts that if G is a finite graph, then a(G) is equal to the smallest k ∈
N such that G has k acyclic subgraphs F1, . . . , Fk with E(G) = E(F1)∪· · ·∪E(Fk).
Since acyclic graphs are also called “forests,” this explains the term “arboricity.”

Many classes of graphs have bounded arboricity. For instance, all planar graphs
have arboricity at most 3. It is not hard to see that graphs G of finite arboricity satisfy
χ(G) � 2a(G) (and this bound is, in general, best possible). On the other hand, the



Distributed algorithms, the Lovász Local Lemma. . . 519

measurable chromatic number of a bounded degree acyclic (i.e., arboricity 1) Borel
graph can be arbitrarily large. As in the case of planar graphs, the situation improves
under the subexponential growth assumption:

Theorem 3.16 If G is a Borel graph of subexponential growth, then χB(G) �
2a(G) + 1. Furthermore, if G is also a topological graph, then G admits a con-
tinuous proper (2a(G) + 1)-coloring.

Proof Let G(a) denote the set of all isomorphism classes of finite graphs of arboricity
at most a, and let �(k) be the local coloring problem corresponding to proper k-
coloring. Barenboim and Elkin [5, §4] proved that for all a ∈ N,

Det�(2a+1),G(a) = O(logn),

where the implicit constants in the asymptotic notation may depend on a. (The state-
ment in [5, §4] is more general and involves an additional positive parameter ε; the
bound that we need is obtained by setting ε = 1/(a + 1).) It remains to apply Theo-
rems 2.10 and 2.13. �

The bound χB(G) � 2a(G) + 1 for Borel graphs G of subexponential growth is,
in general, sharp, since there exist acyclic 2-regular Borel graphs G with χB(G) = 3,
and such graphs are of subexponential (in fact, linear) growth; see, e.g., [17, §6].
Nevertheless, we conjecture that acyclic graphs are an exception and the bound
χB(G) � 2a(G) should hold whenever a(G) � 2:

Conjecture 3.17 If G is a Borel graph of subexponential growth, then χB(G) �
max{2a(G),3}.

As evidence for Conjecture 3.17, we show that it holds for graphs whose order of
growth is somewhat lower than just subexponential:

Theorem 3.18 Let G be a Borel graph and suppose that for each ε > 0, there is
R0 ∈ N such that if x ∈ V (G) and R � R0, then |BG(x,R)| < exp(εR1/3). Then
χB(G) � max{2a(G),3}. Furthermore, if G is also a topological graph, then G ad-
mits a continuous proper max{2a(G),3}-coloring.

Proof As in the proof of Theorem 3.16, let G(a) be the set of all isomorphism classes
of finite graphs of arboricity at most a, and let �(k) be the local coloring problem
encoding proper k-coloring. Aboulker, Bonamy, Bousquet, and Esperet [2, Corollary
1.4] showed that for a � 2,

Det�(2a),G(a) = O((logn)3)

where the implicit constants in the asymptotic notation again depend on a. Now a
straightforward computation shows that Theorems 2.10 and 2.13 yield the desired
results. �
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Another result about graphs of subexponential growth that should be mentioned
here is a theorem of Gao and Jackson [25, Theorem 4.2] that asserts that for every
d � 2, the Schreier graph of the free part of the Bernoulli shift action Z

d
� {0,1}Zd

admits a continuous proper 4-coloring. This fact can be alternatively derived by using
Theorem 2.13 in combination with the deterministic LOCAL algorithm for 4-coloring
grid graphs designed by Brandt et al. [11, Theorem 4].

3.5 A pointwise version of the Abért–Weiss theorem

So far we have described a number of results in descriptive combinatorics that can
be obtained using distributed algorithms. Now we present a direct application of the
Measurable Symmetric LLL to a question in ergodic theory.

Throughout §3.5, � shall denote a countably infinite group. We are interested
in probability measure/preserving (p.m.p.) actions of �, i.e., actions of the form
α : � � (X,μ), where (X,μ) is a standard probability space and the measure μ is
α-invariant. More generally, we consider Borel actions α : � �X, i.e., actions of �

on a standard Borel space X by Borel automorphisms. An action α : � � X is free
if the α-stabilizer of every point x ∈ X is trivial.

An important example of a p.m.p. action is the Bernoulli shift action

σ : � � ([0,1]�,λ�),

where ([0,1], λ) is the unit interval equipped with the Lebesgue probability mea-
sure λ (owing to the measure isomorphism theorem [30, Theorem 17.41], any other
atomless standard probability space could be used instead). For brevity, we write

� := [0,1]� and λ := λ�

(this notation will only be used in §3.5). Our starting point is a result of Abért and
Weiss:

Theorem 3.19 (Abért–Weiss [1]) Fix the following data:

• a partition � = A1 � . . . � Ak of � into finitely many Borel pieces;
• a finite set F ∈ [�]<∞; and
• ε > 0.

For every free p.m.p. action α : � � (X,μ), there is a Borel partition X = B1 � . . . �
Bk such that

μ(Bi ∩ γ · Bj ) ≈ε λ(Ai ∩ γ · Aj),

for all 1 � i, j � k and all γ ∈ F .

Here and in what follows, we write a ≈ε b to mean |a − b| < ε. Theorem 3.19 can
be stated briefly as “The shift action σ : � � (�,λ) is weakly contained in every free
p.m.p. action α : � � (X,μ).” The relation of weak containment was introduced by
Kechris in [31, §10(C)]. For more details and further background on this topic, see
the survey [12] by Burton and Kechris.
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Here we strengthen Theorem 3.19 by replacing the quantities μ(Bi ∩ γ · Bj ) with
certain pointwise averages almost everywhere:

Theorem 3.20 Fix the following data:
• a partition � = A1 � . . . � Ak of � into finitely many Borel pieces;
• a finite set F ∈ [�]<∞; and
• ε > 0.

Then there is n0 ∈ N
+ with the following property. Fix a finite set D ∈ [�]<∞ of size

|D| � n0 and let α : � � X be a free Borel action of �. For every probability Borel
measure μ on X, there exists a Borel partition X = B1 � . . . � Bk such that

|{δ ∈ D : δ · x ∈ Bi ∩ γ · Bj }|
|D| ≈ε λ(Ai ∩ γ · Aj), (3.21)

for all 1 � i, j � k, all γ ∈ F , and μ-almost all x ∈ X.

Note that in Theorem 3.20, the measure μ is not required to be α-invariant. If
μ is α-invariant, then the partition X = B1 � . . . � Bk given by Theorem 3.20 also
witnesses the conclusion of Theorem 3.19, as for an α-invariant measure μ, we have

μ(Y ) =
∫

X

|{δ ∈ D : δ · x ∈ Y }|
|D| dμ(x),

for all Borel Y ⊆ X and any nonempty finite set D ∈ [�]<∞. This shows that The-
orem 3.20 is indeed a strengthening of Theorem 3.19. Statements in the spirit of
Theorem 3.20 were first considered by the present author in [9]. There, a weaker
version of Theorem 3.20 was established, with (3.21) satisfied not for μ-almost all
x ∈ X, but only on a set of x ∈ X of measure at least 1 − δ, for any given δ > 0 [9,
Theorem 2.11]. The question of whether Theorem 3.20 is true was left there as an
open problem [9, Problem 8.2].

Proof of Theorem 3.20 Only minimal modifications to the proof of [9, Theorem 2.11]
are needed to obtain Theorem 3.20. Specifically, in [9, §§4.B and 7.A] the con-
struction of a partition X = B1 � . . . � Bk with the desired property is reduced to
finding a measurable solution to a certain Borel CSP B on X. This CSP depends
on the original partition � = A1 � . . . � Ak , the finite set F , the parameter ε, and
the choice of the averaging set D. It is immediate from the construction of B that
sup{|dom(B)| : B ∈ B} < ∞. Furthermore, the calculations given in the proof of [9,
Lemma 7.2] show that there exist positive reals a, b, and c depending on the partition
� = A1 � . . . � Ak , the finite set F , and the parameter ε but not on D such that

p(B) � a exp(−b|D|) and d(B) � c|D|2 − 1. (3.22)

At this point the proof of [9, Theorem 2.11] invokes the approximate Symmetric LLL
from [8] (Theorem 6.5 in [9]), which yields a measurable function that satisfies the
constraints of the CSP B away from a set of measure less than δ, for given δ > 0. To
obtain Theorem 3.20, we instead use Theorem 2.20. By (3.22),

p(B) · (d(B) + 1)8 � a exp(−b|D|) · c8|D|16.
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The latter quantity approaches 0 as |D| → ∞; in particular, it is less than 2−15 when-
ever |D| is large enough. Hence, by Theorem 2.20, assuming |D| is sufficiently large,
the CSP B has a measurable solution, and we are done. �

4 Using distributed algorithms

4.1 Proof of Theorem 2.10

We start with the following simple observation, which will be used repeatedly
throughout §§4 and 5:

Lemma 4.1 If G is a locally finite Borel structured graph, then the function

V (G) ×N → FSG• : (x,R) �→ [BG(x,R), x]
is Borel (here FSG• is viewed as a discrete countable space).

Proof We need to argue that for every finite rooted structured graph (H , v), the set

{(x,R) ∈ V (G) ×N : (BG(x,R), x) ∼= (H , v)} (4.2)

is Borel. Since G is locally finite, by the Feldman–Moore theorem [33, Theorem 1.3],
there exist Borel involutions γi : V (G) → V (G), i ∈N, such that distG(x, y) < ∞ if
and only if y = γi(x) for some i ∈N. Without loss of generality, we may assume that
γ0 is the identity map on V (G). For all x, y ∈ V (G) such that distG(x, y) < ∞, let
index(x, y) denote the minimum i ∈ N with γi(x) = y (in particular, index(x, x) = 0).
Now, for any x ∈ V (G) and R ∈ N, we have that (BG(x,R), x) ∼= (H , v) if and only
if there exists a partial function ϕ ∈ [N ⇀ V (H )]<∞ such that:

• ϕ is a bijection between dom(ϕ) ∈ [N]<∞ and V (H );
• for all i ∈ N, we have i ∈ dom(ϕ) if and only if distG(x, γi(x)) � R and i =

index(x, γi(x));
• the mapping γi(x) �→ ϕ(i) is an isomorphism of the structured graphs BG(x,R)

and H ;
• ϕ(0) = v.

Since the set [N ⇀ V (H )]<∞ is countable, it follows that the set (4.2) is a countable
union of Borel sets (one for each ϕ ∈ [N ⇀ V (H )]<∞), and hence it is itself Borel.

�

A useful consequence of Lemma 4.1 is that if A is a LOCAL algorithm and
G is a locally finite Borel structured graph, then for each T ∈ N, the map
A(G, T ) : V (G) → N is Borel. We will make extensive use of this observation
throughout the remainder of the paper.

After these preliminary remarks, we are ready to prove Theorem 2.10.
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Proof of Theorem 2.10 Our proof of Theorem 2.10 is similar to the argument used
by Chang, Kopelowitz, and Pettie to prove that no local coloring problem has de-
terministic LOCAL complexity in the range ω(log∗ n) and o(logn) [13, Corollary
3]. Let � = (t,P) be a local coloring problem and let G ⊆ FSG. Fix n ∈ N

+ such
that T := Det�,G(n) is finite and let A be a LOCAL algorithm witnessing the bound
Det�,G(n) � T . Set R := T + t . Now let G be a Borel structured graph that is (R,n)-
locally in G and such that |BG(x,2R)| � n for all x ∈ V (G). Our goal is to show
that G has a Borel �-coloring. To this end, let G′ be the graph with V (G′) := V (G)

in which two distinct vertices x, y are adjacent if and only if distG(x, y) � 2R. The
graph G′ is Borel and satisfies �(G′) = sup{|BG(x,2R)| − 1 : x ∈ V (G)} � n − 1
(we are subtracting 1 since a vertex is never adjacent to itself). Hence, by the Kechris–
Solecki–Todorcevic Theorem 3.1, G′ has a Borel proper coloring c : V (G) → [n].
Define a function f : V (G) → N by f := A(Gc, T ). The function f is Borel, and
we claim that it is a �-coloring of G. In other words, we claim that

P(Gf , t)(x) = 1 for all x ∈ V (G).

Fix any x ∈ V (G). Since G is (R,n)-locally in G, there exist an n-vertex struc-
tured graph H with [H ] ∈ G and a vertex y ∈ V (H ) such that [BG(x,R), x] =
[BH (y,R), y]. Let ϕ be an isomorphism between BH (y,R) and BG(x,R) send-
ing y to x. Notice that the vertices of BG(x,R) are pairwise adjacent in G′, so
they are assigned distinct colors by c. Hence, we can extend the function c ◦ ϕ to
a bijection id : V (H ) → [n]. Since A is a LOCAL algorithm witnessing the bound
Det�,G(n) � T , the function g := A(H id, T ) is a �-coloring of H . In particular,

P(H g, t)(y) = 1.

It remains to observe that the t-ball around x in Gf is isomorphic to the t-ball around
y in H g , and hence P(Gf , t)(x) = P(H g, t)(y) = 1, as desired. �

4.2 Proof of Theorem 2.13

The proof of Theorem 2.13 is virtually the same as the proof of Theorem 2.10 given
in §4.1. We just have to make sure that the construction described there produces
a continuous coloring. To this end, we start with a few simple observations about
topological graphs. First, it is an immediate consequence of Definition 2.12 that if G

is a topological graph, then the function

V (G) ×N → FSG• : (x,R) �→ [BG(x,R), x]
is continuous (here the countable set FSG• is viewed as a discrete space). In partic-
ular, this implies that if A is a LOCAL algorithm and G is a topological structured
graph, then for each T ∈ N, the map A(G, T ) : V (G) → N is continuous. Next, we
shall need the following fact:

Lemma 4.3 Let G be a topological structured graph. If f : V (G) → N is a continu-
ous function, then Gf is also a topological structured graph.
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Proof Let d be a metric inducing the topology on V (G). Fix x ∈ V (G), R ∈
N, and ε > 0. Since G is locally finite, we have |BG(x,R)| < ∞, and hence,
by making ε smaller if necessary, we may arrange that f is constant on the ε-
neighborhood of each vertex z ∈ V (BG(x,R)). Since G is a topological structured
graph, there is δ > 0 be such that for every y in the δ-neighborhood of x, the
rooted structured graphs (BG(x,R), x) and (BG(y,R), y) are ε-isomorphic. Let ϕ

be an isomorphism between (BG(x,R), x) and (BG(y,R), y) such that d(z,ϕ(z)) <

ε for all z ∈ V (BG(x,R)). Then, by the assumption on ε, f (z) = f (ϕ(z)) for
all z ∈ V (BG(x,R)) as well, so the rooted structured graphs (BGf

(x,R), x) and
(BGf

(y,R), y) are ε-isomorphic, as desired. �

We also require a couple results about continuous colorings of topological graphs.

Lemma 4.4 If G is a topological graph, then G admits a continuous proper coloring
c : V (G) → N.

Proof Since V (G) is a zero-dimensional Polish space, there is a countable base
(Ui)

∞
i=0 for the topology on V (G) consisting of clopen sets. For each i ∈ N, define a

set Vi ⊆ V (G) by setting

x ∈ Vi :⇐⇒ x ∈ Ui and NG(x) ∩ Ui = ∅.

By construction, each set Vi is independent in G (i.e., no two vertices in Vi are
adjacent). Since (Ui)

∞
i=0 is a base for the topology on V (G) and G is locally fi-

nite, for each x ∈ V (G) there is some i ∈ N such that x ∈ Vi . In other words,
V (G) = ⋃∞

i=0 Vi . Note that whether or not x ∈ Vi is determined by the isomorphism
type of the rooted radius-1 ball around x in the structured graph (G,1Ui

), where
1Ui

: V (G) → {0,1} is the indicator function of Ui . Since Ui is clopen, 1Ui
is con-

tinuous, so (G,1Ui
) is a topological structured graph, and hence the set Vi is clopen

as well. To summarize, we have expressed V (G) as a countable union of clopen sets
that are independent in G. Now define Wi := Vi \ ⋃i−1

j=0 Vj . The sets Wi are again
clopen, independent in G, and satisfy V (G) = ⋃∞

i=0 Wi . Additionally, they are pair-
wise disjoint. Thus, we may define a function c : V (G) →N via

c(x) = i :⇐⇒ x ∈ Wi.

This c is a desired continuous proper coloring. �

Lemma 4.5 If G is a topological graph of finite maximum degree �, then G admits a
continuous proper coloring c : V (G) → [� + 1].

Proof Let r : V (G) → N be a continuous proper coloring of G that exists by
Lemma 4.4. For each i ∈ N, set Wi := r−1(i) and define functions ci : Wi → [� + 1]
recursively by

ci(x) := min{j ∈ [� + 1] : there is no y ∈ NG(x) with r(y) < i and cr(y)(y) = j }.
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The fact that |NG(x)| � � for all x ∈ V (G) ensures that ci(x) is well-defined. Set
c := ⋃∞

i=0 ci . By construction, c is a proper (� + 1)-coloring of G. It remains to
observe that c is continuous, since for each x ∈ Wi , the value c(x) is determined by
the isomorphism type of the rooted radius-i ball around x in the topological structured
graph Gr . �

Now we can easily verify that the construction from §4.1 produces a continuous
coloring. Let � = (t,P) be a local coloring problem and let G ⊆ FSG. Fix n ∈ N

+
such that T := Det�,G(n) < ∞ and let A be a LOCAL algorithm witnessing the in-
equality Det�,G(n) � T . Set R := T + t . Let G be a topological structured graph that
is (R,n)-locally in G and such that |BG(x,2R)| � n for all x ∈ V (G). Define G′ to
be the graph with V (G′) := V (G) in which two distinct vertices x, y are adjacent
if and only if distG(x, y) � 2R. It is clear that G′ is a topological graph of maxi-
mum degree at most n − 1, so, by Lemma 4.5, G′ has a continuous proper coloring
c : V (G) → [n]. Define a function f : V (G) → N by f := A(Gc, T ). Since Gc is a
topological structured graph, f is continuous, and the argument from §4.1 shows that
f is a �-coloring of G, as desired.

4.3 Reduction from randomized LOCAL algorithms to the LLL

Recall that a CSP B is called bounded if sup{|dom(B)| : B ∈ B} < ∞ (this is one
of the assumptions in Theorem 2.20). The main result of this section is the following
lemma:

Lemma 4.6 Let � = (t,P) be a local coloring problem and let G ⊆ FSG. Fix n ∈N
+

such that T := Rand�,G(n) is finite and set R := T + t . Let m ∈ N
+ and a LOCAL

algorithm A witness the bound Rand�,G(n) � T . If G is a Borel structured graph of
finite maximum degree that is (R,n)-locally in G, then there exists a bounded Borel
CSP B : V (G) →? [m] such that:

(i) for every solution ϑ : V (G) → [m] to B, the function A(Gϑ ,T ) is a �-coloring
of G;

(ii) p(B) � 1/n and d(B) � sup{|BG(x,2R)| − 1 : x ∈ V (G)}.

Proof For each ϑ : V (G) → [m], let fϑ := A(Gϑ ,T ). Note that for every x ∈ V (G),
the value P(Gfϑ , t)(x) is determined by the isomorphism type of the rooted R-ball
around x in Gϑ . Therefore, we may define a set Bx of functions ϕ : V (BG(x,R)) →
[m] via

ϕ ∈ Bx :⇐⇒ P(Gfϑ , t)(x) = 0 for some (hence all) ϑ : V (G) → [m]
such that ϑ ⊇ ϕ.

Each Bx is a (V (G),m)-constraint such that either dom(Bx) = V (BG(x,R)) or Bx =
∅. Let

B := {Bx : x ∈ V (G)}.
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Then B is a Borel CSP on V (G) with range [m], and we claim that it has all the
desired properties. Since the maximum degree of G is finite, B is bounded. The defi-
nition of each constraint Bx implies that if ϑ |dom(Bx) /∈ Bx , then P(Gfϑ , t)(x) = 1,
and therefore (i) holds. The bound

d(B) � sup{|BG(x,2R)| − 1 : x ∈ V (G)}
follows from the observation that if By ∈ N(Bx), then V (BG(x,R))∩V (BG(y,R)) �=
∅ and thus distG(x, y) � 2R. (Here we are subtracting 1 because distG(x, x) � 2R

but Bx /∈ N(Bx).) It remains to verify that p(B) � 1/n. To this end, fix a vertex
x ∈ V (G). We wish to show that P[Bx] � 1/n. Since G is (R,n)-locally in G, there
exist an n-vertex structured graph H with [H ] ∈ G and a vertex y ∈ V (H ) such that
[BG(x,R), x] = [BH (y,R), y]. To simplify the notation we assume, without loss of
generality, that x = y and BG(x,R) = BH (x,R). Pick a function ϑ : V (H ) → [m]
uniformly at random and define g := A(Hϑ ,T ) and ϕ := ϑ |dom(Bx) (thus, g and
ϕ are also random functions). By the construction of Bx and since BG(x,R) =
BH (x,R), if ϕ ∈ Bx , then P(H g, t)(x) = 0 and, in particular, g is not a �-coloring
of H . Therefore,

P[Bx] = P[ϕ ∈ Bx] � P[g is not a �-coloring of H ] � 1

n
,

where the last inequality holds since A witnesses the bound Rand�,G(n) � T . �

Next we apply Lemma 4.6 to derive Theorem 2.14 from the Measurable Sym-
metric LLL. For technical reasons, a somewhat stronger version of the Measurable
Symmetric LLL is required:

Theorem 2.20′ Let B : X →? [m] be a bounded Borel CSP such that

p(B) · (d(B) + 1)8 � 2−15.

Then the following conclusions hold:

(i) If M is a countable set of probability Borel measures on X, then B has a
solution that is simultaneously μ-measurable for all μ ∈M.

(ii) If T is a countable set of compatible Polish topologies on X, then B has a
solution that is simultaneously τ -Baire-measurable for all τ ∈ T .

While it appears more general, Theorem 2.20′(i) is actually an easy consequence
of Theorem 2.20(i). Indeed, if M = {μn : n ∈ N} is a countable set of probabil-
ity Borel measures on X, then the conclusion of Theorem 2.20′(i) is obtained by
applying Theorem 2.20(i) to the measure μ := ∑∞

n=0 2−n−1μn. On the other hand,
Theorem 2.20′(ii) requires an independent argument, which we give in §5.6.

Proof of Theorem 2.14 assuming Theorem 2.20′ Let � = (t,P) be a local coloring
problem and let G ⊆ FSG. Fix n ∈ N

+ such that T := Rand�,G(n) is finite and set
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R := T + t . Let m ∈ N
+ and a LOCAL algorithm A witness the bound Rand�,G(n) �

T . Let G be a Borel structured graph that is (R,n)-locally in G and such that

|BG(x,2R)| � n1/8/4 for all x ∈ V (G).

Given a Borel probability measure μ on V (G), we wish to find a μ-measurable �-
coloring of G (the argument for Baire-measurable colorings is the same, mutatis mu-
tandis). By the Feldman–Moore theorem [33, Theorem 1.3], there exist Borel involu-
tions γi : V (G) → V (G), i ∈ N, such that distG(x, y) < ∞ if and only if y = γi(x)

for some i ∈ N. Define

M := {(γi)∗(μ) : i ∈ N}.

Letting B : V (G) →? [m] be a Borel CSP given by Lemma 4.6, we have

p(B) · (d(B) + 1)8 � 1

n
· (n1/8/4)8 = 2−16.

Therefore, we may apply Theorem 2.20′(i) to obtain a solution ϑ : V (G) → N to B
that is measurable with respect to every measure (γi)∗(μ). This means that ϑ agrees
with a Borel function away from a set S ⊆ V (G) that is (γi)∗(μ)-null for all i ∈ N.
Let S′ be the G-saturation of S, i.e., the set of all the vertices of G whose distance
to an element of S is finite. Then the set S′ is G-invariant, i.e., no edges of G join S′
to V (G) \ S′. Notice that S′ = ⋃∞

n=0 γi(S), and hence

μ(S′) �
∞∑

n=0

μ(γi(S)) =
∞∑

n=0

((γi)∗(μ))(S) = 0.

Since ϑ is a solution to B, A(Gϑ ,T ) is a �-coloring of G. Also, since ϑ agrees
with a Borel function away from S′ and S′ is G-invariant, we conclude that so does
A(Gϑ ,T ). The set S′ is μ-null, so this implies that A(Gϑ ,T ) is μ-measurable, as
desired. �

We can use Lemma 4.6 in a similar fashion to prove Theorem 2.15. Instead
of Theorem 2.20, this argument involves the subexponential Borel LLL of Csóka,
Grabowski, Máthé, Pikhurko, and Tyros:

Theorem 4.7 (Csóka–Grabowski–Máthé–Pikhurko–Tyros [20]) Let G be a Borel
graph of subexponential growth. Fix m ∈ N

+ and assign to each vertex x ∈ V (G)

a set Bx of functions from V (BG(x,1)) to [m]. Viewing every Bx as a (V (G),m)-
constraint, form a CSP B := {Bx : x ∈ V (G)}. Suppose that the CSP B is Borel.
If

p(B) · sup{|BG(x,2)| : x ∈ V (G)} � e−1,

then B has a Borel solution.
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Proof of Theorem 2.15 Let � = (t,P) be a local coloring problem and let G ⊆ FSG.
Fix n ∈ N

+ such that T := Rand�,G(n) is finite and set R := T + t . Let m ∈ N
+

and a LOCAL algorithm A witness the bound Rand�,G(n) � T . Let G be a Borel
structured graph of subexponential growth that is (R,n)-locally in G and such that
|BG(x,2R)| � n/e for all x ∈ V (G). We wish to find a Borel �-coloring of G. To
this end, let B : V (G) →? [m] be a Borel CSP given by Lemma 4.6 and let G′ be
the graph with V (G′) := V (G) in which two distinct vertices x, y are adjacent if
and only if distG(x, y) � R. It is straightforward to verify that the construction of B
presented in the proof of Lemma 4.6 fulfills the requirements of Theorem 4.7 with
the role of G played by G′. Furthermore,

p(B) · sup{|BG′(x,2)| : x ∈ V (G′)}
= p(B) · sup{|BG(x,2R)| : x ∈ V (G)} � 1

n
· n

e
= e−1.

Since G′ is a Borel graph of subexponential growth, Theorem 4.7 yields a Borel
solution ϑ : V (G) → N to B. Then A(Gϑ ,T ) is a Borel �-coloring of G, and we
are done. �

5 Proof of the Measurable Symmetric LLL

5.1 Proof outline

In this section we outline our strategy for proving Theorem 2.20. Say that B is an
(N, ε)-CSP if

p(B) · (d(B) + 1)N � ε.

We shall describe here the main steps in proving that Borel (8,2−15)-CSPs have mea-
surable solutions; the Baire-measurable case is similar but differs in some technical
aspects.

An important role in our argument is played by the notion of a reduction between
CSPs. Roughly speaking, a CSP B is reducible to a CSP C if there is a “local rule”
that transforms any solution to C into a solution to B; thus, to solve B, it suffices
to solve C . The precise definition of what we mean by a “local rule” here is given
in Definitions 5.1 and 5.4; it has some similarities and is closely related to the notion
of a LOCAL algorithm. The first key ingredient in the proof of Theorem 2.20 is a
“bootstrapping lemma” (Lemma 5.11), which asserts that if B is an (8,2−15)-CSP,
then B is reducible to an (N, ε)-CSP C for any N ∈ N and ε > 0. The proof of this
fact involves the bootstrapping technique developed by Fischer and Ghaffari in [24,
§3.2], which in turn is based on the work of Chang and Pettie [14] on the randomized
time hierarchy for the LOCAL model. A CSP B can be interpreted as a local coloring
problem on an auxiliary graph (see §5.4 for details). Ghaffari, Harris, and Kuhn [26]
showed that if B is an (8,2−15)-CSP, then the randomized LOCAL complexity of the
corresponding local coloring problem is o(logn) (the work of Ghaffari, Harris, and
Kuhn builds on the earlier breakthrough of Fischer and Ghaffari [24] who obtained
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the same conclusion for (32, e−32)-CSPs). Our “bootstrapping lemma” follows by
combining the Ghaffari–Harris–Kuhn result with Lemma 4.6.

Next we need to discuss partial solutions to CSPs. Given a CSP B : X →? [m],
a partial solution to B is a partial map g : X ⇀ [m] that can be extended to a full
solution f : X → [m]. Given a partial solution g to B, the problem of extending g

to a full solution can naturally be encoded as a CSP on X \ dom(g); we denote this
CSP by B/g (see §5.3 for the definition). The second key ingredient in our proof
is Lemma 5.12, which says, roughly, that if N and 1/ε are large enough and B is a
Borel (N, ε)-CSP on a standard probability space (X,μ), then B has a Borel partial
solution g such that dom(g) has measure at least, say, 1/2 and the CSP B/g satisfies
p(B/g) �

√
p(B). Arguments similar to Lemma 5.12 have been used by Fischer and

Ghaffari [24] and Molloy and Reed [40] and ultimately go back to the seminal work
of Beck [7].

Now we can sketch the overall flow of the proof. We are given a Borel (8,2−15)-
CSP B on a standard probability space (X,μ). Using Lemma 5.11, we “bootstrap”
B to an (N, ε)-CSP, where N , 1/ε � 1. We then apply Lemma 5.12 to get a Borel
partial solution g0 to B such that μ(dom(g0)) � 1/2 and p(B/g0) is still very
small; in particular, by making N and 1/ε sufficiently large, we may arrange B/g0
to be reducible to an (8,2−15)-CSP (see Lemma 5.18). We then repeat the same
steps with B/g0 in place of B and obtain a Borel partial solution g1 to B/g0 such
that μ(dom(g1)) � (1 − μ(dom(g0)))/2 and B/(g0 ∪ g1) is again reducible to an
(8,2−15)-CSP. After countably many such iterations, we will have constructed a se-
quence g0, g1, . . . of Borel functions such that g := g0 ∪ g1 ∪ . . . is a partial solution
to B with μ(dom(g)) = 1. Since g is a partial solution, it can be extended to a full
solution f , and any such f is μ-measurable, as desired.

5.2 Reductions between CSPs

For sets A and B , we use [A ⇀ B] to denote the set of all partial functions A ⇀

B . For functions f , g, the notation g ⊆ f means that f is an extension of g, i.e.,
dom(g) ⊆ dom(f ) and g = f |dom(g). The following definitions are crucial for our
proof of Theorem 2.20.

Definition 5.1 (Connections) An (X,Y )-connection, where X and Y are sets, is a
mapping ρ : [Y ⇀ N] → [X ⇀ N] that is monotone in the sense that if f : Y ⇀ N

and g ⊆ f , then ρ(g) ⊆ ρ(f ) as well. We say that a set S ⊆ Y ρ-determines an
element x ∈ X if for all f : Y ⇀N,

ρ(f )(x) = ρ(f |S)(x). (5.2)

When one side of (5.2) is undefined, we interpret the equality to mean that the other
side is undefined as well. The width of an (X,Y )-connection ρ is the quantity

w(ρ) := sup
x∈X

inf{|S| : S ⊆ Y is a set that ρ-determines x}.

An (X,Y )-connection ρ is local if w(ρ) is finite.
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Lemma/Definition 5.3 (Sρ(x)) Let ρ be a local (X,Y )-connection. Then for each
x ∈ X, there is a unique set Sρ(x) ⊆ Y such that S ⊆ Y ρ-determines x if and only if
S ⊇ Sρ(x).

Proof This is a consequence of the fact that if S1, S2 ⊆ Y are sets that ρ-determine
x, then S1 ∩ S2 also ρ-determines x, which holds since for any f : Y ⇀N,

ρ(f )(x) = ρ(f |S1)(x) = ρ((f |S1)|S2)(x) = ρ(f |(S1 ∩ S2))(x). �

Definition 5.4 (Reductions) Let B : X →? [m] and C : Y →? [n] be CSPs. A reduc-
tion from B to C is a local (X,Y )-connection ρ such that for all f : Y → [n],

f is a solution to C =⇒ ρ(f ) is a solution to B.

The degree of a reduction ρ is the quantity

d(ρ) := sup
x∈X

|{C ∈ C : dom(C) ∩ Sρ(x) �= ∅}|.

If there is a reduction from B to C , then we say that B is reducible to C and
write ρ : B � C to indicate that ρ is a reduction from B to C . Note that every
reduction ρ : B � C satisfies

d(ρ) � w(ρ) · (d(C ) + 1).

If X and Y are standard Borel spaces, we say that an (X,Y )-connection ρ is Borel if
ρ(f ) : X ⇀ N is a Borel function whenever f : Y ⇀N is Borel. If B and C are Borel
CSPs and there is a Borel reduction ρ : B � C , we say that B is Borel/reducible to
C .

It is clear that the (Borel-)reducibility relation is reflexive: the identity map [X ⇀

N] → [X ⇀ N] is a reduction from any CSP B on X to itself (the width of this
reduction is 1). It is not hard to see that this relation is also transitive. Indeed, we
have the following:

Lemma 5.5 (Transitivity) If ρ : B � C and σ : C � D are Borel reductions between
Borel CSPs, then the composition ρ ◦ σ is a Borel reduction from B to D such that

w(ρ ◦ σ) � w(ρ)w(σ ) and d(ρ ◦ σ) � w(ρ)d(σ ). (5.6)

Proof Let the given Borel CSPs B, C , and D be on spaces X, Y , and Z respectively.
It is clear that ρ ◦σ is a Borel (X,Z)-connection that sends solutions to D to solutions
to B. It remains to verify inequalities (5.6) (the first of which implies that ρ ◦ σ is
local). To this end, notice that for any x ∈ X, the union

⋃{Sσ (y) : y ∈ Sρ(x)} (ρ ◦σ)-
determines x, has size at most w(ρ)w(σ ), and intersects at most w(ρ)d(σ ) sets of the
form dom(D) for D ∈ D . �
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5.3 Partial solutions

Let B : X →? [m] be a CSP and let g : X ⇀ [m] be a partial function. We say
that g is a partial solution to B if g can be extended to a solution f : X → [m].
Given a partial map g : X ⇀ [m] and B ∈ B, let B/g be the constraint with domain
dom(B/g) := dom(B) \ dom(g) given by

B/g := {ϕ : dom(B) \ dom(g) → [m] : ϕ ∪ (g|dom(B)) ∈ B}.
In other words, ϕ ∈ B/g if and only if ϕ ∪ g violates the constraint B . Note that if
dom(B) ⊆ dom(g), then dom(B/g) = ∅; specifically, B/g = {∅} if g violates B ,
and B/g = ∅ otherwise. Let

B/g := {B/g : B ∈ B}.
We view B/g as a CSP on X \dom(g). By construction, d(B/g) � d(B). If the CSP
B and the partial map g are Borel, then the CSP B/g is Borel as well. The following
observation is immediate:

Lemma 5.7 Let B : X →? [m] be a CSP and let g : X ⇀ [m] be a partial function.
Then g is a partial solution to B if and only if B/g has a solution.

Proof If h : X \ dom(g) → [m] is a solution to B/g, then g ∪ h is a solution to B
extending g. Conversely, if f is a solution to B extending g, then f |(X \ dom(g)) is
a solution to B/g. �

Next we notice that a countable union of partial solutions is also a partial solution:

Lemma 5.8 Let B : X →? [m] be a CSP. If (gi)
∞
i=0 is a sequence such that for all

i ∈ N, gi is a partial solution to B/(g0 ∪· · ·∪gi−1), then
⋃∞

i=0 gi is a partial solution
to B.

Proof It is clear that each finite union g0 ∪ · · · ∪ gi is a partial solution to B, so
let fi : X → [m] be a solution to B extending g0 ∪ · · · ∪ gi . Consider the product
space [m]X , where the topology on [m] is discrete. By Tychonoff’s theorem, [m]X is
compact. The set S of all solutions to B is closed in [m]X , and, for each i ∈ N, the
set Ei of all f : X → [m] extending gi is also closed. The functions fi , i ∈ N, certify
that the collection {S} ∪ {Ei : i ∈ N} has the finite intersection property, so there is
some f ∈ S ∩ ⋂{Ei : i ∈ N}. This f is a solution to B extending

⋃∞
i=0 gi , and we

are done. �

Now we discuss the interplay between partial solutions and reductions:

Lemma 5.9 Let ρ : B � C be a Borel reduction between Borel CSPs. If g is a Borel
partial solution to C , then ρ(g) is a Borel partial solution to B and B/ρ(g) is
Borel-reducible to C /g.
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Proof Let the given Borel CSPs B and C be on spaces X and Y respectively. For
brevity, set Y ′ := dom(g) and X′ := dom(ρ(g)). The fact that ρ(g) is Borel follows
from the Borelness of ρ. If f is a solution to C extending g, then ρ(f ) is a solution
to B and, since ρ is monotone, ρ(f ) extends ρ(g), proving that ρ(g) is a partial
solution to B. Finally, the map

[Y \ Y ′ ⇀ N] → [X \ X′ ⇀N] : h �→ ρ(g ∪ h)|(X \ X′)

is a Borel reduction from B/ρ(g) to C /g. �

5.4 The LLL as a distributed problem

There are several natural and essentially equivalent ways of encoding a CSP as a
local coloring problem on an auxiliary graph. For our purposes, the following for-
malism will be most convenient. A graph-CSP with range m ∈ N

+ is a pair (G,B),
where G is a graph and B : V (G) →? [m] is a bounded CSP on V (G) such that
d(B) < ∞, with the following property: If x, y ∈ V (G) are distinct vertices such
that x, y ∈ dom(B) for some B ∈ B, then x and y are adjacent in G. A graph-CSP
(G,B) can be naturally interpreted as a structured graph, where, for each tuple of
vertices (x1, . . . , xk) ∈ V (G)<∞, the structure contains the information about all the
constraints B ∈ B such that dom(B) = {x1, . . . , xk}. Formally, we construct a struc-
ture map σ on G as follows. A tuple x = (x1, . . . , xk) ∈ V (G)<∞ is in the domain of
σ if and only if:

• the vertices x1, . . . , xk are pairwise distinct; and
• there is a constraint B ∈ B with dom(B) = {x1, . . . , xk}.

To compute σ(x) for x ∈ dom(σ ), let ι : {x1, . . . , xk} → [k] be given by ι(xi) := i.
For each B ∈ B with dom(B) = {x1, . . . , xk}, let B∗ be the set of all maps ϕ : [k] →
[m] such that ϕ ◦ ι ∈ B , and let

σ(x) := {B∗ : B ∈ B and dom(B) = {x1, . . . , xk}}.
Since B is bounded, σ is defined on tuples of bounded length. Furthermore, since
d(B) < ∞, the set σ(x) is finite for every x, which means that the range of σ is con-
tained in the countable set [[[N ⇀ N]<∞]<∞]<∞. As explained after Definition 2.1,
this means that we can indeed view σ as a structure map on G. We then identify
(G,B) with the structured graph (G,σ,m). (Here m is interpreted as a global pa-
rameter “known” to every vertex; this can be realized, formally, by viewing it as a
function V (G) →N mapping each vertex x ∈ V (G) to m.)

Let (G,B) be a graph-CSP. The requirement that x and y are adjacent whenever
x, y ∈ dom(B) for some B ∈ B means that in one round of the LOCAL model, each
vertex can “learn” about all constraints that involve it. Because of this, the problem of
solving B can be naturally encoded as a local coloring problem �CSP = (1,PCSP).
Given parameters m, k, p, and d , let CSP(m, k,p, d) denote the set of all isomor-
phism types of finite graph-CSPs (G,B) such that:

• the range of B is m;
• sup{|dom(B)| : B ∈ B} � k;
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• p(B) � p and d(B) � d .

We shall need the following bound on the randomized LOCAL complexity of solving
graph-CSPs:

Theorem 5.10 (Ghaffari–Harris–Kuhn [26]) If m, k, p, and d satisfy p(d + 1)8 �
2−15, then

Rand�CSP,CSP(m,k,p,d)(n) = exp(O(
√

log logn)) = o(logn).

(Here the implicit constants in the asymptotic notation may depend on m, k, and d .)

We say that a bounded CSP B is an (N, ε)-CSP if p(B)(d(B) + 1)N � ε. A
bounded Borel CSP B is a potential Borel (N, ε)-CSP if it is Borel-reducible to
a Borel (N, ε)-CSP. Using Theorem 5.10, we derive the following “bootstrapping
lemma,” inspired by [24, §3.2]:

Lemma 5.11 (Bootstrapping) Let B be a potential Borel (8,2−15)-CSP. Then B is
in fact a potential Borel (N, ε)-CSP for any N ∈ N and ε > 0. Moreover, there exist
a Borel (N, ε)-CSP C and a Borel reduction ρ : B � C such that p(C )d(ρ)N � ε.

Proof Let B : X →? [m] be the given Borel CSP and let σ : B � D be a Borel
reduction from B to a Borel (8,2−15)-CSP D : Y →? [	]. Set k := sup{|dom(D)| :
D ∈ D}, p := p(D), and d := d(D). Define a graph G with V (G) := Y by making
distinct vertices x and y adjacent if and only if x, y ∈ dom(D) for some D ∈ D .
Then G := (G,D) is a graph-CSP. It is routine to check that, as a structured graph,
G is Borel. Note that � := �(G) = �(G) � (k − 1)(d + 1); in particular, � is finite.
Consider the local coloring problem �CSP. For n ∈N

+, let

T (n) := Rand�CSP,CSP(	,k,p,d)(n) and R(n) := T (n) + 1.

By Theorem 5.10, T (n) = o(logn), and hence R(n) = o(logn). Let mn ∈ N
+ and

a LOCAL algorithm An witness the bound Rand�CSP,CSP(	,k,p,d)(n) � T (n). For
all large enough n, G is (R(n),n)-locally in CSP(	, k,p, d). Indeed, the class
CSP(	, k,p, d) is closed under adding isolated vertices, and every finite induced
subgraph of G is in CSP(	, k,p, d). Thus, we only need to verify that, for large
n, |BG(x,R(n))| � n for all x ∈ Y , which holds as

|BG(x,R(n))| � 1 + �o(logn) = no(1).

By Lemma 4.6, for every large enough n, there is a bounded Borel CSP Cn : Y →?

[mn] such that:

(i) for every solution ϑ : Y → [mn] to Cn, the function An(Gϑ ,T (n)) is a �CSP-
coloring of G, or, equivalently, a solution to D ;

(ii) p(Cn) � 1/n and d(Cn) � sup{|BG(x,2R(n))| − 1 : x ∈ Y } � 1 + �o(logn) =
no(1).



534 A. Bernshteyn

Using (i), we can define a Borel reduction τn : D � Cn by setting, for all ϑ : Y ⇀ N

and x ∈ Y ,

τ(ϑ)(x) :=
{
An(Gϑ ,T (n))(x) if V (BG(x,R(n))) ⊆ dom(ϑ);
undefined otherwise.

Each x ∈ Y is τn-determined by the vertex set of the radius-R(n) ball around x in G.
Thus,

w(τn) � sup{|BG(x,R(n))| : x ∈ Y } � 1 + �o(logn) = no(1),

and hence d(τn) � w(τn)(d(Cn) + 1) � no(1) as well. By Lemma 5.5, ρn := σ ◦ τn is
a Borel reduction from B to Cn such that d(ρn) � w(σ )d(τn) � no(1) (since w(σ ) is
a constant independent of n). Now fix N ∈ N and ε > 0. For sufficiently large n, we
can write

p(Cn) · (d(Cn) + 1)N � 1

n
· (no(1))N = n−1+o(1) < ε,

and similarly p(Cn)d(ρn)
N < ε. Therefore, for all sufficiently large n, the CSP C :=

Cn and the reduction ρ := ρn are as desired. �

5.5 Proof of Theorem 2.20(i)

In order to build partial solutions to CSPs, we use the following lemma, which is an
adaptation of [24, Lemma 8] to the measurable setting:

Lemma 5.12 (Partial solutions) Let B : X →? [m] be a Borel CSP and let ρ : B � C
be a Borel reduction from B to a Borel CSP C : Y →? [n]. Assume that C is a
(2, e−2/n2)-CSP. If μ is a probability Borel measure on X, then there is a Borel
partial solution h : Y ⇀ [n] to C such that

p(C /h) � n
√

p(C ) and μ(dom(ρ(h))) � 1 − d(ρ)
√

p(C ).

Proof Set p := p(C ) and d := d(C ). For a set A and i ∈N, let const(A, i) denote the
constant function on A sending every x ∈ A to i. An important observation is that if
C is a (Y,n)-constraint and A ⊆ Y is a subset such that |A ∩ dom(C)| � 1, then

P[C] = 1

n

n∑

i=1

P[C/const(A, i)]. (5.13)

Indeed, if A∩ dom(C) = ∅, then C/const(A, i) = C for all i ∈ [n] and (5.13) is triv-
ial. Otherwise, there is a single element x ∈ A∩dom(C), and P[C/const(A, i)] is the
probability that a uniformly random function ϕ : dom(C) → [n] is in C conditioned
on the event ϕ(x) = i. Since each of these events has probability 1/n, equation (5.13)
follows.

We say that a subset A ⊆ X is C -discrete if |A ∩ dom(C)| � 1 for all C ∈ C .
The first step in the construction of a desired partial solution h is to fix a partition
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Y = A1 � . . . � AN of Y into finitely many Borel C -discrete sets. To see that such
a partition exists, let G be the graph with vertex set Y in which distinct vertices x

and y adjacent if and only if x, y ∈ dom(C) for some C ∈ C . Since C is bounded
and d < ∞, G has finite maximum degree, so, by Theorem 3.1, G admits a Borel
proper coloring c : Y → [N ] for some N ∈ N. Letting Ak := c−1(k), the partition
Y = A1 � . . . � AN is as desired. Next, we need the following definition:

Definition 5.12.1 (Dangerous constraints and elements) Given a partial map h : Y ⇀

[n], we say that a constraint C ∈ C is h-dangerous if P[C/h] >
√

p, and an element
x ∈ Y is h-dangerous if x ∈ dom(C) for some h-dangerous constraint C ∈ C . Let
D(h) ⊆ Y denote the set of all h-dangerous elements; thus, D(h) = ⋃{dom(C) :
C ∈ C is h-dangerous}.

We use � to denote concatenation of finite sequences and write u � w to mean
that a sequence u is an initial segment of a sequence w. For 	 ∈ N, let W	 denote the
set of all sequences of elements of [n] of length at most 	. To each sequence w ∈ WN

of length k, we associate a Borel partial map hw : A1 � . . . � Ak ⇀ [n] as follows. If
k = 0 (i.e, w = ∅), then we let h∅ := ∅. If k > 0, we can express w as w = u�i,
where i ∈ [n] is the last entry of w and u is the initial segment of w of length k − 1.
Then we recursively define

hu�i := hu � const(Ak \ D(hu), i).

In other words, if w = (w1,w2, . . . ,wk), then hw assigns the value wt to the points in
At , except that it does not assign any value to the elements of At that are dangerous
with respect to the partial map h(w1,...,wt−1). Our goal now is to argue that there exists
a sequence w ∈ [n]N such that hw satisfies the conclusion of Lemma 5.12.

For brevity, given C ∈ C and w ∈ WN , we write Cw := C/hw and Cw := C /hw .
We also say that a constraint or an element is w-dangerous to mean that it is hw-
dangerous, and define D(w) := D(hw). If u ∈ WN−1 is a sequence of length k − 1,
i ∈ [n], and C ∈ C , then, by construction,

Cu�i = Cu/const(Ak \ D(u), i).

The set Ak \ D(u) is C -discrete, so we may apply (5.13) to conclude that

P[Cu] = 1

n

n∑

i=1

P[Cu�i]. (5.14)

Claim 5.12.2 For all w ∈ WN , p(Cw) � n
√

p and d(Cw) � d .

Proof The bound d(Cw) � d is clear. To prove p(Cw) � n
√

p, we proceed by in-
duction on the length of w. If w = ∅, then C∅ = C , so p(C∅) = p � n

√
p. Now

suppose that w = u�i for some i ∈ [n]. Consider an arbitrary constraint C ∈ C . If
P[Cu] >

√
p, i.e., C is u-dangerous, then Cu�i = Cu, so P[Cu�i] = P[Cu] � n

√
p



536 A. Bernshteyn

by the inductive hypothesis. If, on the other hand, P[Cu] � √
p, then

P[Cu�i] �
n∑

j=1

P[Cu�j ] (5.14)= nP[Cu] � n
√

p.

In either case, P[Cu�i] � n
√

p, and thus p(Cu�i ) � n
√

p, as desired. �

Claim 5.12.3 If w ∈ WN , then hw is a partial solution to C .

Proof Using Claim 5.12.2 and the fact that C is a (2, e−2/n2)-CSP, we can write

p(Cw) · (d(Cw) + 1) � n
√

p · (d + 1) � e−1.

Hence, Cw has a solution by the LLL (see Theorem 2.17). By Lemma 5.7, this pre-
cisely means that hw is a partial solution to C . �

In view of Claims 5.12.2 and 5.12.3, it only remains to argue that there is some
w ∈ [n]N such that μ(dom(ρ(hw))) � 1 − d(ρ)

√
p.

Claim 5.12.4 The following statements are valid.

(i) Let u, w ∈ WN be such that u � w. Then D(u) ⊆ D(w).
(ii) If w ∈ [n]N , then dom(hw) ⊇ Y \ D(w).

(iii) If w ∈ [n]N and x ∈ X are such that Sρ(x) ∩ D(w) = ∅, then x ∈ dom(ρ(hw)).

Proof (i) It is enough to prove the claim when w = u�i for some i ∈ [n]. Suppose
x ∈ D(u), i.e., x ∈ dom(C) for a u-dangerous constraint C ∈ C . Then Cu�i = Cu,
so P[Cu�i] = P[Cu] >

√
p and C is (u�i)-dangerous as well, which implies that

x ∈ D(u�i).
(ii) We need to show that for each k ∈ [N ], Ak \ dom(hw) ⊆ D(w). To this end,

let u � w be the initial segment of w of length k − 1. Then, by construction, Ak \
dom(hw) = D(u) ⊆ D(w).

(iii) Let f be a solution to C extending hw (such f exists by Claim 5.12.3). Then
ρ(f ) is a solution to B and, in particular, ρ(f )(x) is defined. By (ii), dom(hw) ⊇
Sρ(x), so f agrees with hw on Sρ(x). Therefore, ρ(hw)(x) is defined and equal to
ρ(f )(x). �

We are now ready to finish the proof. By applying (5.14) N times, we see that for
all C ∈ C ,

P[C] = 1

nN

∑

w∈[n]N
P[Cw]. (5.15)

Pick w ∈ [n]N uniformly at random. We use Pw and Ew to denote probability and
expectation with respect to this random choice of w. With this notation, (5.15) can
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be rewritten as Ew[P[Cw]] = P[C]. By Markov’s inequality applied to the random
variable P[Cw], this yields

Pw[C is w-dangerous] = Pw[P[Cw] >
√

p] � Ew[P[Cw]]√
p

= P[C]√
p

� √
p.

Consider any x ∈ X. By Claim 5.12.4(iii),

Pw[x ∈ dom(ρ(hw))] � 1 − Pw[Sρ(x) ∩ D(w) �= ∅]
� 1 −

∑

C

Pw[C is w-dangerous] � 1 − d(ρ)
√

p, (5.16)

where the sum is over all C ∈ C such that dom(C) ∩ Sρ(x) �= ∅. Since (5.16) holds
for every x ∈ X, we conclude that, by Fubini’s theorem, there is a choice of w ∈ [n]N
such that μ(dom(ρ(hw))) � 1 − d(ρ)

√
p, and the proof is complete. �

The upper bound on p(C /g) given by Lemma 5.12 depends on n, the cardinality
of the range of C . In order to control it, we show that every bounded CSP is reducible
to a binary CSP, i.e., one with range [2]:

Lemma 5.17 Let ρ : B � C be a Borel reduction between bounded Borel CSPs and
let ε > 0. Then there exist a bounded binary Borel CSP D and a Borel reduction
σ : B � D such that

p(D) � (1 + ε)p(C ), d(D) = d(C ), and d(σ ) = d(ρ).

Proof Let the given Borel CSPs be B : X →? [m] and C : Y →? [n]. We need to
somehow reduce n to just 2. The idea is to represent each i ∈ [n] by a binary sequence
of an appropriate finite length N . We can then replace every element y ∈ Y by N

copies (y,1), . . . , (y,N) and identify a solution f : Y → [n] to C with a function
f ′ : Y ×[N ] → [2] where f ′(y, i) is the i-th digit in a binary representation of f (y).
This will allow us to reduce C to a CSP D : Y × [N ] →? [2]. We remark that slight
technical complications arise from the fact that n may not be a power of 2 (this is
why we lose a factor of 1 + ε in the bound on p(D)).

Let us now describe the construction formally. Since the CSP C is bounded by
assumption, the value k := sup{|dom(C)| : C ∈ C } is finite. Fix δ > 0 such that (1 +
δ)k � 1 + ε. Let N ∈ N be so large that it is possible to express 2N as a sum of
the form 2N = s1 + s2 + · · · + sn, where each si is a positive integer and max{si :
i ∈ [n]} � (1 + δ)2N/n (so 2N is “approximately divisible by n”). Fix an arbitrary
mapping ξ : [2]N → [n] such that |ξ−1(i)| = si for each i ∈ [n]. We think of each
tuple (c1, . . . , cN) ∈ [2]N as a “binary code” representing the value ξ(c1, . . . , cN) ∈
[n].

Let Z := Y × [N ] and for each f : Z ⇀ N, define τ(f ) : Y ⇀ N as follows:

τ(f )(y) :=

⎧
⎪⎨

⎪⎩

ξ(f (y,1), . . . , f (y,N)) if (y, i) ∈ dom(f ) and f (y, i) ∈ [2]
for all i ∈ [N ];

undefined otherwise.
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It is clear that τ is a Borel (Y,Z)-connection such that w(τ ) = N , with the set
{(y,1), . . . , (y,N)} τ -determining each y ∈ Y . Next we define a binary Borel CSP
D on Z so that τ is a reduction from C to D , in the obvious way. Namely, for each
C ∈ C , we let C∗ be the (Z,2)-constraint with dom(C∗) := dom(C) × [N ] given
by C∗ := {ϕ : dom(C) × [N ] → [2] : τ(ϕ) ∈ C}, and set D := {C∗ : C ∈ C }. Let
σ := ρ ◦ τ . By Lemma 5.5, σ is a Borel reduction from B to D . We claim that the
CSP D and the reduction σ are as desired.

The equality d(D) = d(C ) follows since for all C ∈ C , |N(C∗)| = |N(C)|. To see
that d(σ ) = d(ρ), observe that for each x ∈ X, the set Sρ(x) × [N ] σ -determines
x and dom(C∗) ∩ (Sρ(x) × [N ]) �= ∅ if and only if dom(C) ∩ Sρ(x) �= ∅. Fi-
nally, to bound p(D), let C ∈ C and consider an arbitrary function ψ ∈ C. If
ϕ : dom(C∗) → [2] satisfies τ(ϕ) = ψ , then (ϕ(y,1), . . . , ϕ(y,N)) ∈ ξ−1(ψ(y)) for
all y ∈ dom(C). Hence there are at most (1 + δ)2N/n possible values for the tu-
ple (ϕ(y,1), . . . , ϕ(y,N)), and so the number of such functions ϕ cannot exceed
((1 + δ)2N/n)|dom(C)|. Therefore,

P[C∗] = |C∗|
2|dom(C∗)|

=
∑

ψ∈C |{ϕ : τ(ϕ) = ψ}|
2N |dom(C)| � 1

2N |dom(C)| · |C| ·
(

(1 + δ)2N

n

)|dom(C)|

= (1 + δ)|dom(C)| · |C|
n|dom(C)| = (1 + δ)|dom(C)|

P[C] � (1 + ε)P[C],

and thus p(D) � (1 + ε)p(C ), as desired. �

Now we can combine Lemmas 5.11, 5.12, and 5.17 to obtain the following:

Lemma 5.18 Let B : X →? [m] be a potential Borel (8,2−15)-CSP. If μ is a proba-
bility Borel measure on X, then B admits a Borel partial solution g : X ⇀ [m] such
that μ(dom(g)) � 1/2 and B/g is again a potential Borel (8,2−15)-CSP.

Proof Using Lemmas 5.11 and 5.17, we can find a binary Borel (16,2−32)-CSP C
and a Borel reduction ρ : B � C such that p(C )d(ρ)2 � 1/4. Let h be a partial
Borel solution to C satisfying the conclusion of Lemma 5.12 and define g := ρ(h).
By Lemma 5.9, g is a Borel partial solution to B and B/g is Borel-reducible to
C /h. Thus, it suffices to verify that μ(dom(g)) � 1/2 and C /h is an (8,2−15)-CSP.
By the choice of h, we have

μ(dom(g)) � 1 − d(ρ)
√

p(C ) � 1 − 1/2 = 1/2,

as desired. Furthermore,

p(C /h) · (d(C /h) + 1)8 � 2
√

p(C ) · (d(C ) + 1)8 � 2 ·
√

2−32 = 2−15.

Thus, C /h is indeed an (8,2−15)-CSP, and we are done. �
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With Lemma 5.18 in hand, it is easy to finish the proof of Theorem 2.20(i). Let
B : X →? [m] be a Borel (8,2−15)-CSP and let μ be a probability Borel measure on
X. Repeated applications of Lemma 5.18 produce a sequence (gi)

∞
i=0 such that for

all i ∈ N:
• B/(g0 ∪ · · · ∪ gi−1) is a potential Borel (8,2−15)-CSP;
• gi is a Borel partial solution to B/(g0 ∪ · · · ∪ gi−1); and
• μ(dom(gi)) � (1 − μ(dom(g0)) − · · · − μ(dom(gi−1)))/2.

Let g := ⋃∞
i=0 gi . Then μ(dom(g)) = 1. By Lemma 5.8, g is a Borel partial solution

to B, so let f be any solution to B extending g. Since f agrees with the Borel
function g on a μ-conull set, f is μ-measurable, and the proof is complete.

5.6 Proof of Theorem 2.20′(ii)

In the Baire category setting, instead of Lemma 5.18 we use the following:

Lemma 5.19 Let B : X →? [m] be a potential Borel (8,2−15)-CSP. Then there is a
finite set G of Borel partial solutions to B such that:

• ⋃{dom(g) : g ∈ G} = X; and
• for every g ∈ G, B/g is a potential Borel (8,2−15)-CSP.

Proof Using Lemmas 5.11 and 5.17, we can find a binary Borel (16,2−32)-CSP C
and a Borel reduction ρ : B � C such that p(C )d(ρ)2 � 1/4. Using the construction
from the proof of Lemma 5.12, we obtain a natural number N ∈N and an assignment
to each sequence w ∈ [2]N of a Borel partial solution hw to C with the following
properties:

(i) for all w ∈ [2]N , p(C /hw) � 2
√

p(C ) (Claim 5.12.2); and
(ii) for every x ∈ X, Pw[x ∈ dom(ρ(hw))] � 1 − d(ρ)

√
p(C ), where Pw denotes

probability with respect to a uniformly random choice of w ∈ [2]N (equation
(5.16)).

From (i) it follows that each C /hw is an (8,2−15)-CSP, since

p(C /hw) · (d(C /hw) + 1)8 � 2
√

p(C ) · (d(C ) + 1)8 � 2 ·
√

2−32 = 2−15.

Furthermore, from (ii) it follows that for all x ∈ X,

Pw[x ∈ dom(ρ(hw))] � 1 − d(ρ)
√

p(C ) � 1 − 1/2 = 1/2.

In particular, for each x ∈ X, there is some w ∈ [2]N such that x ∈ dom(ρ(hw)).
By Lemma 5.9, each ρ(hw) is a Borel partial solution to B and B/ρ(hw) is Borel-
reducible to C /hw . Therefore, the set G := {ρ(hw) : w ∈ [2]N } is as desired. �

We are now ready to prove Theorem 2.20′(ii). Let B : X →? [m] be a Borel
(8,2−15)-CSP and let T be a countable set of compatible Polish topologies on X.
For each τ ∈ T , fix a countable base Uτ consisting of nonempty open sets, and let
(τi,Ui)

∞
i=0 be an enumeration of all pairs (τ,U) with τ ∈ T and U ∈ Uτ . Using

Lemma 5.19, we can recursively build a sequence (gi)
∞
i=0 such that for all i ∈N:
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• B/(g0 ∪ · · · ∪ gi−1) is a potential Borel (8,2−15)-CSP;
• gi is a Borel partial solution to B/(g0 ∪ · · · ∪ gi−1); and
• the set (dom(g0) ∪ · · · ∪ dom(gi)) ∩ Ui is τi -nonmeager.

Specifically, once g0, . . . , gi−1 have been constructed, we define gi as follows. Let G
be a finite set of Borel partial solutions to B/(g0 ∪ · · · ∪gi−1) given by Lemma 5.19.
Then

Ui ⊆ dom(g0) ∪ · · · ∪ dom(gi−1) ∪
⋃

{dom(g) : g ∈ G}.

Since Ui is nonempty and τi -open, it is τi -nonmeager, so dom(g) ∩ Ui must be τi -
nonmeager for some g ∈ {g0, . . . , gi−1} ∪ G. If dom(gj ) ∩ Ui is τi -nonmeager for
some 0 � j � i − 1, then we can let gi := ∅, and otherwise we can make gi be any
g ∈ G such that dom(g) ∩ Ui is τi -nonmeager.

Once we have built a sequence (gi)
∞
i=0 as above, we let g := ⋃∞

i=0 gi . By
Lemma 5.8, g is a Borel partial solution to B. Furthermore, for each τ ∈ T , the
set dom(g) ∩ U is τ -nonmeager for every U ∈ Uτ , which, by [30, Proposition 8.26],
implies that dom(g) is τ -comeager. Now let f be any solution to B extending g. For
each τ ∈ T , f agrees with the Borel function g on a τ -comeager set, and therefore f

is τ -Baire-measurable, which finishes the proof.
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