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AbstractÐItem categorization task aims to automatically infer
the product category of an item based on its textual description.
As a fundamental task in eCommerce domain, item categoriza-
tion is widely adopted in many important applications such
as product search, query understanding and product recom-
mendation. However, this task faces several challenges. First,
eCommerce data usually suffers from noisy facts since many
key product values are self-reported by individual sellers and
cannot be fully verified by experts. Second, eCommerce data
usually follows the long-tail data distribution in which class
distribution is highly imbalanced. To handle these challenges,
some existing efforts simply combine approaches that are de-
veloped for noisy data and long-tail data separately. However,
such a straightforward combination may not achieve satisfactory
performance. In this paper, we propose a performance-driven
Prior-Guided Meta-Weight Network (PGMWN) which handles
the two challenges in a principled way. The proposed framework
involves a meta re-weighting strategy to estimate the weights
of samples mainly based on performance changes. Moreover,
we leverage important data statistics to guide the meta re-
weighting mechanism towards distribution-aware weights. A
self-supervised representation learning component is utilized to
further improve the framework’s ability to address those two
issues. To evaluate the effectiveness of the proposed PGMWN
framework, comprehensive experiments are conducted on three
public real-world datasets collected from Amazon. The proposed
framework outperforms several state-of-the-art baselines in terms
of various evaluation metrics. The experimental results show
that the proposed model is able to handle the long tail data
distribution and label noise issues and is effective in the item
categorization task.

Index TermsÐitem categorization, meta weight learning, long
tail, noisy label

I. INTRODUCTION

Item categorization is an important task in eCommerce.

Its objective is to categorize the textual item description

into a product category. This is a fundamental task which

is widely adopted in many important applications including

product search, query understanding and product recommen-

dation in eCommerce. Despite the recent advances with pre-

trained language models like BERT [9] and GPT [26] showing

remarkable success in a variety of text processing tasks

and researchers’ efforts focusing on the item categorization

task [4]±[6], [23], [31], the item categorization task is still

challenging due to two reasons.

§The work was done when the first author was interning at Rakuten Institute
of Technology.

Fig. 1. The long-tail data distribution of the Amazon electronics dataset.
The histogram is generated by counting the label frequencise where the x-
axis denotes the number of labels and the y-axis represents the frequency
of labels. For example, the (1, 6323) means there is a category with 6323
samples.

Noisy facts. The data collected from eCommerce platforms

usually contains noisy facts. Because most of the information

regarding products on eCommerce websites (e.g., Amazon,

Ebay, and Walmart) is contributed by individual retailers,

noisy facts about products are unavoidable. Meanwhile, it is

prohibitively expensive to have those facts verified by experts

considering the huge volumes of products. The existence of

noisy facts will negatively impact the performance of product

categorization. Therefore, how to handle noisy facts is one of

the key challenges to develop item categorization models.

Long-tail distribution. As shown in Fig 1, the items on

eCommerce platforms usually follow a long-tail distribution,

where only few categories have a lot of items while most of

the categories only include limited number of items. A classifi-

cation model on such long-tailed data for item categorization

may excel on a few head classes but perform poorly on a

large set of tail classes. The unsatisfactory performance on

tail classes could significantly degrade the shopping experience
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for customers. How to handle this extremely imbalanced class

distribution becomes another challenge.

To handle the aforementioned challenges, existing

works [18], [34] investigate how to combine methods that

handle noisy facts and methods that deal with long-tail

distributions. However, a direct combination of methods

developed separately for these two issues easily leads to

conflicts in model design choices and thus may not achieve

satisfactory performance. For example, when handling noisy

data, the model design usually involves an assignment

of lower weights to noisy data, while when dealing with

long-tail data, a common strategy is to increase the weights

of data points with a low frequency. Conflicts may occur

when low-frequency data points are inferred to be noisy.

Meanwhile, for data points belonging to tail classes, the

judgement of their quality (whether they represent noisy facts

or not) is difficult when there are not enough instances for

achieving reliable quality estimation. In real eCommerce data,

the two challenges exist simultaneously and are inseparable,

and thus a new perspective that handles the two challenges

simultaneously is needed.

Different from existing works, we propose a performance-

driven framework, namely PGMWN, which deals with two

challenges in a principled way. In the proposed PGMWN

framework, the meta re-weighting method is introduced to

estimate the weights of samples based on the performance

changes. By this way, the framework tends to assign larger

weights to data points that are more related to the categoriza-

tion task, and thus improves the performance on the task of

interest. Moreover, we rely on important data statistics to guide

the data weight estimation mechanism so that weights are

distribution aware. To further boost the performance, we pro-

pose to apply the self-supervised contrastive learning method,

which learns informative representations without reliance on

the label information. The proposed framework is evaluated

on three datasets collected from Amazon. The experimental

results show that the proposed PGMWN framework outper-

forms the state-of-the-art baselines. We also present case study

analysis about the learned weights to explore insights behind

the proposed framework.

The main contributions of this paper can be summarized as

follows:

• We recognize the limitations of existing studies when they

try to address the long-tail distribution and noisy label

issues in item categorization task. Motivated by these

limitations, we propose a novel performance-driven meta-

re-weighting mechanism, namely PGMWN.

• The PGMWN framework leverages important statis-

tical information to make re-weighting mechanism

distribution-aware.

• Experimental results on three public real-world datasets

collected from Amazon validate the effectiveness of the

proposed PGMWN framework on item categorization

task.

The rest of this paper is organized as follows: In the second

section, we review related work. After that, the preliminary

is introduced and then the notations, problem statement and

technical details of the proposed framework are presented.

Next, we demonstrate the experimental setup and results.

Finally, we come to the conclusions.

II. RELATED WORK

In this section, we summarize the existing work focusing

on long-tailed classification and learning with noisy labels

independently as well as some work addressing those two

issues at the same time.

A. Methods addressing the long tail issue

There are many methods having been proposed to ad-

dress the long tail (LT) issue, which can be categorized into

the following categories: re-sampling, re-weighting and self-

supervised learning methods. The re-sampling methods, such

as SMOTE [3], samples the data to obtain a new dataset

with balanced data distribution. Recently, a two-stage training

strategy (exampled in [17], [37]), which decouples the learning

of a feature encoder and the learning of a classifier and

trains the classifier on a re-sampled balanced dataset, has

become influential in computer vision and shows its superior

performance on addressing the LT issue.

Another category methods try to re-weight the samples

based on their label frequencies such as Focal loss [21], Class-

balanced (CB) loss [8], Label-Distribution-Aware Margin loss

(LDAM) [1] and so on. Those methods design functions of

the label frequency to assign small weights to the samples in

the head classes while large weights to the samples in the tail

classes.

With the popularization of the two-stage methods in ad-

dressing the long-tail issue, Self-supervised methods [35]

that do not rely on any label when training representations

have been suggested to be effective for learning balanced

representations in the representation learning stage.

B. Learning under label noise

Many efforts have also been devoted to the area of learning

with noisy labels and the proposed methods can be classified

into two groups. First, a group of methods utilize sample

selection to identify clean samples from entire noisy dataset.

For example, DivideMix [20] fits a Gaussian Mixture Model

(GMM) on its training sample loss distribution to divide

the training samples into a clean subset with labels and a

noisy subset. Then, two subsets are jointly utilized in a semi-

supervised learning way to avoid noisy labels’ negative impact.

Similarly, co-teaching [14] trains two networks at the same

time to let them teach each other with selected clean samples.

Next, the other group of methods adopt loss correction to

shift model learning more on clean samples. For example,

several noise-addressing loss weighting plans are manually

designed [2], [36]. Recently, methods [27]±[29] have emerged

to automatically learn the sample weighting plans to address

the noisy label issue. In [11], contrastive learning is applied

to better initialize models before using a set of robust learning

methods such as [20], [29] for handling label noise. On the
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item categorization task, [32] systematically compared several

robust learning methods on real-world Amazon product data

set.

C. Learning with long tail noisy data

Compared with a large number of previous investigations

on addressing long-tail and noisy label issues separately, the

investigations that jointly consider addressing those two issues

are few. For example, on top of the two-stage LT-addressing

method, which consists of a self-supervised pre-training stage

and a classifier learning stage, [18] uses superloss [2] in the

second stage with a goal of addressing the noisy label issue.

Robust Long-Tailed Learning under Label Noise (RolT) [34]

uses a semi-supervised approach to address the two issues at

the same time. Compared to the method only considering the

long-tailed issue, i.e., DivideMix [20], RoLT showed increased

testing accuracy.

III. BACKGROUND

In this section, we will introduce some background knowl-

edge about self-supervised representation learning with Sim-

CSE [10] and Meta-Weight-Net [29] for sample weight learn-

ing, which are utilized in the proposed framework to help al-

liveate the long-tail noisy label issue in the item categorization

task.

A. Self-supervised Representation Learning with SimCSE

The self-supervised contrastive learning [7], [13] can help
learn unbiased representations to help alleviate the long tail
and noisy label issues [11], [16], [33]. In this paper, we apply
the SimCSE [10] framework, which optimizes the InfoNCE
loss [24] represented in Eq. (1) to maximize the agreement
between the representations of the anchor sample and its
augmentation to help learn unbiased representations. h, h+

and H− are the representations of the anchor sample sa, a
positive instance s+ and the set of negative instances in the
batch. cos(·) is the cosine similarity function. τ is the scaling
hyper-parameter.

L(h, h+, H−) = −log
exp(cos(h, h+)/τ)∑

h−∈H− exp(cos(h, h−)/τ)
(1)

The SimCSE obtains h and h+ by feeding the inputs into the

encoder twice using different random dropout masks [30] at

the dropout rate 0.1 and all other samples in the same batch

are considered as negative samples. The encoder is a fully-

connected layer with tanh as activation function stacked on

the BERT model.

B. Meta-Weight-Net for Sample Weight Learning

In this paper, we extend the Meta-Weight-Net framework

in [29] with the prior guided weight learning regularization

to re-weight the items to address the long-tail and noisy label

issues at the same time. The Meta-Weight-Net framework can

learn an explicit weight for the sample loss automatically.

The weights are learned in a meta-learning manner. There are

two main components in the Meta-Weight-Net [29]: the meta

weight net to learn the weight of the samples with a deep

neural network and the classifier to conduct the classification

task. The parameters in the meta weight net and the classifier

are updated alternatively with the other one fixed.

IV. METHODOLOGY

In this section, we first denote the terms and define the

task. Followed by the notations and problem definition, the

overview and the details of each component of the proposed

framework are presented. Finally, we describe the loss function

and parameter learning method of the proposed framework.

A. Notations and Problem Statement

Assume that there are |C| categories, and C = {cj}
|C|
j=1,

where cj is the description of the j-th category. Let I denote

the item set, and for each item i ∈ I, its description is denoted

as xi, and its category is li = cj . The correspond category

index is denoted as a one-hot vector yi ∈ {0, 1}|C|, where the

element of the j-th position in the vector yi is 1, while all

other elements are 0.

Based on these notations, we can formally define the item

categorization task as follows: Given the description xi of an

item i and the set of categories C, item categorization needs

to learn a model to predict which category the item belongs

to (i.e., the category index yi of the item i).

B. Overview of the PGMWN Framework

Fig. 2 shows the architecture overview of the PGMWN

framework, which aims to address the long tail and noisy

label issues simultaneously. PGMWN mainly consists of 4

modules, including the self-supervised representation learning

network, the item weight learning network, the prior guided

weight learning regularization network and the classifier.

We propose a novel meta weight learning framework based

on the method in [29] with prior guided regularization for the

item categorization task. The item weight learning network

utilizes the meta re-weighting method introduced in [29] to

assign the sample weights according to the changes of the

performance, where larger weights tend to be assigned to

samples that are more informative and thus help to improve

the performance. Furthermore, we propose to incorporate the

important data statistics to guide the sample weight learning

to keep it aware of the sample characteristics via the prior

guided item weight regularization network. To further improve

the ability of the model addressing the long tail and noisy

data issues, we utilize the aformentioned SimCSE [10] method

to learn unbiased text representations. Finally, the classifier

calculates the dot product between item and categories and

categorizes the item into the category with the largest value.

The details of the item weight learning network, the prior

guided weight learning regularization network, the classifier

and the way to learn the parameters will be introduced in the

following part. Since we don’t change the SimCSE [10] and

briefly introduced it in the Background, we will not introduce

the self-supervised representation learning component again in

the following part.
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Fig. 2. The architecture overview of the proposed framework. The proposed framework consists of 4 modules, including the self-supervised representation
learning module, the item weight learning module, the prior guided weight learning regularization network and the classifier. The training loss is the weighted
base loss where the base loss is the classification loss such as cross entropy and the weight is derived from the item weight learning network with prior guided
item weight regularization.

C. Item Weight Learning Network

Both the long-tail and noisy label issue will lead to in-

sufficient high quality labeled data and consequently the lack

of supervision. To fully exploit the labels, we propose to re-

weight the samples to assign different weights to different

samples by the item weight learning network, where the weight

of an item is related with its category frequency, the distance

from the item to the corresponding category it belongs to, as

well as the distance from its category to other categories. The

weight learning network first learns the representations of the

three factors and then obtains the weight for each item. The

details of the item weight learning network are described as

follows:

The weight learning network uses item embedding hx
i

and the category embedding hc
j from the SimCSE self-

representation learning network. First, the weight learning net-

work obtains the category frequency representation of an item

by taking its category representation and category frequency as

inputs. For an item i belonging to category j, let fj denote the

frequency of the category cj . Then the dense representation of

the frequency of the category j can be obtained using a fully-

connected layer represented as:

e
f
j = ReLU(MLP(hc

j ⊕ fj)) (2)

where e
f
j ∈ R

de is the dense representation of the category

frequency of the category j, and dj is the dimension of the

dense representation. ReLU(·) represents the Rectified Linear

Unit activation function where ReLU(x) = max(x, 0). ⊕
denotes the vector concatenation operation.

Next, we consider the influence of the distance between the

item and its corresponding category. For an item i and its

corresponding category j, the distance between them can be

represented as:

disti = −cos(hx
i , h

c
j) (3)

Since disti is related with both the item representation

hx
i and the category embedding hc

j , to learn the dense rep-

resentation of the distance, we consider both the item and

category embeddings. The dense representation that is aware

of the item, its corresponding category as well as the distance

between them can be derived as:

exi = ReLU(MLP(hc
j ⊕ hx

i ⊕ disti)) (4)

where exi is the dense representation aware of the item,

category and their distance.

Then the weight learning network models the similarity of

the category j that item i belongs to. To model the similarity

of the category j, we consider the distances between the

representation of category j and all other categories in the

category set C. Let distj denote the nearest neighbor distance

of the category which is the minimum distance between the

category j and all other categories in the category set C. Then

distj can be defined as:

distj = min(−cos(hc
j , h

c
j′)), ∀cj′ ∈ C − {cj} (5)

where hc
j′ denotes the embeddings of the category cj and cj′

separately.

Similar to modeling the category frequency, the nearest

neighbor distance of the category can be represented by a

dense vector, which can be derived as:

ecj = ReLU(MLP(hc
j ⊕ distj)) (6)

where ecj ∈ R
de represents the dense representation of the

confusion level of the category j of the item i. de is the

dimension of the dense vector ecj .
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With the three dense representations: e
f
j , ecj as well as exi ,

the weight for the item i can be learned with a two-layer

fully connected neural network with the aforementioned three

representations as the inputs. Let wi ∈ R denote the learned

weight for the item i. Then wi can be represented as:

wi = σ(MLP(ReLU(MLP(efj ⊕ ecj ⊕ exi )))) (7)

where σ(·) denote the Sigmoid activation function mapping

the output to the range from 0 to 1.

D. Prior Guided Weight Learning Regularization

To learn a better weight wi for the item i, in addition to

using the signal from the back propagation from the super-

vision obtaining via labels as in existing work such as [29],

we also consider to guide the weight learning via using prior

knowledge of the items and categories as illustrated in Fig. 3.

The details are shown as follows:

The order of category frequency: In the proposed frame-

work, we follow the idea that the items belonging to the

categories with lower frequencies should be assigned larger

weights by the weight learning network. To satisfy this con-

straint, we first recover the frequency by using the learned

weight and the category of the item as inputs which can be

represented as:

ê
f
j = σ(MLP(wi ⊕ hc

j)) (8)

According to our analysis, the larger weight should be

assigned to the item in the less frequent category. For two

items i1 and i2 belonging to category j1 and j2 (j1 ̸= j2)

respectively, given wi2 > wi1 , then the probability that

f1 > f2 can be represented as:

p(fj1 > fj2) = σ(
ˆ
e
f
j2
−

ˆ
e
f
j1
) (9)

where fj1 and fj2 are the frequency of categories j1 and

j2, and ej1 and ej2 are the embeddings of the obtained via

Eq. (8). wi1 and wi2 are the learned weights by the item weight

learning network of the item i1 and i2.

The order of distance between the item and its cor-

responding category: Next, we consider to use the distance

between the item and its corresponding category to regularize

the item weight learning. To correctly classify items and obtain

a model with better generalization, the classifier needs to cap-

ture the common characteristics of the category. For the items

that are far from the category, they cannot be representative

of the characteristics of the category and may be the noise

influencing the performance of the model. Thus, we want the

weight learning network to assign smaller weights to those

items that are far from the category embeddings compared

with the items that are closer to the category embeddings.

To recover the distance representation between the item and

its corresponding category, a one-layer fully connected layer

is applied, which can be represented as:

êxi = ReLU(MLP(wi ⊕ hx
i ⊕ hc

j)) (10)

In such a way, the probability that the item i2 is closer to the

category j than item i1 when i1 and i2 both belong to the

same category j can be represented as:

p(distxi1 > distxi2) = σ(êxi2 − êxi1) (11)

where distxi1 and distxi2 are the distances from the items i1
and i2 in the same category to the category embeddings they

belong to. êxi1 and êxi2 are the embeddings obtained by Eq. (10).

p(distxi1 > distxi2) ∈ R denotes the probability that the item

i1 are further from the categories than item i2 according to

their assigned weights by the weight learning network.

The order of category distance: The category distance

also affects the sample weights. The items belonging to the

category with a closer nearest neighbor category may be more

informative since their neighbors can borrow information from

them. Hence, we want the weight learning network to assign

larger weights to the items belonging to the categories that

has a smaller nearest neighbor distance. To achieve this goal,

we use the derived distance between the item category and its

closest category to regularize the item weight learning.

Similar as the frequency constraint, we recover the distance

by:

êdi = ReLU(MLP(wi ⊕ hc
j)) (12)

Then the probability that the items belonging to the category

that is more likely to be confused with other categories are

assigned with larger weights by the item weight learning

network can be represented as:

p(distj1 > distj2) = σ(êdi2 − êdi1) (13)

where i1 and i2 are two items belonging to category j1 and

j2(j1 ̸= j2) . distj1 and distj2 are the nearest neighbour

distance of category j1 and j2. êdj1 and êdj2 are the embeddings

obtained by Eq. (12). p(distj1 > distj2) ∈ R
1 denotes the

probability that the category j2 has a closer nearest neighbor

category than j1 according to their assigned weights by the

weight learning network.

To regularize the weight learning network, for each con-

straint, a cross-entropy loss is applied for the valid pairs and

the total regularization term is the average of the three losses.

The loss for the three constraints can be represented as:

Lf =
1

n1

∑
CE(p(fj1 > fj2),1(fj1 > fj2))

Ld =
1

n2

∑
CE(p(distxi1 > distxi2),1(dist

x
i1

> distxi2))

Lc =
1

n3

∑
CE(p(distj1 > distj2),1(distj1 > distj2))

(14)

where Lf , Lc and Ld denote the losses of the three constraints,

and n1, n2 and n3 are the number of valid item pairs of

the three constraints in a batch. CE(·, ·) represent the cross-

entropy loss function, where the first argument is the predicted

probability and the second argument is the label. 1(·) is the

indentation function where if the condition is true the value

of the function will be 1; otherwise, the value of the function

will be 0.

Authorized licensed use limited to: Purdue University. Downloaded on September 24,2024 at 21:20:43 UTC from IEEE Xplore.  Restrictions apply. 



951

Fig. 3. Illustration of the item weight regularization. The figure shows order
constraint applied cases where the colors of the items denote their categories.
For the item 1 and 2 in the same category, ideally their weights should satisfy
the constraint of item and category distance order. Considering item 1 and 3
belonging to different categories, their weights should meet the constraint of
the category frequency order and category distance order constraints.

The total weight learning regularization loss Lreg is the

average of the three constraint losses, which is:

Lreg =
1

3
(Lf + Ld + Lc) (15)

E. Classifier

The classifier is used to classify the item with textual

description to a category. Since the category representations

which characterize the categories can be obtained using their

textual descriptions by the encoder, they can be used to

derive the classification matrix. We first use a two-layer fully-

connected network to transform the representations of the

item and all the categories to the latent space, which can be

represented as:

hi = ReLU(MLP(ReLU(MLP(hx
i )))),

hj = ReLU(MLP(ReLU(MLP(hc
j)))), ∀cj ∈ C

(16)

where hi and hj ∈ R
dc are the latent representations of the

item i and category j.

Then the classifier determines the category of an item by

assigning the item to the category with the largest dot product

result, which is represented as:

s
j
i = hi × hT

j

ŷ′i = argmaxj(s
j
i , ∀cj ∈ C)

ŷi = onehot(|C|, ŷ′i)

(17)

where × denotes the vector multiplication operation. s
j
i ∈ R

represents the score that item i belongs to category j. ŷ′i ∈ R

is the index of the predicted category and argmax denotes

the function returning the index of the maximum value. ŷi ∈
R

|C| represents the predicted label of the item i. onehot(·, ·)
is the function generating one-hot embedding where the first

argument (|C|) representing the dimension of the vector and

the second argument (ŷ′i) set the index of 1 in the vector.

F. Prediction Loss

With the learned item weights, the prediction loss can be

defined as the average of the base loss for the items:

Lpred =
1

N

∑
wiLbasei (18)

where the Lpred is the prediction loss and Lbasei represents

the base loss for the item i and N is the number of samples

in the batch. In our framework we consider to use the cross-

entropy loss (PGMWNC) and LDAM loss [1] (PGMWNL),

which has been proven to be among the most effective methods

on imbalanced datasets for many tasks.

G. Parameter Learning

The training of the framework consists of two stages.

The first stage is to train the self-supervised representation

learning network and use the obtained model parameters as

the initialization of the second stage. The second stage is

to optimize the representation learning network, item weight

learning network as well as the classifier jointly.

Following the online strategy to update the parameters in

a single optimization loop in [29]. Let W denote all the

model parameters in the representation learning network and

the classifier and Θ denote all the model parameters in the

item weight learning network.

Algorithm 1 PGMWN framework learning algorithm

Input : Item set I, category set C, batch size n,m,

learning rate α, β, max iterations T

Output: Network parameters WT ,ΘT

0: function PGMWN FRAMEWORK LEARNING

1: Stage 1:

2: Train the representation learning network with I and C by

optimizeing Eq. (1).

3: Stage 2:

4: Initialize the representation network using the obtained

parameters in Stage 1 and randomly initialize the classifier

parameters W(0)

5: Randomly initialize item weight learning network param-

eters Θ(0).

6: for t = 0 to T − 1 do

7: {x, y} = MiniBatchSampler1(I, N)
8: Formulate the representation network and classifier

learning function Ŵ(t)(Θ) by Eq. (19).

9: {x′, y′} = MiniBatchSampler2(I,M)
10: Update Θ(t+1) by Eq. (20).

11: Update W(t+1) by Eq. (21)

12: end for

13: return WT ,ΘT

The online strategy consists of the following three steps:
Representation network and classifier learning manner

formulation. In this step, SGD is used to optimize the
prediction loss in Eq. (18). The corresponding parameters W
can be updated according to

Ŵ
(t)(Θ) = W

(t) −
α

N

N∑

n=1

V (Ii(W
(t)); Θ)▽WLbasen(W)|

W(t)

(19)

where α is the learning rate. V (·; ·) is the item weight learning

network function with the first argument as the inputs and

the second argument as the model parameters. Lbasen(W)
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represents the loss function respect to the variable of model

parameters W.

Item weight learning network parameter update. With

the representation and classifier network updating formulation,

the parameters Θ in the item weight learning network can be

updated by

Θ(t+1) = Θ(t) − β
1

M

M∑

m=1

▽ΘLbasem(Ŵ(t)(Θ))|Θ(t)

− β▽ΘLreg(Ŵ
(t)(Θ))|Θ(t)

(20)

where β denotes the learning rate.
Representation network and classifier update. The third

step is to update the model parameters in the representation
learning network and classifier with the updated Θ(t+1) by

W
(t+1) = W

(t)−
α

N

N∑

n=1

V (Ii(W
(t)); Θ(t+1))▽WLbasen(W)|

W(t)

(21)

The two-stage learning strategy is summarized in Algorithm 1.

V. EXPERIMENTS

In this section, we conduct extensive experiments on three

public datasets to evaluate the effectiveness of the proposed

PGMWN framework. The details of the experiments as well

as the results are presented. We first introduce the used

datasets and then list state-of-the-art baselines. To increase the

reproducibility of the proposed model, we provide the details

of experimental setup and implementation. Finally, we present

the result comparison and model insight analysis.

A. Datasets

We use the Amazon product dataset [15], [22] to conduct

experiments, which is a publicly available and commonly-

used dataset in the natural language processing (NLP) domain.

In particular, following the setting of existing work [32], we

extract three sub categories from the whole Amazon product

dataset, including Automotive, Beauty, and Electronics. Each

data sample in these three datasets consists of a textual title

and a corresponding textual category label. The textual titles

are model inputs, and the goal of this task is to predict

their category labels. Table I shows the statistics of the three

datasets. From the quarter-tiles of label frequency in Table. I,

we can find the label frequency distributions are right tail

skewed for all the three datasets and as we mentioned in

Section I, the category distributions of the three datasets all

have long tail characteristics, where most categories have few

samples while only few categories contain a huge amount of

samples.

B. Models for Comparison

Our work focuses on addressing the long-tail and noisy

label challenges and uses a two-stage training strategy and

re-weights the samples. For fairly validating the performance

of the proposed model, all the models are based on the

BERT model and uses the cls tokens as the representations

of the texts. We choose the following models as our base-

lines: CE, LDAM [1], cRT [17], unsupervised SimCSE [10],

instance data parameters (DP) [28], self-supervised learning

with LDAM superloss (SS+SL+LDAM) [18], MWNet [29]

with CE (MWMetC) and LDAM (MWNetL).

The details of those compared methods are described as

follows:

1) CE: It directly uses BERT to learn representations of the

textual descriptions of item and categories and feeds the

obtained representations to a classifier consisting of 3-

layer fully connected neural network. The cross entropy

is used as the prediction loss.

2) LDAM: The model architecture is the same as the CE,

while it uses the LDAM [1] loss .

3) cRT: The model architecture is the same as CE. cRT

applies the two-stage training strategy cRT in [17], where

the a classifier is trained in the second stage on a resam-

pled balanced dataset using the representations obtained

from the first stage.

4) SimCSE: The model applies two-stage training strategy,

which uses self-supervised contrastive learning loss to

train the BERT first and then initializing the BERT in

CE with the obtained parameter in the first stage.

5) DP: It uses the same model architecture as CE and the

cross entropy loss is applied. The data parameters are

learned following [28] to re-weight logits to learn a robust

classifier.

6) SS + SL + LDAM : It follows the framework in [18],

where in the first stage the self-supervised training is

applied and in the second stage the Superloss [2] with

LDAM [1] loss as the base loss is applied. The Superloss

is a robust loss designed to handle noisy label issues.

7) MWNetC : It learns the sample weights following the

similar method in [29]. Instead of using the loss as

the input for the weight learning network in [29],

the MWNetC uses the same inputs as the proposed

PGMWN framework.

8) MWNetL: It shares the same architecture as the

MWNetC , while uses LDAM loss instead of CE loss.

C. Experimental Setup

1) Implementation: All the models are implemented using

PyTorch [25]. The Xavier normal initializer [12] is applied to

randomly initialize parameters. The batch size is set to 32.

dh is set to 768 and de is set to 32. The SGD is applied to

optimize the parameter set W, and Adam [19] is applied to

optimize the parameter set Θ. The initial learning rate α and β

are set to 1e−5 with a linear decay. The number of maximum

epochs is 40. To avoid the overfitting issue, we also use the

dropout technique [30],and set the dropout rate to 0.1.

2) Data Partition: We use the same way as [32] to prepro-

cess the three datasets. Based on the preprocessed datasets,

we randomly split the whole datasets into three subsets, i.e.,

training, validation, and testing sets, with the ratio 0.70 :
0.15 : 0.15. For the proposed model and baselines, we use

the training set to learn model parameters, and the validation

set is used to select the best model and perform early stop.
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TABLE I
STATISTICS OF DATASETS

Labels Samples Title Length Label Frequency Quarter-tile

Automotive 953 160,725 9.90± 5.51 [16, 30, 60, 134, 6,963]
Beauty 229 159,805 10.26± 5.61 [16, 62, 202, 744, 9,010]

Electronics 500 86,357 14.90± 9.56 [16, 34, 72, 170, 6,323]

TABLE II
MODEL PERFORMANCE ON LONG-TAILED NOISY ITEM CATEGORIZATION ON THE THREE DATASETS. THE BEST RESULTS ARE HIGHLIGHTED USING BOLD

FONTS, AND THE SECOND BEST RESULTS ARE UNDERLINED.

Dataset Automotive Electronics Beauty

Metric MiAcc MaAcc WF1 MF1 MiAcc MaAcc WF1 MF1 MiAcc MaAcc WF1 MF1

CE 78.23 64.73 78.03 63.95 68.27 54.09 67.68 52.94 71.68 56.67 71.44 56.64
LDAM 78.94 67.38 78.70 65.68 68.83 56.70 68.22 54.87 73.21 57.21 72.61 56.99

cRT 78.89 67.35 77.85 63.72 68.80 56.72 67.54 52.99 71.72 55.92 71.55 55.88
SimCSE 78.23 64.73 76.36 64.25 66.03 55.55 65.82 53.30 71.21 60.10 70.99 58.06

DP 78.12 65.30 78.35 64.30 68.25 54.08 67.50 52.90 71.56 57.30 71.29 56.94
SS+SL+LDAM 78.81 67.50 78.55 65.81 69.15 56.24 68.16 54.45 73.28 57.95 72.65 57.84

MWNetC 78.45 65.84 78.17 64.65 68.20 54.04 67.51 53.05 71.82 57.58 71.57 57.42
MWNetL 78.74 67.43 78.57 65.59 68.78 56.42 68.12 54.90 73.32 57.95 72.65 57.80

PGMWNC 79.17 67.25 78.70 65.19 68.92 55.81 68.54 54.21 72.64 58.54 72.35 58.62

PGMWNL 79.94 68.02 79.45 66.56 69.72 57.28 68.87 55.51 73.59 58.62 73.10 58.54

3) Evaluation Metrics: As we discussed before, the cate-

gory label distributions of all the three datasets are long-tailed.

To evaluate the performance on such long-tailed data, existing

work always uses the following four metrics, including Macro

F1 (MF1), Weighted F1 (WF1), Macro Accuracy (MacAcc),

and Micro Accuray (MicAcc). The MF1 and MacAcc are two

metrics to average the F1 score and accuracy for each class and

are frequently used in evaluating long-tailed data performance.

WF1 and MicAcc computes the F1 score and accuracy for the

whole dataset and represent the general performance on the

dataset without considering the label frequency.

D. Experimental Results

Table II lists the experimental results on three datasets in

terms of four evaluation metrics. We can observe that on

the three datasets, the PGMWN methods achieve the best

performance in terms of all the four evaluation metrics, except

the MaAcc score on the Beauty dataset, which is the second

best score. Especially for the approach using the LDAM loss,

among 12 scores, 10 scores are ranked the first place and 2

ranked the second place. These results confidently validate the

effectiveness of the proposed PGMWN in handling the long-

tailed noisy data issue in item categorization task.

Although inferior to some methods using the LDAM loss,

the proposed PGMWNC framework outperforms all the base-

lines using the cross entropy loss except for the MaAcc on

Electronics and Beauty datasets. The improvement over other

methods using cross entropy loss of the proposed PGMWNC

framework can also demonstrate the advantage of the proposed

PGMWN framework on addressing long-tailed noisy data in

item categorization task.

Another finding is that LDAM loss is powerful to deal with

not only the long-tailed data issue but also the noisy label issue

in the item categorization task and can be effectively plugged

into different frameworks to help improve their performance.

Compared with the MWNet models and the DP model,

which also reweight the samples, the superior performance of

the proposed framework shows the advantage of the specially

designed mechanism for handling the long-tailed noisy data is-

sue in item categorization. Although SS+SL+LDAM considers

addressing both issues, it’s even beaten by the LDAM model in

some cases, which shows that simply combining the methods

addressing those two issues will not necessarily improve the

performance.

E. Ablation Study

To investigate the influence of different modules in the

proposed PGMWN framework, we conduct ablation studies

by removing the key components respectively. We compare

the proposed frameworks with their variants to investigate

the effectiveness of their different components. The variants

we compared are: PGMWNC-SS and PGMWNL-SS which

remove the self-supervised representation learning compo-

nent, PGMWNC-PG and PGMWNL-PG removing the prior

guided weight regularization network, as well as MWNetC
and MWNetL, which are the models generated by removing

both the self-supervised representation learning network and

the prior guided item weight regularization network from the

proposed PGMWN network.
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TABLE III
THE RESULTS OF THE ABLATION STUDY ON LONG-TAILED NOISY DATA ITEM CATEGORIZATION ON THE THREE DATASETS: AUTOMOTIVE, ELECTRONICS

AND BEAUTY. THE BEST RESULTS ARE HIGHLIGHTED USING BOLD FONTS, AND THE SECOND BEST RESULTS ARE UNDERLINED.

Dataset Automotive Electronics Beauty

Metric MicAcc MacAcc WF1 MF1 MicAcc MacAcc WF1 MF1 MicAcc MacAcc WF1 MF1

MWNetC 78.45 65.84 78.17 64.65 68.20 54.04 67.51 53.05 71.82 57.58 71.57 57.42
MWNetL 78.74 67.43 78.57 65.59 68.78 56.42 68.12 54.90 73.32 57.95 72.65 57.80

PGMWNC -SS 78.70 65.72 78.38 64.67 68.70 54.35 67.90 53.84 72.00 57.82 71.92 57.81
PGMWNL-SS 78.82 67.45 78.62 65.74 68.92 56.78 68.32 54.58 73.15 57.33 72.82 57.94
PGMWNC -PG 78.62 66.25 78.24 64.72 68.54 54.62 67.84 53.45 71.98 58.02 71.84 57.92
PGMWNL-PG 78.65 67.42 78.82 65.56 68.80 56.73 68.37 54.62 73.31 57.25 72.89 57.32

PGMWNC 79.17 67.25 78.70 65.19 68.92 55.81 68.54 54.21 72.64 58.54 72.35 58.62

PGMWNL 79.94 68.02 79.45 66.56 69.72 57.28 68.87 55.51 73.59 58.62 73.10 58.54

TABLE IV
EXAMPLES OF ITEMS WITH THE LARGEST AND SMALLEST WEIGHTS

ID Item Description Category

Top
1 Built NY Charger Notebook Accessory Organizer Bag - Leaf Green Bags, Cases & Sleeves
2 Pyle PLVWH1 In-Car Infrared Dual-Channel Wireless Stereo Headphones Car Headphones
3 XO Vision Universal IR in Car Entertainment Wireless Foldable Headphones, Orange Car Headphones

Bottom
4 Konica Minolta NP400 Li-ion Battery for Dimage A1, A2, 5D &amp; 7D Digital Cameras Camera Batteries
5 Battery for Canon PowerShot SD980 IS Digital Camera [Camera] Camera Batteries
6 Pearstone Duo Battery Charger for Canon BP-808/809/819/827 Camera

The results are presented in Table III. We can observe

that the proposed frameworks PGMWNC and PGMWNL

outperform all their variations by either removing the prior

guided weight regularization network (PGMWNC(L)-PG) or

self-supervised representation network (PGMWNC(L)-SS).

MWNetC and MWNetL are the reduced models of the

PGMWNC and PGMWNL, where both the self-supervised

representation learning and prior guided weight regularization

modules are removed. We can also find as more modules are

removed, the performance becomes worse in general. The bet-

ter performance of the PGMWN demonstrates the advantage of

incorporating the prior guided the item weight regularization

and self-supervised representation learning to address the long-

tailed noisy data issues in the item categorization task.

F. Case Study

To analyze the learned item weights, a case study is con-

ducted. We show and analyze representative samples from

the sample set with the 20 largest and smallest weights. The

representative samples are shown in Table IV. The items 1 to

3 are among the items with the largest weights. They are in

ªBags, Cases & Sleevesº and ªCar Headphonesº, respectively,

which are among the least frequent categories and there are

similar categories easily to be confused with those category.

There is a category named ªCasesº similar as the ªBags, Cases

& Sleevesº. For the ªCar Headphonesº category, there is also

a category named ªHeadphonesº. Those two factors may lead

to the samples to be assigned larger weights.

For the items with the smallest weights, two of them belong

to the ªCamera Batteriesº, which is among the most frequent

categories. Thus, it should be not difficult for the classifier

to capture the characteristics and classify them correctly. For

the item 6, it seems to be a noisy sample assigned a wrong

category. The distance between the item description is far

away from the category description so that the weight learning

network assigns a small weight to it. In such a way, it can boost

the performance of the classifier.

VI. CONCLUSION

The long tail data distribution and label noise naturally

occur in item categorization task. These two data bias related

challenges prevent the model to achieve satisfactory perfor-

mance due to insufficient high quality labeled data for super-

vision. To address the challenges, we propose the PGMWN

framework based on [27]±[29] with two major innovations,

including (a) using an extra self-supervised representation

learning module to improve text representations and (b) utiliz-

ing prior guided regularization. The experimental results prove

that the proposed PGMWN framework can deal with the long

tail and noisy data issues in item categorization task and the

case study shows that the proposed PGMWN framework can

learn meaningful item weights. In particular, ablation studies

show that the proposed innovations consistently provide more

accurate instance weigh prediction compared to the method in

[29].

For future work, the possible directions include: (1) appli-

cation to other large-sized text classification tasks with a large
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number of classes and labeling noise, (2) applications to other

tasks in e-commerce domain such as attribute extraction, and

(3) further improving the item weight learning network.
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