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Abstract—Item categorization task aims to automatically infer
the product category of an item based on its textual description.
As a fundamental task in eCommerce domain, item categoriza-
tion is widely adopted in many important applications such
as product search, query understanding and product recom-
mendation. However, this task faces several challenges. First,
eCommerce data usually suffers from noisy facts since many
key product values are self-reported by individual sellers and
cannot be fully verified by experts. Second, eCommerce data
usually follows the long-tail data distribution in which class
distribution is highly imbalanced. To handle these challenges,
some existing efforts simply combine approaches that are de-
veloped for noisy data and long-tail data separately. However,
such a straightforward combination may not achieve satisfactory
performance. In this paper, we propose a performance-driven
Prior-Guided Meta-Weight Network (PGMWN) which handles
the two challenges in a principled way. The proposed framework
involves a meta re-weighting strategy to estimate the weights
of samples mainly based on performance changes. Moreover,
we leverage important data statistics to guide the meta re-
weighting mechanism towards distribution-aware weights. A
self-supervised representation learning component is utilized to
further improve the framework’s ability to address those two
issues. To evaluate the effectiveness of the proposed PGMWN
framework, comprehensive experiments are conducted on three
public real-world datasets collected from Amazon. The proposed
framework outperforms several state-of-the-art baselines in terms
of various evaluation metrics. The experimental results show
that the proposed model is able to handle the long tail data
distribution and label noise issues and is effective in the item
categorization task.

Index Terms—item categorization, meta weight learning, long
tail, noisy label

I. INTRODUCTION

Item categorization is an important task in eCommerce.
Its objective is to categorize the textual item description
into a product category. This is a fundamental task which
is widely adopted in many important applications including
product search, query understanding and product recommen-
dation in eCommerce. Despite the recent advances with pre-
trained language models like BERT [9] and GPT [26] showing
remarkable success in a variety of text processing tasks
and researchers’ efforts focusing on the item categorization
task [4]-[6], [23], [31], the item categorization task is still
challenging due to two reasons.
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Fig. 1. The long-tail data distribution of the Amazon electronics dataset.
The histogram is generated by counting the label frequencise where the x-
axis denotes the number of labels and the y-axis represents the frequency
of labels. For example, the (1, 6323) means there is a category with 6323
samples.

Noisy facts. The data collected from eCommerce platforms
usually contains noisy facts. Because most of the information
regarding products on eCommerce websites (e.g., Amazon,
Ebay, and Walmart) is contributed by individual retailers,
noisy facts about products are unavoidable. Meanwhile, it is
prohibitively expensive to have those facts verified by experts
considering the huge volumes of products. The existence of
noisy facts will negatively impact the performance of product
categorization. Therefore, how to handle noisy facts is one of
the key challenges to develop item categorization models.

Long-tail distribution. As shown in Fig 1, the items on
eCommerce platforms usually follow a long-tail distribution,
where only few categories have a lot of items while most of
the categories only include limited number of items. A classifi-
cation model on such long-tailed data for item categorization
may excel on a few head classes but perform poorly on a
large set of tail classes. The unsatisfactory performance on
tail classes could significantly degrade the shopping experience
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for customers. How to handle this extremely imbalanced class
distribution becomes another challenge.

To handle the aforementioned challenges, existing
works [18], [34] investigate how to combine methods that
handle noisy facts and methods that deal with long-tail
distributions. However, a direct combination of methods
developed separately for these two issues easily leads to
conflicts in model design choices and thus may not achieve
satisfactory performance. For example, when handling noisy
data, the model design usually involves an assignment
of lower weights to noisy data, while when dealing with
long-tail data, a common strategy is to increase the weights
of data points with a low frequency. Conflicts may occur
when low-frequency data points are inferred to be noisy.
Meanwhile, for data points belonging to tail classes, the
judgement of their quality (whether they represent noisy facts
or not) is difficult when there are not enough instances for
achieving reliable quality estimation. In real eCommerce data,
the two challenges exist simultaneously and are inseparable,
and thus a new perspective that handles the two challenges
simultaneously is needed.

Different from existing works, we propose a performance-
driven framework, namely PGMWN, which deals with two
challenges in a principled way. In the proposed PGMWN
framework, the meta re-weighting method is introduced to
estimate the weights of samples based on the performance
changes. By this way, the framework tends to assign larger
weights to data points that are more related to the categoriza-
tion task, and thus improves the performance on the task of
interest. Moreover, we rely on important data statistics to guide
the data weight estimation mechanism so that weights are
distribution aware. To further boost the performance, we pro-
pose to apply the self-supervised contrastive learning method,
which learns informative representations without reliance on
the label information. The proposed framework is evaluated
on three datasets collected from Amazon. The experimental
results show that the proposed PGMWN framework outper-
forms the state-of-the-art baselines. We also present case study
analysis about the learned weights to explore insights behind
the proposed framework.

The main contributions of this paper can be summarized as
follows:

« We recognize the limitations of existing studies when they
try to address the long-tail distribution and noisy label
issues in item categorization task. Motivated by these
limitations, we propose a novel performance-driven meta-
re-weighting mechanism, namely PGMWN.

o The PGMWN framework leverages important statis-
tical information to make re-weighting mechanism
distribution-aware.

« Experimental results on three public real-world datasets
collected from Amazon validate the effectiveness of the
proposed PGMWN framework on item categorization
task.

The rest of this paper is organized as follows: In the second

section, we review related work. After that, the preliminary
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is introduced and then the notations, problem statement and
technical details of the proposed framework are presented.
Next, we demonstrate the experimental setup and results.
Finally, we come to the conclusions.

II. RELATED WORK

In this section, we summarize the existing work focusing
on long-tailed classification and learning with noisy labels
independently as well as some work addressing those two
issues at the same time.

A. Methods addressing the long tail issue

There are many methods having been proposed to ad-
dress the long tail (LT) issue, which can be categorized into
the following categories: re-sampling, re-weighting and self-
supervised learning methods. The re-sampling methods, such
as SMOTE [3], samples the data to obtain a new dataset
with balanced data distribution. Recently, a two-stage training
strategy (exampled in [17], [37]), which decouples the learning
of a feature encoder and the learning of a classifier and
trains the classifier on a re-sampled balanced dataset, has
become influential in computer vision and shows its superior
performance on addressing the LT issue.

Another category methods try to re-weight the samples
based on their label frequencies such as Focal loss [21], Class-
balanced (CB) loss [8], Label-Distribution-Aware Margin loss
(LDAM) [1] and so on. Those methods design functions of
the label frequency to assign small weights to the samples in
the head classes while large weights to the samples in the tail
classes.

With the popularization of the two-stage methods in ad-
dressing the long-tail issue, Self-supervised methods [35]
that do not rely on any label when training representations
have been suggested to be effective for learning balanced
representations in the representation learning stage.

B. Learning under label noise

Many efforts have also been devoted to the area of learning
with noisy labels and the proposed methods can be classified
into two groups. First, a group of methods utilize sample
selection to identify clean samples from entire noisy dataset.
For example, DivideMix [20] fits a Gaussian Mixture Model
(GMM) on its training sample loss distribution to divide
the training samples into a clean subset with labels and a
noisy subset. Then, two subsets are jointly utilized in a semi-
supervised learning way to avoid noisy labels’ negative impact.
Similarly, co-teaching [14] trains two networks at the same
time to let them teach each other with selected clean samples.
Next, the other group of methods adopt loss correction to
shift model learning more on clean samples. For example,
several noise-addressing loss weighting plans are manually
designed [2], [36]. Recently, methods [27]-[29] have emerged
to automatically learn the sample weighting plans to address
the noisy label issue. In [11], contrastive learning is applied
to better initialize models before using a set of robust learning
methods such as [20], [29] for handling label noise. On the
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item categorization task, [32] systematically compared several
robust learning methods on real-world Amazon product data
set.

C. Learning with long tail noisy data

Compared with a large number of previous investigations
on addressing long-tail and noisy label issues separately, the
investigations that jointly consider addressing those two issues
are few. For example, on top of the two-stage LT-addressing
method, which consists of a self-supervised pre-training stage
and a classifier learning stage, [18] uses superloss [2] in the
second stage with a goal of addressing the noisy label issue.
Robust Long-Tailed Learning under Label Noise (RolT) [34]
uses a semi-supervised approach to address the two issues at
the same time. Compared to the method only considering the
long-tailed issue, i.e., DivideMix [20], RoLT showed increased
testing accuracy.

III. BACKGROUND

In this section, we will introduce some background knowl-
edge about self-supervised representation learning with Sim-
CSE [10] and Meta-Weight-Net [29] for sample weight learn-
ing, which are utilized in the proposed framework to help al-
liveate the long-tail noisy label issue in the item categorization
task.

A. Self-supervised Representation Learning with SimCSE

The self-supervised contrastive learning [7], [13] can help
learn unbiased representations to help alleviate the long tail
and noisy label issues [11], [16], [33]. In this paper, we apply
the SimCSE [10] framework, which optimizes the InfoNCE
loss [24] represented in Eq. (1) to maximize the agreement
between the representations of the anchor sample and its
augmentation to help learn unbiased representations. h, h™
and H~ are the representations of the anchor sample s,, a
positive instance s and the set of negative instances in the
batch. cos(-) is the cosine similarity function. 7 is the scaling
hyper-parameter.

exp(cos(h, ht) /)
> h-ecn- exp(cos(h,h™)/T)

L(h,ht,H™) = —log 1)

The SimCSE obtains / and h+ by feeding the inputs into the
encoder twice using different random dropout masks [30] at
the dropout rate 0.1 and all other samples in the same batch
are considered as negative samples. The encoder is a fully-
connected layer with tanh as activation function stacked on
the BERT model.

B. Meta-Weight-Net for Sample Weight Learning

In this paper, we extend the Meta-Weight-Net framework
in [29] with the prior guided weight learning regularization
to re-weight the items to address the long-tail and noisy label
issues at the same time. The Meta-Weight-Net framework can
learn an explicit weight for the sample loss automatically.
The weights are learned in a meta-learning manner. There are
two main components in the Meta-Weight-Net [29]: the meta
weight net to learn the weight of the samples with a deep
neural network and the classifier to conduct the classification
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task. The parameters in the meta weight net and the classifier
are updated alternatively with the other one fixed.

IV. METHODOLOGY

In this section, we first denote the terms and define the
task. Followed by the notations and problem definition, the
overview and the details of each component of the proposed
framework are presented. Finally, we describe the loss function
and parameter learning method of the proposed framework.

A. Notations and Problem Statement

Assume that there are |C| categories, and C = {cj}ljcz‘l,

where c¢; is the description of the j-th category. Let Z denote
the item set, and for each item ¢ € Z, its description is denoted
as x;, and its category is I; = c;. The correspond category
index is denoted as a one-hot vector y; € {0, 1}/°l, where the
element of the j-th position in the vector y; is 1, while all
other elements are 0.

Based on these notations, we can formally define the item
categorization task as follows: Given the description z; of an
item 4 and the set of categories C, item categorization needs
to learn a model to predict which category the item belongs
to (i.e., the category index y; of the item 7).

B. Overview of the PGMWN Framework

Fig. 2 shows the architecture overview of the PGMWN
framework, which aims to address the long tail and noisy
label issues simultaneously. PGMWN mainly consists of 4
modules, including the self-supervised representation learning
network, the item weight learning network, the prior guided
weight learning regularization network and the classifier.

We propose a novel meta weight learning framework based
on the method in [29] with prior guided regularization for the
item categorization task. The item weight learning network
utilizes the meta re-weighting method introduced in [29] to
assign the sample weights according to the changes of the
performance, where larger weights tend to be assigned to
samples that are more informative and thus help to improve
the performance. Furthermore, we propose to incorporate the
important data statistics to guide the sample weight learning
to keep it aware of the sample characteristics via the prior
guided item weight regularization network. To further improve
the ability of the model addressing the long tail and noisy
data issues, we utilize the aformentioned SimCSE [10] method
to learn unbiased text representations. Finally, the classifier
calculates the dot product between item and categories and
categorizes the item into the category with the largest value.
The details of the item weight learning network, the prior
guided weight learning regularization network, the classifier
and the way to learn the parameters will be introduced in the
following part. Since we don’t change the SimCSE [10] and
briefly introduced it in the Background, we will not introduce
the self-supervised representation learning component again in
the following part.
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Fig. 2. The architecture overview of the proposed framework. The proposed framework consists of 4 modules, including the self-supervised representation
learning module, the item weight learning module, the prior guided weight learning regularization network and the classifier. The training loss is the weighted
base loss where the base loss is the classification loss such as cross entropy and the weight is derived from the item weight learning network with prior guided

item weight regularization.

C. Item Weight Learning Network

Both the long-tail and noisy label issue will lead to in-
sufficient high quality labeled data and consequently the lack
of supervision. To fully exploit the labels, we propose to re-
weight the samples to assign different weights to different
samples by the item weight learning network, where the weight
of an item is related with its category frequency, the distance
from the item to the corresponding category it belongs to, as
well as the distance from its category to other categories. The
weight learning network first learns the representations of the
three factors and then obtains the weight for each item. The
details of the item weight learning network are described as
follows:

The weight learning network uses item embedding h?
and the category embedding hj from the SimCSE self-
representation learning network. First, the weight learning net-
work obtains the category frequency representation of an item
by taking its category representation and category frequency as
inputs. For an item ¢ belonging to category j, let f; denote the
frequency of the category c;. Then the dense representation of
the frequency of the category j can be obtained using a fully-
connected layer represented as:

el = ReLUMLP(h$ & f;)) )

where ef € Rée is the dense representation of the category
frequency of the category j, and d; is the dimension of the
dense representation. ReLU(-) represents the Rectified Linear
Unit activation function where ReLU(z) = maxz(z,0). &
denotes the vector concatenation operation.

Next, we consider the influence of the distance between the
item and its corresponding category. For an item ¢ and its
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corresponding category j, the distance between them can be
represented as:
dist; = —cos(hj, hf) 3)

Since dist; is related with both the item representation
h¥ and the category embedding h¢, to learn the dense rep-
resentation of the distance, we consider both the item and
category embeddings. The dense representation that is aware
of the item, its corresponding category as well as the distance
between them can be derived as:

ef = ReLU(MLP(h$ ® hi @ dist;)) “)

where e is the dense representation aware of the item,
category and their distance.

Then the weight learning network models the similarity of
the category j that item ¢ belongs to. To model the similarity
of the category j, we consider the distances between the
representation of category j and all other categories in the
category set C. Let dist; denote the nearest neighbor distance
of the category which is the minimum distance between the
category j and all other categories in the category set C. Then
dist; can be defined as:

dist; = min(—cos(hf, hj/)), Vejy € C—{c;}  (5)

where h{, denotes the embeddings of the category ¢; and c¢;/
separately.

Similar to modeling the category frequency, the nearest
neighbor distance of the category can be represented by a
dense vector, which can be derived as:

e = ReLU(MLP(h$ @ dist;)) 6)

where e € R? represents the dense representation of the
confusion level of the category j of the item ¢. d. is the
dimension of the dense vector €.
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With the three dense representations: e'jf , e;f as well as e,

the weight for the item ¢ can be learned with a two-layer
fully connected neural network with the aforementioned three
representations as the inputs. Let w; € R denote the learned
weight for the item ¢. Then w; can be represented as:

w; = o(MLP(ReLUMLP(¢] & e @ ¢7))))  (7)

where o(-) denote the Sigmoid activation function mapping
the output to the range from 0 to 1.

D. Prior Guided Weight Learning Regularization

To learn a better weight w; for the item ¢, in addition to
using the signal from the back propagation from the super-
vision obtaining via labels as in existing work such as [29],
we also consider to guide the weight learning via using prior
knowledge of the items and categories as illustrated in Fig. 3.
The details are shown as follows:

The order of category frequency: In the proposed frame-
work, we follow the idea that the items belonging to the
categories with lower frequencies should be assigned larger
weights by the weight learning network. To satisfy this con-
straint, we first recover the frequency by using the learned
weight and the category of the item as inputs which can be
represented as:

&l = o(MLP(w; & hS)) (8)

According to our analysis, the larger weight should be
assigned to the item in the less frequent category. For two
items 47 and o belonging to category j; and jo (j1 # Jj2)
respectively, given w;, > w;,, then the probability that
f1 > fo can be represented as:

p(fjl > sz) = 0'(652 - e']fl)

where f;, and f;, are the frequency of categories j; and
j2, and e;, and e;, are the embeddings of the obtained via
Eq. (8). w;, and w;, are the learned weights by the item weight
learning network of the item ¢; and 5.

The order of distance between the item and its cor-
responding category: Next, we consider to use the distance
between the item and its corresponding category to regularize
the item weight learning. To correctly classify items and obtain
a model with better generalization, the classifier needs to cap-
ture the common characteristics of the category. For the items
that are far from the category, they cannot be representative
of the characteristics of the category and may be the noise
influencing the performance of the model. Thus, we want the
weight learning network to assign smaller weights to those
items that are far from the category embeddings compared
with the items that are closer to the category embeddings.

To recover the distance representation between the item and
its corresponding category, a one-layer fully connected layer
is applied, which can be represented as:

9

& = ReLU(MLP(w; © h¥ @ h¢)) (10)
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In such a way, the probability that the item i, is closer to the
category j than item ¢; when ¢; and ¢ both belong to the
same category j can be represented as:

p(dist], > dist])) = o(eZ, —e?) 1D

where dist] and dist], are the distances from the items i,
and 75 in the same category to the category embeddings they
belong to. e?fl and 6%2 are the embeddings obtained by Eq. (10).
p(disti > dist},) € R denotes the probability that the item
i1 are further from the categories than item ¢y according to
their assigned weights by the weight learning network.

The order of category distance: The category distance
also affects the sample weights. The items belonging to the
category with a closer nearest neighbor category may be more
informative since their neighbors can borrow information from
them. Hence, we want the weight learning network to assign
larger weights to the items belonging to the categories that
has a smaller nearest neighbor distance. To achieve this goal,
we use the derived distance between the item category and its
closest category to regularize the item weight learning.

Similar as the frequency constraint, we recover the distance
by:

&} = ReLU(MLP(w; @ h$)) (12)

Then the probability that the items belonging to the category
that is more likely to be confused with other categories are
assigned with larger weights by the item weight learning
network can be represented as:

p(distj, > dist;,) = o(&f —éf)

i (13)
where ¢; and 9 are two items belonging to category j; and
jo(j1 # jo) . dist;, and dist;, are the nearest neighbour
distance of category j; and js. é?l and é;-lQ are the embeddings
obtained by Eq. (12). p(dist;, > distj,) € R! denotes the
probability that the category jo has a closer nearest neighbor
category than j; according to their assigned weights by the
weight learning network.

To regularize the weight learning network, for each con-
straint, a cross-entropy loss is applied for the valid pairs and
the total regularization term is the average of the three losses.
The loss for the three constraints can be represented as:

1
L= " E CE(p(fj, > sz)aﬂ(f]d > sz))
1
= — Y CE(p(dist?, > dist,), 1(dist?, > dist}
Lq - CE(p(dist], > dist})), 1(dist], > dist})))
1
- E(n(dist. ist: ) 1(dist. st
L. s g CE(p(dist;, > dist;,), 1(dist;, > dist;,))

(14)

where Ly, L. and Lg denote the losses of the three constraints,
and ni, ne and ng are the number of valid item pairs of
the three constraints in a batch. CE(-, ) represent the cross-
entropy loss function, where the first argument is the predicted
probability and the second argument is the label. 1(-) is the
indentation function where if the condition is true the value
of the function will be 1; otherwise, the value of the function
will be 0.
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Fig. 3. Illustration of the item weight regularization. The figure shows order
constraint applied cases where the colors of the items denote their categories.
For the item 1 and 2 in the same category, ideally their weights should satisfy
the constraint of item and category distance order. Considering item 1 and 3
belonging to different categories, their weights should meet the constraint of
the category frequency order and category distance order constraints.

The total weight learning regularization loss L., is the
average of the three constraint losses, which is:
(15)

1
Ereg = g(ﬁf + Lg+ EC)

E. Classifier

The classifier is used to classify the item with textual
description to a category. Since the category representations
which characterize the categories can be obtained using their
textual descriptions by the encoder, they can be used to
derive the classification matrix. We first use a two-layer fully-
connected network to transform the representations of the
item and all the categories to the latent space, which can be
represented as:

hi = ReLU(MLP(ReLU(MLP(%)))),

h; = ReLU(MLP(ReLU(MLP(h5)))), (1o

VCj eC
where h; and h; € R% are the latent representations of the
item ¢ and category j.

Then the classifier determines the category of an item by
assigning the item to the category with the largest dot product
result, which is represented as:

sl =h; x hY
Yyl = argmaxj(sg,ch e() 17)
Ui = 0nehot(\C|7g;§)

where x denotes the vector multiplication operation. si eR
represents the score that item 7 belongs to category j. y. € R
is the index of the predicted category and argmaz denotes
the function returning the index of the maximum value. 7; €
RICI represents the predicted label of the item i. onehot(, )
is the function generating one-hot embedding where the first
argument (|C|) representing the dimension of the vector and
the second argument (y;) set the index of 1 in the vector.

E. Prediction Loss

With the learned item weights, the prediction loss can be
defined as the average of the base loss for the items:

E wzﬁbasel

(18)

pred -
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where the L4 is the prediction loss and Lp,sc; represents
the base loss for the item 7 and N is the number of samples
in the batch. In our framework we consider to use the cross-
entropy loss (PGMWN¢) and LDAM loss [1] (PGMWN}),
which has been proven to be among the most effective methods
on imbalanced datasets for many tasks.

G. Parameter Learning

The training of the framework consists of two stages.
The first stage is to train the self-supervised representation
learning network and use the obtained model parameters as
the initialization of the second stage. The second stage is
to optimize the representation learning network, item weight
learning network as well as the classifier jointly.

Following the online strategy to update the parameters in
a single optimization loop in [29]. Let W denote all the
model parameters in the representation learning network and
the classifier and © denote all the model parameters in the
item weight learning network.

Algorithm 1 PGMWN framework learning algorithm

Input : Item set Z, category set C, batch size n,m,
learning rate «, 3, max iterations 7'

Output: Network parameters W7, 07

0: function PGMWN FRAMEWORK LEARNING
1: Stage 1:
2: Train the representation learning network with Z and C by
optimizeing Eq. (1).
3: Stage 2
4: Initialize the representation network using the obtained
parameters in Stage 1 and randomly initialize the classifier
parameters W gy
5: Randomly initialize item weight learning network param-
eters O (q).
6: fort =0toT —1 do
{z,y} = MiniBatchSamplerl(Z, N)
Formulate the representation network and classifier
learning function W) (©) by Eq. (19).
9:  {a',y'} = MiniBatchSampler2(Z, M)

10:  Update ©(¢+1) by Eq. (20).
11:  Update W(*D by Eq. (21)
12: end for

—

3: return W7, 07T

The online strategy consists of the following three steps:

Representation network and classifier learning manner
formulation. In this step, SGD is used to optimize the
prediction loss in Eq. (18). The corresponding parameters W
can be updated according to

W® (@) —w® _ Z V W(t) @)Vwﬂbasen (W)|W(t)

(19)
where « is the learning rate. V' (+; -) is the item weight learning
network function with the first argument as the inputs and
the second argument as the model parameters. Lpgse, (W)
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represents the loss function respect to the variable of model
parameters W.

Item weight learning network parameter update. With
the representation and classifier network updating formulation,
the parameters © in the item weight learning network can be
updated by

M
1 .
ettt = @ — ﬂM § Vo Liasen (W (0))]on
m=1

— BV Lreg(WD(O))o

where [ denotes the learning rate.

Representation network and classifier update. The third
step is to update the model parameters in the representation
learning network and classifier with the updated ©(*+1) by

(20)

N
W(H-l) _ W(t) _ Z V([i(w(t)); @(t-H))VWﬁbasen (W)lw(t)
n=1

ey
The two-stage learning strategy is summarized in Algorithm 1.

@
N

V. EXPERIMENTS

In this section, we conduct extensive experiments on three
public datasets to evaluate the effectiveness of the proposed
PGMWN framework. The details of the experiments as well
as the results are presented. We first introduce the used
datasets and then list state-of-the-art baselines. To increase the
reproducibility of the proposed model, we provide the details
of experimental setup and implementation. Finally, we present
the result comparison and model insight analysis.

A. Datasets

We use the Amazon product dataset [15], [22] to conduct
experiments, which is a publicly available and commonly-
used dataset in the natural language processing (NLP) domain.
In particular, following the setting of existing work [32], we
extract three sub categories from the whole Amazon product
dataset, including Automotive, Beauty, and Electronics. Each
data sample in these three datasets consists of a textual title
and a corresponding textual category label. The textual titles
are model inputs, and the goal of this task is to predict
their category labels. Table I shows the statistics of the three
datasets. From the quarter-tiles of label frequency in Table. I,
we can find the label frequency distributions are right tail
skewed for all the three datasets and as we mentioned in
Section I, the category distributions of the three datasets all
have long tail characteristics, where most categories have few
samples while only few categories contain a huge amount of
samples.

B. Models for Comparison

Our work focuses on addressing the long-tail and noisy
label challenges and uses a two-stage training strategy and
re-weights the samples. For fairly validating the performance
of the proposed model, all the models are based on the
BERT model and uses the cls tokens as the representations
of the texts. We choose the following models as our base-
lines: CE, LDAM [1], cRT [17], unsupervised SimCSE [10],
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instance data parameters (DP) [28], self-supervised learning
with LDAM superloss (SS+SL+LDAM) [18], MWNet [29]
with CE (MWMetc) and LDAM (MWNety,).

The details of those compared methods are described as
follows:

1) CE: It directly uses BERT to learn representations of the
textual descriptions of item and categories and feeds the
obtained representations to a classifier consisting of 3-
layer fully connected neural network. The cross entropy
is used as the prediction loss.

LDAM: The model architecture is the same as the CE,
while it uses the LDAM [1] loss .

cRT: The model architecture is the same as CE. cRT
applies the two-stage training strategy cRT in [17], where
the a classifier is trained in the second stage on a resam-
pled balanced dataset using the representations obtained
from the first stage.

SimCSE: The model applies two-stage training strategy,
which uses self-supervised contrastive learning loss to
train the BERT first and then initializing the BERT in
CE with the obtained parameter in the first stage.

DP: It uses the same model architecture as CE and the
cross entropy loss is applied. The data parameters are
learned following [28] to re-weight logits to learn a robust
classifier.

SS + SL + LDAM: Tt follows the framework in [18],
where in the first stage the self-supervised training is
applied and in the second stage the Superloss [2] with
LDAM [1] loss as the base loss is applied. The Superloss
is a robust loss designed to handle noisy label issues.
MW Netc: It learns the sample weights following the
similar method in [29]. Instead of using the loss as
the input for the weight learning network in [29],
the MW Netc uses the same inputs as the proposed
PGMWN framework.

MW Netyr,: It shares the same architecture as the
MW Nete, while uses LDAM loss instead of CE loss.

2)

3)

5)

0)

7

8)

C. Experimental Setup

1) Implementation: All the models are implemented using
PyTorch [25]. The Xavier normal initializer [12] is applied to
randomly initialize parameters. The batch size is set to 32.
dy, is set to 768 and d. is set to 32. The SGD is applied to
optimize the parameter set W, and Adam [19] is applied to
optimize the parameter set O. The initial learning rate o and 3
are set to 1le~° with a linear decay. The number of maximum
epochs is 40. To avoid the overfitting issue, we also use the
dropout technique [30],and set the dropout rate to 0.1.

2) Data Partition: We use the same way as [32] to prepro-
cess the three datasets. Based on the preprocessed datasets,
we randomly split the whole datasets into three subsets, i.e.,
training, validation, and testing sets, with the ratio 0.70 :
0.15 : 0.15. For the proposed model and baselines, we use
the training set to learn model parameters, and the validation
set is used to select the best model and perform early stop.
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TABLE I
STATISTICS OF DATASETS

Labels ~ Samples  Title Length  Label Frequency Quarter-tile
Automotive 953 160,725  9.90 £ 5.51 [16, 30, 60, 134, 6,963]
Beauty 229 159,805  10.26 £5.61 [16, 62, 202, 744, 9,010]
Electronics 500 86,357 14.90 £ 9.56 [16, 34, 72, 170, 6,323]
TABLE II

MODEL PERFORMANCE ON LONG-TAILED NOISY ITEM CATEGORIZATION ON THE THREE DATASETS. THE BEST RESULTS ARE HIGHLIGHTED USING BOLD
FONTS, AND THE SECOND BEST RESULTS ARE UNDERLINED.

Dataset | Automotive | Electronics | Beauty
Metric | MiAcc MaAcc WF1 MF1 | MiAcc MaAcc WF1 MF1 | MiAcc MaAcc WF1 MF1
CE 78.23 64.73 78.03 63.95 68.27 54.09 67.68 52.94 71.68 56.67 71.44 56.64
LDAM 78.94 67.38 78.70 65.68 68.83 56.70 68.22 54.87 73.21 57.21 72.61 56.99
cRT 78.89 67.35 77.85 63.72 68.80 56.72 67.54 52.99 71.72 55.92 71.55 55.88
SimCSE 78.23 64.73 76.36 64.25 66.03 55.55 65.82 53.30 71.21 60.10 70.99 58.06
DP 78.12 65.30 78.35 64.30 68.25 54.08 67.50 52.90 71.56 57.30 71.29 56.94
SS+SL+LDAM 78.81 67.50 78.55 65.81 69.15 56.24 68.16 54.45 73.28 57.95 72.65 57.84
MWNeto 78.45 65.84 78.17 64.65 68.20 54.04 67.51 53.05 71.82 57.58 71.57 57.42
MWNety, 78.74 67.43 78.57 65.59 68.78 56.42 68.12 54.90 73.32 57.95 72.65 57.80
PGMWN¢ 79.17 67.25 78.70 65.19 68.92 55.81 68.54 54.21 72.64 58.54 72.35 58.62
PGMWNL 79.94 68.02 79.45 66.56 69.72 57.28 68.87 55.51 73.59 58.62 73.10 58.54

3) Evaluation Metrics: As we discussed before, the cate-
gory label distributions of all the three datasets are long-tailed.
To evaluate the performance on such long-tailed data, existing
work always uses the following four metrics, including Macro
F1 (MF1), Weighted F1 (WF1), Macro Accuracy (MacAcc),
and Micro Accuray (MicAcc). The MF1 and MacAcc are two
metrics to average the F1 score and accuracy for each class and
are frequently used in evaluating long-tailed data performance.
WF1 and MicAcc computes the F1 score and accuracy for the
whole dataset and represent the general performance on the
dataset without considering the label frequency.

D. Experimental Results

Table II lists the experimental results on three datasets in
terms of four evaluation metrics. We can observe that on
the three datasets, the PGMWN methods achieve the best
performance in terms of all the four evaluation metrics, except
the MaAcc score on the Beauty dataset, which is the second
best score. Especially for the approach using the LDAM loss,
among 12 scores, 10 scores are ranked the first place and 2
ranked the second place. These results confidently validate the
effectiveness of the proposed PGMWN in handling the long-
tailed noisy data issue in item categorization task.

Although inferior to some methods using the LDAM loss,
the proposed PGMWN¢ framework outperforms all the base-
lines using the cross entropy loss except for the MaAcc on
Electronics and Beauty datasets. The improvement over other
methods using cross entropy loss of the proposed PGMWN~
framework can also demonstrate the advantage of the proposed
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PGMWN framework on addressing long-tailed noisy data in
item categorization task.

Another finding is that LDAM loss is powerful to deal with
not only the long-tailed data issue but also the noisy label issue
in the item categorization task and can be effectively plugged
into different frameworks to help improve their performance.

Compared with the MWNet models and the DP model,
which also reweight the samples, the superior performance of
the proposed framework shows the advantage of the specially
designed mechanism for handling the long-tailed noisy data is-
sue in item categorization. Although SS+SL+LDAM considers
addressing both issues, it’s even beaten by the LDAM model in
some cases, which shows that simply combining the methods
addressing those two issues will not necessarily improve the
performance.

E. Ablation Study

To investigate the influence of different modules in the
proposed PGMWN framework, we conduct ablation studies
by removing the key components respectively. We compare
the proposed frameworks with their variants to investigate
the effectiveness of their different components. The variants
we compared are: PGMWNc-SS and PGMWN_-SS which
remove the self-supervised representation learning compo-
nent, PGMWNc-PG and PGMWN_-PG removing the prior
guided weight regularization network, as well as MWNeto
and MWNet;, which are the models generated by removing
both the self-supervised representation learning network and
the prior guided item weight regularization network from the
proposed PGMWN network.
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TABLE III

THE RESULTS OF THE ABLATION STUDY ON LONG-TAILED NOISY DATA ITEM

CATEGORIZATION ON THE THREE DATASETS: AUTOMOTIVE, ELECTRONICS

AND BEAUTY. THE BEST RESULTS ARE HIGHLIGHTED USING BOLD FONTS, AND THE SECOND BEST RESULTS ARE UNDERLINED.

Dataset | Automotive | Electronics | Beauty
Metric | MicAcc  MacAcc WF1 MF1 | MicAce MacAcc WF1 MF1 | MicAcc MacAcc WF1 MF1
MWNetc 78.45 65.84 78.17  64.65 68.20 54.04 67.51 53.05 71.82 57.58 71.57  57.42
MWNet;, 78.74 67.43 78.57  65.59 68.78 56.42 68.12 54.90 73.32 57.95 72.65 57.80
PGMWN-SS 78.70 65.72 78.38  64.67 68.70 54.35 67.90 53.84 72.00 57.82 7192 5781
PGMWN/,-SS 78.82 67.45 78.62  65.74 68.92 56.78 68.32 54.58 73.15 57.33 72.82 5794
PGMWN¢-PG 78.62 66.25 7824  64.72 68.54 54.62 67.84 53.45 71.98 58.02 71.84  57.92
PGMWN,-PG 78.65 67.42 78.82  65.56 68.80 56.73 68.37 54.62 73.31 57.25 72.89  57.32
PGMWN¢ 79.17 67.25 78.70  65.19 68.92 55.81 68.54 54.21 72.64 58.54 72.35 58.62
PGMWNL 79.94 68.02 7945  66.56 69.72 57.28 68.87 55.51 73.59 58.62 7310 5854
TABLE IV
EXAMPLES OF ITEMS WITH THE LARGEST AND SMALLEST WEIGHTS
ID  Item Description Category
1 Built NY Charger Notebook Accessory Organizer Bag - Leaf Green Bags, Cases & Sleeves
Top 2 Pyle PLVWHI In-Car Infrared Dual-Channel Wireless Stereo Headphones Car Headphones
3 XO Vision Universal IR in Car Entertainment Wireless Foldable Headphones, Orange Car Headphones
4  Konica Minolta NP400 Li-ion Battery for Dimage Al, A2, 5D &amp; 7D Digital Cameras = Camera Batteries
Bottom 5 Battery for Canon PowerShot SD980 IS Digital Camera [Camera] Camera Batteries
6  Pearstone Duo Battery Charger for Canon BP-808/809/819/827 Camera

The results are presented in Table III. We can observe
that the proposed frameworks PGMWNc and PGMWN/,
outperform all their variations by either removing the prior
guided weight regularization network (PGMWN¢(1,)-PG) or
self-supervised representation network (PGMWN(z,)-SS).
MWNete and MWNet;, are the reduced models of the
PGMWN¢ and PGMWN, where both the self-supervised
representation learning and prior guided weight regularization
modules are removed. We can also find as more modules are
removed, the performance becomes worse in general. The bet-
ter performance of the PGMWN demonstrates the advantage of
incorporating the prior guided the item weight regularization
and self-supervised representation learning to address the long-
tailed noisy data issues in the item categorization task.

F Case Study

To analyze the learned item weights, a case study is con-
ducted. We show and analyze representative samples from
the sample set with the 20 largest and smallest weights. The
representative samples are shown in Table IV. The items 1 to
3 are among the items with the largest weights. They are in
“Bags, Cases & Sleeves” and “Car Headphones”, respectively,
which are among the least frequent categories and there are
similar categories easily to be confused with those category.
There is a category named “Cases” similar as the “Bags, Cases
& Sleeves”. For the “Car Headphones™ category, there is also
a category named “Headphones”. Those two factors may lead
to the samples to be assigned larger weights.
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For the items with the smallest weights, two of them belong
to the “Camera Batteries”, which is among the most frequent
categories. Thus, it should be not difficult for the classifier
to capture the characteristics and classify them correctly. For
the item 6, it seems to be a noisy sample assigned a wrong
category. The distance between the item description is far
away from the category description so that the weight learning
network assigns a small weight to it. In such a way, it can boost
the performance of the classifier.

VI. CONCLUSION

The long tail data distribution and label noise naturally
occur in item categorization task. These two data bias related
challenges prevent the model to achieve satisfactory perfor-
mance due to insufficient high quality labeled data for super-
vision. To address the challenges, we propose the PGMWN
framework based on [27]-[29] with two major innovations,
including (a) using an extra self-supervised representation
learning module to improve text representations and (b) utiliz-
ing prior guided regularization. The experimental results prove
that the proposed PGMWN framework can deal with the long
tail and noisy data issues in item categorization task and the
case study shows that the proposed PGMWN framework can
learn meaningful item weights. In particular, ablation studies
show that the proposed innovations consistently provide more
accurate instance weigh prediction compared to the method in
[29].

For future work, the possible directions include: (1) appli-
cation to other large-sized text classification tasks with a large
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number of classes and labeling noise, (2) applications to other
tasks in e-commerce domain such as attribute extraction, and
(3) further improving the item weight learning network.
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