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Abstract

Large language models (LLMs) show amazing performance on
many domain-specific tasks after fine-tuning with some appropriate
data. However, many domain-specific data are privately distributed
across multiple owners. Thus, this dilemma raises the interest in
how to perform LLM fine-tuning in federated learning (FL). How-
ever, confronted with limited computation and communication ca-
pacities, FL clients struggle to fine-tune an LLM effectively. To this
end, we introduce FedBiOT, a resource-efficient LLM fine-tuning
approach to FL. Specifically, our method involves the server gen-
erating a compressed LLM and aligning its performance with the
full model. Subsequently, the clients fine-tune a lightweight yet
important part of the compressed model, referred to as an adapter.
Notice that as the server has no access to the private data owned
by the clients, the data used for alignment by the server has a dif-
ferent distribution from the one used for fine-tuning by clients.
We formulate the problem into a bi-level optimization problem to
minimize the negative effect of data discrepancy and derive the
updating rules for the server and clients. We conduct extensive
experiments on LLaMA-2, empirically showing that the adapter has
exceptional performance when reintegrated into the global LLM.
The results also indicate that the proposed FedBiOT significantly
reduces resource consumption compared to existing benchmarks,
all while achieving comparable performance levels.
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1 Introduction

The recent advancements in large language models (LLMs) have
demonstrated incredible performance in various tasks, such as
question-answering and problem-solving. This success owes to
the pretraining on large datasets, covering a wide range of linguis-
tic patterns and general knowledge. However, in specific domains
such as legal advice [7, 23] and medical diagnosis [27, 32, 39], LLMs
may not provide professional responses because the terminology
and context significantly differ from general language use. To ad-
dress this limitation and enable the generation of domain-specific
content, it becomes imperative to fine-tune LLMs with relevant
data. This fine-tuning process allows the models to learn from the
specific instances and nuances of the target application, ensuring
their capability within specialized fields. The quality and quantity
of the task-specific data are directly related to the performance of
the fine-tuned model on downstream tasks: large and well-labeled
data can significantly improve the model, while small and irrele-
vant data can only benefit the model marginally. However, there are
many cases where task-specific data are possessed by multiple data
parties, while each of them may have a limited number of samples
that can be used to fine-tune LLMs. For example, a hospital in a
rural area may only have a limited number of lung cancer cases
recorded in its own system; if an LLM is only fine-tuned on one
set of those cases, it may not obtain comprehensive knowledge and
easily be overfitted.

To incorporate all the distributed data in the fine-tuning of LLMs,
one may consider the batch fine-tuning as follows. If we demand
all the data owners to share their data with the LLM server, then
LLM fine-tuning could be conducted at the server side. For example,
some LLM owners offer fine-tuning APIs as services, but the users
must pack their data as files and upload them to use a black-box
fine-tuning [24]. Apparently, this setup is not applicable to users
who have privacy concerns. Especially, some businesses are subject
to data privacy regulations [2, 8], which makes it challenging to
share local data with LLM server.
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Therefore, a more practical setting is to let individual data own-
ers keep their data locally, run fine-tuning locally and aggregate
the fine-tuning results at the LLM server. This fits well the feder-
ated learning (FL) framework, which is a distributed paradigm that
places a paramount emphasis on preserving privacy. Its conven-
tional algorithms, such as FedAvg [22], are considered practical
solutions to overcome data barriers across different data owners.
In this paradigm, data owners are treated as clients, and an LLM
server coordinates the computation. The standard FL workflow
involves three steps repeatedly: (i) The server distributes the global
model to all clients; (ii) Each client trains the model locally for
multiple iterations and sends the updated model to the server; (iii)
The server aggregates the models from the clients and updates the
global model accordingly. Despite the potential of this method to
facilitate collaborative fine-tuning of an LLM without sharing local
data, its feasibility is hindered by two main limitations:

e Access to full model of state-of-the-art LLMs: There exist
some open-source LLMs whose model the public can download
and have full access to their parameters. However, the most re-
cent and powerful versions of LLMs are usually closed-sourced,
i.e, the architecture and parameters are not available to the pub-
lic. The best closed-source LLMs still have leading performance
on a wide range of language tasks, and its leading edge can be
maintained or even enhanced after fine-tuning, making it a bet-
ter choice. As aforementioned, using the blackbox fine-tuning
service provided by these closed-source LLMs often violates
data users’ privacy requirements. Therefore, a federated learn-
ing framework that conducts collaborative fine-tuning with the
assumption of no access to the full model of LLMs at the client
side is more desirable.

Computation and communication costs: Existing federated
learning framework could also suffer from the computation and
communication challenges when conducting collaborative fine-
tuning on LLMs. The fine-tuning process for LLMs entails sub-
stantial computational demands and communication costs due
to the vast number of trainable model parameters. Clients with
limited computational power may struggle to perform complex
model updates, leading to prolonged training times or potential
disruptions. The transfer of expensive models between the server
and the clients also incurs substantial communication costs, lead-
ing to substantial bandwidth consumption and increased com-
munication latency. At the server side, there could be network
congestion when clients send back their updated huge amount
of parameters concurrently.

In this paper, we aim to tackle these two challenges and propose
to design an effective and practical collaborative LLM fine-tuning
framework. To address the first challenge, We follow the setting
proposed in offsite-tuning [43] and its federated version FedOT [13].
We assume that the LLM owner does not collect data directly from
clients but serves as the server in FL, who can use a public dataset
to distill her LLM and aggregate some local updates on part of the
model from clients; multiple clients want to collaborate on fine-
tuning for similar downstream tasks. Different from the classic FL
setting [18, 35, 47], we do not assume the data distribution on clients
or the public data owned by the server to be the same. Our goal,
in general, is to provide a framework for collaborative clients to
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fine-tune without access to full LLM or sharing local data directly.
More importantly, the fine-tuned model can still achieve better
performance than fine-tuning LLM locally with their local data
exclusively.

Although FedOT [13] was developed for this objective, it could
incur significant computational and communication costs, thereby
suffering from the second challenge. In light of this challenge, we
propose to integrate various parameter-efficient fine-tuning (PEFT)
techniques into the proposed FL framework. Specifically, the server
employs linear dropout to compress the LLM, integrates LoRA
[11] to reduce the trainable parameters, and divides it into two
components: an emulator and an adapter. The emulator retains a
consistent representation of the raw model on the server’s dataset,
while the adapter assimilates domain-specific linguistic patterns
from the clients’ local datasets. Considering the significant distri-
bution shift between the clients’ datasets and the server’s dataset,
we separate the fine-tuning of these two components into two pro-
cesses during FL training, i.e., the clients perform multiple local
updates to fine-tune the adapter, and the server distill the emulator
from the original LLM while aggregating the updated adapters from
the clients. To this end, a bi-level optimization is formulated.

This design, named Federated Bi-level Offsite Tuning (FedBiOT),
offers twofold advantages from the clients’ perspectives. Firstly,
instead of loading the complete model, clients load a compressed
version with fewer layers, considerably reducing computation costs.
Secondly, clients exclusively fine-tune the adapter, affecting only
the last few layers of the LLM and thereby minimizing computation
and communication expenses.

Contributions. Throughout the paper, our contributions are
highlighted as follows:

e We propose an algorithm FedBiOT that avoids full model fine-
tuning and significantly reduces the communication and compu-
tation overhead. To the best of our knowledge, this is the first
work that addresses both the aforementioned two challenges in
the federated LLM fine-tuning framework. With our proposed
framework, clients’ data are ensured to be kept locally and com-
putation and communication burden is significantly reduced.

e We formulate a bi-level optimization problem that enables the

LLM fine-tuning without access to the full model. By partitioning

the compressed model into the adapter and the emulator, the

emulator acts as a simulator of the original raw model, while the
adapter adeptly learns domain-specific linguistic patterns with
clients’ local datasets. To this end, we realize that fine-tuning
the compressed model is equivalent to the refinement of the

counterpart of the complete LLM.

We conduct extensive experiments on LLaMA-2 for fine-tuning

with three tasks, i.e., code generating, math problem solving,

and question answering. The empirical studies also demonstrate
that the proposed approach has significant improvement over all
these tasks compared with the baseline approaches in terms of
computation and communication overheads and final accuracy.

2 Preliminary

2.1 Traditional FL Formulation

Consider there is an FL system with a total of M clients, denoted
by [M]. Each client m € [M] holds a local dataset D,,. A client’s
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local loss is defined as

1

where M(x;w) is the output on a given model parameterized by w
and an input x. The loss function f is defined on the model output
and the ground truth y. In this dataset, we assume that the ground
truth y is part of the input x, where a sequence of tokens in the
input is used to predict the next token, and the ground truth is
used to identify the part needing to be predicted by the model.
Such a dataset is commonly adopted in previous works to fine-tune
an LLM [25, 40]. Then, based on the definition, a conventional FL
system aims to find an optimal model across all clients, which is
formulated as

min F(w) =
weRd

Z PmFm(w),

me[M]

@

where pm = |Dm|/|D] for all m € [M], where D represents the en-
tire training dataset, i.e., D = Up,c[a1]Dm- Generally, this problem
can be optimized by different FL algorithms [12, 15, 38] repeating
the following paradigm until convergence:

o Step 1: At the beginning of each round ¢, the server broadcasts
the trainable model parameters w(t);

e Step 2: After receiving the model w(*), each client m € [M]
performs multi-step local updates on w! ) to obtain wﬁ,i);

o Step 3: The server collects the locally updated model parameters

wﬁ,? from clients and aggregates them into a single global model
w(*1) for next round.

Applying PEFT to federated LLM fine-tuning. The existing
FL algorithms [1, 9, 36, 37, 42] are confronted with computation
and communication bottlenecks when fine-tuning an LLM. To miti-
gate the limitations, researchers have extended existing parameter-
efficient fine-tuning (PEFT) approaches to FL, named FedPEFT
[30, 45, 49]. These methods minimize the number of trainable pa-
rameters by introducing a PEFT module and keeping the original
LLM parameters unchanged. By focusing local updates exclusively
on the PEFT module rather than the entire model, these methods
effectively reduce computational load and support larger batch sizes
on a single GPU. Additionally, the FL server merely aggregates the
updated parameters of a given model, thus obviating the need to
transmit unchanged parameters and minimizing communication
overheads.

Nevertheless, FedPEFT is still confronted with the intrinsic chal-
lenge wherein clients face obstacles in loading an LLM due to its
substantial computation prerequisites. For instance, the loading of
a full-precision LLaMA-2-7B necessitates a memory capacity of no
less than 28 GB.

2.2 Related Work

The era of LLM poses the necessity of model privacy protection,
where the details of LLM cannot be visible to the clients. To this
end, Xiao et al. [43] proposes a method named Offsite-tuning un-
der the scenario where there is a server (a.k.a. LLM owner) and a
client, while Kuang et al. [13] extends this work to an FL version
and names it as FedOT. They achieve model privacy protection by
compressing the model, where only some layers are visible to the
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clients. However, these works require the preservation of a large
number of layers to guarantee the performance, hindering the ef-
fectiveness of model privacy protection. In contrast, our work only
discloses a few model parameters of the original LLM to the clients,
i.e., the clients only know the adapter parameters that come from
the original LLM, while the emulator parameters have been updated
and different from the original LLM. Besides, neither offsite-tuning
[43] nor FedOT [13] consider the difference between alignment
data on the server and the fine-tuning data on clients. In contrast,
the bi-level optimization problem proposed in our work naturally
considers this factor and we design updating rules based on it.
Black-box is also a practical way to protect model privacy, where
the clients access the LLM via an AP, and they cannot fine-tune
the LLM. Therefore, the optimization solely relies on prompt-based
learning [14, 16, 20, 28]. In the context of FL, there are two typ-
ical works, namely, Fed-BBPT [19] and FedBPT [29]. These two
works guarantee the model privacy in FL, but they should trans-
mit the prompt together with the input to the LLM owner, leading
to concerns about data privacy when the input contains sensitive
information, violating the requirement of FL. In contrast, the pro-
posed FedBiOT will not lead to this concern because its training is
fully on the clients such that the data are never shared with others.

3 FedBiOT

Given that some clients may be unable to load a complete LLM, this
section introduces an algorithm designed to enable these clients to
fine-tune the LLM without requiring access to its full version. In
other words, our goal is to refine the part of a compressed model
that should yield performance comparable to fine-tuning its coun-
terpart within a full model. To accomplish this, the server initially
compresses the LLM and divides it into two distinct components,
each serving specific functions. The first component, termed an em-
ulator, is tasked with replicating the behavior of the uncompressed
LLM. The second component, referred to as an adapter, focuses on
adeptly acquiring domain-specific linguistic patterns from clients.
Upon reintegrating the adapter into the uncompressed emulator,
its performance should demonstrate significant improvement com-
pared to the original LLM.

However, direct fine-tuning of the adapter on its models presents
two significant limitations. Firstly, given that a single layer of a
large language model (LLM) comprises millions of parameters, such
as the decoder layer of LLaMA-2 with 202 million parameters, the
adapter’s parameter count is immense. This necessitates clients
to possess powerful computational equipment to handle the fine-
tuning of the layer. Additionally, transmitting the layer updates to
the server poses another bottleneck, particularly in scenarios with
unreliable network connections or limited bandwidth, hindering
the smooth transmission of updates to the server.

To address these constraints, we integrate LoRA [11], a PEFT
module, into our proposed method. LoRA significantly reduces the
number of tunable parameters, with a LoRA module for LLaMA-
2 comprising 0.13 million trainable parameters, which is merely
0.06% of the original layer’s size. Consequently, the communication
cost experiences a remarkable reduction of 99.94% compared to
transmitting a full layer.
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Organization. In the subsequent sections, we will delve into
the concrete details of the algorithm design. Specifically, Section 3.1
illustrates how the compressed model is prepared. Following that,
Section 3.2 discusses the problem formulation for the aforemen-
tioned objectives. On top of this, Section 3.3 and Section 3.4 outline
the detailed steps of the proposed algorithm, namely local updates
and server aggregation, showcasing the seamless integration of
LoRA modules. Full implementation of the pseudocode is given in
Algorithm 2.

3.1 Compressed Model Preparation: Linear
Dropout

Suppose a pre-trained LLM has a total of n layers of transformers.
In the work, a repeatedly used operation is layer extraction, which
extracts some layers out of the total n layers of transformers to form
a submodel. We denoted this by a function LayerExtract(M, L),
which means extracting the layers with indices in L C [n] from the
model M. The function consists of the following three steps, and
its pseudocode implementation of the first two steps is presented
in Algorithm 1.

Step 1: Identify the adapters in the original model. We choose
the bottom few layers! of the original LLM as the adapter. To be
more specific, suppose the size of the adapter is a, and denote the
adapter as A. Therefore, A « LayerExtract(M,L#) with the
layer indices Lg = {n —a+1,...,n}. We denote w # as the param-
eters of A. The w # are also the trainable parameters that can be
fine-tuned by clients. The remaining part of the model is demoted
as & = M\ A.

The choice of adapters brings two advantages. First, regarding
the computation constraints of the clients, this proposed adapter is
computation-efficient because it only needs to store the activations
of transformers in the last few layers, leading to a lower memory
cost. Second, as the adapter focuses more on domain-specific fea-
tures, it is eco-friendly to spend the effort fine-tuning the last few
layers. The conclusion is drawn from a well-known finding [46]
in neural networks that the first few layers tend to learn general
features while the last layers encode specific ones.

Step 2: Layer dropout to form emulator. Inspired by the ex-
perimental results presented by Xiao et al. [43], we form an emu-
lator by means of a uniform layer dropout [26] from the remain-
ing part &*. Therefore, the emulator is a sub-model obtained as
& « LayerExtract(E*,Lg). Denote there are ng+ layers trans-
former in &*. The dropout rate of the emulator is denoted as
B = lnL—(fJ For convenience, we call & as emulator and &* as non-
compréssed emulator. Let wg and wg+ be the parameters of & and
&7, respectively.

After training, we can attain two combined models, namely,
Adaptor + Emulator (AdapEmu, i.e., & o A), and Adaptor + Full
(AdapFu, ie., &*oA). As Xiao et al. [43] describes, AdapFu performs
better than AdapEmu. These two models have different function-
alities in real-world scenarios: AdapEmu is adopted if the input
contains sensitive information that cannot be shared with the LLM
owner, e.g., drafting a petition letter, while AdapFu is adopted when

The bottom/last layers refer to the transformer decoders near the output, while the
top/first layers refer to the part close to the input.
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Algorithm 1 LayerExtract

Input: pre-trained LLM M (layer index starts from 0), adapter size
s, dropout rate f5.
1: Get the size of model: n « | M|
2: Compute the number of layers in the compressed model, i.e.,
n e [B(n-s)]
3: Initialize non-compressed emulator &* «— { M, .
adapter A — {Mp—s,..., Mu_1}
: Initialize emulator & « {}
: Compute stride «— (n—s—1)/(n’ = 1)
for j=0,...,n” —1do
Append M| jxssride| to emulator, ie.,

E<8&U {Mijstridej}

.. Mn—s—l},

N oo U

8: end for
9: returnw g, wg,wg=

the users aim to have better generation results, e.g., solving a math
problem.

Step 3: Pre-alignment. Before the FL training stage, we pre-
align the emulator with the non-compressed one such that it can
mimic the performance of the raw model. Assume there is a public
dataset D,,p;;. available on the server, which consists of a bunch
of data (x,y), representing the input and the ground truth, respec-
tively. Therefore, in the rest of the section, we assume the input x
contains an attention mask that can identify the ground truth.

Instead of training the compressed model with the ground truth,
we utilize knowledge distillation [10] to transfer the general linguis-
tic patterns from the original LLM to the compressed one by tuning
the emulator &. In specific, we ensure the emulator generates rep-
resentations that have subtle differences from the non-compressed
emulator with the given input on the ground truth part. To this
end, we aim to minimize the following £,-norm:

Lrepr = H8 (x;wg) — & (xswg) |§ ®)

Additionally, we ensure the compressed model has consistent final
outputs of the original LLM on the ground truth by minimizing the
following KL divergence:

Lig = Drr Mz fwa.we-HIM(x; {wa,we})) (4
In a nutshell, we optimize the emulator & by finding the optimal

parameters for the following equation on the public dataset

1
min ——
wg |Dpublic‘|

Lrepr +ALa

xeopublic

®)

Let the optimal emulator & for Equation (5) be E;nj; with the
parameter of wg, .. Denote the selected adapter A with the param-
eter of w 7, ... To this end, we distribute a compressed model to the
clients with the initial parameters of {w 4, ..wg, ., }. To reduce
the computation and communication costs, we incorporate LoRA
[11] for the adapter A and the emulator &, denoted as Aj,,, and
Elora- respectively.

Before diving into the details of the proposed FedBiOT, we briefly
go through the workflow as described in Figure 1. The figure visu-
ally presents the workflow of the federated learning process of our
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Figure 1: The Workflow of FedBiOT during the FL training

proposed FedBiOT, including the local updates on clients (Section
3.3) and the aggregation on the server (Section 3.4). At the beginning
of clients’ fine-tuning, the server broadcasts the adapter Aj,,, and
the emulator &, to the clients. Subsequently, the clients perform
multiple local updates to fine-tune the adapter Aj,,, with their
local datasets. After the local updates, the client uploads the adapter
Ajora to the server, and the server thereby aggregates the adapters.
To ensure that the emulator is still able to reproduce the behavior
of the uncompressed LLM, the server fine-tunes the emulator &y,
with the public dataset. Finally, the server distributes the updated
parameters to the clients and launches a new round of training.

3.2 Formulation of Bi-level Optimization

As discussed in Section 3.1, we compress and divide the LLM into
two parts, namely, an adapter and an emulator. These two compo-
nents are designated to satisfy the following objectives:

e Emulator should be tuned towards perfectly imitating the non-
compressed part in the full model, especially in extracting and
encoding information on the server’s datasets.

e Adapter should be able to digest the output of the emulator effi-
ciently and should be encoded with the knowledge from clients’
datasets effectively.

Definewg = {Wa,,,,, WAHpra > WE = (WS> WEorq ) O inte-
grate the LoRA parameters while the initial parameters for the
adapter and the emulator remain unchanged during the training.
Toward the goal, we formulate the objectives as a bi-level optimiza-
tion problem:

2

. €|~ . (t
min Z pmFm ({W%WS})*"HW&’UM _Wfq)
WAsra 2 lorall2

me[M]
(6)
s.t. wg,,  €arg min D | L(x),
wg i
lora 1=’public x€ Dpublic

L(x) 2||E (xwe) - & (xswe )|

+A-Dgp M(x; {wa,we DIM(x; {wa,we}))
(7)
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where w is the adapter LoRA received at the beginning of each

(t)

?Ilor. R A
communication round, w Ajora TeCONStIUCES for the same size of the
adapter w . Dpypiic represents the public dataset on the server,
which can be unlabeled. Dy (+]|-) is the KL divergence between

two logits. € and A are hyperparameters.

The upper-level objective (Equation (6)). The upper-level ob-
jective function consists of two terms. The first term represents the
loss of the model on local clients’ data, with the current emulator
and adapter. It follows a classic weighted average loss in FL to bal-
ance the loss of different clients’ heterogeneous local data. The goal
of introducing this term is straightforward: by minimizing the loss
of the first term, we expect the emulator-adapter combination to
be improved on the local training set. The second term is a regu-
larization of the adapter component to ensure it will be within a
reasonable distance from the synchronized and broadcast adapter
at the beginning of each communication round. Enforcing a restric-
tion on the adapter’s change can reduce the difference of losses for
the emulator distillation after locally adapter are tuned locally on
clients, so it can help the convergence of emulator distillation.

The lower-level objective (Equation (7)). The first term in the
constraint is the #2-norm difference between the activation output
by the emulator and the full model. The second term is the KL
divergence between the output of output distribution of the full
model-adapter combination and the emulator-adapter. Although
only the emulator is trainable to minimize the loss of these two
terms, these two terms provide different optimization meaning for
the emulator. The first term encourages the emulator to provide
activations as close as possible to the full model, excluding the
effect of the adapter. The second term ensures the emulator can
provide output distributions close to the one when the full model
with adapters is added on.

Discussion. The introduced algorithm can optimize the bi-level
problems (i.e., Equation (6) and (7)) to an equilibrium point for
both adapter and emulator. This is because when we optimize the
adapter, the fixed emulator constrains its updates, and vice versa,
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Algorithm 2 FedBiOT

Input: learning rate 7, local updates K, global model alignment
steps E, strength of full model alignment A, local update
regularization e, total communication rounds R, pre-trained LLM
M with parameter w, adapter size s, dropout rate f, number of
clients M.

1 wg,wg,wg+ < LayerExtract(M,s, ) > See Algo. 1 for details

2: fort=0,...,R-1do

3: fore=0,...,E—1do

4 Randomly sample (x, y) from the public dataset D,yp;;c
5 Optimize wg, . with respect to Equation (7)
6: end for
7: Communicate {w g, .wg,,,,} With clients m € [M]
8 for m € [M] in parallel do
9: Initialize w(;&um, W d,,,0m» ad wg using Equation (8)
10: fork=0,....,K—1do
1 Compute a gradient g using Equation (9)
12: Update local modelw 7, using Equation (10)
13: end for
14: Communicate w g, m With the server
15: end for
16: Update w 4, . using Equation (11)
17: end for

18: return AdapEmu {w #,wg}, AdapFu {w 4, wg-}

and thereby, the emulator and adapter are distilled or trained inter-
changeably. At this equilibrium, the emulator can more faithfully
extract and encode the information for the clients’ dataset and
benefit from the training of the adapter in reverse.

Additionally, FedBiOT does not require the design of an emulator
to follow linear dropout. Instead, this is a general framework that
compresses an LLM and divides it into two components: an emulator
and an adapter. There are numerous designs for the emulator, but
they share the same objective where the emulator simulates the
non-compressed part of an LLM. For simplicity, we follow offsite-
tuning [43] and prepare the emulator by means of uniform layer
dropout [26] to demonstrate the effectiveness of FedBiOT.

3.3 Client Updates

During the local updates, the clients barely fine-tune the parameters
of the adapter A while fixing the parameters of the emulator &.
By enabling LoRA, the LoRA of the adapter will get updated, and
therefore, the clients should upload the updatedw 4, to the server
after the local fine-tuning ends.

Consider client i € [M] performs the local updates at ¢-th round.
Before optimizing the adapter locally, the client receives the updated
emulatorwg, . and adapter w g, . from the client, and we denote
them by

w®)

—w
Alora Alora>

WAioram < WAiora>

®

Suppose the client performs the local update for K times. In each
local update, we solely optimize w 7, __ m,a LoRA module of the
adapter. Therefore, based on Equation (6), the gradient w.r.t.w #,, m

wg < {wainit’ walura }
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should be
T (ow
~ A~ (T Alora,m
9= T () (i m =i, ) (o
lora>M
)

wherew g = {wa,,,,,WaA,,,m} in the above formula. Let OpTIM()
be the optimizer (e.g., SGD and AdamW [21]) that updates the
model parameters, and 7 be the learning rate. Therefore, in each
local update, the local model is updated for

wﬂlora»m — OPTIM(Wﬂlora’m’g’ ’7) (10)

After finishing the local update, the client i sends w 7, . to the
server.

3.4 Model Aggregation

During the server aggregation, the server performs the weighted
average to update the adapters A and fine-tune the emulator E. By
enabling the LoRA, only the parameters w , . in the adapter and
Wwg,,,, in the emulator are updated, while the rest (i.e, w g, ,, and
wg,,,;,) remain unchanged.

First, the server collects a set of updated LoRAs of the adapter,
ie., {Wﬂzom,m}me (M] from the clients. Based on the definition of
Equation (6), the server performs weighted aggregation via

WAiora < Z PmW Aoy q,m (11)
me[M]

After the weighted averaging, the server distills the emulator

& from the non-compressed &* and the updated adapter A using

the public dataset. Therefore, we fine-tune the emulator following

Equation (7), which updates the LoRA of the emulator wg, .

4 Experiments

4.1 Experimental Setup

This section discusses the implementation of our experiments, cov-
ering details such as the model utilized and evaluation metrics. The
code is now available at https://github.com/HarliWu/FedBiOT.

Model and computation environment. The experiments uti-
lize LLaMA-2-7B, an open-source pre-trained LLM maintained by
Meta and released in July 2023 [34]. Preceding this, the model’s
first generation was introduced in February 2023 [33]. This model
supports a maximum of 4096 input tokens and consists of 32 hidden
layers with a total of 6.7 billion parameters. The experimental setup
involves machines equipped with Nvidia A100 GPU cards, Intel
Xeon Platinum 8369B CPUs, and a 512GB RAM configuration.

Datasets and Tasks. In the experiments, we use the benchmark
datasets and tasks in [13] to train and evaluate the LLM on three dif-
ferent NLP tasks, covering math problem-solving, code generation,
and question-answering:

o For math problem-solving, we split the GSM-8K training dataset
[5] ensuring i.i.d. across three clients, and we assess the updated
model using the GSM-8K test dataset.

o For code generation, we fine-tune the model with the Rosetta
dataset [3], which is partitioned across the programming lan-
guages, and a total of nine clients separately hold the data from
nine different programming languages. Regarding its evaluation,
we utilize HumanEvalX [50], an extension of a coding evaluation
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Table 1: Dataset details for LLM training and evaluation

Task Training  # training #clients Partition Rules Max. Min.  Std. Test # test

Dataset ~ samples Dataset samples
Math Problem Solving GSM-8K 7473 3 iid. 2491 2491 0 GSM-8K 1319
Code Generation Rosetta 7954 9 Prog. Lang. 1172 439  236.94 HumanEvalX 656
Question Answering Dolly 15015 8 Category 3611 711  795.06 Helm NA
Public Dataset Alpaca 52002

dataset [4] that requires the model to fill in the code for a given
problem in the required programming language (i.e., C++, GO,
Java, Python).

e For question answering, the model is trained on dolly-15K [6],
which is partitioned into 8 clients based on the categories of the
questions, and we evaluate the new model with the selected tasks
on HELM [17].

Table 1 gives a detailed description of these three tasks. As Section
3 mentions, the server will perform the emulator alignment during
the model aggregation. Then, we use the Alpaca dataset [31] as the
public dataset for the server to do the emulator alignment for all
three NLP tasks.

Implementation. This work is built upon an open-source fed-
erated learning platform named FederatedScope [44]. The training
data are reformatted following the predesigned instructions [3, 48].

Different from [13, 43], we regard the last two and the last four
decoders as the adapter. The experiments consider two dropout
rates, i.e., f € {0.2,0.5}, and we obtain the emulators with layer
dropout following Xiao et al. [43]. Without special annotation, we
use the following local training setting: in each communication
round, each client performs 30 local updates, and the batch size
of every local update is 10. Before launching the FL training, we
fine-tune the emulator for 500 iterations to generate a distilled
emulator & towards minimizing the loss of Equation (7). During
the FL training, the server takes 10 iterations to align the emulator
& with &* between two successive communication rounds after
aggregating local adapters with FedAvg [15]. These experiments
run for 500 communication rounds, and we report the results based
on the fine-tuned LLM obtained at the 500th round. During the
training, we only fine-tune the adapter in the clients’ local update
procedures, and we update the emulator on the server side. In
other words, other parts of the pre-trained model, such as word
embeddings, are frozen during the training.

LoRA, Optimizers and Hyperparameters. We add the LoRA
to all decoder layers in the adapter and the emulator by setting
the rank to 8 and the alpha to 16. We use AdamW as an optimizer
to solve Equation (6) and (7) on the clients (for the adapters) and
the server (for the emulators), respectively. We search for the best
learning rate in {1 X 107°,3%x 107°,5x 107°,8 X 1075, 1 X 10_4}.
We set the momentum for (0.9, 0.95). As for other hyperparameters
related to the optimizer, we use the default setting. Furthermore, we
also conduct grid search for FedBiOT-specific hyperparameters, i.e.,
€ and A. Throughout the experiments, we demonstrate the result of
the best hyperparameter combination. To avoid randomness, we
utilize three different random seeds and report the averaged results.
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Table 2: Test accuracy on math problem-solving task under
different dropout rates

Dropout

Rate () Methods AdapEmu AdapFu
p=0.0  Few-shot CoT NA 13.42% (177/1319)
o Offsite-tuning 3.03% (40/1319)  9.937% (131/1319)
=02 FedOT 2.43% (32/1319)  10.16% (134/1319)

FedBiOT (Adapter 2) 3.71% (49/1319)  15.16% (200/1319)

FedBiOT (Adapter 4)  3.41% (45/1319)  15.23% (201/1319)

Offsite-tuning 2.27% (30/1319)  7.58% (100/1319)
=05 FedOT 1.90% (25/1319)  7.51% (99/1319)

FedBiOT (Adapter 2)
FedBiOT (Adapter 4)

2.05% (27/1319)
1.82% (24/1319)

11.83% (156/1319)
14.03% (185/1319)

Baselines. Offsite-tuning is the only method that satisfies the
constraints that fine-tuning without access to full model. Xiao et al.
[43] introduces a single-client offsite-tuning, while Kuang et al. [13]
extends it to an FL version (i.e., FedOT). We apply offsite-tuning
with one single client, where all data are loaded to the client. As
FedOT supports FL, we reproduce the algorithm to work on the
FL tasks. In terms of the setting of the adapters and the emulators,
both Offsite-tuning and FedOT treat the first two and the last two
decoders as the adapter. To enable the parameter-efficient fine-
tuning for both baselines, we add LoRA to both baselines, the same
as the setting adopted by FedBiOT.

Evaluation Metric. In the experiments, we report the results
on two models, i.e.,, AdapEmu and AdapFu, as defined in Section
3.1. The evaluation metrics for each task follow Kuang et al. [13],
and the detailed description is given in Appendix A.

4.2 Quantitative Evaluation on i.i.d. Data

We demonstrate the experimental results of GSM-8K provided in
Table 2 and highlight the worth-noted phenomenon when the data
are i.i.d. across the clients.

A notable phenomenon observed in the table is that AdapEmu
significantly falls behind AdapFu, particularly at a low dropout
rate (i.e., f = 0.2). To explain this, we examine the accuracy of the
LLaMA-2 model with a dropout rate of 0.2, which is 2.12% without
fine-tuning and increases to 2.43% after fine-tuning the emulator
with a public dataset. The performance gap between AdapEmu and
AdapFu can be attributed to layer dropout, which reduces the size
of the LLM and subsequently impacts its performance. Additionally,
this result highlights the difficulty of accurately reproducing the
non-compressed parts with the emulator. Fortunately, all methods
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Table 3: Pass@1 (%) and Pass@10 (%) in code generation task at various rounds when dropout rate is 0.2

C GO Pyth
Method Model i Java yion
Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10
. . AdapEmu 3.99 6.45 1.80 2.44 5.64 6.09 5.01 6.38

Offsite-tuning

AdapFu 8.78 10.82 4.94 6.63 9.57 12.81 13.19 17.32
FedOT AdapEmu 2.50 4.89 1.86 3.05 5.00 5.49 4.91 6.83

e

AdapFu 8.60 11.36 5.95 7.11 6.30 9.42 12.23 13.58
FedBiOT AdapEmu 4.82 6.43 3.57 4.85 5.92 6.36 4.97 6.95
(Adapter 2) AdapFu 9.76 14.18 9.97 13.29 12.93 16.28 14.91 19.77
FedBiOT AdapEmu 3.20 4.57 2.20 2.44 491 5.73 543 6.10
(Adapter 4) AdapFu 9.12 13.41 8.02 11.08 11.28 13.10 14.57 18.41

Table 4: Pass@1 (%) and Pass@10 (%) in code generation task at various rounds when dropout rate is 0.5. We do not show
AdapEmu’s performance because it struggles to generate meaningful codes, accounting for its small size.

Method Model C++ GO Java Python
Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10
Offsite-tuning AdapFu 5.30 7.26 3.32 7.55 4.61 5.33 8.75 10.26
FedOT AdapFu 4.92 7.33 5.00 8.33 3.86 4.37 7.33 8.91
FedBiOT (Adapter 2) AdapFu 7.71 11.84 7.68 10.01 9.51 14.34 13.29 16.87
FedBiOT (Adapter 4) AdapFu 5.03 11.09 6.25 8.47 7.41 13.32 13.54 16.74

improve AdapEmu’s performance compared to the version without
fine-tuning.

When we take a look at the proposed FedBiOT at different
adapters’ sizes, we notice that FedBiOT with adapter 4 achieves bet-
ter performance than that with adapter 2 under the AdapFu setting.
As we know, a larger adapter has more trainable parameters, and
therefore, it can easily absorb the knowledge from the downstream
tasks. Note that the performances of these two adapter settings
have subtle differences under AdapEmu, meaning that their emula-
tor achieves very similar effects to the non-compressed emulator.
When we plug the adaptor back into the non-compressed emulator,
the adapter with more trainable parameters obviously can achieve
a better performance.

When comparing our proposed model with the baselines, we can
notice a significant dominance in performance, especially in the
AdapFu setting. More specifically, when the dropout rate becomes
larger, the performance of AdapFu with FedBiOT decreases more
mildly in contrast to other baselines. This is thanks to two factors:
1) the regularization term ensures the adapters will not change
dramatically; 2) the on-the-fly distillation of the emulator with
mixed losses can work better with clients’ data. Although the other
two baselines use a public dataset to achieve similar functionality,
the deterioration may still occur due to the data domain shift and
the significant information loss.

4.3 Quantitative Evaluation on non-i.i.d. Data

According to Table 1, code generation and question answering
are two tasks split in non-ii.d. styles. In this section, we evaluate
our proposed FedBiOT when it trains an LLM with a non-ii.d.
dataset. It is worth noting that the evaluation task could be either
in-distribution or out-of-distribution to the training dataset.
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Code generation. Table 3 and 4 illustrate the best results in dif-
ferent programming languages based on different hyperparameter
settings. Let us take a look at the results of the FedBiOT at differ-
ent adapter sizes. Apparently, FedBiOT with two layers of adapter
constantly outperforms FedBiOT with four under both AdapEmu
and AdapFu. This conclusion is different from the one when an
LLM is trained with an i.i.d. dataset. The discrepancy can be attrib-
uted to the clients’ objectives: under i.i.d. datasets, a larger adapter
size benefits training by absorbing downstream linguistic patterns
uniformly. Conversely, with non-ii.d. datasets, clients are biased
towards their local optima, where the emulator’s effect becomes
crucial.

When comparing our proposed algorithm with the baselines,
we notice a distinct dominance in AdapFu across all programming
languages. In particular, when the dropout rate is 0.5, we can achieve
up to 6% improvement over other baselines in terms of Pass@1,
and up to 10% improvement of Pass@10. Notably, the most distinct
dominance can be witnessed under the “column” of Java in Table 4.

Question Answering. Figure 2 shows the evaluation results us-
ing the HELM benchmark while we train the LLM with Dolly-15K.
Generally speaking, FedBiOT (Adapter 2) performs significantly
better than Adapter 4 in some tasks in terms of AdapEmu. As both
AdapEmu have the same number of layers, this result exhibits the
importance of the emulator, i.e., the model with a larger emula-
tor can achieve leading performance. To some extent, this result
supports our previous conclusion that an emulator plays a more
important role than an adapter in a non-i.i.d. task. As for AdapFu,
the performance difference is trivial between the two adapter sizes.

The proposed algorithm outperforms offsite-tuning and FedOT
in most datasets, which is consistent with the findings in other train-
ing tasks. The dominance of AdapFu becomes more pronounced as
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I FedBiOT (Adapter 4)

Nat.Q QUAC MMLU O.B.
(closed) Q

Nar. Nat.Q Hella BoolQ Avg

QA (open) Swag (closed)

(a) AdapEmu (Dropout rate 0.2)

Nat.Q QuAC MMLU O.B.
Q

(b) AdapFu (Dropout rate 0.2)

Nar. Nat.Q Hella BoolQ Avg
QA (open) Swag

Nat.Q QuAC MMLU O0.B.
(closed) Q

Nar. Nat.Q Hella BoolQ Avg
QA (open) Swag

(c) AdapFu (Dropout rate 0.5)

Figure 2: Test accuracy in eight types of question-answering tasks (Left to right: Natural Questions (closed-book), QuAC, MMLU,
OpenbookQA, NarrativeQA, Natural Questions (open-book), HellaSwag, BoolQ) and the average accuracy under different
baselines (bars from left to right: Offsite-tuning, FedOT, FedBiOT (Adapter 2), FedBiOT (Adapter 4)) and different dropout rates.

the dropout rate increases from 0.2 to 0.5. For instance, FedBiOT is
approximately 10% better than the baselines at a 0.5 dropout rate in
Natural Questions (closed-book), compared to a 2% improvement at
a 0.2 dropout rate. Notably, comparing Figure 2b and 2c, we notice
that FedBiOT is mildly affected by changes in the dropout rate,
while the baselines suffer significant degradation as the dropout
rate increases. This stability can be attributed to round-by-round
emulator alignment, where the non-compressed part of the full
model is set as an anchor, regardless of the dropout rate. Conse-
quently, this approach stabilizes the adapter training process, en-
suring that adapters of the same size achieve similar performance
across varying dropout rates.

4.4 Discussion on Computation and
Communication Overhead

Table 5 presents the computation and communication overhead
of different methods under different dropout rates. As mentioned
in the experimental setting, all algorithms have been applied with
LoRA, and therefore, the number of trainable parameters dramati-
cally reduces. From the clients’ perspectives, the number of train-
able parameters is determined by the number of decoder layers in
the adapter. Apparently, FedBiOT (Adapter 2) should be with the
minimum number of trainable parameters among other methods.

The computation costs in Table 5 are measured by per-token
floating point operation (FLOP/token). As we can see, the proposed
FedBiOT costs less overhead than offsite-tuning and FedOT. The
difference arises on account of the position of the trainable parame-
ters. The adapter of the proposed FedBiOT is near the output layer.
As for offsite-tuning and FedOT, the adapters are located separately
at the top and the bottom two layers, thereby consuming more
computation costs in the backward propagation for transmitting
the derivative from the bottom to the top.

However, our proposed method may require more communica-
tion overhead than the baselines. This is because the server should
transmit the LoRA parameters of both the adapter and the emulator
to the clients in our proposed method, while in offsite-tuning and
FedOT, the server merely transmits the aggregated LoRA of the
adapter to the clients. However, the overall cost is trivial, compared
to the full LLM transmission at a cost of 28GB.
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Table 5: Computation and communication costs of different
methods under different dropout rates at client side.

Dropout |\~ FLayersin #Layersin  Trainable  Comp. Costs _ Comm. Costs
Rate (§) Adapter  Emulator Param. (M) (GFLOP/token) (MB/round)
/‘;f;‘c‘;‘““i“g 4 22 0.524 10.33 4.19
peoz piwan 2 M 0%z 547 46
(F;j:g N 4 22 0.524 5.87 15.73
/‘;f;‘(‘;‘““i“g 4 14 0.524 7.09 4.19
poos piwan 215 022 ae 9%
(F;j:g N 4 14 0.524 4.25 11.53

5 Conclusion

In this paper, we introduce FedBiOT, a federated learning algorithm
that avoids full model fine-tuning while substantially reducing com-
putation overhead. Specifically, we compress the LLM and divide it
into two components, namely, an emulator and an adapter. By for-
mulating a bi-level optimization problem, our proposed FedBiOT
ensures that the emulator partially simulates the original LLM,
while the adapter focuses on learning domain-specific linguistic
patterns. Extensive experiments show the superiority of the pro-
posed FedBiOT working with LLaMA-2, where it can achieve sig-
nificant accuracy improvement than the existing baselines (i.e.,
Offsite-tuning and FedOT) in all tasks (i.e., math problem-solving,
code generation, and question answering).

Acknowledgments

The authors would like to thank the anonymous reviewers for their
constructive comments. This work is supported in part by the US
National Science Foundation under grants NSF-IIS 1747614 and
NSF-IIS 2141037. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

References

[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul What-
mough, and Venkatesh Saligrama. 2020. Federated Learning Based on Dynamic



KDD ’24, August 25-29, 2024, Barcelona, Spain

NS
B8 N

[10

[11]

[12

[13

[14

[15]

[16]

(17

[18

[19]

[20]
[21]

[22

~
&

[24

[25

Regularization. In Proc. of International Conference on Learning Representations
(ICLR’20).

CCPA. 2023. California Consumer Privacy Act (CCPA). https://oag.ca.gov/privacy/
ccpa

Sahil Chaudhary. 2023. Code Alpaca: An Instruction-following LLaMA model
for code generation. https://github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
et al. 2021. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168 (2021).

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam
Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin.
2023.  Free Dolly: Introducing the World’s First Truly Open Instruction-
Tuned LLM.  https://www.databricks.com/blog/2023/04/12/dolly-first-open-
commercially-viable-instruction-tuned-1lm

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. 2023. Chatlaw: Open-
source legal large language model with integrated external knowledge bases.
arXiv preprint arXiv:2306.16092 (2023).

GDPR. 2016. Regulation (EU) 2016/679 of the European Parliament and of the
Council. https://data.europa.eu/eli/reg/2016/679/0j

Shiqi He, Qifan Yan, Feijie Wu, Lanjun Wang, Mathias Lécuyer, and Ivan Beschast-
nikh. 2023. GlueFL: Reconciling Client Sampling and Model Masking for Band-
width Efficient Federated Learning. Proc. of Machine Learning and Systems
(MLSys’23).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, Weizhu Chen, et al. 2021. LoRA: Low-Rank Adaptation of Large Language
Models. In Proc. of International Conference on Learning Representations (ICLR’21).
Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In Proc. of International conference on machine
learning (ICML’20). 5132-5143.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan,
Yuexiang Xie, Yaliang Li, Bolin Ding, and Jingren Zhou. 2024. FederatedScope-
LLM: A Comprehensive Package for Fine-tuning Large Language Models in
Federated Learning. In Proc. of the ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD’24).

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale
for Parameter-Efficient Prompt Tuning. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP’21). 3045-3059.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang.
2019. On the Convergence of FedAvg on Non-IID Data. In Proc. of International
Conference on Learning Representations (ICLR’19).

Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. In Proc. of the Annual Meeting of the Association for Com-
putational Linguistics and the International Joint Conference on Natural Language
Processing (ACL/IJNLP’21). 4582-4597.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al.
2022. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110
(2022).

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble
distillation for robust model fusion in federated learning. In Proc. of Advances in
Neural Information Processing Systems (NeurIPS’20). 2351-2363.

Zihao Lin, Yan Sun, Yifan Shi, Xuegian Wang, Lifu Huang, Li Shen, and Dacheng
Tao. 2023. Efficient federated prompt tuning for black-box large pre-trained
models. arXiv preprint arXiv:2310.03123 (2023).

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2023. GPT understands, too. AI Open (2023).

Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.
In Proc. of International Conference on Learning Representations (ICLR’18).
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Proc. of Artificial intelligence and statistics
(AISTAT’17). 1273-1282.

John J Nay, David Karamardian, Sarah B Lawsky, Wenting Tao, Meghana Bhat,
Raghav Jain, Aaron Travis Lee, Jonathan H Choi, and Jungo Kasai. 2024. Large
language models as tax attorneys: a case study in legal capabilities emergence.
Philosophical Transactions of the Royal Society A 382, 2270 (2024), 20230159.
OpenAl 2023. Fine-tuning - OpenAI APIL https://platform.openai.com/docs/
guides/fine-tuning. Accessed: 2023-09-29.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.

3354

[26

[27

[28

[29

[30

(31]

(34]

[35

'S
S

[37

[38

[41

[42

[43]

[44

[45

[46]

(47]

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao

Training language models to follow instructions with human feedback. In Proc.
of Advances in Neural Information Processing Systems (NeurIPS’22). 27730-27744.
Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. 2023. On the
effect of dropping layers of pre-trained transformer models. Computer Speech &
Language 77 (2023), 101429.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won
Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al.
2023. Large language models encode clinical knowledge. Nature 620, 7972 (2023),
172-180.

Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre C6té, Matheus Pereira, Adam
Trischler, Ziang Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux.
2023. Joint prompt optimization of stacked llms using variational inference. In
Proc. of Advances in Neural Information Processing Systems (NeurIPS’23).
Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, and
Holger R Roth. 2023. FedBPT: Efficient Federated Black-box Prompt Tuning for
Large Language Models. arXiv preprint arXiv:2310.01467 (2023).

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. 2024. Improving LoRA in
Privacy-preserving Federated Learning. In Proc. of The International Conference
on Learning Representations (ICLR’24).

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford
alpaca.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura
Gutierrez, Ting Fang Tan, and Daniel Shu Wei Ting. 2023. Large language models
in medicine. Nature medicine 29, 8 (2023), 1930-1940.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, Yufeng Zhan, and Zhigang
Zeng. 2023. Dafkd: Domain-aware federated knowledge distillation. In Proc. of
the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR’23).
20412-20421.

Haozhao Wang, Haoran Xu, Yichen Li, Yuan Xu, Ruixuan Li, and Tianwei Zhang.
2023. FedCDA: Federated Learning with Cross-rounds Divergence-aware Ag-
gregation. In Proc. of The International Conference on Learning Representations
(ICLR’23).

Haoyu Wang, Handong Zhao, Yaqing Wang, Tong Yu, Jiuxiang Gu, and Jing
Gao. 2022. FedKC: Federated knowledge composition for multilingual natural
language understanding. In Proc. of the ACM Web Conference 2022 (WWW’22).
1839-1850.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor.
2020. Tackling the objective inconsistency problem in heterogeneous feder-
ated optimization. In Proc. of Advances in neural information processing systems
(NeurIPS’20). 7611-7623.

Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, and Dinggang Shen. 2023.
Chatcad: Interactive computer-aided diagnosis on medical image using large
language models. arXiv preprint arXiv:2302.07257 (2023).

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned Language
Models are Zero-Shot Learners. In Proc. of International Conference on Learning
Representations (ICLR’21).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. In Proc. of Advances in Neural Information Processing
Systems (NeurIPS’22). 24824-24837.

Feijie Wu, Song Guo, Zhihao Qu, Shiqi He, Ziming Liu, and Jing Gao. 2023.
Anchor sampling for federated learning with partial client participation. In Proc.
of International Conference on Machine Learning (ICML’23). 37379-37416.
Guangxuan Xiao, Ji Lin, and Song Han. 2023. Offsite-tuning: Transfer learning
without full model. arXiv preprint arXiv:2302.04870 (2023).

Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang,
Yaliang Li, Bolin Ding, and Jingren Zhou. 2023. FederatedScope: A Flexible
Federated Learning Platform for Heterogeneity. In Proc. of the VLDB Endowment
(VLDB’23). 1059-1072.

Liping Yi, Han Yu, Gang Wang, and Xiaoguang Liu. 2023. Fedlora: Model-
heterogeneous personalized federated learning with lora tuning. arXiv preprint
arXiv:2310.13283 (2023).

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable
are features in deep neural networks?. In Proc. of Advances in neural information
processing systems (NeurIPS’14).

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu.
2021. Parameterized knowledge transfer for personalized federated learning. In



FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model

Proc. of Advances in Neural Information Processing Systems (NeurIPS’21). 10092—
10104.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong
Yu, Guoyin Wang, and Yiran Chen. 2024. Towards building the federatedGPT:
Federated instruction tuning. In Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’24). 6915-6919.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and
Zenglin Xu. 2023. FedPETuning: When federated learning meets the parameter-
efficient tuning methods of pre-trained language models. In Proc. of Annual
Meeting of the Association of Computational Linguistics (ACL’23). 9963-9977.
Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen,
Zihan Wang, Andi Wang, Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual benchmarking on humaneval-x. In Proc. of
the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’23).
5673-5684.

[48

[49

[50

A Testing Dataset and Evaluation

As described in Table 1, we utilize three datasets to assess the fine-
tuning performance. In this section, we briefly introduce all these
datasets and provide the details about how they evaluate a given
LLM.

GSM-8K.. We use the GSM-8K test set [5] to evaluate the abil-
ity of a large language model (LLM) to solve math problems. This
dataset includes "questions" and "ground truth" answers. We as-
sess correctness by determining how often the LLM answers a
given question correctly. Following chain of thought (CoT) [41], we
prepare a set of sample questions (a.k.a. few-shot prompting) and
prompt the LLM to generate step-by-step solutions, ensuring the
answers are formatted correctly. Finally, we extract the answers
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from these solutions and compare them with the ground truth to
calculate the correctness rate.

HumanevalX.. This is a task for code autofill, which consists of
164 test samples for five programming languages [50]. It is worth
noting that we use four of them (i.e., C++, GO, Java, and Python)
because there are no JavaScript codes in the training dataset. Each
test sample is constituted with “task id”, “prompt” (i.e., Task de-
scription with partial codes), “entry point” (i.e., the function to be
achieved), “canonical solution” (i.e., a sampled solution), and “test”
(i.e., evaluate if the generated code can obtain the correct answer
based on the given input). In this task, we use “prompt” as the
input and generate five versions of codes using a given model. We
compile the code and check if it can pass the given “test”. Let ¢ be
the number of correct codes generated by LLM and passed unit
tests, and therefore, Pass@k can be computed via

(")
(%)

HELM.. HELM [17] is a benchmark that contains a wide range
of NLP tasks. We upload the well-trained models to the benchmark
and evaluate them on question-answering tasks, which includes
eight datasets, i.e., MMLU, BoolQ, NarrativeQA, Natural Questions
(closed-book), Natural Questions (open-book), QuAC, HellaSwag,
OpenbookQA. For different tasks, the results come from different

metrics, i.e., exact match for HellaSwag, OpenbookQA, and MMLU;,
quasi-exact match for BoolQ; F1 for the rest.

Pass@k = IBpmblems 1-
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