
FedBiOT: LLM Local Fine-tuning in Federated Learning without
Full Model

Feijie Wu∗

Purdue University
West Lafayette, IN, USA
wu1977@purdue.edu

Zitao Li
Alibaba Group

Bellevue, WA, USA
zitao.l@alibaba-inc.com

Yaliang Li
Alibaba Group

Bellevue, WA, USA
yaliang.li@alibaba-inc.com

Bolin Ding
Alibaba Group

Bellevue, WA, USA
bolin.ding@alibaba-inc.com

Jing Gao
Purdue University

West Lafayette, IN, USA
jinggao@purdue.edu

Abstract

Large language models (LLMs) show amazing performance on

many domain-speci�c tasks after �ne-tuningwith some appropriate

data. However, many domain-speci�c data are privately distributed

across multiple owners. Thus, this dilemma raises the interest in

how to perform LLM �ne-tuning in federated learning (FL). How-

ever, confronted with limited computation and communication ca-

pacities, FL clients struggle to �ne-tune an LLM e�ectively. To this

end, we introduce FedBiOT, a resource-e�cient LLM �ne-tuning

approach to FL. Speci�cally, our method involves the server gen-

erating a compressed LLM and aligning its performance with the

full model. Subsequently, the clients �ne-tune a lightweight yet

important part of the compressed model, referred to as an adapter.

Notice that as the server has no access to the private data owned

by the clients, the data used for alignment by the server has a dif-

ferent distribution from the one used for �ne-tuning by clients.

We formulate the problem into a bi-level optimization problem to

minimize the negative e�ect of data discrepancy and derive the

updating rules for the server and clients. We conduct extensive

experiments on LLaMA-2, empirically showing that the adapter has

exceptional performance when reintegrated into the global LLM.

The results also indicate that the proposed FedBiOT signi�cantly

reduces resource consumption compared to existing benchmarks,

all while achieving comparable performance levels.

CCS Concepts

• Computing methodologies→ Distributed algorithms; Nat-

ural language generation; • Information systems → Language

models.

Keywords

Federated Learning; Large Language Models

∗Work was done while Feijie Wu was an intern at Alibaba Group.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’24, August 25–29, 2024, Barcelona, Spain

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671897

ACM Reference Format:

FeijieWu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. 2024. FedBiOT: LLM

Local Fine-tuning in Federated Learning without Full Model. In Proceedings

of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD ’24), August 25–29, 2024, Barcelona, Spain. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3637528.3671897

1 Introduction

The recent advancements in large language models (LLMs) have

demonstrated incredible performance in various tasks, such as

question-answering and problem-solving. This success owes to

the pretraining on large datasets, covering a wide range of linguis-

tic patterns and general knowledge. However, in speci�c domains

such as legal advice [7, 23] and medical diagnosis [27, 32, 39], LLMs

may not provide professional responses because the terminology

and context signi�cantly di�er from general language use. To ad-

dress this limitation and enable the generation of domain-speci�c

content, it becomes imperative to �ne-tune LLMs with relevant

data. This �ne-tuning process allows the models to learn from the

speci�c instances and nuances of the target application, ensuring

their capability within specialized �elds. The quality and quantity

of the task-speci�c data are directly related to the performance of

the �ne-tuned model on downstream tasks: large and well-labeled

data can signi�cantly improve the model, while small and irrele-

vant data can only bene�t the model marginally. However, there are

many cases where task-speci�c data are possessed by multiple data

parties, while each of them may have a limited number of samples

that can be used to �ne-tune LLMs. For example, a hospital in a

rural area may only have a limited number of lung cancer cases

recorded in its own system; if an LLM is only �ne-tuned on one

set of those cases, it may not obtain comprehensive knowledge and

easily be over�tted.

To incorporate all the distributed data in the �ne-tuning of LLMs,

one may consider the batch �ne-tuning as follows. If we demand

all the data owners to share their data with the LLM server, then

LLM �ne-tuning could be conducted at the server side. For example,

some LLM owners o�er �ne-tuning APIs as services, but the users

must pack their data as �les and upload them to use a black-box

�ne-tuning [24]. Apparently, this setup is not applicable to users

who have privacy concerns. Especially, some businesses are subject

to data privacy regulations [2, 8], which makes it challenging to

share local data with LLM server.

KDD ’24, August 25–29, 2024, Barcelona, Spain Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao

Therefore, a more practical setting is to let individual data own-

ers keep their data locally, run �ne-tuning locally and aggregate

the �ne-tuning results at the LLM server. This �ts well the feder-

ated learning (FL) framework, which is a distributed paradigm that

places a paramount emphasis on preserving privacy. Its conven-

tional algorithms, such as FedAvg [22], are considered practical

solutions to overcome data barriers across di�erent data owners.

In this paradigm, data owners are treated as clients, and an LLM

server coordinates the computation. The standard FL work�ow

involves three steps repeatedly: (i) The server distributes the global

model to all clients; (ii) Each client trains the model locally for

multiple iterations and sends the updated model to the server; (iii)

The server aggregates the models from the clients and updates the

global model accordingly. Despite the potential of this method to

facilitate collaborative �ne-tuning of an LLM without sharing local

data, its feasibility is hindered by two main limitations:

• Access to full model of state-of-the-art LLMs: There exist

some open-source LLMs whose model the public can download

and have full access to their parameters. However, the most re-

cent and powerful versions of LLMs are usually closed-sourced,

i.e, the architecture and parameters are not available to the pub-

lic. The best closed-source LLMs still have leading performance

on a wide range of language tasks, and its leading edge can be

maintained or even enhanced after �ne-tuning, making it a bet-

ter choice. As aforementioned, using the blackbox �ne-tuning

service provided by these closed-source LLMs often violates

data users’ privacy requirements. Therefore, a federated learn-

ing framework that conducts collaborative �ne-tuning with the

assumption of no access to the full model of LLMs at the client

side is more desirable.

• Computation and communication costs: Existing federated

learning framework could also su�er from the computation and

communication challenges when conducting collaborative �ne-

tuning on LLMs. The �ne-tuning process for LLMs entails sub-

stantial computational demands and communication costs due

to the vast number of trainable model parameters. Clients with

limited computational power may struggle to perform complex

model updates, leading to prolonged training times or potential

disruptions. The transfer of expensive models between the server

and the clients also incurs substantial communication costs, lead-

ing to substantial bandwidth consumption and increased com-

munication latency. At the server side, there could be network

congestion when clients send back their updated huge amount

of parameters concurrently.

In this paper, we aim to tackle these two challenges and propose

to design an e�ective and practical collaborative LLM �ne-tuning

framework. To address the �rst challenge, We follow the setting

proposed in o�site-tuning [43] and its federated version FedOT [13].

We assume that the LLM owner does not collect data directly from

clients but serves as the server in FL, who can use a public dataset

to distill her LLM and aggregate some local updates on part of the

model from clients; multiple clients want to collaborate on �ne-

tuning for similar downstream tasks. Di�erent from the classic FL

setting [18, 35, 47], we do not assume the data distribution on clients

or the public data owned by the server to be the same. Our goal,

in general, is to provide a framework for collaborative clients to

�ne-tune without access to full LLM or sharing local data directly.

More importantly, the �ne-tuned model can still achieve better

performance than �ne-tuning LLM locally with their local data

exclusively.

Although FedOT [13] was developed for this objective, it could

incur signi�cant computational and communication costs, thereby

su�ering from the second challenge. In light of this challenge, we

propose to integrate various parameter-e�cient �ne-tuning (PEFT)

techniques into the proposed FL framework. Speci�cally, the server

employs linear dropout to compress the LLM, integrates LoRA

[11] to reduce the trainable parameters, and divides it into two

components: an emulator and an adapter. The emulator retains a

consistent representation of the raw model on the server’s dataset,

while the adapter assimilates domain-speci�c linguistic patterns

from the clients’ local datasets. Considering the signi�cant distri-

bution shift between the clients’ datasets and the server’s dataset,

we separate the �ne-tuning of these two components into two pro-

cesses during FL training, i.e., the clients perform multiple local

updates to �ne-tune the adapter, and the server distill the emulator

from the original LLMwhile aggregating the updated adapters from

the clients. To this end, a bi-level optimization is formulated.

This design, named FederatedBi-levelO�siteTuning (FedBiOT),

o�ers twofold advantages from the clients’ perspectives. Firstly,

instead of loading the complete model, clients load a compressed

version with fewer layers, considerably reducing computation costs.

Secondly, clients exclusively �ne-tune the adapter, a�ecting only

the last few layers of the LLM and thereby minimizing computation

and communication expenses.

Contributions. Throughout the paper, our contributions are

highlighted as follows:

• We propose an algorithm FedBiOT that avoids full model �ne-

tuning and signi�cantly reduces the communication and compu-

tation overhead. To the best of our knowledge, this is the �rst

work that addresses both the aforementioned two challenges in

the federated LLM �ne-tuning framework. With our proposed

framework, clients’ data are ensured to be kept locally and com-

putation and communication burden is signi�cantly reduced.

• We formulate a bi-level optimization problem that enables the

LLM �ne-tuning without access to the full model. By partitioning

the compressed model into the adapter and the emulator, the

emulator acts as a simulator of the original raw model, while the

adapter adeptly learns domain-speci�c linguistic patterns with

clients’ local datasets. To this end, we realize that �ne-tuning

the compressed model is equivalent to the re�nement of the

counterpart of the complete LLM.

• We conduct extensive experiments on LLaMA-2 for �ne-tuning

with three tasks, i.e., code generating, math problem solving,

and question answering. The empirical studies also demonstrate

that the proposed approach has signi�cant improvement over all

these tasks compared with the baseline approaches in terms of

computation and communication overheads and �nal accuracy.

2 Preliminary

2.1 Traditional FL Formulation

Consider there is an FL system with a total of ĉ clients, denoted

by [ĉ]. Each clientģ ∈ [ĉ] holds a local dataset Dģ . A client’s

FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model KDD ’24, August 25–29, 2024, Barcelona, Spain

local loss is de�ned as

Ăģ (w) :=
1

|Dģ |

∑

(x,~) ∈Dģ

Ĝ (M(x ;w);~) , (1)

whereM(x ;w) is the output on a given model parameterized byw

and an input x . The loss function Ĝ is de�ned on the model output

and the ground truth ~. In this dataset, we assume that the ground

truth ~ is part of the input x , where a sequence of tokens in the

input is used to predict the next token, and the ground truth is

used to identify the part needing to be predicted by the model.

Such a dataset is commonly adopted in previous works to �ne-tune

an LLM [25, 40]. Then, based on the de�nition, a conventional FL

system aims to �nd an optimal model across all clients, which is

formulated as

min
w∈RĚ

Ă (w) =
∑

ģ∈[ĉ]

ĦģĂģ (w), (2)

where Ħģ = |Dģ |/|D| for allģ ∈ [ĉ], whereD represents the en-

tire training dataset, i.e.,D = ∪ģ∈[ĉ]Dģ . Generally, this problem

can be optimized by di�erent FL algorithms [12, 15, 38] repeating

the following paradigm until convergence:

• Step 1: At the beginning of each round Ī , the server broadcasts

the trainable model parametersw (Ī) ;

• Step 2: After receiving the model w (Ī) , each client ģ ∈ [ĉ]

performs multi-step local updates onw (Ī) to obtainw
(Ī)
ģ ;

• Step 3: The server collects the locally updated model parameters

w
(Ī)
ģ from clients and aggregates them into a single global model

w
(Ī+1) for next round.

Applying PEFT to federated LLM �ne-tuning. The existing

FL algorithms [1, 9, 36, 37, 42] are confronted with computation

and communication bottlenecks when �ne-tuning an LLM. To miti-

gate the limitations, researchers have extended existing parameter-

e�cient �ne-tuning (PEFT) approaches to FL, named FedPEFT

[30, 45, 49]. These methods minimize the number of trainable pa-

rameters by introducing a PEFT module and keeping the original

LLM parameters unchanged. By focusing local updates exclusively

on the PEFT module rather than the entire model, these methods

e�ectively reduce computational load and support larger batch sizes

on a single GPU. Additionally, the FL server merely aggregates the

updated parameters of a given model, thus obviating the need to

transmit unchanged parameters and minimizing communication

overheads.

Nevertheless, FedPEFT is still confronted with the intrinsic chal-

lenge wherein clients face obstacles in loading an LLM due to its

substantial computation prerequisites. For instance, the loading of

a full-precision LLaMA-2-7B necessitates a memory capacity of no

less than 28 GB.

2.2 Related Work

The era of LLM poses the necessity of model privacy protection,

where the details of LLM cannot be visible to the clients. To this

end, Xiao et al. [43] proposes a method named O�site-tuning un-

der the scenario where there is a server (a.k.a. LLM owner) and a

client, while Kuang et al. [13] extends this work to an FL version

and names it as FedOT. They achieve model privacy protection by

compressing the model, where only some layers are visible to the

clients. However, these works require the preservation of a large

number of layers to guarantee the performance, hindering the ef-

fectiveness of model privacy protection. In contrast, our work only

discloses a few model parameters of the original LLM to the clients,

i.e., the clients only know the adapter parameters that come from

the original LLM, while the emulator parameters have been updated

and di�erent from the original LLM. Besides, neither o�site-tuning

[43] nor FedOT [13] consider the di�erence between alignment

data on the server and the �ne-tuning data on clients. In contrast,

the bi-level optimization problem proposed in our work naturally

considers this factor and we design updating rules based on it.

Black-box is also a practical way to protect model privacy, where

the clients access the LLM via an API, and they cannot �ne-tune

the LLM. Therefore, the optimization solely relies on prompt-based

learning [14, 16, 20, 28]. In the context of FL, there are two typ-

ical works, namely, Fed-BBPT [19] and FedBPT [29]. These two

works guarantee the model privacy in FL, but they should trans-

mit the prompt together with the input to the LLM owner, leading

to concerns about data privacy when the input contains sensitive

information, violating the requirement of FL. In contrast, the pro-

posed FedBiOT will not lead to this concern because its training is

fully on the clients such that the data are never shared with others.

3 FedBiOT

Given that some clients may be unable to load a complete LLM, this

section introduces an algorithm designed to enable these clients to

�ne-tune the LLM without requiring access to its full version. In

other words, our goal is to re�ne the part of a compressed model

that should yield performance comparable to �ne-tuning its coun-

terpart within a full model. To accomplish this, the server initially

compresses the LLM and divides it into two distinct components,

each serving speci�c functions. The �rst component, termed an em-

ulator, is tasked with replicating the behavior of the uncompressed

LLM. The second component, referred to as an adapter, focuses on

adeptly acquiring domain-speci�c linguistic patterns from clients.

Upon reintegrating the adapter into the uncompressed emulator,

its performance should demonstrate signi�cant improvement com-

pared to the original LLM.

However, direct �ne-tuning of the adapter on its models presents

two signi�cant limitations. Firstly, given that a single layer of a

large language model (LLM) comprises millions of parameters, such

as the decoder layer of LLaMA-2 with 202 million parameters, the

adapter’s parameter count is immense. This necessitates clients

to possess powerful computational equipment to handle the �ne-

tuning of the layer. Additionally, transmitting the layer updates to

the server poses another bottleneck, particularly in scenarios with

unreliable network connections or limited bandwidth, hindering

the smooth transmission of updates to the server.

To address these constraints, we integrate LoRA [11], a PEFT

module, into our proposed method. LoRA signi�cantly reduces the

number of tunable parameters, with a LoRA module for LLaMA-

2 comprising 0.13 million trainable parameters, which is merely

0.06% of the original layer’s size. Consequently, the communication

cost experiences a remarkable reduction of 99.94% compared to

transmitting a full layer.

KDD ’24, August 25–29, 2024, Barcelona, Spain Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao

Organization. In the subsequent sections, we will delve into

the concrete details of the algorithm design. Speci�cally, Section 3.1

illustrates how the compressed model is prepared. Following that,

Section 3.2 discusses the problem formulation for the aforemen-

tioned objectives. On top of this, Section 3.3 and Section 3.4 outline

the detailed steps of the proposed algorithm, namely local updates

and server aggregation, showcasing the seamless integration of

LoRA modules. Full implementation of the pseudocode is given in

Algorithm 2.

3.1 Compressed Model Preparation: Linear
Dropout

Suppose a pre-trained LLM has a total of Ĥ layers of transformers.

In the work, a repeatedly used operation is layer extraction, which

extracts some layers out of the total Ĥ layers of transformers to form

a submodel. We denoted this by a function LayerExtract(M, Ĉ),

which means extracting the layers with indices in Ĉ ¦ [Ĥ] from the

modelM. The function consists of the following three steps, and

its pseudocode implementation of the �rst two steps is presented

in Algorithm 1.

Step 1: Identify the adapters in the originalmodel. We choose

the bottom few layers1 of the original LLM as the adapter. To be

more speci�c, suppose the size of the adapter is ė, and denote the

adapter as A. Therefore, A ← LayerExtract(M, ĈA) with the

layer indices ĈA = {Ĥ − ė + 1, . . . , Ĥ}. We denotewA as the param-

eters of A. ThewA are also the trainable parameters that can be

�ne-tuned by clients. The remaining part of the model is demoted

as E∗ =M \A.

The choice of adapters brings two advantages. First, regarding

the computation constraints of the clients, this proposed adapter is

computation-e�cient because it only needs to store the activations

of transformers in the last few layers, leading to a lower memory

cost. Second, as the adapter focuses more on domain-speci�c fea-

tures, it is eco-friendly to spend the e�ort �ne-tuning the last few

layers. The conclusion is drawn from a well-known �nding [46]

in neural networks that the �rst few layers tend to learn general

features while the last layers encode speci�c ones.

Step 2: Layer dropout to form emulator. Inspired by the ex-

perimental results presented by Xiao et al. [43], we form an emu-

lator by means of a uniform layer dropout [26] from the remain-

ing part E∗. Therefore, the emulator is a sub-model obtained as

E ← LayerExtract(E∗, ĈE). Denote there are ĤE∗ layers trans-

former in E∗. The dropout rate of the emulator is denoted as

ÿ =

|ĈE |
ĤE∗

. For convenience, we call E as emulator and E∗ as non-

compressed emulator. LetwE andwE∗ be the parameters of E and

E∗, respectively.

After training, we can attain two combined models, namely,

Adaptor + Emulator (AdapEmu, i.e., E ◦ A), and Adaptor + Full

(AdapFu, i.e., E∗◦A). As Xiao et al. [43] describes, AdapFu performs

better than AdapEmu. These two models have di�erent function-

alities in real-world scenarios: AdapEmu is adopted if the input

contains sensitive information that cannot be shared with the LLM

owner, e.g., drafting a petition letter, while AdapFu is adopted when

1The bottom/last layers refer to the transformer decoders near the output, while the
top/�rst layers refer to the part close to the input.

Algorithm 1 LayerExtract

Input: pre-trained LLMM (layer index starts from 0), adapter size

ĩ , dropout rate ÿ .

1: Get the size of model: Ĥ ← |M|

2: Compute the number of layers in the compressed model, i.e.,

Ĥ′ ← +ÿ (Ĥ − ĩ),

3: Initialize non-compressed emulator E∗ ← {M0, . . .MĤ−ĩ−1},

adapter A ← {MĤ−ĩ , . . . ,MĤ−1}

4: Initialize emulator E ← {}

5: Compute ĩĪĨğĚě ← (Ĥ − ĩ − 1)/(Ĥ′ − 1)

6: for Ġ = 0, . . . , Ĥ′ − 1 do

7: AppendM+ Ġ×ĩĪĨğĚě , to emulator, i.e.,

E ← E ∪ {M+ Ġ×ĩĪĨğĚě , }

8: end for

9: returnwA ,wE ,wE∗

the users aim to have better generation results, e.g., solving a math

problem.

Step 3: Pre-alignment. Before the FL training stage, we pre-

align the emulator with the non-compressed one such that it can

mimic the performance of the raw model. Assume there is a public

dataset DĦīĘĢğę available on the server, which consists of a bunch

of data (x,~), representing the input and the ground truth, respec-

tively. Therefore, in the rest of the section, we assume the input x

contains an attention mask that can identify the ground truth.

Instead of training the compressed model with the ground truth,

we utilize knowledge distillation [10] to transfer the general linguis-

tic patterns from the original LLM to the compressed one by tuning

the emulator E. In speci�c, we ensure the emulator generates rep-

resentations that have subtle di�erences from the non-compressed

emulator with the given input on the ground truth part. To this

end, we aim to minimize the following ℓ2-norm:

LĨěĦĨ =

E (x ;wE) − E
∗ (x ;wE∗)

2
2

(3)

Additionally, we ensure the compressed model has consistent �nal

outputs of the original LLM on the ground truth by minimizing the

following KL divergence:

LġĚ = ĀćĈ (M(x ; {wA ,wE∗ })∥M(x ; {wA ,wE })) (4)

In a nutshell, we optimize the emulator E by �nding the optimal

parameters for the following equation on the public dataset

min
wE

1

|DĦīĘĢğę |

∑

x∈DĦīĘĢğę

LĨěĦĨ + ąLġĚ (5)

Let the optimal emulator E for Equation (5) be EğĤğĪ with the

parameter ofwEğĤğĪ . Denote the selected adapterA with the param-

eter ofwAğĤğĪ
. To this end, we distribute a compressed model to the

clients with the initial parameters of {wAğĤğĪ
,wEğĤğĪ }. To reduce

the computation and communication costs, we incorporate LoRA

[11] for the adapter A and the emulator E, denoted as AĢĥĨė and

EĢĥĨė , respectively.

Before diving into the details of the proposed FedBiOT, we brie�y

go through the work�ow as described in Figure 1. The �gure visu-

ally presents the work�ow of the federated learning process of our

FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model KDD ’24, August 25–29, 2024, Barcelona, Spain

Server

B
ro

ad
cast

A
v

erag
e

C
o
m

p
re

ss

Emulator

Adapter

Client Client

Upload

Server LoRA Params

Client LoRA Params

������

������������������
LLM

Figure 1: The Work�ow of FedBiOT during the FL training

proposed FedBiOT, including the local updates on clients (Section

3.3) and the aggregation on the server (Section 3.4). At the beginning

of clients’ �ne-tuning, the server broadcasts the adapterAĢĥĨė and

the emulator EĢĥĨė to the clients. Subsequently, the clients perform

multiple local updates to �ne-tune the adapter AĢĥĨė with their

local datasets. After the local updates, the client uploads the adapter

AĢĥĨė to the server, and the server thereby aggregates the adapters.

To ensure that the emulator is still able to reproduce the behavior

of the uncompressed LLM, the server �ne-tunes the emulator EĢĥĨė
with the public dataset. Finally, the server distributes the updated

parameters to the clients and launches a new round of training.

3.2 Formulation of Bi-level Optimization

As discussed in Section 3.1, we compress and divide the LLM into

two parts, namely, an adapter and an emulator. These two compo-

nents are designated to satisfy the following objectives:

• Emulator should be tuned towards perfectly imitating the non-

compressed part in the full model, especially in extracting and

encoding information on the server’s datasets.

• Adapter should be able to digest the output of the emulator e�-

ciently and should be encoded with the knowledge from clients’

datasets e�ectively.

De�ne wA = {wAğĤğĪ
,wAĢĥĨė

}, wE = {wEğĤğĪ ,wEĢĥĨė } to inte-

grate the LoRA parameters while the initial parameters for the

adapter and the emulator remain unchanged during the training.

Toward the goal, we formulate the objectives as a bi-level optimiza-

tion problem:

min
wAĢĥĨė

∑

ģ∈[ĉ]

ĦģĂģ ({wA ,wE }) +
Ċ

2

ŵAĢĥĨė
− ŵ
(Ī)
AĢĥĨė

2

2

(6)

ĩ .Ī . wEĢĥĨė ∈ arg min
wEĢĥĨė

1

|DĦīĘĢğę |

∑

x∈DĦīĘĢğę

L(x),

L(x)
△
=

E (x ;wE) − E
∗ (x ;wE∗)

2
2

+ ą · ĀćĈ (M(x ; {wA ,wE∗ })∥M(x ; {wA ,wE }))

(7)

wherew
(Ī)
AĢĥĨė

is the adapter LoRA received at the beginning of each

communication round, ŵAĢĥĨė
reconstructs for the same size of the

adapter wA . DĦīĘĢğę represents the public dataset on the server,

which can be unlabeled. ĀćĈ (·∥·) is the KL divergence between

two logits. Ċ and ą are hyperparameters.

The upper-level objective (Equation (6)). The upper-level ob-

jective function consists of two terms. The �rst term represents the

loss of the model on local clients’ data, with the current emulator

and adapter. It follows a classic weighted average loss in FL to bal-

ance the loss of di�erent clients’ heterogeneous local data. The goal

of introducing this term is straightforward: by minimizing the loss

of the �rst term, we expect the emulator-adapter combination to

be improved on the local training set. The second term is a regu-

larization of the adapter component to ensure it will be within a

reasonable distance from the synchronized and broadcast adapter

at the beginning of each communication round. Enforcing a restric-

tion on the adapter’s change can reduce the di�erence of losses for

the emulator distillation after locally adapter are tuned locally on

clients, so it can help the convergence of emulator distillation.

The lower-level objective (Equation (7)). The �rst term in the

constraint is the ℓ2-norm di�erence between the activation output

by the emulator and the full model. The second term is the KL

divergence between the output of output distribution of the full

model-adapter combination and the emulator-adapter. Although

only the emulator is trainable to minimize the loss of these two

terms, these two terms provide di�erent optimization meaning for

the emulator. The �rst term encourages the emulator to provide

activations as close as possible to the full model, excluding the

e�ect of the adapter. The second term ensures the emulator can

provide output distributions close to the one when the full model

with adapters is added on.

Discussion. The introduced algorithm can optimize the bi-level

problems (i.e., Equation (6) and (7)) to an equilibrium point for

both adapter and emulator. This is because when we optimize the

adapter, the �xed emulator constrains its updates, and vice versa,

KDD ’24, August 25–29, 2024, Barcelona, Spain Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao

Algorithm 2 FedBiOT

Input: learning rate ā, local updates ć , global model alignment

steps ā, strength of full model alignment ą, local update

regularization Ċ , total communication rounds Ď, pre-trained LLM

M with parameterw , adapter size ĩ , dropout rate ÿ , number of

clientsĉ .

1: wA ,wE ,wE∗ ← LayerExtract(M, ĩ, ÿ) ² See Algo. 1 for details

2: for Ī = 0, . . . , Ď − 1 do

3: for ě = 0, . . . , ā − 1 do

4: Randomly sample (x,~) from the public datasetDĦīĘĢğę
5: OptimizewEĢĥĨė with respect to Equation (7)

6: end for

7: Communicate {wAĢĥĨė
,wEĢĥĨė } with clientsģ ∈ [ĉ]

8: forģ ∈ [ĉ] in parallel do

9: Initializew
(Ī)
AĢĥĨė

,wAĢĥĨė,ģ , andwE using Equation (8)

10: for ġ = 0, . . . , ć − 1 do

11: Compute a gradient ĝ using Equation (9)

12: Update local modelwAĢĥĨė,ģ using Equation (10)

13: end for

14: CommunicatewAĢĥĨė,ģ with the server

15: end for

16: UpdatewAĢĥĨė
using Equation (11)

17: end for

18: return AdapEmu {wA ,wE }, AdapFu {wA ,wE∗ }

and thereby, the emulator and adapter are distilled or trained inter-

changeably. At this equilibrium, the emulator can more faithfully

extract and encode the information for the clients’ dataset and

bene�t from the training of the adapter in reverse.

Additionally, FedBiOT does not require the design of an emulator

to follow linear dropout. Instead, this is a general framework that

compresses an LLM and divides it into two components: an emulator

and an adapter. There are numerous designs for the emulator, but

they share the same objective where the emulator simulates the

non-compressed part of an LLM. For simplicity, we follow o�site-

tuning [43] and prepare the emulator by means of uniform layer

dropout [26] to demonstrate the e�ectiveness of FedBiOT.

3.3 Client Updates

During the local updates, the clients barely �ne-tune the parameters

of the adapter A while �xing the parameters of the emulator E.

By enabling LoRA, the LoRA of the adapter will get updated, and

therefore, the clients should upload the updatedwAĢĥĨė
to the server

after the local �ne-tuning ends.

Consider client ğ ∈ [ĉ] performs the local updates at Ī-th round.

Before optimizing the adapter locally, the client receives the updated

emulatorwEĢĥĨė and adapterwAĢĥĨė
from the client, and we denote

them by

w
(Ī)
AĢĥĨė

← wAĢĥĨė
, wAĢĥĨė,ģ ← wAĢĥĨė

, wE ← {wEğĤğĪ ,wEĢĥĨė }

(8)

Suppose the client performs the local update for ć times. In each

local update, we solely optimizewAĢĥĨė,ģ , a LoRA module of the

adapter. Therefore, based on Equation (6), the gradientw.r.t.wAĢĥĨė,ģ

should be

ĝ← ∇wAĢĥĨė,ģ
Ăģ ({wA ,wE }) + Ċ

(

ŵAĢĥĨė,ģ − ŵ
(Ī)
AĢĥĨė

)Đ
(

ĉŵAĢĥĨė,ģ

ĉwAĢĥĨė,ģ

)

(9)

wherewA = {wAğĤğĪ
,wAĢĥĨė,ģ} in the above formula. Let Optim()

be the optimizer (e.g., SGD and AdamW [21]) that updates the

model parameters, and ā be the learning rate. Therefore, in each

local update, the local model is updated for

wAĢĥĨė,ģ ← Optim(wAĢĥĨė,ģ, ĝ, ā) (10)

After �nishing the local update, the client ğ sendswAĢĥĨė,ģ to the

server.

3.4 Model Aggregation

During the server aggregation, the server performs the weighted

average to update the adaptersA and �ne-tune the emulator E. By

enabling the LoRA, only the parameterswAĢĥĨė
in the adapter and

wEĢĥĨė in the emulator are updated, while the rest (i.e.,wAğĤğĪ
and

wEğĤğĪ) remain unchanged.

First, the server collects a set of updated LoRAs of the adapter,

i.e.,
{

wAĢĥĨė,ģ

}

ģ∈[ĉ]
from the clients. Based on the de�nition of

Equation (6), the server performs weighted aggregation via

wAĢĥĨė
←

∑

ģ∈[ĉ]

ĦģwAĢĥĨė,ģ (11)

After the weighted averaging, the server distills the emulator

E from the non-compressed E∗ and the updated adapter A using

the public dataset. Therefore, we �ne-tune the emulator following

Equation (7), which updates the LoRA of the emulatorwEĢĥĨė .

4 Experiments

4.1 Experimental Setup

This section discusses the implementation of our experiments, cov-

ering details such as the model utilized and evaluation metrics. The

code is now available at https://github.com/HarliWu/FedBiOT.

Model and computation environment. The experiments uti-

lize LLaMA-2-7B, an open-source pre-trained LLM maintained by

Meta and released in July 2023 [34]. Preceding this, the model’s

�rst generation was introduced in February 2023 [33]. This model

supports a maximum of 4096 input tokens and consists of 32 hidden

layers with a total of 6.7 billion parameters. The experimental setup

involves machines equipped with Nvidia A100 GPU cards, Intel

Xeon Platinum 8369B CPUs, and a 512GB RAM con�guration.

Datasets and Tasks. In the experiments, we use the benchmark

datasets and tasks in [13] to train and evaluate the LLM on three dif-

ferent NLP tasks, covering math problem-solving, code generation,

and question-answering:

• Formathproblem-solving, we split the GSM-8K training dataset

[5] ensuring i.i.d. across three clients, and we assess the updated

model using the GSM-8K test dataset.

• For code generation, we �ne-tune the model with the Rosetta

dataset [3], which is partitioned across the programming lan-

guages, and a total of nine clients separately hold the data from

nine di�erent programming languages. Regarding its evaluation,

we utilize HumanEvalX [50], an extension of a coding evaluation

FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model KDD ’24, August 25–29, 2024, Barcelona, Spain

Table 1: Dataset details for LLM training and evaluation

Task
Training

Dataset

training

samples
clients Partition Rules Max. Min. Std.

Test

Dataset

test

samples

Math Problem Solving GSM-8K 7473 3 i.i.d. 2491 2491 0 GSM-8K 1319

Code Generation Rosetta 7954 9 Prog. Lang. 1172 439 236.94 HumanEvalX 656

Question Answering Dolly 15015 8 Category 3611 711 795.06 Helm NA

Public Dataset Alpaca 52002 ——————————————————————————————

dataset [4] that requires the model to �ll in the code for a given

problem in the required programming language (i.e., C++, GO,

Java, Python).

• For question answering, the model is trained on dolly-15K [6],

which is partitioned into 8 clients based on the categories of the

questions, and we evaluate the newmodel with the selected tasks

on HELM [17].

Table 1 gives a detailed description of these three tasks. As Section

3 mentions, the server will perform the emulator alignment during

the model aggregation. Then, we use the Alpaca dataset [31] as the

public dataset for the server to do the emulator alignment for all

three NLP tasks.

Implementation. This work is built upon an open-source fed-

erated learning platform named FederatedScope [44]. The training

data are reformatted following the predesigned instructions [3, 48].

Di�erent from [13, 43], we regard the last two and the last four

decoders as the adapter. The experiments consider two dropout

rates, i.e., ÿ ∈ {0.2, 0.5}, and we obtain the emulators with layer

dropout following Xiao et al. [43]. Without special annotation, we

use the following local training setting: in each communication

round, each client performs 30 local updates, and the batch size

of every local update is 10. Before launching the FL training, we

�ne-tune the emulator for 500 iterations to generate a distilled

emulator E towards minimizing the loss of Equation (7). During

the FL training, the server takes 10 iterations to align the emulator

E with E∗ between two successive communication rounds after

aggregating local adapters with FedAvg [15]. These experiments

run for 500 communication rounds, and we report the results based

on the �ne-tuned LLM obtained at the 500th round. During the

training, we only �ne-tune the adapter in the clients’ local update

procedures, and we update the emulator on the server side. In

other words, other parts of the pre-trained model, such as word

embeddings, are frozen during the training.

LoRA, Optimizers and Hyperparameters. We add the LoRA

to all decoder layers in the adapter and the emulator by setting

the rank to 8 and the alpha to 16. We use AdamW as an optimizer

to solve Equation (6) and (7) on the clients (for the adapters) and

the server (for the emulators), respectively. We search for the best

learning rate in {1 × 10−5, 3 × 10−5, 5 × 10−5, 8 × 10−5, 1 × 10−4}.

We set the momentum for (0.9, 0.95). As for other hyperparameters

related to the optimizer, we use the default setting. Furthermore, we

also conduct grid search for FedBiOT-speci�c hyperparameters, i.e.,

Ċ and ą. Throughout the experiments, we demonstrate the result of

the best hyperparameter combination. To avoid randomness, we

utilize three di�erent random seeds and report the averaged results.

Table 2: Test accuracy on math problem-solving task under

di�erent dropout rates

Dropout

Rate (ÿ)
Methods AdapEmu AdapFu

ÿ = 0.0 Few-shot CoT NA 13.42% (177/1319)

ÿ = 0.2

O�site-tuning 3.03% (40/1319) 9.93% (131/1319)

FedOT 2.43% (32/1319) 10.16% (134/1319)

FedBiOT (Adapter 2) 3.71% (49/1319) 15.16% (200/1319)

FedBiOT (Adapter 4) 3.41% (45/1319) 15.23% (201/1319)

ÿ = 0.5

O�site-tuning 2.27% (30/1319) 7.58% (100/1319)

FedOT 1.90% (25/1319) 7.51% (99/1319)

FedBiOT (Adapter 2) 2.05% (27/1319) 11.83% (156/1319)

FedBiOT (Adapter 4) 1.82% (24/1319) 14.03% (185/1319)

Baselines. O�site-tuning is the only method that satis�es the

constraints that �ne-tuning without access to full model. Xiao et al.

[43] introduces a single-client o�site-tuning, while Kuang et al. [13]

extends it to an FL version (i.e., FedOT). We apply o�site-tuning

with one single client, where all data are loaded to the client. As

FedOT supports FL, we reproduce the algorithm to work on the

FL tasks. In terms of the setting of the adapters and the emulators,

both O�site-tuning and FedOT treat the �rst two and the last two

decoders as the adapter. To enable the parameter-e�cient �ne-

tuning for both baselines, we add LoRA to both baselines, the same

as the setting adopted by FedBiOT.

Evaluation Metric. In the experiments, we report the results

on two models, i.e., AdapEmu and AdapFu, as de�ned in Section

3.1. The evaluation metrics for each task follow Kuang et al. [13],

and the detailed description is given in Appendix A.

4.2 Quantitative Evaluation on i.i.d. Data

We demonstrate the experimental results of GSM-8K provided in

Table 2 and highlight the worth-noted phenomenon when the data

are i.i.d. across the clients.

A notable phenomenon observed in the table is that AdapEmu

signi�cantly falls behind AdapFu, particularly at a low dropout

rate (i.e., ÿ = 0.2). To explain this, we examine the accuracy of the

LLaMA-2 model with a dropout rate of 0.2, which is 2.12% without

�ne-tuning and increases to 2.43% after �ne-tuning the emulator

with a public dataset. The performance gap between AdapEmu and

AdapFu can be attributed to layer dropout, which reduces the size

of the LLM and subsequently impacts its performance. Additionally,

this result highlights the di�culty of accurately reproducing the

non-compressed parts with the emulator. Fortunately, all methods

KDD ’24, August 25–29, 2024, Barcelona, Spain Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao

Table 3: Pass@1 (%) and Pass@10 (%) in code generation task at various rounds when dropout rate is 0.2

Method Model
C++ GO Java Python

Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10

O�site-tuning
AdapEmu 3.99 6.45 1.80 2.44 5.64 6.09 5.01 6.38

AdapFu 8.78 10.82 4.94 6.63 9.57 12.81 13.19 17.32

FedOT
AdapEmu 2.50 4.89 1.86 3.05 5.00 5.49 4.91 6.83

AdapFu 8.60 11.36 5.95 7.11 6.30 9.42 12.23 13.58

FedBiOT

(Adapter 2)

AdapEmu 4.82 6.43 3.57 4.85 5.92 6.36 4.97 6.95

AdapFu 9.76 14.18 9.97 13.29 12.93 16.28 14.91 19.77

FedBiOT

(Adapter 4)

AdapEmu 3.20 4.57 2.20 2.44 4.91 5.73 5.43 6.10

AdapFu 9.12 13.41 8.02 11.08 11.28 13.10 14.57 18.41

Table 4: Pass@1 (%) and Pass@10 (%) in code generation task at various rounds when dropout rate is 0.5. We do not show

AdapEmu’s performance because it struggles to generate meaningful codes, accounting for its small size.

Method Model
C++ GO Java Python

Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10 Pass@1 Pass@10

O�site-tuning AdapFu 5.30 7.26 3.32 7.55 4.61 5.33 8.75 10.26

FedOT AdapFu 4.92 7.33 5.00 8.33 3.86 4.37 7.33 8.91

FedBiOT (Adapter 2) AdapFu 7.71 11.84 7.68 10.01 9.51 14.34 13.29 16.87

FedBiOT (Adapter 4) AdapFu 5.03 11.09 6.25 8.47 7.41 13.32 13.54 16.74

improve AdapEmu’s performance compared to the version without

�ne-tuning.

When we take a look at the proposed FedBiOT at di�erent

adapters’ sizes, we notice that FedBiOTwith adapter 4 achieves bet-

ter performance than that with adapter 2 under the AdapFu setting.

As we know, a larger adapter has more trainable parameters, and

therefore, it can easily absorb the knowledge from the downstream

tasks. Note that the performances of these two adapter settings

have subtle di�erences under AdapEmu, meaning that their emula-

tor achieves very similar e�ects to the non-compressed emulator.

When we plug the adaptor back into the non-compressed emulator,

the adapter with more trainable parameters obviously can achieve

a better performance.

When comparing our proposed model with the baselines, we can

notice a signi�cant dominance in performance, especially in the

AdapFu setting. More speci�cally, when the dropout rate becomes

larger, the performance of AdapFu with FedBiOT decreases more

mildly in contrast to other baselines. This is thanks to two factors:

1) the regularization term ensures the adapters will not change

dramatically; 2) the on-the-�y distillation of the emulator with

mixed losses can work better with clients’ data. Although the other

two baselines use a public dataset to achieve similar functionality,

the deterioration may still occur due to the data domain shift and

the signi�cant information loss.

4.3 Quantitative Evaluation on non-i.i.d. Data

According to Table 1, code generation and question answering

are two tasks split in non-i.i.d. styles. In this section, we evaluate

our proposed FedBiOT when it trains an LLM with a non-i.i.d.

dataset. It is worth noting that the evaluation task could be either

in-distribution or out-of-distribution to the training dataset.

Code generation. Table 3 and 4 illustrate the best results in dif-

ferent programming languages based on di�erent hyperparameter

settings. Let us take a look at the results of the FedBiOT at di�er-

ent adapter sizes. Apparently, FedBiOT with two layers of adapter

constantly outperforms FedBiOT with four under both AdapEmu

and AdapFu. This conclusion is di�erent from the one when an

LLM is trained with an i.i.d. dataset. The discrepancy can be attrib-

uted to the clients’ objectives: under i.i.d. datasets, a larger adapter

size bene�ts training by absorbing downstream linguistic patterns

uniformly. Conversely, with non-i.i.d. datasets, clients are biased

towards their local optima, where the emulator’s e�ect becomes

crucial.

When comparing our proposed algorithm with the baselines,

we notice a distinct dominance in AdapFu across all programming

languages. In particular, when the dropout rate is 0.5, we can achieve

up to 6% improvement over other baselines in terms of Pass@1,

and up to 10% improvement of Pass@10. Notably, the most distinct

dominance can be witnessed under the “column” of Java in Table 4.

Question Answering. Figure 2 shows the evaluation results us-

ing the HELM benchmark while we train the LLM with Dolly-15K.

Generally speaking, FedBiOT (Adapter 2) performs signi�cantly

better than Adapter 4 in some tasks in terms of AdapEmu. As both

AdapEmu have the same number of layers, this result exhibits the

importance of the emulator, i.e., the model with a larger emula-

tor can achieve leading performance. To some extent, this result

supports our previous conclusion that an emulator plays a more

important role than an adapter in a non-i.i.d. task. As for AdapFu,

the performance di�erence is trivial between the two adapter sizes.

The proposed algorithm outperforms o�site-tuning and FedOT

inmost datasets, which is consistent with the �ndings in other train-

ing tasks. The dominance of AdapFu becomes more pronounced as

FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model KDD ’24, August 25–29, 2024, Barcelona, Spain

MMLU BoolQNar.
QA

Nat.Q
(closed)

Nat.Q
(open)

QuAC Hella
Swag

O.B.
QA

Avg0
10
20
30
40
50
60
70
80

To
p-

1
Pr

ec
isi

on
 (%

)

(a) AdapEmu (Dropout rate 0.2)

MMLU BoolQNar.
QA

Nat.Q
(closed)

Nat.Q
(open)

QuAC Hella
Swag

O.B.
QA

Avg0
10
20
30
40
50
60
70
80

To
p-

1
Pr

ec
isi

on
 (%

)

(b) AdapFu (Dropout rate 0.2)

MMLU BoolQNar.
QA

Nat.Q
(closed)

Nat.Q
(open)

QuAC Hella
Swag

O.B.
QA

Avg0
10
20
30
40
50
60
70
80

To
p-

1
Pr

ec
isi

on
 (%

)

(c) AdapFu (Dropout rate 0.5)

Figure 2: Test accuracy in eight types of question-answering tasks (Left to right: Natural Questions (closed-book), QuAC, MMLU,

OpenbookQA, NarrativeQA, Natural Questions (open-book), HellaSwag, BoolQ) and the average accuracy under di�erent

baselines (bars from left to right: O�site-tuning, FedOT, FedBiOT (Adapter 2), FedBiOT (Adapter 4)) and di�erent dropout rates.

the dropout rate increases from 0.2 to 0.5. For instance, FedBiOT is

approximately 10% better than the baselines at a 0.5 dropout rate in

Natural Questions (closed-book), compared to a 2% improvement at

a 0.2 dropout rate. Notably, comparing Figure 2b and 2c, we notice

that FedBiOT is mildly a�ected by changes in the dropout rate,

while the baselines su�er signi�cant degradation as the dropout

rate increases. This stability can be attributed to round-by-round

emulator alignment, where the non-compressed part of the full

model is set as an anchor, regardless of the dropout rate. Conse-

quently, this approach stabilizes the adapter training process, en-

suring that adapters of the same size achieve similar performance

across varying dropout rates.

4.4 Discussion on Computation and
Communication Overhead

Table 5 presents the computation and communication overhead

of di�erent methods under di�erent dropout rates. As mentioned

in the experimental setting, all algorithms have been applied with

LoRA, and therefore, the number of trainable parameters dramati-

cally reduces. From the clients’ perspectives, the number of train-

able parameters is determined by the number of decoder layers in

the adapter. Apparently, FedBiOT (Adapter 2) should be with the

minimum number of trainable parameters among other methods.

The computation costs in Table 5 are measured by per-token

�oating point operation (FLOP/token). As we can see, the proposed

FedBiOT costs less overhead than o�site-tuning and FedOT. The

di�erence arises on account of the position of the trainable parame-

ters. The adapter of the proposed FedBiOT is near the output layer.

As for o�site-tuning and FedOT, the adapters are located separately

at the top and the bottom two layers, thereby consuming more

computation costs in the backward propagation for transmitting

the derivative from the bottom to the top.

However, our proposed method may require more communica-

tion overhead than the baselines. This is because the server should

transmit the LoRA parameters of both the adapter and the emulator

to the clients in our proposed method, while in o�site-tuning and

FedOT, the server merely transmits the aggregated LoRA of the

adapter to the clients. However, the overall cost is trivial, compared

to the full LLM transmission at a cost of 28GB.

Table 5: Computation and communication costs of di�erent

methods under di�erent dropout rates at client side.

Dropout

Rate (ÿ)
Methods

#Layers in

Adapter

#Layers in

Emulator

Trainable

Param. (M)

Comp. Costs

(GFLOP/token)

Comm. Costs

(MB/round)

ÿ = 0.2

O�site-tuning

/FedOT
4 22 0.524 10.33 4.19

FedBiOT

(Adapter 2)
2 24 0.262 5.47 14.68

FedBiOT

(Adapter 4)
4 22 0.524 5.87 15.73

ÿ = 0.5

O�site-tuning

/FedOT
4 14 0.524 7.09 4.19

FedBiOT

(Adapter 2)
2 15 0.262 3.65 9.96

FedBiOT

(Adapter 4)
4 14 0.524 4.25 11.53

5 Conclusion

In this paper, we introduce FedBiOT, a federated learning algorithm

that avoids full model �ne-tuning while substantially reducing com-

putation overhead. Speci�cally, we compress the LLM and divide it

into two components, namely, an emulator and an adapter. By for-

mulating a bi-level optimization problem, our proposed FedBiOT

ensures that the emulator partially simulates the original LLM,

while the adapter focuses on learning domain-speci�c linguistic

patterns. Extensive experiments show the superiority of the pro-

posed FedBiOT working with LLaMA-2, where it can achieve sig-

ni�cant accuracy improvement than the existing baselines (i.e.,

O�site-tuning and FedOT) in all tasks (i.e., math problem-solving,

code generation, and question answering).

Acknowledgments

The authors would like to thank the anonymous reviewers for their

constructive comments. This work is supported in part by the US

National Science Foundation under grants NSF-IIS 1747614 and

NSF-IIS 2141037. Any opinions, �ndings, and conclusions or rec-

ommendations expressed in this material are those of the author(s)

and do not necessarily re�ect the views of the National Science

Foundation.

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul What-

mough, and Venkatesh Saligrama. 2020. Federated Learning Based on Dynamic

KDD ’24, August 25–29, 2024, Barcelona, Spain Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao

Regularization. In Proc. of International Conference on Learning Representations
(ICLR’20).

[2] CCPA. 2023. California Consumer Privacy Act (CCPA). https://oag.ca.gov/privacy/
ccpa

[3] Sahil Chaudhary. 2023. Code Alpaca: An Instruction-following LLaMA model
for code generation. https://github.com/sahil280114/codealpaca.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[5] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
et al. 2021. Training veri�ers to solve math word problems. arXiv preprint
arXiv:2110.14168 (2021).

[6] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam
Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin.
2023. Free Dolly: Introducing the World’s First Truly Open Instruction-
Tuned LLM. https://www.databricks.com/blog/2023/04/12/dolly-�rst-open-
commercially-viable-instruction-tuned-llm

[7] Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. 2023. Chatlaw: Open-
source legal large language model with integrated external knowledge bases.
arXiv preprint arXiv:2306.16092 (2023).

[8] GDPR. 2016. Regulation (EU) 2016/679 of the European Parliament and of the
Council. https://data.europa.eu/eli/reg/2016/679/oj

[9] Shiqi He, Qifan Yan, FeijieWu, LanjunWang, Mathias Lécuyer, and Ivan Beschast-
nikh. 2023. GlueFL: Reconciling Client Sampling and Model Masking for Band-
width E�cient Federated Learning. Proc. of Machine Learning and Systems
(MLSys’23).

[10] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[11] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, Weizhu Chen, et al. 2021. LoRA: Low-Rank Adaptation of Large Language
Models. In Proc. of International Conference on Learning Representations (ICLR’21).

[12] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Sca�old: Stochastic controlled
averaging for federated learning. In Proc. of International conference on machine
learning (ICML’20). 5132–5143.

[13] Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan,
Yuexiang Xie, Yaliang Li, Bolin Ding, and Jingren Zhou. 2024. FederatedScope-
LLM: A Comprehensive Package for Fine-tuning Large Language Models in
Federated Learning. In Proc. of the ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining (KDD’24).

[14] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale
for Parameter-E�cient Prompt Tuning. In Proc. of the Conference on Empirical
Methods in Natural Language Processing (EMNLP’21). 3045–3059.

[15] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang.
2019. On the Convergence of FedAvg on Non-IID Data. In Proc. of International
Conference on Learning Representations (ICLR’19).

[16] Xiang Lisa Li and Percy Liang. 2021. Pre�x-Tuning: Optimizing Continuous
Prompts for Generation. In Proc. of the Annual Meeting of the Association for Com-
putational Linguistics and the International Joint Conference on Natural Language
Processing (ACL/IJNLP’21). 4582–4597.

[17] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al.
2022. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110
(2022).

[18] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble
distillation for robust model fusion in federated learning. In Proc. of Advances in
Neural Information Processing Systems (NeurIPS’20). 2351–2363.

[19] Zihao Lin, Yan Sun, Yifan Shi, Xueqian Wang, Lifu Huang, Li Shen, and Dacheng
Tao. 2023. E�cient federated prompt tuning for black-box large pre-trained
models. arXiv preprint arXiv:2310.03123 (2023).

[20] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2023. GPT understands, too. AI Open (2023).

[21] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.
In Proc. of International Conference on Learning Representations (ICLR’18).

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-e�cient learning of deep net-
works from decentralized data. In Proc. of Arti�cial intelligence and statistics
(AISTAT’17). 1273–1282.

[23] John J Nay, David Karamardian, Sarah B Lawsky, Wenting Tao, Meghana Bhat,
Raghav Jain, Aaron Travis Lee, Jonathan H Choi, and Jungo Kasai. 2024. Large
language models as tax attorneys: a case study in legal capabilities emergence.
Philosophical Transactions of the Royal Society A 382, 2270 (2024), 20230159.

[24] OpenAI. 2023. Fine-tuning - OpenAI API. https://platform.openai.com/docs/
guides/�ne-tuning. Accessed: 2023-09-29.

[25] Long Ouyang, Je�rey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.

Training language models to follow instructions with human feedback. In Proc.
of Advances in Neural Information Processing Systems (NeurIPS’22). 27730–27744.

[26] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. 2023. On the
e�ect of dropping layers of pre-trained transformer models. Computer Speech &
Language 77 (2023), 101429.

[27] Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won
Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al.
2023. Large language models encode clinical knowledge. Nature 620, 7972 (2023),
172–180.

[28] Alessandro Sordoni, Xingdi Yuan, Marc-Alexandre Côté, Matheus Pereira, Adam
Trischler, Ziang Xiao, Arian Hosseini, Friederike Niedtner, and Nicolas Le Roux.
2023. Joint prompt optimization of stacked llms using variational inference. In
Proc. of Advances in Neural Information Processing Systems (NeurIPS’23).

[29] Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, and
Holger R Roth. 2023. FedBPT: E�cient Federated Black-box Prompt Tuning for
Large Language Models. arXiv preprint arXiv:2310.01467 (2023).

[30] Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. 2024. Improving LoRA in
Privacy-preserving Federated Learning. In Proc. of The International Conference
on Learning Representations (ICLR’24).

[31] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[32] Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura
Gutierrez, Ting Fang Tan, and Daniel Shu Wei Ting. 2023. Large language models
in medicine. Nature medicine 29, 8 (2023), 1930–1940.

[33] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and e�cient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and �ne-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[35] Haozhao Wang, Yichen Li, Wenchao Xu, Ruixuan Li, Yufeng Zhan, and Zhigang
Zeng. 2023. Dafkd: Domain-aware federated knowledge distillation. In Proc. of
the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR’23).
20412–20421.

[36] Haozhao Wang, Haoran Xu, Yichen Li, Yuan Xu, Ruixuan Li, and Tianwei Zhang.
2023. FedCDA: Federated Learning with Cross-rounds Divergence-aware Ag-
gregation. In Proc. of The International Conference on Learning Representations
(ICLR’23).

[37] Haoyu Wang, Handong Zhao, Yaqing Wang, Tong Yu, Jiuxiang Gu, and Jing
Gao. 2022. FedKC: Federated knowledge composition for multilingual natural
language understanding. In Proc. of the ACM Web Conference 2022 (WWW’22).
1839–1850.

[38] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor.
2020. Tackling the objective inconsistency problem in heterogeneous feder-
ated optimization. In Proc. of Advances in neural information processing systems
(NeurIPS’20). 7611–7623.

[39] Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, and Dinggang Shen. 2023.
Chatcad: Interactive computer-aided diagnosis on medical image using large
language models. arXiv preprint arXiv:2302.07257 (2023).

[40] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M Dai, and Quoc V Le. 2021. Finetuned Language
Models are Zero-Shot Learners. In Proc. of International Conference on Learning
Representations (ICLR’21).

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. In Proc. of Advances in Neural Information Processing
Systems (NeurIPS’22). 24824–24837.

[42] Feijie Wu, Song Guo, Zhihao Qu, Shiqi He, Ziming Liu, and Jing Gao. 2023.
Anchor sampling for federated learning with partial client participation. In Proc.
of International Conference on Machine Learning (ICML’23). 37379–37416.

[43] Guangxuan Xiao, Ji Lin, and Song Han. 2023. O�site-tuning: Transfer learning
without full model. arXiv preprint arXiv:2302.04870 (2023).

[44] Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui Kuang,
Yaliang Li, Bolin Ding, and Jingren Zhou. 2023. FederatedScope: A Flexible
Federated Learning Platform for Heterogeneity. In Proc. of the VLDB Endowment
(VLDB’23). 1059–1072.

[45] Liping Yi, Han Yu, Gang Wang, and Xiaoguang Liu. 2023. Fedlora: Model-
heterogeneous personalized federated learning with lora tuning. arXiv preprint
arXiv:2310.13283 (2023).

[46] Jason Yosinski, Je� Clune, Yoshua Bengio, andHod Lipson. 2014. How transferable
are features in deep neural networks?. In Proc. of Advances in neural information
processing systems (NeurIPS’14).

[47] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu.
2021. Parameterized knowledge transfer for personalized federated learning. In

FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model KDD ’24, August 25–29, 2024, Barcelona, Spain

Proc. of Advances in Neural Information Processing Systems (NeurIPS’21). 10092–
10104.

[48] Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong
Yu, Guoyin Wang, and Yiran Chen. 2024. Towards building the federatedGPT:
Federated instruction tuning. In Proc. of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’24). 6915–6919.

[49] Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and
Zenglin Xu. 2023. FedPETuning: When federated learning meets the parameter-
e�cient tuning methods of pre-trained language models. In Proc. of Annual
Meeting of the Association of Computational Linguistics (ACL’23). 9963–9977.

[50] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen,
Zihan Wang, Andi Wang, Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual benchmarking on humaneval-x. In Proc. of
the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’23).
5673–5684.

A Testing Dataset and Evaluation

As described in Table 1, we utilize three datasets to assess the �ne-

tuning performance. In this section, we brie�y introduce all these

datasets and provide the details about how they evaluate a given

LLM.

GSM-8K.. We use the GSM-8K test set [5] to evaluate the abil-

ity of a large language model (LLM) to solve math problems. This

dataset includes "questions" and "ground truth" answers. We as-

sess correctness by determining how often the LLM answers a

given question correctly. Following chain of thought (CoT) [41], we

prepare a set of sample questions (a.k.a. few-shot prompting) and

prompt the LLM to generate step-by-step solutions, ensuring the

answers are formatted correctly. Finally, we extract the answers

from these solutions and compare them with the ground truth to

calculate the correctness rate.

HumanevalX.. This is a task for code auto�ll, which consists of

164 test samples for �ve programming languages [50]. It is worth

noting that we use four of them (i.e., C++, GO, Java, and Python)

because there are no JavaScript codes in the training dataset. Each

test sample is constituted with “task id”, “prompt” (i.e., Task de-

scription with partial codes), “entry point” (i.e., the function to be

achieved), “canonical solution” (i.e., a sampled solution), and “test”

(i.e., evaluate if the generated code can obtain the correct answer

based on the given input). In this task, we use “prompt” as the

input and generate �ve versions of codes using a given model. We

compile the code and check if it can pass the given “test”. Let ę be

the number of correct codes generated by LLM and passed unit

tests, and therefore, Pass@k can be computed via

Pass@k = Eproblems

[

1 −

(

Ĥ−ę

ġ

)

(

Ĥ

ġ

)

]

HELM.. HELM [17] is a benchmark that contains a wide range

of NLP tasks. We upload the well-trained models to the benchmark

and evaluate them on question-answering tasks, which includes

eight datasets, i.e., MMLU, BoolQ, NarrativeQA, Natural Questions

(closed-book), Natural Questions (open-book), QuAC, HellaSwag,

OpenbookQA. For di�erent tasks, the results come from di�erent

metrics, i.e., exact match for HellaSwag, OpenbookQA, andMMLU ;

quasi-exact match for BoolQ; F1 for the rest.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Traditional FL Formulation
	2.2 Related Work

	3 FedBiOT
	3.1 Compressed Model Preparation: Linear Dropout
	3.2 Formulation of Bi-level Optimization
	3.3 Client Updates
	3.4 Model Aggregation

	4 Experiments
	4.1 Experimental Setup
	4.2 Quantitative Evaluation on i.i.d. Data
	4.3 Quantitative Evaluation on non-i.i.d. Data
	4.4 Discussion on Computation and Communication Overhead

	5 Conclusion
	Acknowledgments
	References
	A Testing Dataset and Evaluation

