Estimating Enzyme Expression and Metabolic Pathway

Activity in Borreliella-Infected and Uninfected Mice

F. M. Rondel**, H. Farooq'*, R. Hosseini!, A. Juyal!, S. Knyazev®?, S. Mangul3%5,

A. S. Rogovskyy®, A. Zelikovsky!*

!Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
?Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of
California, Los Angeles, California, USA
3Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, USA
4Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical
Sciences, University of Southern California, Los Angeles, California, USA
SDepartment of Quantitative and Computational Biology, USC Dornsife College of Letters, Arts and
Sciences
SDepartment of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas
A&M University, College Station, Texas, USA

“Email: {frondell,hfarooq5}@student.gsu.edu, alexz@Qgsu.edu

April 24, 2024

Keywords: Maximum likelihood, Expectation maximization, Enzyme expression, Metabolic path-

way activity, Mice



2 1 INTRODUCTION

Abstract: Evaluating changes in metabolic pathway activity is essential for studying
disease mechanisms and developing new treatments, with significant benefits extending
to human health. Here, we propose EMPathways2, a maximum likelihood pipeline that
is based on the expectation-maximization (EM) algorithm, that is capable of evaluating
enzyme expression as well as metabolic pathway activity level. We first estimate enzyme
expression from RNA-seq data that is used for simultaneous estimation of pathway
activity levels using enzyme participation levels in each pathway. We implement the
novel pipeline to RNA-seq data from several groups of mice which provides a deeper
look at the biochemical changes occurring as a result of bacterial infection, disease, and
immune response. Our results show that estimated enzyme expression, pathway activity
levels, and enzyme participation levels in each pathway are robust and stable across
all samples. Estimated activity levels of a significant number of metabolic pathways

strongly correlate with the infected and uninfected status of the respective rodent types.

1 Introduction

Lyme disease, a significant public health concern, is caused by the tick-borne spirochete, Borreliella
burgdorferi (Bb). Specific mammalian hosts respond differently to Bb infection, with varying disease
manifestations (Mead, 2015; Kugeler et al, 2021). For instance, certain strains of Mus musculus
exhibit severe arthritis, while others like Peromyscus leucopus do not show visible disease symptoms
post-infection (Barthold et al, 1990; Crandall et al, 2006; Schwanz et al, 2011). This study focuses
on the infection-induced changes in gene expression to understand the potential mechanisms of
disease tolerance in P. leucopus mice. Comparing transcriptomic responses to Bb infection between
P. leucopus and Mus musculus (C3H/HelJ, hereafter referred to as C3H) should shed light on the
disease-tolerance capacities of P. leucopus mice. Mice have been the experimental tool of choice
for the vast majority of immunologists. Studying their immune responses has yielded tremendous
insight into the inner workings of the human immune system (Masopust et al, 2017). Humans and

mice share approximately 70 percent of the same protein-coding gene sequences (Margolin, 2000).



Therefore, analyzing the activity of metabolic pathways of mice with contrasting immune responses
is imperative to gaining a deeper understanding of human immune system. Measuring the functional
activity, enrichment, and interaction of metabolic pathways in rodent groups with diametric health
conditions is essential for understanding the biochemical and metabolic changes that may occur
in humans during stress or disease. Despite many advances of using biomolecules (DNA, RNA,
enzymes) to assess the biochemical changes in mice, it remains challenging to quantify how the
expression of individual enzymes contributes to the activity of multi-enzyme metabolic pathways.
In this study, we analyze differentially active metabolic pathways from RNA sequencing data to
generate an efficient model for understanding metabolic pathway activity changes (Subramanian
et al, 2005; Efron and Tibshirani, 2007; Mitrea et al, 2013; Shen et al, 2019). Even though advances
in high-throughput sequencing have aided the exploration of RNA-Seq data, it is often challenging
to analyze metabolic pathway activity changes in organisms with varying health conditions, notably
as existing pathway analysis tools (e.g., MinPath, MetaPathways, MEGAN4) often yield variable
conclusions about the activity of pathways based on RNA data (Huson et al, 2011; Konwar et al,
2013; Ye and Doak, 2009; Sharon et al, 2011). To overcome the current challenges, we developed
a workflow that uses a maximum likelihood-based model and annotations based on the KEGG
(Kanehisa and Goto, 2000) database to estimate transcript frequency, enzyme expression, enzyme
participation in pathways, and metabolic pathway activity in microbial communities (Rondel et al,

2020, 2021).

In this paper, we test this model using transcriptomic data of mice infected with Bb, an agent
of Lyme disease, and their uninfected controls. The data describes the infected as well as the
uninfected groups of two rodent species - Mus Musculus and Peromyscus leucopus to elucidate
the complex metabolic pathway activity changes between rodents with inherent tolerance to Bb
infection (P. leucopus mice) and those that develop Lyme disease (a laboratory strain of C3H/HeJ
(C3H) mice). The proposed methodology is to use a maximum likelihood estimate to infer the
pathway activity considering an enzyme’s participation. First, we filtered mouse specific metabolic
pathways from the KEGG database and merged the expression of enzymes represented by the

same group of genes. We adjusted our EM algorithm based pipeline and improved it using enzyme
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participation level in each pathway and then used these estimations for more accurate predictions

of pathway activity(Rondel et al, 2021). Our contributions include:

e Estimation of metabolic enzyme expression, identification of groups of rodents’ enzymes that

are represented by the same group of genes

e Estimation of enzyme-in-pathways coefficients and confirmation that they are more stable
than for microbial communities in (Rondel et al, 2021). Additionally, we show that these

coefficients do not significantly vary across species of infected and uninfected mice

e Differential analysis of metabolic pathway activity in P. leucopus and C3H mice uninfected

and infected with Bb

The rest of the paper is organized as follows. In the next section, we describe the pipeline of
our software framework and several EM-based algorithms for estimating enzyme expression and
metabolic pathway activity between two rodent species. Further on, we describe our data including
sequencing data, and extraction of metabolic enzymes and pathways. Finally, we use our results to

provide a statistical validation of the proposed pipeline.

2 Materials and Methods

2.1 Data procurement.

The data for this study was acquired from a previous experiment conducted by (Gaber et al, 2023).
It consists of twelve male mice, six P. leucopus and six C3H/HeJ (C3H) mice, were split into four
groups. Half of these mice were subcutaneously inoculated with Bb 297, while the remaining mice
were injected with a sterile saline solution as a control group. Following inoculation, blood samples
were taken from all twelve mice to confirm the infection. At 70th day of post-inoculation, various
tissues were harvested from the mice and cultured to further examine the presence or absence of
viable spirochetes. Spleens were harvested from all the mice, preserved, and stored at - 80°C until

RNA extraction was performed.
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2.2

Pipeline for estimating metabolic pathway activity of C3H and P.

leucopus mice

In the past, we created a pipeline for estimating metabolic pathway activity levels in a microbial

community (Rondel et al, 2021). We explored the differential pathway activity inside of a microbial

community under different conditions. Microbial community has diverse species and in some cases

hard to interpret due to abundance of species in the samples.

Below, we describe our novel metabolic pathway activities pipeline EMPathways?2 (see Fig 1) that

is used for estimating pathways activities in mice. These models are resolved using the EM algo-

rithm.(see Fig 1).

The entire pipeline EMPathways2 consists of the following five steps:

The first step is the collection of samples from infected and uninfected rodent groups, which

then get sequenced.

RNA-Seq reads are mapped into reference transcriptomes of C3H and P. leucopus mice col-
lected from NCBI reference database. The mapped reads were used by IsoEM2 to generate

gene expression data (Mandric et al, 2017).

We use KEGG to establish the many-to-many correspondence between genes and enzymes

(see Sec. 2.3). We estimate enzyme expressions based on gene expression using EM (see Fig

1).

Unstable enzymes that converge inconsistently were identified, grouped, and collapsed (see

Sec. 2.4).

The feedback loop is based on inferred enzyme expressions and metabolic pathway annotation.
It simultaneously estimates enzyme participation coefficients and metabolic pathways activity

levels (see Sec. 2.5).
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2.3 Mapping between genes, enzymes and pathways for C3H and P.

leucopus mice

KEGG metabolic pathway database has information on all metabolic pathways that occur in the
living organisms. However, the scope of EMPathways2 is to analyze metabolic pathways in the
rodents. We concentrate on 152 metabolic pathways and 2386 enzymes that play a significant role
in mouse metabolism which is confirmed by literature referenced in PubMed.

In order to compute metabolic pathway activity levels, EMPathways2 requires an input in a form
of a correspondence between genes and enzymes as well as a dictionary of enzymes participating in
metabolic pathways. Gene-enzyme as well as enzyme-pathway mappings were extracted from NCBI
Entrez Molecular Sequence Database System as well as KEGG PATHWAY database respectively
and which provides consolidated access to nucleotide, protein sequence, gene-centered and genomic
mapping data. We used KEGG’s and NCBI’s APIs to collect raw data allowing us to produce a
correspondence of genes to enzymes and enzymes to metabolic pathways. We used the collected
data to create sets of genes participating in production of every enzyme, as well as sets of enzymes

required for functional activity of every metabolic pathway.

2.4 Enzyme grouping

There is a many-to-many correspondence between genes and enzymes which may pose challenges to
compute enzymes expression. To resolve this challenge, we use a maximum likelihood EM model to
infer enzyme expression from gene expression which converges consistently in vast majority of cases.
However, there are enzymes that share some genes as well as enzymes whose genes are entirely a
subset of genes used for production of another enzyme. In some of those cases, EM struggles to
discern one such enzyme from its genetic relatives and in turn converges inconsistently from one
run to another. Those enzymes that fail to converge consistently are labeled unstable and grouped
into clusters whose expression as a single entity converges consistently after every EM iteration.
After running a few iterations of gene-enzyme EM, we observe clusters of enzymes whose expression

varies individually but they are stable in groups. The unstable enzymes individual expressions vary
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from one run to another. However, summing them always converge to the same expression in
every run.(see Table 1). This instability makes such groups of enzymes indistinguishable to our
algorithm. To establish the groups accurately, we run EM and produce enzyme expression values
for every enzyme. We establish clusters by evaluating the grouped enzyme expressions which do
not converge consistently individually, but the sum of their expressions always converges to the
same value. As a result such enzymes must be treated as single entities. After all unstable enzyme
groups are found, we collapse them into one (see Figure 2 (A)). The groups are collapsed to a single
enzyme with the lowest EC number nomenclature. The collapsed group enzyme is then used to
compute metabolic pathway expressions of all related pathways (see Figure 2 (B)). In total, we
found and collapsed 59 pairs, three triplets and one quadruple of indistinguishable enzymes. Table
2 gives the list of triplets and a quadruplet found in mice. We have compared the list of collapsed
enzymes for microbial communities found in (Rondel et al, 2021) with the list of collapsed enzymes

in rodents. We found out that there are 28 pairs common for these two datasets.

2.5 Feedback loop for pathway activity level estimation

Each enzyme is initially assigned a participation coefficient of 1/|w| , where |w] is the total amount
of enzymes in the pathway w. The Feedback loop for pathway activity updates the enzyme partici-
pation level by fitting expected enzyme expressions to the expressions estimated by EM for enzyme
expression.

The initial estimate of the participation level of an enzyme e in a pathway w may be far from
accurate. However, more accurate estimates of enzyme participation can lead to more accurate
estimates for the pathway activity levels. Our algorithm first estimates enzyme expression from
gene expression using the EM for enzyme expression. The E-step and M-step are ran in order
to compute expected expression and compare it to the new estimate respectively. After computing
enzyme expressions, we then filter out enzymes with stable expressions and perform enzyme group-
ing on enzymes with unstable expressions. Pathway activity levels are in turn computed using the
EM for pathway activity level.

Following, we estimate how well the computed activities f,,’s fit the enzyme expressions using
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the EM for enzyme participation depicted in Figure 1.

Together, EM for enzyme participation and EM for pathway activity levels make up the Feedback
loop for pathway activity level estimation. If the fit is not good enough, then the Feedback loop for
pathway activity level is applied to update the enzyme participation levels pe,,’s with the EM for
enzyme participation and then f,,’s are recomputed according to updated peq,’s.
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3 Results

We have applied the proposed pipeline EMPathways2 to rodent RNA-Seq data. For each group
of rodents, we compute the mean and the standard deviation for each pathway activity level. We
categorize a metabolic pathway as having significantly (resp. slightly) different activity across
conditions if its standard deviation intervals do not intersect (resp. its standard deviation intervals
intersect but do not contain each other means) for different conditions. Note that if a metabolic
pathway has significantly (resp. slightly) different activity, then the probability that the activity is
the same is below 0.25% (resp. 5%).

The list of metabolic pathways with significantly different activity across infected and uninfected



C3H (res P. leucopus) are in Tables 3,6. We found that four C3H metabolic pathways are expressed
with differing activity levels. For example, caffeine metabolism has a significant difference in its
activity levels between the infected and uninfected groups. Note that the number of metabolic
pathways of P. leucopus significantly affected by the infection is much higher than for C3H that
can explain why C3H get sick after infection while P. leucopus do not show any symptoms.

The list of metabolic pathways with slightly different activity across infected /uninfected C3H
(res P. leucopus) are in Tables 5,7. Note that the lists of these pathways are very different for
different mouse species.

Finally, we check how stable are the enzyme participation coefficients across different mouse
species (see Table 4). Note that the average relative standard deviation (RSD) for C3H is 2.7% in
contrast to much higher RSD for 8.9% for P. leucopus. That can be caused by that fact that C3H
mice are genetically identical. Note that the average RSD for enzyme participation coefficients in
the microbial community for the same metabolic pathway (ec00620) is 34.8% which is significantly
higher (see (Rondel et al, 2021)) than RSD for mice.

4 Discussion

The results of our study highlight the potential of using RNA-Seq data to estimate enzyme expres-
sion and metabolic pathway activity in the rodent models of disease. Our modified expectation-
maximization based pipeline, EMPathways2, has successfully demonstrated its ability to estimate
enzyme expression, enzyme participation in pathways, and metabolic pathway activity levels in
both infected and uninfected mice.

These findings further enhance our understanding of the biochemical changes occurring in the
host during bacterial infection. The differences in enzyme expression and pathway activity levels
between infected and uninfected mice could provide insights into the immune response mechanisms
at the metabolic level. This, in turn, can potentially be used to develop new therapeutic strategies
for bacterial infections and other diseases.

The variation in pathway activity levels between C3H and P. leucopus sheds light on the different
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immune responses in these rodent species. The higher number of pathways significantly affected
by infection in P. leucopus compared to C3H may explain why C3H mice develop Lyme disease
symptoms while P. leucopus mice do not. This highlights the importance of considering the host
species in understanding the disease pathogenesis. It is also interesting to note that the enzyme
participation coefficients were more stable in C3H compared to P. leucopus. This could be due to

the genetic similarities among laboratory mouse strains, as compared to wild mice.

5 Conclusions

In this paper we propose an improved maximum likelihood-based pipeline for the estimation of
metabolic pathway activity in mice using the KEGG pathway database. Specifically, the proposed
approach uses EM-based algorithms to estimate enzyme expression, enzyme participation levels in

pathways, and metabolic pathway activity.

The proposed metabolic pathway analysis was applied to the RNA-Seq data from 12 mice
samples collected from C3H and P. leucopus with half them infected by Bb 297. The key findings

of the study are as follows:

e The infection affects metabolism of both mice while for P. leucopus, the affect is more signif-

icant than for C3H.

e The enzymes participation coeflicients vary insignificantly for C3H in contrast to higher vari-

ation for P. leucopus and much higher variation for microbial communities.
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6 Tables
Table 1: A pair of individually unstable enzymes that are stable when summed into
a group.
Enzymes Run 1 Run 2 Run 3 Run 4 Run 5
EC:3.1.3.12 0.054 0.311 0.251 0.317 0.12
EC:2.4.1.15 0.404 0.147 0.207 0.141 0.338
Sum 0.458 0.458 0.458 0.458 0.458

Table 2: Three triplets and one quadruplet of collapsed en-
Zymes.

Triplet1 Triplet2 Triplet3 Quadruplets

EC:1.1.1.51 EC:6.3.4.13 EC:2.1.3.2 EC:6.3.4.9

EC:1.1.1.213 EC:6.3.3.1 EC:6.3.5.5 EC:6.3.4.10

EC:1.1.1.188 EC:2.1.2.2 EC:3.5.2.3 EC:6.3.4.11

EC:6.3.4.15

Table 3: C3H pathways with significant different activity level across infected and uninfected groups.
Infected Mice Uninfected Mice

Pathway Name ID

Mean + Std Mean + Std
Caffeine metabolism ec00232 84.48+1.069 82.888 + 0.357
Mucin type O-glycan biosynthesis ec00512  0.873 £+ 0.666 2.205 + 0.656

Pentose & glucuronate interconversions ec00040 273.774 £0.896  269.624 + 1.82
Thiamine metabolism ec00730 49.922 £ 0.297  59.741 £ 0.205




15

Table 4: The enzyme expression coefficients and relative standard deviations (%RSD) for the enzyme
participation coefficients in pathway ec00620.

ec00620 Infected Uninfected %RSD Infected Uninfected %RSD
C3H C3H P. leucopus P. leucopus

EC:1.1.1.1 .110 .107 .113 .106 .109 .112 2.501 .054 .061 .049 .051 .045 .048 10.928
EC:1.5.8.3 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:3.1.3.3 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:2.1.2.10 .034 .034 .035 .035 .034 .034 1.504 .028 .030 .027 .027 .025 .025 7.027
EC:5.1.1.18 .032 .038 .033 .037 .034 .031 8.157 .013 .016 .011 .015 .012 .012 14.740
EC:1.4.3.21 .050 .055 .055 .054 .054 .051 4.019 .028 .029 .019 .027 .025 .024 14.269
EC:2.6.1.52 .059 .058 .060 .059 .061 .060 1.763 .047 .050 .042 .043 .041 .040 8.826
EC:2.1.1.20 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:2.7.1.165 .095 .086 .087 .088 .087 .088 3.696 .077 .067 .074 .061 .060 .059 11.586
EC:1.5.3.1 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:2.3.1.29 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:4.1.2.48 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:1.1.99.1 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:2.3.1.37 .055 .052 .055 .055 .056 .055 2.499 .072 .066 .074 .067 .070 .077 5.909
EC:2.1.2.1 .051 .051 .052 .052 .052 .050 1.591 .038 .041 .035 .036 .034 .033 8.093
EC:1.1.1.95 .050 .048 .050 .050 .050 .050 1.644 .050 .050 .048 .048 .046 .049 3.127
EC:1.1.1.103 .027 .025 .026 .026 .026 .026 2.433 .035 .031 .038 .033 .035 .041 10.039
EC:2.1.4.1 .049 .047 .049 .049 .049 .050 2.013 .049 .049 .044 .047 .046 .051 5.252
EC:4.2.1.22 .050 .048 .050 .050 .050 .050 1.644 .050 .050 .048 .048 .046 .049 3.127
EC:4.4.1.1 .061 .059 .061 .061 .060 .060 1.353 .047 .050 .043 .045 .042 .042 7.112
EC:4.3.1.17 .050 .048 .050 .050 .050 .050 1.644 .050 .050 .048 .048 .046 .049 3.127
EC:1.4.34 .062 .070 .064 .070 .067 .068 4.864 .028 .033 .023 .028 .027 .026 11.895
EC:1.4.3.3 .046 .053 .047 .052 .049 .045 6.711 .019 .023 .015 .021 .017 .017 15.771
EC:1.8.1.4 .088 .090 .089 .091 .090 .090 1.152 .042 .049 .034 .043 .039 .040 12.040
EC:2.1.1.5 .050 .048 .050 .050 .050 .050 1.644 .050 .050 .048 .048 .046 .049 3.127
EC:2.1.1.2 .049 .047 .049 .049 .049 .050 2.013 .049 .049 .044 .047 .046 .051 5.252
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Table 5: C3H pathways activity level across infected and uninfected groups.

Infected Mice

Uninfected Mice

Pathway Name ID Mean =+ Std Mean + Std
Ascorbate and aldarate metabolism ec00053 139.789 + 0.958 142.04 £+ 1.581
Drug metabolism - cytochrome P450 ec00982 104.598 + 0.85 105.261 +0.518
Glycine, serine and threonine metabolism ec00260 50.586 £ 0.807 48.544 £+ 2.094
Glycosaminoglycan degradation ec00531  78.611 £ 0.568 77.616 + 1.778
Glycosphingolipid biosynthesis-globo & isoglobo series ec00603 198.785 + 8.711 202.718 4+ 1.443
Selenocompound metabolism ec00450 141.024 £+ 23.292  159.357 £1.326
Amino sugar and nucleotide sugar metabolism ec00520 105.101 + 0.287 104.142 £1.246
Arginine and proline metabolism ec00330 102.133 +0.884 100.602 £ 0.933
Citrate cycle (Krebs cycle) ec00020 116.843 + 12.089 124.87 £ 0.702
Fatty acid biosynthesis ec00061  303.491 + 5.538  307.308 £ 0.489
Fatty acid elongation ec00062 67.066 £ 8.073 71.807 £ 0.022
Folate biosynthesis ec00790  302.951 + 9.635 287.446 £+ 9.319
Glycolysis ec00010 145.131 + 6.6 138.049 £+ 11.634
Lysine degradation ec00310 13.663 £ 3.617 8.986 + 3.171
Mannose type O-glycan biosynthesis ec00515 136.003 & 20.316 152.586 £6.335
Metabolism of xenobiotics by cytochrome P450 ec00980 69.32 + 0.17 68.617 £0.827
N-Glycan biosynthesis ec00510 221.444 + 2.738  227.992 +£ 5.498
O-glycan biosynthesis ec00514 162.416 + 1.829 155.666 + 8.056
Other glycan degradation ec00511 177.914 + 1.182 175.957 + 4.27
Pantothenate and CoA biosynthesis ec00770 24.598 + 8.195 27.777 £ 0.525
Pentose phosphate ec00030 102.537+ 0.314 97.822 £ 9.699
Propanoate metabolism ec00640 212.329 + 1.465 201.314 £+ 9.563
Pyrimidine metabolism ec00240 172.185 +4.223 181.393 £ 6.125
Sulfur metabolism ec00920 33.591 + 7.459 36.213 + 2.483
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Table 6: P. leucopus pathways activity level across infected and uninfected groups.

Infected Mice

Uninfected Mice

Pathway Name ID Mean + Std Mean + Std
Arginine and proline metabolism ec00330 108.443 £+ 3.567  103.845 + 1.015
D-Amino acid metabolism ec00470 218.092 4+ 0.626  206.601 + 7.797
Glycerophospholipid metabolism ec00564  78.228 £ 0.336 77.621 £ 0.172
Glycine, serine and threonine metabolism ec00260 49.423 £ 0.728 47.543 £ 0.119
One carbon pool by folate ec00670 66.566 £+ 0.204 67.377 £ 0.301
Selenocompound metabolism ec00450 103.557 + 25.685 137.99 + 8.249
Starch and sucrose metabolism ec00500 64.353 + 1.33 66.401 £+ 0.433
Tryptophan metabolism ec00380 98.223 + 0.896 102.88 + 0.892
ascorbate and aldarate metabolism ec00780 24.271 £ 0.578 25.417 £ 0.049
Ascorbate and aldarate metabolism ec000563 131.871 + 1.17 136.458 £ 0.912
Citrate cycle ec00020 116.276 4+ 10.912 128.679 + 0.663
Glycosaminoglycan biosynthesis-heparan sulfate/heparin  ec00534  85.392 + 1.203 90.012 4+ 1.656
Glycosaminoglycan biosynthesis-keratan sulfate ec00533 351.816 4+ 1.994  342.511 + 1.023
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis  ec00563 348.609 + 1.349  353.073 £ 1.766
Linoleic acid metabolism ec00591 440.035 + 10.893 423.801 £ 1.7
Other glycan degradation ec00511 164.744 + 2.361 135.58 + 0.722
Pentose phosphate ec00030 103.646 + 0.475 104.649 + 0.247
Pyrimidine metabolism ec00240 167.062 £+ 0.407  179.749 + 11.62
Valine, leucine and isoleucine biosynthesis ec00290 77.081 £ 2.466 83.37 £ 2.5
Valine, leucine and isoleucine degradation ec00280 113.366 + 4.269 103.142 £ 5.56
Vitamin B6 metabolism ec00750  56.675% 0.557 52.601 £+ 0.395

Table 7: P.leucopus pathways activity level across infected and uninfected groups.

Infected Mice

Uninfected Mice

Pathway Name ID Mean + Std ~ Mean + Std
Amino sugar and nucleotide sugar metabolism ec00520 104.8 +1.365 102.262 £ 2.796
Arachidonic acid metabolism ec00590 163.557 + 0.317  162.903 + 1.17
Nitrogen metabolism ec00910 102.949 4+ 0.324  101.743 + 0.897
Folate biosynthesis ec00790 314.768 + 6.619 307.406 £+ 1.934
Fructose and mannose metabolism ec00051  30.991 £ 0.403 30.493 £ 0.193
Glutathione metabolism ec00480 45.435 £ 0.73 44.655 £ 0.569
Glycosphingolipid biosynthesis-lacto & neolacto series ec00601  29.256 + 6.267 41.326 + 6.14
Glyoxylate and dicarboxylate metabolism ec00630 108.993 + 11.861 120.784 + 8.979
Inositol phosphate metabolism ec00562  39.9274 0.154 39.575 £ 0.588
Porphyrin metabolism ec00860 278.62 £ 1.556 275.075 £+ 6.258
Riboflavin metabolism ec00740 117.214 4+ 8.465 105.181+ 5.623
Steroid hormone biosynthesis ec00140 131.347+ 2.431 132.832 + 0.644
Thiamine metabolism ec00730 58.599 + 0.158 58.15 + 0.715
Tyrosine metabolism ec00350 70.298 £ 2.634 66.036 £ 2.207
Ubiquinone and other terpenoid-quinone biosynthesis ec00130 194.363 + 4.996 201.709 £+ 5.371
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7 Figure Legends
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Figure 1: EMPathways2 pipeline for metabolic pathway analysis for the rodent samples. The RNA-Seq
data obtained from the rodents are sequenced, then raw reads are mapped into genes. The genes obtained
contigs are further mapped into the enzyme-pathway database. Gene expression is obtained using IsoEM2
(Mandric et al, 2017). Then, we estimate enzyme expression using gene expression. Finally, the the pathway

activity level and enzyme participation coefficients are estimated in the feedback loop.
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Figure 2:  (A) Enzymes that cannot be distinguished from each other must be treated as groups. (B)

Enzymes that are unstable are collapsed into a single enzyme with the lowest EC nomenclature number.
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