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Abstract
Cover crops have long been seen as an effective management practice to increase soil organic
carbon (SOC) and reduce nitrogen (N) leaching. However, there are large uncertainties in
quantifying these ecosystem services using either observation (e.g. field measurement, remote
sensing data) or process-based modeling. In this study, we developed and implemented a
model–data fusion (MDF) framework to improve the quantification of cover crop benefits in SOC
accrual and N retention in central Illinois by integrating process-based modeling and
remotely-sensed observations. Specifically, we first constrained and validated the process-based
agroecosystem model, ecosys, using observations of cover crop aboveground biomass derived from
satellite-based spectral signals, which is highly consistent with field measurements. Then, we
compared the simulated cover crop benefits in SOC accrual and N leaching reduction with and
without the constraints of remotely-sensed cover crop aboveground biomass. When benchmarked
with remote sensing-based observations, the constrained simulations all show significant
improvements in quantifying cover crop aboveground biomass C compared with the
unconstrained ones, with R2 increasing from 0.60 to 0.87, and root mean square error (RMSE) and
absolute bias decreasing by 64% and 97%, respectively. On all study sites, the constrained
simulations of aboveground biomass C and N at termination are 29% and 35% lower than the
unconstrained ones on average. Correspondingly, the averages of simulated SOC accrual and N
retention net benefits are 31% and 23% lower than the unconstrained simulations, respectively.
Our results show that the MDF framework with remotely-sensed biomass constraints effectively
reduced the uncertainties in cover crop biomass simulations, which further constrained the
quantification of cover crop-induced ecosystem services in increasing SOC and reducing N
leaching.

1. Introduction

Cover crops, a category of plants grown between
cash crop growing seasons, are capable of providing

multiple ecosystem services that improve soil qual-
ity and environmental sustainability, as well as
reduce agricultural inputs. In the U.S. Midwest
where intense agricultural practices cause soil organic
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carbon (SOC) and reactive nitrogen (N) loss (Tilman
et al 2002), cover crops can be adopted as a mitig-
ation approach to reduce risks related to crop pro-
ductivity and environmental quality, including soil
health and fertility degradation, greenhouse gas emis-
sion increase and water body pollution (Tonitto et al
2006, Poeplau and Don 2015, Jian et al 2020, Udvardi
et al 2021, Deines et al 2023). Most notably, cover
crops increase SOC stocks (Poeplau and Don 2015)
by increasing aboveground and belowground crop
residue input and reducing SOC loss by abating soil
erosion. They also reduce N leaching by scavenging
excessive N and reducing soil erosion-induced N
loss (Kaspar et al 2001, Blanco-Canqui et al 2013,
2015). Despite the above qualitative understanding of
cover crops benefits, there are still large uncertainties
in quantifying these benefits. Economic incentives
based on these economic and environmental benefits
with large uncertainties may reduce the willingness
of farmers to adopt cover crops, and thereby hinder
the promotion of cover crops. Therefore, developing
robust methods to accurately quantify the ecosystem
benefits of cover crops is important for the promotion
of cover crops.

Common methods of quantifying environmental
outcomes of agroecosystems include observations
(e.g. field measurements, remotely-sensed data) and
modeling (Huang et al 2019), each of which has its
pros and cons. Albeit providing relatively accurate
measurements of the target variable, field observa-
tions are time-consuming and expensive to collect,
and thus hard to scale up (Qin et al 2021, Wang et al
2023a). Remote sensing approaches provide certain
observations at higher frequencies and on a larger
spatial scale, yet they may carry significant uncertain-
ties and can hardly detect belowground properties.
Furthermore, both observational approaches cannot
quantify the changes in SOC accrual and soil inor-
ganic N retention relative to those in baseline scen-
arios. Process-basedmodeling can efficiently quantify
net benefits in the ecosystem services by establishing
counterfactual modeling scenarios. Compared with
data-driven empirical models, process-based mod-
els also provide more comprehensive results as well
as better extrapolation ability (Adams et al 2013)
through explicitly representing agroecosystem mech-
anisms. However, given the complex mechanisms
represented, performance of process-based models is
largely limited by uncertainties inmodel parameteriz-
ation, input and model structure (Adams et al 2013,
Huang et al 2019). One possible solution to reduce
modeling uncertainties is to use observations of crit-
ical variables for rigorous calibration and validation
of process-based models (Peng et al 2020, Zhou et al
2021, Guan et al 2023).

Model–data fusion (MDF) is a technique that
integrates observations and models through vari-
ous mathematical methods (Gettelman et al 2022),
and effective MDF can leverage the benefits of

these two approaches to reduce prediction uncertain-
ties. Models in the MDF framework can be either
data-driven empirical models (e.g. statistical mod-
els, neural networks) or process-based models, while
sources of observations may range from point-wise
field measurements to in-situ sensors, and airborne
and satellite remote sensing data (Guan et al 2023,
Wang et al 2023b). These measurements are used
for adjusting model parameters, state variables or
structure to improve model predictions. The MDF
approaches have already been widely applied in cli-
mate, weather and air quality prediction (Gettelman
et al 2022). In ecological studies, specifically, common
MDF approaches include Bayesian inference (Ellison
2004), data assimilation (Kalnay 2003) and emergent
constraint (Wang et al 2020). In this study we used
remotely-sensed cover crop aboveground biomass for
constraining key cover crop growth parameters of
the process-based agroecosystemmodel ecosys, which
has previously been used to quantify the C budget
(Zhou et al 2021) and evaluate the impacts of cover
crops on cash crop yield (Qin et al 2021) in the U.S.
Midwest agroecosystems. Meanwhile, the synergy of
high-resolution satellite observations (Claverie et al
2018, Thieme et al 2020) and airborne hyperspec-
tral imagery with soil-canopy radiative transfer mod-
eling (RTM) (van der Tol et al 2009) has already
been proven capable of realistically estimating cover
crop aboveground biomass (Wang et al 2023a), which
provides a cost-effective approach to establish an
MDF framework fed on remotely-sensed cover crop
information to quantify cover crop ecosystem bene-
fits on a larger scale.

The objectives of this study are to evaluate the
influence of integrating remotely-sensed biomass into
process-based models on cover crop aboveground
biomass simulations, as well as quantify correspond-
ing changes in SOC accrual and N retention net
benefits. Our major hypothesis is that adding the
constraints of remotely-sensed biomass to process-
based models can improve cover crop biomass sim-
ulations, which will consequently constrain simula-
tions of SOC accrual and N retention through the
mechanisms above and help the overall quantifica-
tion of cover crop ecosystem services. To test this
hypothesis, we developed an MDF framework that
integrates remotely-sensed cover crop aboveground
biomass with ecosys to constrain the quantification
of cover crop aboveground biomass as well as cover
crop-induced SOC accrual and N retention. We ran
ecosys on 13 cover crop planting sites in central Illinois
to simulate cover crop biomass growth as well as
changes in (i) SOC stock and (ii) N leaching due
to cover crop adoption. The target variables were
first simulated without and with remotely-sensed
cover crop aboveground biomass to constrain the
model. Then we investigated the differences between
unconstrained and constrained simulations to test
our hypothesis.
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2. Methods and data

2.1. Overview of the MDF framework
As is shown in the MDF framework (figure 1),
satellite-based cover crop aboveground biomass is
used to constrain cover crop aboveground and
belowground biomass simulations through adjusting
aboveground C fixation as well as related C alloc-
ation and biomass formation represented in ecosys.
Variations in simulated cover crop aboveground and
belowground biomass then change residue inputs
from both parts at growth termination, which further
influence the amount of SOC. Meanwhile, cover crop
N uptake is also influenced due to changes in root
N storage and surface area, which may consequently
influence N leaching by changing soil aqueous inor-
ganic N concentrations. Changes in other agroecosys-
tem processes can also occur and influence SOC stock
and N leaching (e.g., microbial immobilization of
soil inorganic N following cover crop litter input can
improve N retention). However, these influences are
less dominant in quantity and thus are not discussed
in detail.

2.2. Study sites and field data collection
We selected 13 cover crop planting sites in central
Illinois for study (figure 2(a)). The SOC concentra-
tion of these sites varied from4.62% to 5.78%,with an
average of 4.98± 0.38% (Potash et al 2022). Cereal rye
(Secale cereale L.) was planted on all sites in autumn
2020 and terminated in spring 2021. Most of the
sites were under corn–soybean rotations from 2008
to 2021 except that winter wheat was planted on site
2 in 2013 and site 11 in 2014, respectively. Cover
crop aboveground biomass was collected in fields on
March 20th andApril 13th, 2021, with technical details
described in text S1.

2.3. Remotely-sensed cover crop biomass
measurement
An innovative and scalable ground-airborne-satellite
integrated sensing framework along with RTM-based
machine learning surrogate modeling (Wang et al
2021, 2023a) was developed to accurately and cost-
effectively quantify field-level daily cover crop above-
ground biomass. The inversion of process-based
RTM SCOPE (van der Tol et al 2009) directly takes
spectral reflectance as input to retrieve cover crop
aboveground biomass (Wang et al 2023a), and it
is more scalable than traditional empirical regres-
sion that requires intensive field measurements for
model development and validation (Prabhakara et al
2015, Thieme et al 2020, Xia et al 2021). Considering
the scale mismatch in directly benchmarking satel-
lite pixels (30 m resolution) with quadrat-level
field measurements (0.5 m resolution), we incor-
porated airborne hyperspectral data (0.5 m resolu-
tion) with rich spectral information as a bridge to fill
spatial discrepancies between quadrat-level ground

measurements and satellite remote sensing. More
technical details about airborne hyperspectral data-
based retrieval and satellite retrieval are described
in text S1. We focused on aboveground biomass in
the period of March 10th to May 31st, 2021, during
which cover crops on all fields had detectable above-
ground biomass. Planting dates of cover crops were
obtained from growers, while the termination dates
were inferred from the daily time series of satellite
cover crop aboveground biomass. The date withmax-
imal biomasswas set as the termination date, and only
data before this date were used for ecosys calibration
and validation. To compare with ecosys simulations,
the satellite-based cover crop aboveground biomass
data were transformed into biomass C using a fixed
carbon-to-biomass ratio of 42% (Wang et al 2023a).

2.4. Ecosys-basedMDF
2.4.1. Model overview
Ecosys is a comprehensive mathematical model based
on biophysical and biochemical mechanisms, and
is capable of simulating water, energy, carbon and
nutrient cycles in various natural and managed ter-
restrial ecosystems (Grant 2001). It has been validated
in multiple studies on U.S. Midwest agroecosystem C
and N cycles (Qin et al 2021, 2023, Zhou et al 2021,
Li et al 2022, Yang et al 2022), which lays the found-
ation for using ecosys to investigate relevant processes
in this study.

In ecosys, canopy fixed C is added to the mobile
storage pool in branches, where it can be further oxid-
ized to meet the needs of maintenance respiration
(Grant et al 2001). The part that exceedsmaintenance
respiration combines with storage N and P to form
new biomass (i.e. growth of length, area or volume
of different organs) (Grant 1994, Grant et al 1999),
which in turn influences the rates of C fixation and
plant nutrient uptake. Whenever the C storage pool
is depleted and C oxidation is slower than mainten-
ance respiration, remobilizable C in leaves and twigs
is oxidized to make up the gap, while the structural C
detaches from the branch and becomes plant litterfall
(Grant et al 2001). The litterfall is first added to a litter
pool with different complexes ofmacromolecules (i.e.
carbohydrates, protein, cellulose and lignin) as fresh
organic C input, where they are further decomposed
and form SOC (Qin et al 2023).

For plant N uptake, ecosys first solves for aqueous
inorganic N concentrations at root and mycorrhiza
surfaces in each soil layer by balancing radial trans-
port by mass flow and diffusion with plant act-
ive uptake. Plant active N uptake is then calcu-
lated from the root and mycorrhizal length dens-
ities and surface areas, and is constrained by O2

and nutrient availability with inhibition by root N
storage. The uptaken N is added to mobile stor-
age pools in root and mycorrhizal layers and may
further be used for biomass formation, be remo-
bilized or lost to litter through senescence (Grant

3
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Figure 1. Overview of the research framework in this study. (a) Illustration of scaling from ground observations to satellite-based
observations as well as major pathways through which cover crop aboveground biomass influence SOC stock and N leaching.
(b) General workflow of the proposed MDF framework.

Figure 2. Locations of cover crop sites, distribution of SOC concentration, and examples of cover crop aboveground biomass on
the study sites on April 13th, 2021. (a) Distribution of the study sites and SOC map of the studied region. (b) Field-measured,
airborne and satellite-based (from left to right) cover crop aboveground biomass on site 2. (c) Field-measured, airborne and
satellite-based (from left to right) cover crop aboveground biomass on site 3.

1991,Grant andRobertson 1997). The dissolved inor-
ganic N (DIN) concentrations are controlled by soil
nutrient transformations through thermodynamic-
ally driven precipitation, adsorption, ion pairing
reactions, convective dispersive solute transport and
microbial mineralization-immobilization (Grant and
Robertson 1997). The subsurface/surface DIN fluxes
are simulated as the product of subsurface/surface
flows and DIN concentration, with the subsurface
flow calculated from hydraulic conductivity and soil
water potential (matric potential + osmotic poten-
tial + gravimetric potential) gradients (Grant 2004),
and the surface flux calculated from surface water
velocity and water depth using Manning’s equation
(Mezbahuddin and Grant 2016).

2.4.2. Model setup
For model setup, we used hourly weather data from
the North American Land Data Assimilation System
2 (NLDAS-2, NASA 2021). Initial soil properties
on each site were extracted from the Gridded Soil
Survey Geographic (gSSURGO) database, while the
cash crop planting histories came from the USDA
Cropland Data Layer (CDL) database. The model
initialization period was 1998–2019, while the years
2020–2021 followed by a 9 year virtual simulation
period were used for result analysis. To quantify the
SOC accrual and N retention due to cover crop adop-
tion, we set one cover crop planting scenario and one
baseline scenario. The only difference between the
two scenarios is that cover crop was planted between

4
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cash crop growing seasons during the result analysis
period under the cover crop planting scenario, while
there was no cover crop planted under the baseline
scenario. Simulations under the baseline scenario are
subtracted from those under the cover crop planting
scenario to get the net ecosystem benefits brought by
cover crops.

For the virtual simulation period, we used the
2012–2020 weather data and assumed corn-soybean
rotation on all sites. For fertilizing we set 20 gN m−2

of urea ammonium nitrate 32 application 5 days
before maize planting according to the 2018 Illinois
N fertilizing statistics from USDA (https://quickstats.
nass.usda.gov/results), and there was no fertilizer
applied before other cash crops. No tillage or irrig-
ation was implemented in our scenarios.

2.4.3. MDF and result analysis
To test our hypothesis about the influence of MDF
on reducing simulation uncertainties of cover crop
growth and ecosystem services, we compared the per-
formance of constrained and unconstrained models.
Each of the 13 sites was randomly divided into two
spatially-continuous parts, and averages of satellite-
based cover crop aboveground biomass on the two
parts were used for model calibration and valid-
ation, respectively. For the constrained model, we
calibrated planting density (recommended default
value is 370 m−2 on all sites), rubisco carboxylation
activity, climate zone, maturity group and primor-
dia initiation rates tominimize the difference between
satellite-based and simulated cover crop aboveground
biomass during the whole growing period. The phys-
ical meaning of the calibrated parameters as well as
the calibrated and pre-calibrated values are provided
in table S1 and figure S1. Given the geographical prox-
imity of study sites, we keep the climate zone con-
stant across all sites, while other parameters may vary
from site to site. The SCE-UA algorithm, which out-
performs other algorithms in finding global optima
(Duan et al 1994), is used for parameter optimization,
and the parameter combination with the lowest aver-
age root mean square error (RMSE) compared with
the satellite observation (for calibration) on all sites
is selected. The calibrated and default cereal rye plant
parameters were then used for simulation on the val-
idation part of the site, and R2, RMSE and bias of the
simulations compared against satellite observations
(for validation) were used to evaluate the perform-
ance of the constrained and unconstrained models.

We also compared the constrained and uncon-
strained simulations of cover crop aboveground bio-
mass C and N as well as net benefits in SOC accrual
(∆SOC difference) and N retention (−∆DIN flux
difference, sum of reduced surface and subsurface N
leaching) on the study sites. To exclude the influence
of litterfall accounted for in SOC, we calculated the
annual average of these four terms during the result

analysis period. The linear relationships between the
annual average of termination aboveground biomass
and the annual averages of the net ecosystem benefits
were also investigated.

3. Results

3.1. Validation of remotely-sensed cover crop
aboveground biomass
Beforewe used the remotely-sensed cover crop above-
ground biomass formodel calibration and validation,
we first compared them against corresponding field
measurements onMarch 20th and April 13th, 2021 for
specific sites to validate their accuracy (figure 3). The
result shows that the satellite multispectral imagery-
derived measurements have relatively high perform-
ance with R2 = 0.83, RMSE = 22.53 g m−2 (38.0%)
and bias=−1.46 g m−2.

3.2. Validation of ecosys performance in simulating
cover crop aboveground biomass
Our model validation results show that introdu-
cing remotely-sensed biomass constraints signific-
antly improves the ecosys simulation of cover crop
aboveground biomass (figure 4). There is a gen-
eral overestimation for unconstrained cover crop
aboveground biomass simulations, which is greatly
reduced through adjusting cover crop growth relev-
ant parameters. Constrained with remotely-sensed
observations, the R2 increases significantly from 0.60
to 0.87, with RMSE and absolute bias decrease
by 64% (18.01 gC m−2, 98%, to 6.54 gC m−2,
25%) and 97% (14.21 gC m−2 to 0.42 gC m−2)
respectively, benchmarked with validation observa-
tions during March 10th to cover crop termina-
tion (figures 4(a) and (b)). At cover crop termin-
ation specifically, R2 increases from 0.33 to 0.84,
while RMSE and absolute bias decrease by 50%
(25.54 gCm−2, 70% to 12.73 gCm−2, 14%) and 70%
(13.72 gC m−2 to 4.05 gC m−2) respectively after cal-
ibration (figures 4(c) and (d)). Such improvements
support our hypothesis that performing MDF can
effectively reduce simulation uncertainties, highlight-
ing the necessity of using remotely-sensed observa-
tions to constrain the model.

3.3. Quantification of difference between
constrained and unconstrained simulations of
cover crop aboveground biomass
We further quantified the benefits of using remotely-
sensed biomass observations to constrain ecosys by
comparing constrained and unconstrained simula-
tions of cover crop aboveground biomass C and N
at termination on a 10-year average (figure S4). The
constrained model better captures the high inter-
site variability of cover crop growth: The averages of
constrained simulations of termination aboveground
biomass C andNon all sites are 46.07± 18.13 gCm−2
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Figure 3. Comparisons between field measurements and satellite multispectral imagery-based measurements of cover crop
aboveground biomass on March 20th and April 13th, 2021. Error bars represent one standard deviation of the mean of field or
satellite measurements.

Figure 4. Unconstrained and constrained simulations of cover crop aboveground biomass C (shoot C) vs. satellite multispectral
imagery-based cover crop aboveground biomass C measurements (validation). Error bars represent one standard deviation of the
mean of aboveground biomass C in the result analysis period. (a) and (b) Are the unconstrained and constrained results during
the cover crop growing season, respectively. (c) and (d) Are the unconstrained and constrained simulations on the termination
date, respectively.

6



Environ. Res. Lett. 18 (2023) 094018 L Ye et al

Figure 5. Comparisons between the 10-year average of unconstrained and constrained simulations of SOC accrual and N
retention net benefits during the result analysis period. (a)∆SOC difference (b)∆DIN flux difference.

and 1.23 ± 0.54 gN m−2, while those of the uncon-
strained simulations are 63.97 ± 12.92 gC m−2 and
1.85± 0.38 gN m−2, respectively.

Differences between unconstrained and con-
strained simulations of aboveground biomass C at
termination range from −11.93 gC m−2 on site 12
to 40.05 gC m−2 on site 7 (figure S4(a)). Since bio-
mass C and N are closely connected through biomass
formation, element remobilization and senescence in
ecosys, variation trends in constrained simulations of
cover crop aboveground biomass N are generally con-
sistent with those of biomass C. Differences between
unconstrained and constrained simulations of above-
ground biomass N range from −0.16 gC m−2 on site
12 to 1.22 gC m−2 on site 7 (figure S4(b)). Overall,
the unconstrained simulations of cover crop above-
ground biomass C and N at termination are generally
higher than the constrained ones (except for those on
site 11 and site 12), and the average differences on all
sites are 17.90 ± 14.17 gC m−2 (29.0 ± 20.0%) and
0.62± 0.38 gN m−2 (35.0± 19.0%), respectively.

3.4. Quantification of corresponding changes in
simulations of SOC accrual and N retention net
benefits
After quantifying changes in simulated cover crop
aboveground biomass, we further studied the differ-
ence between unconstrained and constrained sim-
ulations of SOC accrual and N retention net bene-
fits. Overall, the changes in simulated SOC accrual

and N retention net benefits are consistent with
that in simulated cover crop biomass C and N,
which further indicates the importance of perform-
ing MDF. Within the 10-year analysis period, the
differences between unconstrained and constrained
simulations of SOC accrual net benefits range from
−1.99 gC m−2 yr−1 to 9.04 gC m−2 yr−1 on all sites
(figure 5(a)). The averages of simulated SOC accrual
net benefits without and with satellite-based bio-
mass constraints are 14.16 ± 2.60 gC m−2 yr−1 and
9.90± 3.68 gCm−2 yr−1, respectively, while the aver-
age of their differences is 4.27 ± 3.09 gC m−2 yr−1

(31.0 ± 20.0%) on all sites. For N retention net
benefits, the averages of unconstrained and con-
strained simulations are 0.81 ± 0.18 gN m−2 yr−1

and 0.63 ± 0.26 gN m−2 yr−1, respectively. Their
differences vary from −0.13 gN m−2 yr−1 to
0.45 gN m−2 yr−1 (figure 5(b)). On all sites, the con-
strained simulations of net benefits in N retention are
0.18± 0.17 gN m−2 yr−1 (23.3± 19.7%) lower than
the unconstrained simulations on average.

Finally, the correlations between cover crop
termination aboveground biomass and the net eco-
system benefits are investigated (figure 6). On a 10-
year average, the simulated cover crop termination
aboveground biomass C accounts for 98% of the
variation in simulated SOC accrual net benefits, with
1 gC m−2 increase in aboveground biomass C lead-
ing to 0.21 gC m−2 yr−1 increase in SOC accrual
net benefits. Meanwhile, the simulated cover crop

7
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Figure 6. Correlations between the 10-year average of (a) simulated cover crop termination aboveground biomass C and∆SOC
difference (b) simulated cover crop termination aboveground biomass N and∆DIN flux difference across all sites during the
result analysis period.

termination aboveground biomass N accounts for
93% of the variation in simulated N retention net
benefits, with 1 gN m−2 increase in aboveground
biomass N leading to 0.42 gNm−2 yr−1 increase in N
retention net benefits.

4. Discussion

In this study, we developed an MDF framework to
effectively reduce the uncertainties in ecosys simula-
tions of cover crop growth and ecosystem services
by incorporating satellite-based cover crop above-
ground biomass constraints. The necessity of per-
forming MDF is illustrated as follows. Firstly, cover
crop growth is the result of G (genotype)× E (envir-
onment) × M (management) (Peng et al 2020).
Therefore, subtle environmental conditions (e.g.,
microclimate, ponding, topography) or management
information that are unrepresented or underrepres-
ented by model inputs, parameterization and struc-
ture may lead to biased simulations compared with
ground truth on one site. Furthermore, two spatially-
close sites (e.g., site 3 and site 4) can also show a large
difference in termination cover crop biomass (figure
S4) due to the uncaptured environmental and man-
agement differences. Therefore, these situations jus-
tify that cover crop planting parameters should be
adjusted from site to site with the MDF framework.
Meanwhile, more detailed environmental and man-
agement information (e.g. drainage condition, actual
planting density, seed mass, etc) is required to further
improve the performance of the MDF framework.

Utilizing time series data of satellite-based cover
crop aboveground biomass as model constraints
largely improves the applicability and scalability of
the MDF framework on quantifying cover crop eco-
system services. Remote sensing can provide spa-
tially large-scale observations of the target variable
with high temporal resolutions due to its ubiquit-
ous nature, while cover crop aboveground biomass
can now be reliably estimated by remote sensing

technology. On the one hand, remotely-sensed bio-
mass time series enables the model to better cap-
ture both the termination biomass and the grow-
ing trend of cover crops, largely reducing the risk
of calibrating wrong plant phenology parameters.
On the other hand, given the strong constraint cover
crop aboveground biomass has on SOC stock change,
which is mainly due to its contributions to important
SOC sources (Kutsch et al 2009, Araujo et al 2012,
Balakrishna et al 2017, Jian et al 2020) and has been
validated in previous studies on the field scale (Qin
et al 2023), theoretically we expect that improved
cover crop biomass quantification with remote
sensing-based observations should lead to improved
quantification of SOC change on the regional
scale.

Given the relatively high performance of the
current MDF framework, there are still spaces for
improvement in the following aspects. First, the
quality of the remotely-sensed cover crop above-
ground biomass estimation can be further improved
through (1) incorporating more field measurements
for the RTM-based surrogate model training, and
(2) performing cross-scale sensing (i.e. incorporating
airborne hyperspectral imagery-derived cover crop
aboveground biomass to improve scaling from field
to satellite pixel levels) (Wang et al 2023a). Second,
biomass data from other sources or data of other
crop traits, environmental stresses and management
information can be further incorporated as model
constraints or input. For example, in addition to cover
crop aboveground biomass, cover crop leaf traits (e.g.
N contents) and cover crop adoption information can
also be derived through cross-scale sensing (Wang
et al 2023b) to further constrain N cycle relevant
pathways and reduce information collection efforts
(Thieme et al 2020, Wang et al 2021). Meanwhile,
SOC stock and N leaching on the study sites can be
further measured to validate the simulated ecosys-
tem benefits. Last, the application of more advanced
MDF approaches (e.g. AI-based solutions and graph-
ics processing unit (GPU) computing) can effectively
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improve computational efficiency and extend the
application scale of the MDF framework to a broader
region (Guan et al 2023).

Apart from demonstrating the power of the MDF
framework, our results also provide some practical
implications for managing cover crops. The con-
strained cover crop planting densities range from
85 m−2 to 243 m−2 with an average of 139± 49 m−2

on all sites, showing a 63% decrease compared
with the recommended default value of 370 m−2.
Comparedwith the possibility that the actual planting
density is lower than the default value on all 13 sites,
this more likely indicates that the actual cover crop
germination rates are lower than expected. Therefore,
performing necessary management on cover crops
can be of great importance to ensure their growth and
ecosystem services. Possible measures include choos-
ing appropriate cover crop varieties and high-quality
seeds (i.e. high germination rate, low weed seed con-
tent), planting with drills to ensure proper seeding
depth as well as introducing follow-up management
practices (e.g., fertilization), and process-based mod-
els like ecosys can be used to select optimal manage-
ment practices for cover crops.

5. Conclusions

In this study, we proposed an MDF framework
that combines satellite-based cover crop above-
ground biomass with the process-based agroecosys-
tem model ecosys to better quantify the ecosystem
services of cover crops. Adding the biomass con-
straints significantly reduced the uncertainties in
simulated cover crop aboveground biomass, lead-
ing to a 17.90 ± 14.17 gC m−2 (29.0 ± 20.0%)
decrease in simulated aboveground biomass C and
a 0.62 ± 0.38 gN m−2 (35.0 ± 19.0%) decrease in
biomass N on average at cover crop termination.
The constraints are further passed on to the sim-
ulations of SOC accrual and N retention, result-
ing in a 4.27 ± 3.09 gC m−2 yr−1 (31.0 ± 20.0%)
decrease in simulated SOC accrual net benefits and a
0.18 ± 0.17 gN m−2 yr−1 (23.3 ± 19.7%) decrease
in simulated N retention net benefits. Our results
reveal the necessity of constraining the process-based
model with appropriate environmental variables, and
the proposed remote sensing-based MDF framework
provides an effective approach to quantify the envir-
onmental benefits of cover crops on a large scale.
Meanwhile, we also emphasize the importance of
properly managing cover crops to fully realize the
potential of their ecosystem services.

Data availability statement

The data cannot be made publicly available upon
publication due to legal restrictions preventing
unrestricted public distribution. The data that

support the findings of this study are available upon
reasonable request from the authors.

Acknowledgments

Authors acknowledge the support from the Illinois
Nutrient Research & Education Council (NREC
090273), NSF CAREER Award (NSF CBET 18-
47334 CAR), USDANIFA Program (AG 2018-68002-
27961), and Foundation for Food and Agriculture
Research (FFAR CA20-SS-0000000137).

ORCID iDs

Kaiyu Guan https://orcid.org/0000-0002-3499-
6382
Bin Peng https://orcid.org/0000-0002-7284-3010
Zhenong Jin https://orcid.org/0000-0002-1252-
2514

References

Adams H D, Williams A P, Xu C, Rauscher S A, Jiang X and
McDowell N G 2013 Empirical and process-based
approaches to climate-induced forest mortality models
Front. Plant Sci. 4 438

Araujo A S F, Leite L F C, Iwata B D F, Lira M D A, Xavier G R and
Figueiredo M D V B 2012 Microbiological process in
agroforestry systems. A review Agron. Sustain. Dev.
32 215–26

Balakrishna A N, Lakshmipathy R, Bagyaraj D J and Ashwin R
2017 Influence of alley copping system on AM fungi,
microbial biomass C and yield of finger millet, peanut and
pigeon pea Agrofor. Syst. 91 487–93

Blanco-Canqui H, Holman J D, Schlegel A J, Tatarko J and
Shaver T M 2013 Replacing fallow with cover crops in a
semiarid soil: effects on soil properties Soil. Sci. Soc. Am. J.
77 1026–34

Blanco-Canqui H, Shaver T M, Lindquist J L, Shapiro C A,
Elmore R W, Francis C A and Hergert G W 2015 Cover
crops and ecosystem services: insights from studies in
temperate soils Agron. J. 107 2449–74

Claverie M et al 2018 The harmonized Landsat and Sentinel-2
surface reflectance data set Remote. Sens. Environ.
219 145–61

Deines J M, Guan K, Lopez B, Zhou Q, White C S, Wang S and
Lobell D B 2023 Recent cover crop adoption is associated
with small maize and soybean yield losses in the United
States Glob. Change Biol. 29 794–807

Duan Q, Sorooshian S and Gupta V K 1994 Optimal use of the
SCE-UA global optimization method for calibrating
watershed models J. Hydrol. 158 265–84

Ellison A M 2004 Bayesian inference in ecology Ecol. Lett.
7 509–20

Gettelman A, Geer A J, Forbes R M, Carmichael G R, Feingold G,
Posselt D J, Stephens G L, van den Heever S C, Varble A C
and Zuidema P 2022 The future of Earth system prediction:
advances in model-data fusion Sci. Adv. 8 eabn3488

Grant R F 1991 The distribution of water and nitrogen in the
soil-crop system: a simulation study with validation from a
winter wheat field trial Fertil. Res. 27 199–213

Grant R F et al 2001 Interactions among CO2, N, and climate on
energy exchange of wheat: model theory and testing with a
free air CO2 enrichment (FACE) experiment Agron. J.
93 638–49

Grant R F 2004 Modeling topographic effects on net ecosystem
productivity of boreal black spruce forests Tree Physiol.
24 1–18

9

https://orcid.org/0000-0002-3499-6382
https://orcid.org/0000-0002-3499-6382
https://orcid.org/0000-0002-3499-6382
https://orcid.org/0000-0002-7284-3010
https://orcid.org/0000-0002-7284-3010
https://orcid.org/0000-0002-1252-2514
https://orcid.org/0000-0002-1252-2514
https://orcid.org/0000-0002-1252-2514
https://doi.org/10.3389/fpls.2013.00438
https://doi.org/10.3389/fpls.2013.00438
https://doi.org/10.1007/s13593-011-0026-0
https://doi.org/10.1007/s13593-011-0026-0
https://doi.org/10.1007/s10457-016-9949-4
https://doi.org/10.1007/s10457-016-9949-4
https://doi.org/10.2136/sssaj2013.01.0006
https://doi.org/10.2136/sssaj2013.01.0006
https://doi.org/10.2134/agronj15.0086
https://doi.org/10.2134/agronj15.0086
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.1111/gcb.16489
https://doi.org/10.1111/gcb.16489
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.1111/j.1461-0248.2004.00603.x
https://doi.org/10.1111/j.1461-0248.2004.00603.x
https://doi.org/10.1126/sciadv.abn3488
https://doi.org/10.1126/sciadv.abn3488
https://doi.org/10.1007/BF01051128
https://doi.org/10.1007/BF01051128
https://doi.org/10.2134/agronj2001.933638x
https://doi.org/10.2134/agronj2001.933638x
https://doi.org/10.1093/treephys/24.1.1
https://doi.org/10.1093/treephys/24.1.1


Environ. Res. Lett. 18 (2023) 094018 L Ye et al

Grant R F 2001 A Review of the Canadian Ecosystem Model
Ecosystem in Modeling Carbon and Nitrogen Dynamics for
Soil Management ed M J Shaffer, L Ma and S Hansen (CRC
Press) pp 173–264 (available at: http://eprints.icrisat.ac.in/
id/eprint/2033)

Grant R F and Robertson J A 1997 Phosphorus uptake by root
systems: mathematical modelling in ecosys Plant Soil
188 279–97

Grant R F, Wall G W, Kimball B A, Frumau K F A, Pinter P J,
Hunsaker D J and Lamorte R L 1999 Crop water relations
under different CO2 and irrigation: testing of ecosys with
the free air CO2 enrichment (FACE) experiment Agric. For.
Meteorol. 95 27–51

Grant R 1994 Simulation of competition between barley and wild
oats under different managements and climates Ecol.
Modelling 71 269–87

Guan K et al 2023 A scalable framework for quantifying field-level
agricultural carbon outcomes Earth-Sci. Rev. (https://doi.
org/10.1016/j.earscirev.2023.104462)

Huang J et al 2019 Assimilation of remote sensing into crop
growth models: current status and perspectives Agric. For.
Meteorol. 276–277 107609

Jian J, Du X, Reiter M S and Stewart R D 2020 A meta-analysis of
global cropland soil carbon changes due to cover cropping
Soil Biol. Biochem. 143 107735

Kalnay E 2003 Atmospheric Modeling, Data Assimilation and
Predictability (Cambridge University Press)

Kaspar T C, Radke J K and Laflen J M 2001 Small grain cover
crops and wheel traffic effects on infiltration, runoff, and
erosion J. Soil Water Conserv. 56 160–4

Kutsch W L, Bahn M and Heinemeyer A 2009 Soil Carbon
Dynamics: An Integrated Methodology (Cambridge
University Press)

Li Z et al 2022 Assessing the impacts of pre-growing-season
weather conditions on soil nitrogen dynamics and corn
productivity in the U.S. Midwest Field Crops Res.
284 108563

Mezbahuddin M and Grant R F 2016 Modeling hydrological
controls on variations in peat water content, water table
depth, and surface energy exchange of a boreal western
Canadian fen peatland J. Geophys. Res. 121 2216–42

NASA 2021 The North American Land Data Assimilation System
project phase 2 ( NLDAS-2) (available at: https://ldas.gsfc.
nasa.gov/nldas/v2/forcing) (Retrived 1 May 2021)

Peng B et al 2020 Towards a multiscale crop modelling framework
for climate change adaptation assessment Nat. Plants
6 338–48

Poeplau C and Don A 2015 Carbon sequestration in agricultural
soils via cultivation of cover crops—a meta-analysis Agric.
Ecosyst. Environ. 200 33–41

Potash E, Guan K, Margenot A, Lee D, DeLucia E, Wang S and
Jang C 2022 How to estimate soil organic carbon stocks of
agricultural fields? Perspectives using ex-ante evaluation
Geoderma 411 115693

Prabhakara K, Hively W D and McCarty G W 2015 Evaluating the
relationship between biomass, percent groundcover and
remote sensing indices across six winter cover crop fields in
Maryland, United States Int. J. Appl. Earth Obs. Geoinf.
39 88–102

Qin Z et al 2021 Assessing the impacts of cover crops on maize
and soybean yield in the U.S. Midwestern agroecosystems
Field Crops Res. 273 108264

Qin Z et al 2023 Assessing long-term impacts of cover crops on
soil organic carbon in the central US Midwestern
agroecosystems Glob. Change Biol. 29 2572–90

Thieme A, Yadav S, Oddo P C, Fitz J M, McCartney S, King L,
Keppler J, McCarty G W and Hively W D 2020 Using NASA
Earth observations and Google Earth Engine to map winter
cover crop conservation performance in the Chesapeake Bay
watershed Remote. Sens. Environ. 248 111943

Tilman D, Cassman K G, Matson P A, Naylor R and Polasky S
2002 Agricultural sustainability and intensive production
practices Nature 418 671–7

Tonitto C, David M B and Drinkwater L E 2006 Replacing bare
fallows with cover crops in fertilizer-intensive cropping
systems: a meta-analysis of crop yield and N dynamics Agric.
Ecosyst. Environ. 112 58–72

Udvardi M et al 2021 A research road map for responsible use of
agricultural nitrogen Front. Sustain. Food Syst. 5 660155

van der Tol C, Verhoef W, Timmermans J, Verhoef A and Su Z
2009 An integrated model of soil-canopy spectral radiances,
photosynthesis, fluorescence, temperature and energy
balance Biogeosciences 6 3109–29

Wang S et al 2021 Airborne hyperspectral imaging of nitrogen
deficiency on crop traits and yield of maize by machine
learning and radiative transfer modeling Int. J. Appl. Earth
Obs. Geoinf. 105 102617

Wang S et al 2023a Airborne hyperspectral imaging of cover crops
through radiative transfer process-guided machine learning
Remote. Sens. Environ. 285 113386

Wang S et al 2023b Cross-scale sensing of field-level crop residue
cover: Integrating field photos, airborne hyperspectral
imaging, and satellite data Remote Sens. Environ. 285 113366

Wang X et al 2020 Emergent constraint on crop yield response to
warmer temperature from field experiments Nat. Sustain.
3 908–16

Xia Y, Guan K, Copenhaver K and Wander M 2021 Estimating
cover crop biomass nitrogen credits with Sentinel-2 imagery
and sites covariates Agron. J. 113 1084–101

Yang Y et al 2022 Distinct driving mechanisms of non-growing
season N2O emissions call for spatial-specific mitigation
strategies in the US Midwest Agric. For. Meteorol.
324 109108

Zhou W, Guan K, Peng B, Tang J, Jin Z, Jiang C, Grant R and
Mezbahuddin S 2021 Quantifying carbon budget, crop
yields and their responses to environmental variability using
the ecosys model for U.S. Midwestern agroecosystems Agric.
For. Meteorol. 307 108521

10

http://eprints.icrisat.ac.in/id/eprint/2033
http://eprints.icrisat.ac.in/id/eprint/2033
https://doi.org/10.1023/A:1004280303150
https://doi.org/10.1023/A:1004280303150
https://doi.org/10.1016/S0168-1923(99)00017-9
https://doi.org/10.1016/S0168-1923(99)00017-9
https://doi.org/10.1016/0304-3800(94)90138-4
https://doi.org/10.1016/0304-3800(94)90138-4
https://doi.org/10.1016/j.earscirev.2023.104462
https://doi.org/10.1016/j.earscirev.2023.104462
https://doi.org/10.1016/j.agrformet.2019.06.008
https://doi.org/10.1016/j.agrformet.2019.06.008
https://doi.org/10.1016/j.soilbio.2020.107735
https://doi.org/10.1016/j.soilbio.2020.107735
https://doi.org/10.1016/j.fcr.2022.108563
https://doi.org/10.1016/j.fcr.2022.108563
https://doi.org/10.1002/2016JG003501
https://doi.org/10.1002/2016JG003501
https://ldas.gsfc.%2520nasa.gov/nldas/v2/forcing
https://ldas.gsfc.%2520nasa.gov/nldas/v2/forcing
https://doi.org/10.1038/s41477-020-0625-3
https://doi.org/10.1038/s41477-020-0625-3
https://doi.org/10.1016/j.agee.2014.10.024
https://doi.org/10.1016/j.agee.2014.10.024
https://doi.org/10.1016/j.geoderma.2021.115693
https://doi.org/10.1016/j.geoderma.2021.115693
https://doi.org/10.1016/j.jag.2015.03.002
https://doi.org/10.1016/j.jag.2015.03.002
https://doi.org/10.1016/j.fcr.2021.108264
https://doi.org/10.1016/j.fcr.2021.108264
https://doi.org/10.1111/gcb.16632
https://doi.org/10.1111/gcb.16632
https://doi.org/10.1016/j.rse.2020.111943
https://doi.org/10.1016/j.rse.2020.111943
https://doi.org/10.1038/nature01014
https://doi.org/10.1038/nature01014
https://doi.org/10.1016/j.agee.2005.07.003
https://doi.org/10.1016/j.agee.2005.07.003
https://doi.org/10.3389/fsufs.2021.660155
https://doi.org/10.3389/fsufs.2021.660155
https://doi.org/10.5194/bg-6-3109-2009
https://doi.org/10.5194/bg-6-3109-2009
https://doi.org/10.1016/j.jag.2021.102617
https://doi.org/10.1016/j.jag.2021.102617
https://doi.org/10.1016/j.rse.2022.113386
https://doi.org/10.1016/j.rse.2022.113386
https://doi.org/10.1038/s41893-020-0569-7
https://doi.org/10.1038/s41893-020-0569-7
https://doi.org/10.1002/agj2.20525
https://doi.org/10.1002/agj2.20525
https://doi.org/10.1016/j.agrformet.2022.109108
https://doi.org/10.1016/j.agrformet.2022.109108
https://doi.org/10.1016/j.agrformet.2021.108521
https://doi.org/10.1016/j.agrformet.2021.108521

	Improved quantification of cover crop biomass and ecosystem services through remote sensing-based model–data fusion
	1. Introduction
	2. Methods and data
	2.1. Overview of the MDF framework
	2.2. Study sites and field data collection
	2.3. Remotely-sensed cover crop biomass measurement
	2.4. Ecosys-based MDF
	2.4.1. Model overview
	2.4.2. Model setup
	2.4.3. MDF and result analysis


	3. Results
	3.1. Validation of remotely-sensed cover crop aboveground biomass
	3.2. Validation of ecosys performance in simulating cover crop aboveground biomass
	3.3. Quantification of difference between constrained and unconstrained simulations of cover crop aboveground biomass
	3.4. Quantification of corresponding changes in simulations of SOC accrual and N retention net benefits

	4. Discussion
	5. Conclusions
	References


