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Abstract—Many Internet of Things (IoT) applications require com-

pute resources that cannot be provided by the devices themselves.

On the other hand, processing of the data generated by IoT devices

and sensors often has to be performed in real- or near real-time,

i.e., with stringent latency requirements in constrained environments

(e.g., intermittent network connectivity and limited power envelopes).

Examples of such scenarios are autonomous vehicles in the form of

cars and drones where the processing and analysis of observational

data (e.g., video feeds) need to be performed expeditiously to allow

for safe operation of the vehicles and to deliver the results in a timely

fashion to the stakeholders of the mission. To support the compute and

timeliness requirements of such applications, it is essential to include

suitable edge resources to process these workflows, and to develop

an end-to-end system that can route the vehicles dynamically and

process and deliver mission-critical data and analyzed results. In this

paper, we develop and evaluate a dynamic scheduling approach that

considers complex tradeoffs between real-time constraints, network

availability, and latency sensitivity of the mission. We devise an opti-

mized route planning and data transmission schedule for drone flights.

The scheduling algorithm is encapsulated in a novel end-to-end ar-

chitecture (FlyPaw) and an associated adaptive drone mission control

system, which enables deployment and management of an integrated

cyberphysical system (CPS) – from real drone testbed to base stations

to edge-to-cloud resources. The planning algorithm takes into account

measured network communication characteristics, estimated uncer-

tainties of future data link connectivity, and data timeliness require-

ments of the mission to prioritize candidate decision tree solutions

based on a risk metric derived from Sharpe’s ratio. Our results show

that for given task sets, Net Time to Retrieve, our metric describing

the time required to perform end-to-end collection and downstream

processing of data, can be significantly reduced compared to other

naive approaches. The theoretical improvement provided by our

algorithm over other naive approaches is dependent on several factors

— task locations, network connectivity, processing times and available

resources, and is bounded by the duration of the drone flight.

Index Terms—edge computing, network-centric platform, cloud

and edge resource provisioning, network management, workflow

automation, Unpiloted Aerial Vehicle (UAV) systems, drone video

analytics

I. INTRODUCTION

We live in an era of data-driven research, which has been fueled by
the success of the Internet of Things (IoT) and its many applications.
This wide-ranging proliferation of sensors (from smart thermostats
in homes to networks of telescopes [1]) results in large amounts of
data. Data streams from IoT sensors have become so vast that trans-
mitting them to and processing them only at central sites (potentially
cloud data centers) is not feasible. As a result, many applications
rely on a combination of edge and cloud computing resources.

In contrast to cloud computing, edge computing offers smaller
amounts of computing resources with the benefit of low latency
communication and the possibility of aggregating sensor data
streams before passing information on to core cloud data centers.
These characteristics make edge computing attractive to data-
driven science applications that make use of sensors and require
high-volume data processing and low latency.

The combination of sensing, edge computing, and cloud
computing resources requires the creation and management
of complex workflows to support scientific and commercial,
data-driven applications. This includes the processing, analyzing,
and storing of data, where workflows utilize an arbitrary set of
networking, computing, and storage resources. Planning and execut-
ing such workflows is a complex task, which not only requires the
orchestration of resources in a timely, robust, and efficient manner
but also has to be optimized for performance, energy, resilience and
other unique attributes of these sensor data-driven applications.

This paper focuses on edge-to-core workflows for Unpiloted
Aerial Vehicles (UAV), a particular class of sensor data-driven
applications. We have selected these applications since UAVs have
become either the subject of research themselves or are used by
researchers to provide scientific observations, ranging from environ-
mental monitoring, disaster response, and wildfire monitoring, to
the survey of archeological sites [2]–[5]. UAV-based applications
also represent a category that is challenged by intermittent network
connectivity and highly fluctuating throughput, stringent power con-
sumption requirements, in addition to often being mission critical.

In this paper, we present an approach that takes these challenges
into account to devise a combined route planning and data
transmission scheme for UAVs, which is cognizant of the objectives
of the overall data collection task and available network and
computing resources. Our work is motivated by an optimization
problem that determines the best UAV flight path for a specific
mission, under the constraints of limited power/connectivity and
the timely delivery of data. In this work, we address this challenge
by developing a dynamic scheduling approach that is informed by
active network performance measurements.

In scenarios in which UAVs are used to provide real-time data
(e.g., video footage of a natural disaster), there is a trade-off that
has to be taken into account when planning the route of the vehicle.
While a mission plan might require a drone (a particular type of
UAV) to intersect with specific waypoints in a specific order, the
latter might be changed if it improves the overall delay between
data capture, transmission, and processing. This might lead to non-
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intuitive routes, where a drone backtracks to a certain waypoint
where there is high confidence in available network connectivity.
Such behavior would be based on the fact that backtracking will
result sooner in re-establishing network connectivity than continuing
on the originally planned route. Obviously, such backtracking
comes with increased power consumption and an increase in overall
mission execution time. In this paper, we develop and evaluate
a dynamic scheduling approach that considers these complex,
dynamic, inter-dependent, often conflicting factors to determine an
optimized route plan and data transmission schedule for UAV flights.

The approach presented in this paper is based on our previous
work on FlyNet [6], which extends an existing workflow
management system [7] by automated resource provisioning in the
edge-to-cloud continuum [8]–[10], workflow instrumentation [9],
and network service support [11]. The work presented in this paper
builds on these capabilities and innovates in a number of important
areas. Overall, this paper makes the following contributions:

• FlyPaw architecture. It presents a novel end-to-end archi-
tecture (FlyPaw) and an associated adaptive UAV mission
control system, which enables deployment and management
of a complex cyberphysical system (CPS) - from drones to
base stations to edge-to-cloud resources by leveraging a real
drone testbed — AERPAW [12], supported by the National
Science Foundation Platforms for Advanced Wireless Research
(PAWR) initiative [13]. This novel architecture enables drone
route planning under the consideration of mission-critical tasks
and network communication characteristics.

• Multi-objective, dynamic UAV route planning optimiza-

tion algorithm. We present and evaluate a new algorithm
that performs in-flight route planning for a UAV-based sensing
system, which is driven by the uncertainty of future data link
connectivity. Based on this information, the algorithm can
modify the path of the UAV in-flight to meet application-
critical deadlines. This route planning algorithm takes into
account measured network communication characteristics,
estimated uncertainties of future data link connectivity, and data
timeliness requirements of the mission to prioritize candidate
decision tree solutions based on a risk metric derived from
the Sharpe’s ratio [14]. Our results show that for given task
sets, the Net Time to Retrieve, our metric describing the time
required to perform end-to- end collection and downstream
processing of data, can be significantly reduced.

The remainder of the paper is organized as follows. Sect. II
introduces the end-to-end FlyPaw architecture and theassociated
drone control system. In Sect. III, we present the time optimized
planning routine and a thorough evaluation of the system. We
present the related work in Sect. IV. Sect. V concludes the paper.

II. FLYPAW ARCHITECTURE

A. AERPAW
The Aerial Experimentation and Research Platform for Advanced

Wireless (AERPAW) [12] is a National Science Foundation
supported research testbed at North Carolina State University
funded under the Platforms for Advanced Wireless Research
(PAWR) initiative [13]. The AERPAW team developed a system that
enables researchers to leverage semi-autonomously controlled drone
and ground-based rover vehicles, field deployed compute resources,

and several types of software defined radios including 4G LTE
and 5G transmitters and receivers. AERPAW has also developed
an emulator for software implementation and testing in advance
of submission for live flights with real vehicles. In partnership with
RENCI at the University of North Carolina Chapel Hill, AERPAW
has created a management platform for users to register and create
their own experiments, including the ability to share results and
even code with other system users. The AERPAW system allows
for many types of notional experiments utilizing different hardware
and software, and also permits users to take control of the vehicle
and compute systems to perform their own experiments. To ensure
legal compliance with FAA regulations, AERPAW provides a
software operator oversight layer that ensures vehicles cannot be
instructed to perform unsafe or illegal actions such as flying too
high or landing too fast, and can always be manually instructed to
return home. Aside from that, researchers are given the freedom
to design and execute their experiments as they wish.

AERPAW’s canonical experiments utilize preplanned flight
trajectories designed using the QGroundControl software system
for remote vehicle management [15]. Vehicles proceed in a
largely scripted manner with background processes running
continuously or through a cron job scheduler. In the first external
user-performed experiment using the AERPAW system, in an effort
to characterize the limits of the 4G LTE software defined radio
network, we executed a live flight around the perimeter of the
test field, periodically making command line-based iPerf network
performance measurements. In our experiment, the vehicle exceeded
the range limit of the 4G LTE network a short time after take-off
and did not regain it until the perimeter flight was nearly complete.
Although the vehicle was able to fly its path correctly in spite of
the lost datalink, no application layer data could be exchanged over
the bulk of the flight duration. This experiment provided insight
into the limits of the LTE software defined radio, and importantly,
led us to design a system where the air vehicle can dynamically
account for situations where the datalink is working and where it
is degraded or lost, with an on board plan to handle both scenarios.

B. The FlyPaw Software System

FlyPaw is the FlyNet project’s Python-based software architecture
for AERPAW, open sourced and available to researchers [16].
FlyPaw is intended to provide programmatic interfaces to vehicle
control and a template to integrate application processes within a
state machine framework. The system facilitates semi-autonomous
operations and task performance by the AERPAW UAV by ac-
counting for safety checks and dynamic states common to many
experiments. The framework is divided over multiple platforms, with
modules running on the mobile vehicle, on the base station, and op-
tionally on edge and cloud computing infrastructure. It establishes a
simple UDP-based communication protocol between air and ground,
along with a set of class objects for standard exchanges relating
to vehicle status, telemetry, network characterization, and mission
requests. It automatically performs preflight and in-flight safety
checks to prevent unsafe and unauthorized operations within the test
domain, and allows users to focus on implementing their specific
missions, state definitions, and integrating application wrappers.
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Fig. 1: Simplified representation of the FlyPaw state machine deployed from edge to cloud. Sample applications for a given mission
relating to bandwidth measurement and video collection and streaming are depicted.

C. Architecture

Underlying the FlyPaw architecture is the notion of a mission
manager agent running on a local ground-based computer called
the base station, and one or more UAVs that represent free-agent
workers, ready to perform a flight mission. Once activated, UAVs
persistently initiate requests to the base station until they are assigned
a mission. At present, researchers can create missions by defining a
series of waypoints in the open-source software suite QGroundCon-
trol [15], which creates a planfile. With the aid of a Python script
provided by FlyPaw, users can augment the planfile with associated
tasks at specific waypoints. Tasks in the planfile must have associ-
ated user-defined logic blocks within the system so that the drone
knows how to execute these. For example, a task requiring an iPerf
client call must be able to reference the Python-wrapped function for
making iPerf client calls, or know how to make an iPerf client system
call, including any necessary parameters and requirements. While it
is largely up to the researcher to integrate their application specific
functions within the system, the linkage with the task manager to
given tasks is simplified, and defining when they run – be it preflight,
after takeoff, inflight upon arrival at a waypoint, inflight between
waypoints, upon mission abort, or at landing – is laid out in various
state modules within the system. Figure 1 depicts our distributed
framework with pre-flight and in-flight states and select applications.

While FlyPaw is designed for users to create custom experiments,
it is their responsibility to appropriately implement the functions.
However, we believe that there is a shared aspect in how and where
these tasks are communicated to the UAV. At present, FlyPaw

includes function classes for commonly used applications such
as iPerf, ping, and ffmpeg, as well as a customized image transfer
module over UDP. Upon receipt of a mission, the UAV automatically
populates a task queue, which is an ordered instruction sequence
consisting of both vehicle and application level commands. The task
queue is flexible and allows for modifications in flight in response to
new information or if tasks cannot be executed as initially planned.

In order to facilitate complete workflows, users have the option to
request edge and cloud resources specific to a particular mission type.
These resources will be allocated and configured during the base
station’s mission initialization sequence using the Mobius resource
provisioning system [9]. Modules are provided for in-line resource
procurement on FABRIC [17] and Chameleon [18] testbeds. The
base station FlyPaw module includes Prometheus [19] and automat-
ically configures external compute resources so that compute and
network status information can be queried for explicit load balancing.
Additionally, FlyPaw automatically sets up the base station as a
forwarding gateway and configures routes on the UAV such that
it can communicate with edge and cloud servers over its wireless
datalink. At this time, cloud accessibility is only available within the
sophisticated AERPAW emulated system and not for live flights, as
a security precaution relating to the automatic control of the drone.

Once resources have successfully been allocated and have come
online, and the UAV has performed safety checks (GPS working,
battery charged, etc.) and mission specific checks (camera present,
waypoints within range, etc.), the vehicle is armed and takeoff is ini-
tiated. Once the UAV commences its mission, it regularly establishes
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Fig. 2: A plot of 4G LTE received signal power as a function
of distance from the transmitter. Over 10,500 samples depicted,
showing wide variation of received power, even at same distances.

communication with the base station by sending UDP messages in
an attempt to transmit its telemetry data. Upon receiving the message,
the base station acknowledges it as the drone awaits the response. If a
response is received, the UAV marks in its memory that radio connec-
tivity was successful in that specific location. While this doesn’t guar-
antee future connectivity at that location, it instills confidence and a
connectivity map is generated, offering the UAV the option to return
to those locations if needed to communicate with the base station.

Due to the unpredictable nature of communication between
the UAV and base station, the FlyPaw architecture is specifically
designed to enable missions to operate independently of the status
of the datalink. Figure 2 depicts a channel sounding scatterplot that
illustrates the significant deviations in received power even at equiva-
lent distances from the transmitter. This underscores the importance
of the drone to be able to autonomously make decisions in situations
where communication with the base station is unattainable. FlyPaw’s
state machine is defined to handle these contingencies on a custom
basis so the UAV has a default mechanism, either predefined or
dynamic, to proceed or abort regardless of the connectivity with the
ground. It is necessary to mention that connectivity with the UAV
for our purposes refers to the datalink connection and not the control
channel. For legal compliance, UAVs must always stay in range
of command and control signals, such that a manual operator can,
at any time, issue a “land” or “return home” command. However,
that is only an oversight layer as the vehicle is otherwise entirely
controlled via the datalink or with onboard processes. FlyPaw
incorporates the AERPAW provided aerpawlib Python library [20]
and uses MAVlink, the Micro Air Vehicle Communication
Protocol [21] for programmatic control of the vehicle. FlyPaw
provides logs from some independent modules of the overall flight
system, including the flight telemetry, the measured data rates, the
state transitions within the state machine architecture, as well as for
a few select image transfer and image processing applications. Also
included are Python scripts to merge independent logs, including
native AERPAW logs relating to wireless radio connectivity, into
common files for convenient timeseries and scatterplot analysis.
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application requirement (orange) is depicted, here 15mbps for 1440p
streaming video, with vertical dashed lines showing the distance
interval over which uncertainty must be taken into account.

D. FlyPaw Live Flight Experiment
In March of 2022, the FlyNet team conducted the first user-

created live flight test in the AERPAW testbed, with the vehicle semi-
autonomously controlled through the FlyPaw platform. The test was
simple, with the vehicle taking off and proceeding through a series of
27 waypoints at 30m above ground level, at each one making iPerf
measurements to the base station over TCP and logging the achieved
data rate and number of retransmissions. Data link connectivity was
provided via 4G LTE and the srsRAN software defined radio suite
[22]. Figure 3 depicts iPerf measured bandwidth results as a function
of distance from the eNB anntenna. The live flight test demonstrated
the capability to successfully hand off FlyPaw based experiments
designed by the FlyNet team members on the emulated system, over
to AERPAW staff to deploy on the UAV, the locally situated base
station, and using the software defined radio. The UAV performed all
preflight checks, took off, flew its intended path, achieved its tasks,
landed safely, and the experiment logs were collected successfully.

III. TIME OPTIMIZED PLANNING ROUTINE

A. Overview
Here we introduce an algorithmic approach to in-flight route

planning for a time-critical single UAV mission-oriented sensor
system [23] relating to real-time image collection and processing. At
its core, the time-optimized planning algorithm, henceforth “TOP”,
is dynamically controlling a single UAV to perform user-assigned
tasks as fast as possible. It is designed to react to a state in which the
drone cannot complete a task as planned, specifically a task held up
by a lack of network connectivity, rendering it unable to offload data
for further processing at the location at which it was collected. The
technique presented in this paper is generally applicable to problems
in which minimizing the “Age of Information” is an important com-
ponent of application utility, and where wireless network coverage
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(WiFi, LTE, point-to-point radios, or 5G) cannot be uniformly relied
upon throughout the flight path. The term Age of Information (AoI)
is used to describe the freshness or staleness of data. As stated by Liu
et al. [24], when it comes to mission critical data, a lower AoI will
result in higher confidence in decisions made based on the collected
information. As example, we consider the well-researched, highly
important use cases relating to wildland fire monitoring [3]–[5]
and real-time object detection [25]. Drones are typically sensitive
to weight and energy restrictions and resource-intensive data
processing workflows are likely to occur on edge servers or cloud-
deployed resources on the ground. The image collection is often only
the first step of a requested task, as stakeholder benefit does not take
effect until the data is transmitted and the results of the downstream
analysis are generated and provided back to users. In the wildland
fire case, these workflows include the detection of flames [3] and
smoke [26], often using convolutional neural networks (CNN) and
other computer vision techniques. Positive detections may also trig-
ger advection models making use of meteorological information and
ground fuels to model fire propagation [27]. These are potentially
time-consuming, hardware-dependent operations.

TOP attempts to minimize the overall time required to complete
workflows, which is a combination of gathering, offloading, and
performing secondary processing on the given set of independent
image collection tasks in the face of uncertain network connectivity.
For this scenario, we make two notable assumptions: i) the
processing of each individual frame or sequence holds incremental
value and does not require the completion of all tasks before a
certain level of utility is attained, ii) the vehicle is bound to flight
tracks that it can traverse in both directions, but does not have
full access to unrestricted airspace. These limitations constrain
the set of possible solutions for specific mission objectives and,
in many scenarios, represent a realistic model of flight operations.
For instance, in cases of wildland fires, drones usually need to steer
clear of areas with ongoing firefighting operations. Similarly, in
object detection applications, vehicles may be required to avoid
flying over densely populated or other sensitive areas.

TOP considers as input the estimated makespans of downstream
post-processing workflows, and whether workflows can be
executed in parallel or must be run serially. Processing criteria can
significantly affect the best collection strategy. For example, if tasks
must be individually processed in sequence, and each processing
task is time-consuming, it becomes potentially advantageous to
offload data throughout the flight and perform processing while
data collection is still ongoing, rather than creating a processing
backlog. Researchers can define static values representing their
workflow makespans, and the number of available threads as input
to TOP, which impacts the overall solution.

Furthermore, TOP evaluates the uncertainty of network connec-
tivity along the path and incorporates this information into the set of
potential solutions. In our experimental setup –using the AERPAW
emulator and the FlyPaw architecture– the vehicle transmits teleme-
try data via UDP over an LTE software-defined radio link [22] and
creates an internal map of where it received an acknowledgement
from the base station. In addition, the vehicle intermittently halts and
conducts TCP or UDP iPerf measurements to gather bandwidth esti-
mates. This procedure enables TOP to assess the level of confidence
that the vehicle will be capable of transmitting data at a projected
rate from that specific position in the future. However, estimating

the likelihood of connectivity in areas where previous measurements
have not been made is a challenge. Although physical equations
can be used to model connectivity and data rates as a function of
distance, transmit power, antenna gain, frequency, and the number
of users, as shown in Figure 2, even the received signal power is
highly variable at fixed distances from the transmitter. Consequently,
we do not attempt to estimate future network connectivity to a base
station based on these physical parameters but rely on either the
experimentally derived measurements within the AERPAW test
domain [12], [28], or by running a series of iPerf measurements
as shown in Figure 4 if available in suitable numbers for simple
modeling. If network connectivity across the airspace were well
understood in advance, the algorithm could be run in the preflight
stage and achieve a near-optimal solution. We further discuss how
connectivity confidence plays into the solution set subsequently.

B. Algorithm Execution

TOP is designed to be executed in-flight at ’haltpoints’, which
we define as places where a data collection task is requested (see
Figure 4), but cannot be completed due to a lack of connectivity at
that location. Upon reaching a task location, the image is collected
and by default, an attempt is made to immediately offload the data to
the ground-based processing resources. However, if that connection
attempt does not succeed, this becomes a haltpoint, which triggers
an iteration of TOP to determine the best course of action.

The available options for the drone at a haltpoint are few, given
our adherence to a tightly controlled airspace where vehicles are
bound to predefined tracks. The options are i) to ”hold”– to queue
the data and proceed along the given route until the next projected
opportunity to transmit the data in the presence of connectivity
presents itself, or ii) to ”block”– to turn back and return to a
previous location where connectivity is expected to allow execution
of the present task, before resuming subsequent tasks. By definition,
flight plan modifications that result in blocking (to achieve a
given task) delay the vehicle’s arrival time at future task locations.
Although it may seem counterintuitive, this can actually lead to a
shortened overall completion time, or makespan, for all tasks by
more evenly distributing downstream processing tasks.

Another possibility for applications that prioritize rapid
processing upon collection is to minimize AoI. In this case, blocking
can improve the collection strategy, so long as the utility gain for
a given task is not outweighed by the implied delay for future tasks.

When replanning at a haltpoint, TOP must take into account
the possibility that future task points may also be haltpoints. The
binary nature of this lends itself to the creation of decision trees
for evaluation purposes. Using the given uncertainty model, TOP
probabilistically estimates the likelihood that each subsequent task
will be a haltpoint, and creates the solutions where connectivity
is present and where it is not. Algorithm 1 describes the recursive
algorithm sequence. The solution in which we assume that
connectivity is not present results in a recursive iteration of TOP
and a fork in the decision tree. Figure 6 depicts such a tree, with the
net task set execution time depicted as a time series. Each decision
tree member is associated with an overall confidence metric
and measures of time, both described in more detail below. The
preferred weighting of these parameters is application specific and
exposed to the researcher within FlyPaw. Algorithm solutions are
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Fig. 4: Exemplary mockup of image collection mission around a simulated fire in the AERPAW testbed.

Fig. 5: A simple test mission displayed on QGroundControl. Yellow
line represents the connectivity boundary limit. Image collection
points here shown with colored outlines are all haltpoints.

determined according to weighted preference. TOP runs at present
as an exhaustive, brute force algorithm, considering all possible
solutions in the decision tree, with O(n2) complexity, scaling with
the number of tasks. We recognize that a very large task set would
potentially require TOP to be revised to reduce the search space.

It should be mentioned that any in-flight path changes must
be allowed within the physical limitations of the vehicle. This is
supported by the FlyPaw architecture, which provides a level of over-
sight with respect to battery consumption and the rejection of flight
plans that would risk exceeding capacity. At present, we do not im-
pose penalties on flights for the increased resource utilization result-
ing from blocking solutions, as long as the flight and flight tasks can
still be successfully completed. However, the total distance flown
could be taken into account as an indicator of resource consumption.

Algorithm 1 Pseudo code to generate predictive analysis tree.
1: if current state’s TaskQ is empty then

2: return . a solution has been reached
3: else

4: Block on Halting node with halted state NH ,returning NB.
. NB contains a TaskQ, with this task located at the head of
the queue for priority

5: while TaskQ is not empty do . using node NCb initialized
with state from NB

6: if action can be completed given the state of NCb then

7: Simulate Action on Virtual Drone popping this task
from the TaskQ

8: Adopt a new node for this executed action, set NCb

to this new node
9: else

10: Recursively Call Haltpoint on NCb

11: end if

12: end while

13: Hold on Halting node with halted state NH and halting task,
returning unhalted node NW .

14: while TaskQ is not empty do . using node NCh initialized
with state from NW

15: if action can be completed given the state of NCh then

16: Simulate Action on Virtual Drone popping this task
from the TaskQ

17: Adopt a new node for this executed action, set NCh

to this new node
18: else

19: Recursively Call Haltpoint on NCh

20: end if

21: end while

22: end if
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Fig. 6: A sample TOP decision tree depicting the time for net task
completion of test mission shown in Figure 5. Each line shown
represents a sequence of block and hold and transmit solutions for
each mission task. The best solution is to Block, i.e., to turn around,
at the first haltpoint task location (point 5), and thereafter to Hold,
i.e., to proceed, at the next 3 haltpoint locations (points 8, 12, 14),
as indicated by the bottom line in the graph.
C. Data Timeliness

The product of TOP is a decision tree of possible waypoint
sequences and outcomes. From this set of solutions, we can estimate
the distance, total trip time, uncertainty, and timeliness of each
solution. Data timeliness can be expressed as a funcition of the Age
of Information, (AoI), and Time to Retrieve (Tr). AoI represents
the time elapsed from the moment data is gathered (tcollect) to
when its associated processing is completed (tprocessed).

AoI=tprocessed�tcollect

From the definition of AoI, once collected, data starts to become
stale. Minimizing AoI may be particularly important when a tight
coupling of observation and reaction is necessary for satisfactory
task completion, as it prioritizes rapid completion of tasks after data
collection. To minimize AoI for a specific data item, it is crucial
to prioritize the timely delivery of that information to the relevant
stakeholder. Simultaneously, there is a notion of tardiness to collect
data for an event. Time spent before an image is captured accrues
on a per task basis. Therefore, efforts to minimize AoI of one
task have the potential to generate tardiness for subsequent tasks,
thereby degrading the relevancy of the image to the mission. Per
task tardiness is referred to as the Time to Capture (tcapture), which
can be expressed as the time elapsed from the mission start time,
or, preferably, as the additional delay from the minimum time that
the task could be captured from the mission start. By using delay,
we effectively normalize for distance from the start point such that
tardiness can be evaluated on a relative basis. Using delay also
represents the direct consequence of decisions to block, as a strategy
of always holding at haltpoints represents by definition the minimum
tcapture for all tasks given our current assumptions. Therefore:

tcapture=tcollect�tcollectmin

Per task Time to Retrieve is then

Tr=tcapture+AoI

The evaluation of timeliness on a full mission basis can be
measured as the net task sum of the AoI, of the Tr, or a weighted

Fig. 7: Gantt Chart depicting the start and end times processing
times for two solutions from the mission shown in Figure 5. The
best solution of blocking at the first haltpoint results in processing
occurring while the mission is ongoing and reduces backlog. For
this evaluation, we assume a single machine, sequential processing
pipeline, and 35-second runtime. This is consistent with some
Darknet YOLO processing times on CPU devices.

combination of the two. Minimizing net Tr is the fastest time that
all tasks could be completed. Figure 4 is a simple notional example
of how blocking can improve net Tr and. It shows an exemplary
mockup of an image collection mission around a simulated fire in
the AERPAW testbed, considering a vehicle path strategy and video
analytics post processing. The solution minimizing Time to Retrieve
is shown on left, depicting a hold/block/hold/hold approach. On the
right, is the naive solution, proceeding along the loop continuously.
Given a single server for image processing with 20s runtime, this
notional demonstration of TOP results in 6% faster completion
of all tasks, ⇠17% net Time to Retrieve reduction, and ⇠51% net
Age of Information reduction. Figures 5, 6, and 7 depict a real
experiment performed on the AERPAW testbed, similarly depicting
net Tr improvement by blocking. However as mentioned previously,
each solution is associated with a projected probability of success
and the fastest solution may be improbable for lack of connectivity.

D. Estimation of Uncertainty
In evaluating haltpoint solutions with an attempt to make

an optimal decision, risk must be considered. At present, risk
primarily represents the uncertainty associated with future data
link connectivity along the flight path and at later task points. Risk
models might also eventually consider physical risk to the drone
itself, or risk of mission failure should researchers be able to define
and quantify the circumstances that lead to such. We envision that
these could take the form of maximum allowed time for mission
completion, or perhaps the integrated flight time over a portion of
route deemed more dangerous for some reason.

Within the AERPAW testbed, our uncertainty estimates are
generated in a two-fold manner. For points we have not yet been
to, we estimate the likelihood of a usable connection as a function
of distance, using either previously collected datasets characterizing
connectivity and data rate, and/or by using measured connectivity
that is generated in flight as the drone transmits telemetry data
and makes iPerf measurements. Quantile regression analysis is
performed to determine the conditional probability distributions as
shown in Figure 3. Accuracy is sensitive to the number of samples,
particularly if the researcher chooses to use in flight measurements
exclusively. We prefer to use the a priori measurements within the
AERPAW testbed for this reason. However, as shown in Figure 2,
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Fig. 8: A visual representation of parameters associated with the
algorithm solution.

it is evident that components of connectivity can exhibit significant
variations even at similar distances, indicating that this estimate is in-
herently imperfect. The FlyPaw repository contains code to perform
quantile regression in R and Python and to merge iPerf and telemetry
logs to estimate connectivity changes as a function of distance.

Attempting to create a generalized approach to connection
certainty for arbitrary airspace is a difficult problem and beyond
the scope of this work.

This empirical description of network uncertainty for points the
vehicle has not yet been is complemented by iPerf measurements
taken during the mission. As the vehicle progresses through the
mission, FlyPaw periodically makes note of the bandwidth at given
locations using calls to iPerf. If connectivity is present and an iPerf
measurement indicates suitable bandwidth we automatically assign a
high probability of connectivity should we return to that point ( 0.95),
deferring to the measurements over the function of distance. Simi-
larly, if no connectivity was present at that location, we assume a sim-
ilarly low probability of connectivity at that point (0.05) in the future.

The uncertainty of a given solution is determined by multiplying
the connection uncertainties of each transmit task included within the
solution. We observe that the fastest possible solution may well be a
low-confidence solution depending on the location of the assumed
transmissions, making it quite possibly a less-than-optimal choice.

E. Solution Evaluation

The optimal solution can vary greatly depending on priorities and
weights. For each solution there is a set of specifications, including
a set of time benchmarks for each data set collected –images for
our initial applications. The solution specifications are currently
defined as follows: Distance flown, Net Age of Information,

Net Time to Retrieve, and Solution Uncertainty. Within each
solution, each task has individual metrics scored, those being Age
of Information, Time to Retrieve, Tardiness, and Uncertainty. Figure
8 depicts solution and data evaluation metrics.

With these fully evaluated, researchers can easily assign
customized weighted parameters on solution set metrics, or prune
out solutions through thresholds. In our evaluation, we decided
to give full weight to Net Time To Retrieve, as this represents the
fastest net time for the data to be processed and returned to users,
but certain applications may have other requirements.

Weighing a solution’s timeliness against the associated
uncertainty requires consideration. To evaluate each solution, we
compare them to the Naive solution. The naive solution corresponds
to holding at every haltpoint, i.e., effectively continuing through
the mission from start to end and sending data upon landing where
network connectivity is guaranteed. The naive solution, given our
assumptions, is the solution with zero tardiness. While this may
be sub-optimal, it represents a simple solution that may occur for
lack of a dynamic approach to data collection. In order to grade
each solution’s timeliness and adjust for uncertainty, we coin the
parameter Greed Ratio (Gr), informed by Sharpe’s Ratio [14].
Sharpe’s Ratio is a measure of performance adjusted for risk.
Typically it is used to examine a financial investment compared to
the risk-free asset, defining the performance, adjusted for the risk.

Sa=
E[ReturnRiskyAsset�ReturnRiskFree]

�RiskyAsset

Sharpe’s ratio attempts to characterize the reward for making a
risky decision and adjusting for said risk by taking the difference in
returns and adjusting for risk with the variability of the Risky Asset.
For a given solution i, here we propose measuring Risk Adjusted
Timeliness using the Greed Ratio defined as follows:

Gr =
TrNaive�Tri

1�ConnectionUncertaintyi
A solution with a larger Gr compared to another solution is typically
preferred, though for a given application one may prefer a higher
certainty of connection or faster execution regardless of certainty.
A negative Gr indicates that the naive solution has a lower net Tr
than the given solution. Maximizing Gr helps prune out fast but
highly uncertain Tr solutions, and slow but highly certain solutions.
The user may also choose to introduce a threshold such that low
confidence solutions are pruned out even if Tri<<TrNaive.

IV. RELATED WORK

Controlling and off-loading data from UAVs has been a very
active research area over the past few years. Among the first, Pitre et
al. [29] looked at route planning for joint search and track missions
through path optimization based on an objective function. An early
review by Triharminto et al. [30] presents several categories of route
planning algorithms to intercept moving targets. In contrast, we
currently assume that the targets for our UAV applications are not or
only very slowly moving. More recently, Zhou et al. [31] present an
approach based on reinforcement learning with the goal to improve
the convergence speed of UAV route planning. The benefits of this
approach are demonstrated through a simulation-based evaluation.
In contrast to our approach, none of these works consider the
(un)reliability of data communication networks as part of the route
planning approach with respect to scientific workflows.

A comprehensive overview of the state of the art of UAV route
planning is provided in Aggrawal and Kumar’s survey article [32].
While the article considers network communication for drones, it
does not incorporate the uncertainty of network communication
as we do in the approach presented in this paper.

Liu et al. [24] and Hu et al. [33] both provide very relevant
work regarding minimizing Age of Information (AoI). However,
they do not include downstream processing considerations and the
Time to Retrieve metrics. They make an attempt at generic network
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characterization through physical radio propagation parameters.
However, they assign constant values to bandwidth and noise power
that we do not have available within the real AERPAW testbed. The
work by Hu et al. [33] does not assume fixed trajectories making this
a more complex path planning and energy optimization problem,
but neither work takes into account connectivity uncertainty.

Ivancic et al. [34] evaluated the potential use of 4G LTE in
commanding UAV traffic and how the performance of the LTE net-
work affects the communication reliability and the application data
capabilities. Ateya et al. [35] explored novel algorithms to offload
data from drones keeping energy and latency in mind, while Kim et
al. [36] explored offloading of computations in edge to cloud scenar-
ios in an effort to optimize energy consumption of the UAVs. How-
ever, in their work, they do not consider dynamic routing decisions.

In our previous work [9], we demonstrated how a workflow
management system and a dynamic resource provisioning
component can work together to support data-driven science
applications. Specifically, we have shown the capability to
dynamically provision network links to transmit weather radar data
to computational resources that are also dynamically provisioned.
This system [9] was put in place to support the CASA [37] severe
weather forecast and warning system in the Dallas Fort Worth
area. We recently extended this data-driven science application to
support workflows that include UAVs [6], including for dynamic
path planning in free airspace around weather constraints [38]. We
have further refined this architecture by proposing a new network
service for data-driven workflows [11], which we have deployed
in an actual programmable network testbed [17].

V. CONCLUSION

In this work, we have developed and evaluated an architecture and
software suite, FlyPaw, which we believe can facilitate researcher
experiments using AERPAW. FlyPaw promotes programmatic
interfaces to the air and ground-based component systems of an
AERPAW experiment with its Python-based state machine frame-
work, allowing for dynamic decision-making and semi-autonomy,
while taking into consideration uncertain data links, and flight safety
parameters. It includes modules to allocate resources on NSF spon-
sored testbeds FABRIC and Chameleon Cloud, including the de-
ployment of image processing workflows, automatic configuration
and load monitoring with Prometheus, and network routing to seam-
lessly integrate the air-to-ground-to-cloud communications. FlyPaw
includes an innovative and tuneable algorithm to optimize UAV
route planning and task execution with considerations of the Age of
Information, uncertain data link connectivity along the vehicle path,
and downstream processing workflow makespans. It is important to
note that our evaluation of FlyPaw has been limited to the AERPAW
testbed, and our network uncertainty estimation relies on empirical
data collected by ourselves and fellow researchers. Despite these
limitations, we believe that the FlyPaw suite is extensible to generic
UAV, base station, and edge server deployments, with optional
connectivity to compute clouds. The FlyPaw architecture adheres to
the common airframe control standard Mavlink and is interoperable
with QGroundControl, both popular assets in the UAV community.

In future work, we plan to extend our network uncertainty
estimation to better model previously unknown airspaces. This is a
challenging problem as demonstrated by the highly variable power

measurements that result from real-world interference, blockage,
and propagation effects. AERPAW has recently introduced 5G data
link options, which we plan to characterize across the testbed.
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and E. Blasch, “Aerial imagery pile burn detection using deep
learning: The flame dataset,” Computer Networks, vol. 193,
p. 108001, 2021.

[4] X. Chen, B. Hopkins, H. Wang, L. O’Neill, F. Afghah,
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