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Figure 1: Examples of POV Cam footage. Note obfuscation of license plate, dashboard and pedestrians for privacy protection.

ABSTRACT

Amidst the replication crisis, it is increasingly clear that we need
to understand contextual factors that drive participant behavior,
because those factors influence the applicability of study findings
more broadly. For AutoUI, as we conduct interaction studies involv-
ing drivers, pedestrians, and other traffic participants, it is useful to
characterize the traffic contexts that human participants are famil-
iar with, because their prior experiences with traffic are likely to
influence their behaviors within the context of a controlled study.

To address this, we propose a new method, ‘POV (point-of-view)
camera-driven urban fingerprinting, which can be used to charac-
terize differentiating features of urban environments. We introduce
two approaches, Small-Scale Custom Instrumentation, and Large-
Scale Collection and Aggregation, and show how they can be used
to acquire a broad picture on the characteristics of any city. One
key benefit of POV camera-based data collection is that it better
captures the experiential aspects of traffic and road scenes than
methods such as satellite imaging. This work is the first to formalize
a specification for this data collection method by describing existing
work and outlining standards to serve as a baseline for downstream
research. This work posits the medium of crowd-sourced POVcam
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as a new and useful tool for transportation/ automotive interaction
studies and infrastructure analysis. Subsequently, we provide future
researchers with guidelines for characterizing urban traffic in cities
for interaction study design.
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1 INTRODUCTION

In conducting interaction studies involving drivers, pedestrians,
and other traffic participants, it is useful to characterize the traffic
contexts that human participants are familiar with, because their
prior experiences with traffic are likely to influence their behaviors
within the context of a controlled study. Understandings of qualita-
tive and quantitative similarities and differences between contexts
can help to understand where study findings might be applicable;
lab studies of driver stress in simulated urban driving scenarios in
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City A, for example, are more likely to be applicable to drivers in
City B if City A and City B were similar.

Open Data initiatives in cities worldwide can help provide ag-
gregate data about the urban traffic conditions, but this data is
often not fine-grained or temporally dense enough to capture what
it is that urban denizens experience in their city every day [30].
To address this issue, we propose an instrumented approach to-
wards urban traffic fingerprinting by collecting and analyzing data
from distributed mobile cameras that capture video footage from
the point of view of the agent (Point-of-View Cameras, or POV-
Cams), such as action cameras or dashcams. Camera-based urban
fingerprinting offers a methodological advancement in this regard,
providing researchers with reliable data to effectively formalize
the traffic characteristics of urban settings. By employing crowd-
sourced Point-of-View Camera (POVCam) data, this research offers
a new tool for detailed data collection and analysis, establishing
a framework that enhances the validity and reliability of traffic
interaction studies. We outline at two approaches: (1) small-scale
sampling by sending out individuals to get footage from the city
(we term this small-scale, custom instrumentation (SSCI), and (2)
leveraging crowdsourced video footage from networked dashcams
(or, large-scale collection and aggregation (LSCA). We demonstrate
the effectiveness of these approaches using New York City as a
model, though the methodology is adaptable to any urban setting.
This work is the first to formalize a specification for this data collec-
tion method by describing existing work and outlining standards
to serve as a baseline for downstream research.

Contribution Statement. In this paper, we present POVCam footage
as a novel, accessible, and low-effort resource to effectively get traf-
fic characteristic information from a city, which can be foundational
in setting up interaction studies. Our work is the first to formalize
a rigorous and reproducible specification for this data collection
method by describing existing work and outlining best practices. To
help bootstrap replication of this work, we also provide a GitHub
repository at https://github.com/FAR-Lab/urban-fingerprinting to
analyze footage gathered in the two approaches we discuss in this

paper.

2 RELATED WORK

This work outlines the use of POV cameras to characterize the
traffic experienced by people in everyday driving or pedestrian
activity. In many studies of cross-cultural differences, researchers
focus on differences in the driving skills, risk-perception, driving
behaviors, gaze patterns [32, 37, 38, 43, 47, 48]. Sometimes such
research is conducted in driving simulators, but often they are
based on self-reported responses from users on surveys. These
measurement mechanisms do not assess the obvious role that the
traffic environment plays on the driver actions, perceptions and
skills in each of their cultures. This is clearly a shortcoming, but
difficult to fault, because there is as yet no way to typify the driving
environments that any of the participants in these studies normally
experience.

In this section, we review the state of the art in traffic character-
ization and in the use of image datasets and datafeeds to analyze
traffic.
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2.1 Characterizing Traffic

In transportation research, researchers commonly characterize traf-
fic using aggregate planning-level analysis, keeping track of traffic
volume, congestion, delays and accidents for the purposes of iden-
tifying targets for traffic or safety improvement. Boarnet et al., for
example, developed a traffic congestion metric which relates the
number of vehicles against the capacity of the roadway to handle it
[5]. Another example is the annual Texas A&M Urban Mobility Re-
port!, which characterizes congestion (delay-hours per commuter,
fuel wasted, total cost) of different US cities, using data from INRIX?,
which is private-sector provider of travel time information for com-
mercial shipping and transportation. Other related research uses
networks of probe vehicles to monitor traffic speed as it changes in
key urban corridors [2].

More recent work addresses the dynamics of traffic, for exam-
ple, identifying typical travel patterns in traffic networks [23], or
accounting for heterogenetity of traffic in urban settings [39]. As
image processing grew in the 20th century, so did applications
rooted in traffic characterization; TITAN was an early example of
this, capable of analyzing 4 images per second to ascertain traffic
measurements like speeds, densities, flows, lane changes and queue
lengths [4]. More recent projects take advantage of inexpensive
web cameras and advances in computer vision to provide more
fine-grained analysis of traffic. Synder and Do’s STREET’s project,
for example, used a network of webcameras throughout the sub-
urban Chicago area to characterize traffic differences in different
communities. [45]. Now, emerging works use networked dashcams
to analyze pedestrian behavior [34], detect anomalies [17], and to
pursue road asset characterization [42].

2.2 Characterizing the experience of traffic

From the AutomotiveUI perspective, these types of traffic charac-
terizations in the previous subsection not entirely relevant to the
sense of traffic that study participants might have as drivers or
pedestrians. In many ways, our phenomenological experience of
a city is more like that captured by the Situationists in the 1960’s
[13]. The Situationists were an international organization of social
revolutionaries made up of avant-garde artists, intellectuals, and
political theorists engaged in the practice of the dérive, a method
of drifting through space to explore how the city is constructed, as
well as how it makes one feel. Kevin Lynch famously used the walk-
ing interview as a way to understand how people for mental maps
of their environments [29]. During the pandemic, Yavo-Ayalon et
al. employed Zoom over mobile phones to remotely interview peo-
ple as they traversed through the city to reflect on changes the
pandemic had wrought to their neighborhoods [51].

The advent of dash-cams, mobile phones and action cameras
makes it possible to capture the first-person experience of a jour-
ney. For example, in AutoUI 2021, Bito, et al. used developed auto-
summarization methods on user’s dash-cams to give people video
summaries of their road trips [3]. Ethnographers such as Barry
Brown and Eric Laurier have drawn upon the dashcam videos that
other people have uploaded to Youtube to analyze the experience
people have with the Tesla Autopilot [7], with Autonomous Ubers

!https://mobility.tamu.edu/umr/
Zhttps://inrix.com/
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[6], with their everyday commutes [25] and even to investigate the
meaning of different kinds of automobile beeps in India [26].

In our work, we strive to maintain the human point-of-view of
these instruments in the way that the ethnographers and automo-
tive Ul researchers have, but to aggregate these so that they are able
to typify key differences in urban traffic for the purpose helping to
account for the role of context in automotive studies. We strive, in
short, to characterize the experience of urban traffic at scale. Google
Street View is arguably the most similar product to crowdsourced
dashcam, with both products offering timestamped images of a
geographic area. GSV has a number of advantages, but none of
which make it more applicable to the task of generating behavioral
driving simulation parameters; in fact, some characteristics of GSV
make the task practically impossible.

The footage from GSV is higher resolution, and panoramic, mak-
ing observation and characterization of smaller objects like street
signs easier. Also, the general spatial coverage of GSV is presently
higher than that of dashcam; GSV makes every attempt to gather
footage for all roads in an area it offers coverage for. Despite this,
recent research finds lacking coverage across the ’time machine’
feature (ie. seeing all sampled images for a location, across GSV col-
lection projects) [44]; spatio-temporal instability of imagery dates
[11]; and only 44% of commuting routes being covered on average
across 45 small and medium-sized American cities [22]. Spatio-
temporal instability, in particular, means that images in the same
collection project may be from different dates. And, further, granu-
larity is not available at the time of day-level, as with dashcam data.
This is important; traffic patterns at 9am are significantly different
than those of 2pm [35].

3 METHODS

We present two POVCam approaches that represent data collection
and analysis at different scales, but both aiming to fingerprint an
urban environment.

3.1 SSCI: Small-Scale Custom Instrumentation,
fine control using Action Cameras

In pursuit of gaining an impression on how pedestrians and ve-
hicles interact in an urban environment and to ascertain traffic
counts, we recorded 28 hours of footage on-foot in and around
New York City over the Spring and Summer of 2023. We recruited
12 participants using convenience sampling from the university
participant database to record video footage of their daily commute.
This allowed us to get a wide variety of snapshots of the city at
different locations and time of day. Recorders used GoPro Hero 8
camera’ fixed to their body or backpack facing forward as a pedes-
trian, cyclist, or any other micromobility vehicle user, allowing for
a very similar perspective to eyesight. Besides qualitatively coding
the footage to categorize interactions, the goal is to understand the
nature and composition of traffic as a snapshot of the city. However,
the manually-intensive nature of qualitative coding [20] poses a
time and resource problem when dealing with hundreds of hours
of footage; hence we employed computational methods to isolate
relevant events, while minimizing ‘waste’ of useful footage.

3https://gopro.com/en/us
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This was done by deploying an object detection model to detect
intersections in our images, using proximity to zebra crossings, stop
signs, and traffic lights as surrogate indicators of the likelihood of
approaching an intersection. To that end, we incorporate a pre-
trained YOLO model [40] that detects these three artifacts, namely:
zebra crossings, stop signs and traffic lights. Then, we generate
clips of each piece of footage that depict intersections. We pad the
the starting and ending timestamp of each clip by 10 seconds, and
merge overlapping intervals between clips. This gives us a set of
temporally-disjoint clips, all predicted to depict intersections.

In the absence of GPS data (a limitation detailed in Section 4.1),
the aggregation of traffic metrics at the road level is unfeasible.
Nevertheless, it remains possible to assess traffic metrics at the
level of individual footage clips, categorized over time. This anal-
ysis is facilitated by the application of a pre-trained YOLO object
detection model, which identifies various traffic participants such
as pedestrians, bicycles, and motorized vehicles from footage clips.
This model, trained on the Common Objects in Context (COCO)
dataset [27], can discern up to 80 different object classes. With this,
we calculate metrics like the average number of vehicles per second*
within a clip. These metrics serve as proxies for simulating traffic
flows (NPCs: non-player characters) in virtual environments for
interaction studies. Furthermore, for a more detailed analysis, traffic
data can be segmented by vehicle type — differentiating among
cars, SUVs, trucks, buses, etc. — to better represent the diverse ve-
hicle mix typically seen in urban settings. This stratification allows
for a more nuanced understanding and simulation of urban traffic
patterns.

3.2 LSCA: Large-Scale Collection and
Aggregation, less control but more reach
using Nexar datasets

The alternative to individualized instrumentation is to build a data
fusion approach that takes independent cameras and unifies col-
lected footage over the dimensions of space and time. Several com-
panies are in the business of creating such datasets from dash cams,
and some have yielded data for early research explorations [15]
and [41].

One of the foremost producers of large-scale dashcam image data
is Nexar Inc.’, which we used in this approach due to established
coverage ([15], [41], and [12]). We developed software®. around
a consumer-grade Nexar API’ to download all of the image data
and metadata in New York City uploaded to the company’s servers
daily, processing hundreds of thousands of images per day. Nexar
uses proprietary algorithms to ensure their database of sampled
images is distributed throughout the depicted area, which makes
the data reliable for robust urban traffic characterization.

Nexar images are typically sourced from ridesharing vehicles,
and so there is noted distribution shift [15] between a random trip
taken by a random vehicle in the city and a randomly-sampled
Nexar image. To help address this, Nexar stores multiple images per

“This is done by counting the total number of vehicles in the entire clip of footage,
divided by the total number of frames, and multiplied by frames per second
Shttps://data.getnexar.com/, last accessed April 12, 2024

®Software is made available on GitHub at https://github.com/FAR-Lab/urban-
fingerprinting

https://data.getnexar.com/product/citystream/
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map cell, implementing a first-in-first-out queue based on image
recency.

We collected 29,852,687 images between August 2023 and Janu-
ary 2024. The distribution is visualized temporally in Figure 2. Our
goal is to, at the road segment level, compute metrics of average
pedestrian density and average vehicle density, stratified by time.
Such metrics can allow a representative simulation of traffic condi-
tions at a specific area in the city. We demonstrate proof-of-concept
of road-level traffic parameter generation in Figure 3. We take all
image data from three Thursdays in August 2023; the 17th, the
24th, and the 31st. Then, using the functionality of our toolkit, we
generate road-by-road, averaged pedestrian counts across all three
days. The Figure shows the distribution at four different times of
day (all Eastern time): 9AM, 2PM, 6PM, and 10PM.

4 CHALLENGES AND BEST PRACTICES

In adopting these approaches effectively, there are certain consid-
erations that can ensure the best results. We highlight the common
issues and challenges we faced in setting up this methodology, and
the subsequent suggested best practices.

4.1 Challenges with Geographic Localization

Knowing where a POVCam image or video was taken is imperative
to doing any sort of downstream analysis in a direct fashion. We
found that the Nexar dashcam imagery produced accurate GPS
coordinates for all surveyed locations, including dense parts of New
York City like the Wall Street neighborhood and Midtown South
neighborhood. However, in cases where the imaging device does
not contain built-in telemetry, or insufficiently-accurate location
sensing, it is necessary to add an additional tool to the imaging
setup. This is critically necessary for footage procured from the
SSCI approach using GoPros, since — as described in Section 5.1.6 —
the GPS information we found from the GoPro metadata, especially
for New York City, was too imprecise to be of use. This is likely due
to interference from tall buildings in dense, urban environments,
by a factor that makes the signal obsolete, as seen in Figure 4.
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Figure 2: Sampling density in our LSCA image distribution over time. The
. horizontal axis goes over time of day, and the vertical axis goes from the first
: day of coverage at the top, to the most recent at the bottom. More yellow
: areas indicate denser coverage, and darker blues indicate lower coverage. A
* clear positive correlation of daytime and frame density is visible, caused by
factors like commuting and human living patterns. White regions indicate a
complete lack of coverage; as can be seen, it is very rare (only 3 cells) for us
not to have a single image in any arbitrary one-hour length period.

Recommendation. To remedy this, we developed a simple appa-
ratus that can be used to extend the localization of the GoPro, while
still maintaining the portability and ease-of-use offered by the suite
of cameras. We require two items: an ESP32® or similar microcon-
troller, and a portable battery. We flash the BBC with firmware
provided by OpenHaystack [18] that allows location sampling from
Apple’s FindMy network, an Internet-of-Things (IoT) network that
relies on nearby Apple devices (phones, smart watches, tablets,
etc.) to triangulate location. Now, simply by plugging the micro-
controller into a battery pack and keeping it in close proximity to
the GoPro, we acquired accurate locations at a sufficient sampling
frequency to infer routes [28]. We visualize a sample run of this
tool in Figure 4b.

4.2 Storage Constraints

There is a direct relationship between temporal density of POVCam
footage and storage cost. In extension, there is a direct relationship
between footage resolution and storage cost. Compression remains
an active research area in the realm of videos & images [53], and so
it is still important to consider the maximum resolution footage we
need and the footage *density’ (that is, how many times per period
P we need N images in an area G).

Recommendation. We found that 720x1080 resolution images are
sufficient for surveying the built environment, vehicles on the street,
and other larger objects. For tasks like pothole detection or opti-
cal character recognition (OCR) of street signs, higher resolution
footage might be required. However, these are special cases that
require additional consideration, and are not typical use cases, in
our experience. We recommend pre-defining the footage resolution
prior to starting data collection; while it is possible to downsize
footage through downsampling and frame skipping [21], this adds
additional compute and time requirements at the post-processing
stage of a project, which hinders efficiency.

8https://www.espressif.com/en/products/socs/esp32
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Figure 3: Pedestrian density changes over time. Average number of pedestrians per road-segment-with-coverage in New York
City, aggregated across 3 Thursdays in the sampled data to get closer to a map of ’typical’ Thursday traffic. A clear increase in
pedestrian density is observable from morning to rush hour (around 5PM), and close-to-zero densities are visible on arterial
highways going into the city. A power-law colormap is used to match the distribution of pedestrian density (mean 1.80, standard

deviation 1.79).

4.3 Pre-processing Recommendations to
counteract false positives

There are certain pre-processing steps that can make POV camera
data more useful, including several image processing methods and
computer vision techniques, which we discuss presently.

4.3.1 Shadow detection and de-weighting. Shadows in urban
footage can confuse computer vision models and add false pos-
itives to the otherwise true distribution of pedestrian and vehicle
counts [19]. To help reduce this error, we train a model to detect
shadowed regions of images and reduce detection confidence from
those predicted regions.

Recommendation. We originally sought to explore the possi-
bility of addressing this with the implementation of the Meta
Segment Anything Model (SAM) by fine-tuning it with two dis-
tinct datasets under the framework previously established by Kir-
illov [24], and Chen [10]. Initially, we employed the Image Shadow
Triplets Dataset (ISTD) [46], comprising 1870 image triplets with di-
mensions 640x480, which includes original images, shadow masks,
and shadow-free images. This dataset did not yield optimal results
due to a mismatch between the dataset’s simpler, lower resolution
images and the complex, higher resolution footage from our action
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cameras. To address this issue, we explored alternatives and transi-
tioned to the CUHK-Shadow dataset [19], which better matches the
complexity and visual characteristics of our footage. CUHK-Shadow
is derived from diverse sources including urban scenes, vehicles,
and remote sensing images, offering a more relevant training envi-
ronment for our application. This shift significantly improved the
performance of our SAM model (now SAM-CUHK), as evidenced
by enhanced accuracy and fewer false positives in shadow detec-
tion on the same footage. This enhancement led us to implement a
de-weighting scheme in areas predicted to have shadows, further
reducing the rate of false positives and refining our model’s utility
in real-world urban settings, which is our recommended approach
to deal with shadows in collected footage.

4.3.2  Reflected Object Detection & Removal. POVCam footage can
be complex, full of people, cars, buildings, and other street fixtures.
In cities, we observe many reflective objects like windows and glass
pillars; standard object detection models will falsely label reflected
objects as true positives.

Recommendation. To remedy this, we recommend one of two
approaches. Firstly, it is possible to train a more robust computer
vision model (or new layers atop existing models) that detect and
filter out reflected objects; this is a large overhead. Alternatively,
there is work on specular removal ([50], [14], and [52]) that can
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be used to pre-process footage before analysis with a standard
classifier like YOLO.

4.4 Other Considerations for Post-processing

When pursuing more complex analysis, it becomes essential to
merge the results of an analysis with POVCam data with other
spatio-temporal datasets.

In [15], the authors took detected distributions of police vehi-
cles and merge them with American Community Survey (ACS)
demographic data that produced correlations of police vehicle de-
ployments with median household income, race, and other key
demographic factors. In [41], the authors bootstraped the training
of a sidewalk scaffolding detection model by filtering for training
data near known scaffolding permits in the NYC Department of
Buildings publicly-available permit dataset. As shown in these pa-
pers, merging POVCam data with public spatial and demographic
datasets is one of its most valuable characteristics.

4.4.1 Geographic merges. When working with geographic data,
it is important to keep the coordinates of the POVCam data and
the coordinates of any merging datasets in the same projected
coordinate plane. Cartesian (latitude/longitude) coordinates are
not accurate enough for fine-grained analysis of proximity, i.e.,
matching POVCam images to corresponding crowdsourced citizen
complaint (like the 311 system adopted in cities nationwide in the
United States ([49], [33], and [9])), and will need to be projected
[31]. Further, it is important to consider that an additional element
of processing is needed to determine whether a POVCam image
actually ‘depicts’ a sought-after object. This is only possible if the
telemetry data of the POVCam includes information about camera
heading; if so, it then becomes possible with basic trigonometry to
determine not only if an image is close enough to a set of query-
ing coordinates, but also if it faces in the right direction. This is
necessary when looking for smaller, static objects like bus stops,
scaffolding [41], or street signs.

4.4.2  Temporal merges. The same rule applies when working with
longitudinal data and reporting results over a time grouping T; it is
important to set granularity such that there is a non-zero amount
of data for as many bins as possible in the distribution of T.

4.4.3  Distribution shift. In both SSCI and LSCA data collection
approaches, we identify statistical problems with making claims
about populations. For example, it is incorrect to draw conclusions
about the entire bound of New York City when only having images
from Manhattan commuters.

Recommendation. We recommend a statistical intuition to ac-
count for this. Logically, the process is to upweight images from
areas that are under-represented in a dataset during the model train-
ing process. However, this requires that the dataset contains at least
some footage in every grouping G elected to present analysis over.
This can be harder to do in cities, such as San Francisco, which have
less overall footage, compared to cities like New York, which have
more (see Figure 5). As Figure 1a shows, there is clearly an inverse
relationship between spatial area and the rate of overall penetration;
a key element in analytical projects utilizing POVCam large-scale
imagery is to select the right spatial granularity. To find the right
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granularity, it is critical to start small and decrease granularity
(i.e. move from H3-6 to H3-7, and so on) until the overwhelming
majority of areas contain footage.

4.5 Using the Toolkit

To help bootstrap replication of this work, we provide a GitHub
repository at https://github.com/FAR-Lab/urban-fingerprinting to
analyze footage gathered both with the SSCI and LSCA approach.
For the SSCI approach, our script takes an individual MP4 video clip
(or clips, if run in batch) and outputs the average number of pedes-
trians, bicycles, cycles, cars, trucks, trains, and buses, as described
in Section 3.1. For the LSCA approach, the functionality described
in the Graph class can be utilized, which reads in Nexar images
from a folder, pairs the image data with matching metadata, and
computes average traffic counts for each aforementioned medium
over two dimensions: road edge and time. Note, there is an inverse
relationship between time delta and frame density. This approach
assumes access to Nexar data, however, with modifications, this
can be adapted to any other source of POVCam data.

5 DISCUSSION

Now, we discuss tradeoffs between the small-scale custom instru-
mentation (SSCI) and large-scale collection and aggregation (LSCA)
data collection approaches, potential applications of collected data,
future work, and privacy & ethics considerations.

5.1 Trade-offs between SSCI and LSCA
approaches

5.1.1 Choosing a data moat. How ‘deep’ (temporally) or ‘wide’
(spatially) of a data moat is required is a great factor in selecting
an approach. SSCI, at the typical scale of data achievable from the
efforts of a small academic team, is well suited for projects that re-
quire data from a small geographic area, over a small period of time.
An additional advantage of SSCI is the availability of continuous
footage; while theoretically available in the LSCA approach, storage
constraints make it currently unavailable in the contemporary com-
merical market. We observe this possibility in our SSCI-compliant
project; commuters record their commute every day through the
same route, fixing a variable that is only at best approximated in the
LSCA approach. LSCA, when using commercial products like that
of Nexar, is well suited for projects that require dense data from a
large geographic area, over any period of time. An important caveat
is that historical data is often limited due to data replenishment,
as described in Section 3.2. Even so, With proper tuning of frame
collection algorithms, we can craft a more temporally-dense or
more spatially-dense sample, depending on need. This also allows
researchers to make representative conclusions about an entire
area; when we have images from every neighborhood in a city, it
becomes possible to not only characterize the city as a whole, but
also characterize individual neighborhoods. Current offered prod-
ucts that comply with LSCA only offer non-sequential images; that
is to say, analyzing a continuous interaction that occurs over say,
600 subsequent frames, is impossible. This limitation may diminish
with storage & compute innovations, but at present, only applica-
tions that work with non-continuous footage are possible with this
approach. Generally, objects of interest with low pixel ’half-lives’
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(b) OpenHaystack-powered GPS. Participant collecting footage
was taking a subway trip in North Brooklyn, and stopped to run
errands.

Figure 4: GPS Traces

(or, objects that move nontrivial distances in short periods of time)
are hard to detect with non-continuous footage.

5.1.2  Camera perspective. One important advantage of the SSCI
paradigm is that the camera perspective is not fixed. In our study,
researchers had participants strap action cameras to their chest,
producing footage from the pedestrian point-of-view. Anywhere
an action camera can be mounted can be depicted; so, off-road ve-
hicles, aircraft, drones, and consumer vehicles are also all within
scope. Inversely, with existing LSCA-compliant approaches, footage
comes from the fixed perspective of vehicle dashboards; for most ap-
proaches requiring surveying of the street, this is not an important
limitation.

5.1.3  Privacy. Another key privacy-oriented advantage of the SSCI
approach is that consent is implicitly given via the user turning
the camera on and revoked by turning the camera off. When hav-
ing study participants record their commutes for our project, we
saw this in action; some participants didn’t care much about their
individual privacy, leaving the cameras on sometimes for several
minutes after arriving home. Others were sure to only turn the cam-
era on after walking a street or two away from their home, ensuring
that signal about their address was not embedded in the footage.
However, in-house processing is required to properly obfuscate
footage at a standard offered by comparable LSCA approaches,
seen in Figure 1. We hope to make this overhead more manageable
by including a YOLO-based pedestrian and license plate footage
anonymization tool in our toolkit (described in Section 4.5). For
LSCA-based approaches, additional privacy protections can be de-
rived from the fact that these fast-moving objects are not traceable
with current LSCA-compliant products. We expound on privacy
considerations further in Section 5.2.

5.1.4 Cost models. A prominent disadvantage of the SSCI ap-
proach is cost; we pay participants $15 / hour for footage, which is
a steep price to pay with increasing scale. The LSCA approach is
able to amortize these costs across thousands of vehicles, bringing
prices down to a few hundred dollars per tens of thousands of im-
ages [1]. However, the LSCA approach is not easily replicable; the
overhead required to set up such a system is often infeasible for any
entity with marginal resources, including academics, non-profits,
and smaller government agencies. As such, the most realistic route
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forward is to rely on private companies that are focused on crafting
data collection in a way that maximizes revenue.

5.1.5 Standardization. A disadvantage of the SSCI approach, at
least in terms of standardization, is the required human-in-the-loop
component of data collection. Humans are required to turn the
camera on and turn the camera off, which sometimes leads to acci-
dents where footage is not recorded at all on a commute, or where
footage is recorded far too long (i.e. continuing into a participant’s
place of residence). When using this approach, post-processing that
filters out data close to a place of residence is highly recommended.
On the other end, the LSCA approach is not as customizable, and
more standardized. Coverage is limited to wherever and whenever
the data source has cameras, and is only customizable if this is a
part of the source’s business model. This is useful for most research
purposes, as it guarantees a quality of standardization necessary to
make statistical conclusions about posed research questions.

5.1.6  Telemetry. Often embedded in the SSCI approach are imag-
ing devices like GoPros with poor GPS localization abilities. Espe-
cially in large cities where the urban landscape comprises of tall
buildings, poor GPS reception makes adequate localization impossi-
ble. As seen in Figure 4a, GPS traces from our body cameras provide
unacceptably off-position coordinates; we found that it would log
coordinates in Jersey City, across state lines, despite the participant
being situated in Midtown Manhattan. This forces an additional
overhead of either compute (i.e. detecting intersections with com-
puter vision methods instead of simply aligning coordinates with
street map data) or hardware (i.e., the Internet-of-Things-based
telemetry solution we developed.) If this overhead is undesirable,
leverage the LSCA approach for accurate telemetry data at the per-
frame level, including latitude/longitude coordinates and camera
heading (i.e. which direction the camera/vehicle is actually facing).

5.2 Privacy / Ethics

5.2.1 SSCI approach. We mention preliminary privacy concerns
with the SSCI approach in Section 5.1.3. To discuss further, privacy
is more at risk due to the small participant pool size typical of this
approach. Whereas in the LSCA approach, data collection vehicles
can be anonymized by proxy of being one of thousands and being
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Figure 5: Varying image frame densities in different American cities. New York has much higher coverage than San Francisco
over the same 7-day period. Even so, coverage on major roads and arterials remains sufficient for traffic characterization across

both cities.

sampled & scrambled before storage, the research team is directly
responsible for data storage, obfuscation, and handling in the SSCI
approach. As this approach requires interfacing with human data
collectors, Institutional Review Board (IRB) approval will likely be
required before the start of data collection. Inversely, work using
LSCA-compliant data [15] was IRB-exempt.

5.2.2  LSCA approach. There are serious privacy-rooted and ethi-
cal considerations at play when utilizing networked POVCams to
collect data, with either the homegrown or large-scale approach.
Geilser notes a cultural embedding in views towards individual
privacy; when Google Street View was rolled out in 2007, American
pushback was minimal compared to the general outrage expressed
by Germany, despite evidence of equal legislative rights to an ’invi-
olate personality’ [16].

5.2.3 On-edge processing. As edge computing devices become
more powerful & smaller in form factor, rigorous analysis will
become possible on-premises; companies like Hayden.AI are al-
ready able to utilize this, having on-board computers on city buses
[8]. When image data never leaves the computing device, you have
an embedded design assurance of privacy for those depicted in
the footage (unless of course, the analysis being pursued requires
individual-level identification).

5.2.4 Obfuscation. The alternate to on-edge processing is to
stream footage off-premises of the recording device, and run post-
processing on the data that obfuscates pre-determined regions of
the image. Pre-determination might come from geometric bounds
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(for example, if you know the bottom 150 pixels of an image depict
contents of a vehicle dashboard, crop that out), or computer-vision
based inference. For research purposes, we have found the YOLO
library of object detection models very useful for blurring pedestri-
ans, automobiles, bicycles, and motorcycles in POVCam footage.

5.3 Limitations

We want to clarify that the fingerprint of urban traffic data provided
by SSCI and LSCA provide representation but not “ground truth”
about what is going on in the city, because the sampling methods
are sparse and provide only some representation of the whole of
urban traffic. In locations where the sampled data coincides with
higher-temporal-resolution data, we can establish what percentage
of vehicles, pedestrians and other road users are captured by the
sporadic samples; what implications this has for the capture rate
outside of these validation points is unclear. In future work, it would
be useful to develop statistical methods to measure the sampling
quality and the confidence interval for these fingerprint methods.

5.4 Future Work

As transportation research with large-scale POVCam expands, it
will be interesting to see the new ways in which researchers pre-
process, manipulate, and visualize this data. With the two contem-
porary approaches being at separate poles (either homegrown and
small-scale or purchased and large-scale), we envision a third op-
tion that strikes a sort of compromise. City fleets are often quite
large; for example, New York City operates over 30,000 vehicles
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[36], much larger than the 6,000 vehicle fleet private companies
like Nexar are able to assemble. A city or publicly-owned fleet of
vehicles offers several advantages to that of solely private vehi-
cles. To get a better coverage — and subsequently, understanding
— of the characteristics of a city, it is important to have access to
several different types (in a sense of, typical routing) of vehicles.
For example, buses offer a fixed traversal of an identical route. In
contrast, roving vehicles like police cars offer a more sparse, yet
far-reaching sample of vehicles (similar to the pool of ride-sharing
vehicles utilized by Nexar). This would help create a much more
robust characterization of a city to set up interaction studies.

6 CONCLUSION

In conclusion, we have introduced POVCam footage as a way to
extract traffic-related data from urban environments, which can
help illuminate the influence of contextual factors in interaction
studies for the AutomotiveUl community. We have illustrated two
approaches for data collection and analysis, Small-scale Custom
Instrumentation, and Large-scale Collection and Aggregation, and
show how these were used to characterize daily traffic. By ap-
plying computer vision to captured data, it is possible to gain in-
sight on the urban traffic environment at scale. This method im-
proves upon traditional traffic counts, providing more precise data
for enhanced urban planning and traffic management. A GitHub
repository containing resources for analyzing footage collected
through the two approaches elucidated in this paper is provided at
https://github.com/FAR-Lab/urban-fingerprinting.
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