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Abstract—A recent line of research has been investigating deep
learning approaches to wireless positioning (WP). Although these
WP algorithms have demonstrated high accuracy and robust
performance against diverse channel conditions, they also have
a major drawback: they require processing high-dimensional
features, which can be prohibitive for mobile applications. In
this work, we design a positioning neural network (P-NN) that
substantially reduces the complexity of deep learning-based WP
through carefully crafted minimum description features. Our
feature selection is based on maximum power measurements and
their temporal locations to convey information needed to conduct
WP. We also develop a novel methodology for adaptively selecting
the size of feature space, which optimizes over balancing the
expected amount of useful information and classification capability,
quantified using information-theoretic measures on the signal bin
selection. Numerical results show that P-NN achieves a significant
advantage in performance-complexity tradeoff over deep learning
baselines that leverage the full power delay profile (PDP).

Index Terms—Convolutional neural network, KL divergence,
Minimum description length (MDL), Wireless positioning

I. INTRODUCTION AND RELATED WORK

Wireless positioning (WP) systems provide location awareness

in many mobile applications, from intelligent vehicles to

inventory control. Typically, WP is conducted using a set of

sensors that exchange signals with a target device to obtain

measurements that are informative for location estimation. Ultra-

wideband (UWB) sensors are popularly used for this purpose,

as they communicate on a large bandwidth that provides high

distance resolution1 for accurate positioning. UWB is also known

to have high signal-to-noise ratio (SNR) and penetration ability,

from which more reliable WP can be performed [2].

Existing WP algorithms can be mostly categorized into two

classes: geometric methods and fingerprinting methods [3].

With geometric methods, distance-dependent measurements, e.g.,

received signal strength (RSS) and time of arrival (TOA), are first

acquired by the sensors. Then, traditional estimation techniques,

e.g., weighted least squares or gradient descent, are applied to

predict the target location. However, geometric methods are

generally prone to high errors when the channel condition

is harsh. For example, TOA measurements under a strong

non-line-of-sight (NLOS) condition are often unreliable, and

compensation techniques are needed to recover performance [4].

Fingerprinting methods, on the other hand, take a data-driven

approach, relying on a pre-acquired set of labeled measurements

1In the IEEE 802.15.4 standard [1], UWB radio pulses are designed with
the maximum duration of 2 ns, which yields a distance resolution of 0.6 m.

(i.e., with the location information being available for each

measurement). The labeled data can be used either for non-

parametric estimation as new measurements arrive, e.g., through

nearest-neighbor methods, or for training parametric models,

e.g., support vector machines (SVM).

For fingerprinting methods, large dimensional data, e.g.,

power delay profile (PDP), is often used to achieve robustness

against diverse channel conditions, and the models employed

to handle large dimensional data are becoming increasingly

complex as well. Recently, WP based on deep learning has

been considered [5], where neural network (NN) approaches

have shown improved performance across different channel

conditions and positioning environments, e.g., via convolutional

neural networks (CNN) [6] and gated recurrent units (GRU) [7].

Nevertheless, using PDP as learning features for WP imposes

a large bandwidth and/or long latency on a sensor network, as

it must be measured and stored for each positioning instance.

Also, NNs with high-dimensional input features may require

high computational power and associated hardware costs to

support real-time positioning rates [8]. These constraints can

be undesirable in mobile settings where both latency and cost

are critical factors, e.g., consider the requirements of WP in

vehicular applications. On the other hand, there exist some

works in WP that rely on lower dimensional input features,

e.g., the approach in [9] where NNs combined with a linear

estimator operate on TOA and RSS measurements. However,

their performance is still heavily impacted by channel conditions,

and need to be combined with additional learning tasks like

ranging error detection [10] anyway. This emphasizes a steep

tradeoff between performance/robustness and complexity in WP.

Summary of contributions. In this work, we develop a novel

WP technique which reduces complexity compared with PDP-

based deep learning without significantly impacting performance.

We summarize our contributions as follows:

• We design a positioning neural network (P-NN) that employs

the largest power measurements and their temporal locations

as its features. Compared to PDP, the feature set has

significantly reduced dimensions yet still provides information

needed to conduct accurate WP.

• As a component of P-NN, we develop a method for adapting

the size of our features to preserve performance based on the

channel conditions. Our method adopts principles of model

order selection and uses the criterion which we formulate
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(a) Layout of sensor and target spaces (b) Channel propagation with clusters

Fig. 1: Illustrations of positioning spaces (left) and channel propagation (right).

based on information-theoretic and classification capability

metrics that quantify the impact of varying the number of

power measurements used.

• We provide a set of numerical experiments to evaluate P-NN.

The results show that our minimum description feature set

provides accuracies that approach the PDP-based baseline

while using less than 20% of the feature size, thus achieving

a desirable performance-complexity tradeoff.

II. SYSTEM MODEL

As shown in Fig. 1a, we assume M single-antenna sensors in a

rectangular sensor space defined by the length parameters dx, dy,

and dz. We denote the location of sensor m ∈ {0, 1, . . . ,M−1}
using ℓ

s
m = [xs

m, ysm, zsm]⊤. We are interested in a target that

is positioned outside the sensor space but inside a cylindrical

target space defined by the radius dr and height dh. We assume

both the sensor and target spaces to be centered at (0, 0, 0), and

set dh > dz and dr > ∥dx

2 +
dy

2 ∥2 such that the sensor space is

always placed inside the target space.

The overall WP procedure is illustrated in Fig. 2. Suppose

that a target located at ℓ = [x, y, z]⊤ transmits a reference signal

pulse s(t) that is known to both the target and sensors. The

signal received by sensor m is then expressed as [11]

rm(t)=

L∑

l=0

Kl−1∑

k=0

αm,l,k s
(
t−dm

c
−Tm,l−τm,l,k

)
+wm(t), (1)

where L is the number of propagation paths imposed by channel

clusters present in the target space (i.e., l = 0 refers to the line-

of-sight (LOS) path), and Kl is the number of rays existing

in each path l. We denote the complex channel gain using

αm,l,k = am,l,ke
jϕm,l,k , where am,l,k is the weight obeying

Nakagami-µm,l,k distribution with the scale value Ωm,l,k and

ϕm,l,k is the uniformly distributed phase. wm(t) is the zero-

mean complex Gaussian noise with variance σ2
m.

With dm denoting the Euclidean distance between the target

and sensor m (Fig. 1b) and c being the speed of light, dm/c
represents the TOA of the LOS path. Tm,l is the relative delay

of path l with respect to the LOS path, which is expressed as

Tm,l =

{
0 if l = 0, (LOS path)
∥ℓcl−ℓ∥2+∥ℓsm−ℓcl∥2−dm

c
if l > 0,

(2)

where ℓ
c
l = [xc

l , y
c
l , z

c
l ]

⊤ is the location of cluster that imposes

path l ∈ {1, . . . , L}. τm,l,k is the relative delay of ray k with

respect to Tm,l. Hence, τm,l,0 = 0, ∀m, l. For k > 0, we assume

each ray follows Poisson process of the ray arrival rate κ [11].

The pathloss of each path is expressed as [11]

Target

Wireless Channel

Sensors

Data Fusion Center

Fig. 2: An overall diagram on wireless positioning.

βm,l,k = E[a2m,l,k] = Pm

(
dm/dm

)−ξ
Ss
mSc

l e
−Tm,l

Γ − τm,l,k
γ , (3)

where Pm, dm, and ξ are respectively the reference power,

reference distance, and pathloss exponent. Ss
m and Sc

l are the

random shadowing applied to sensor m and path l, respectively.

Γ and γ are respectively the path and ray decaying constants.

With (3), each pathloss becomes strongly dependent on the

channel propagation distance, which allows the channel paths

to convey spatial correlation.

To avoid signal interference, we assume that the signal s(t)
is transmitted over a frame of duration Tf such that Tf >
maxm,l,k(

dm

c
+ Tm,l + τm,l,k). Upon receiving the frame, each

sensor breaks it down to Nb = ⌊ Tf

Tg
⌋ temporal bins, where Tg is

the integration period. Then, for the signal of bandwidth W , the

power contained in each temporal bin n ∈ {0, 1, . . . , Nb − 1}
of sensor m is measured via energy detection [12], [13]

εm,n =
1

2W

∑2WTg−1
i=0

∣∣∣rm
(
nTg +

i

2W

)∣∣∣
2

, (4)

and εm = [εm,0, εm,1, . . . , εm,Nb−1]
⊤ becomes the instant PDP

vector measured at sensor m.

Each sensor m generates a data set Dm from εm and transfers

it to the data fusion center (DFC). Using the collected set

D = {Dm}M−1
m=0 , the DFC estimates the target location. In

this work, we frame our WP as an Nz-zone classification task

for the following reasons. First, rather than coordinate-level

localization, positioning via Nz spatial zones is often sufficient

in many mobile applications. Note that the value of Nz can

be adjusted to satisfy the positioning sensitivity. Second, it is

more difficult to obtain coordinate-labeled training data than the

zone-labeled one. Hence, we define our positioning task using a

function f : D → ρ̂, where ρ̂ ∈ {0, 1, . . . , Nz− 1} is the output

indicating one of the Nz zones. Let ρ ∈ {0, 1, . . . , Nz − 1}
denote the zone in which the target is truly located. Then, the

target is correctly positioned if ρ̂ = ρ. In Fig. 3, we provide

example layouts for Nz = 8 and Nz = 32, where the zones are

created using radius and angle for mobile settings.

III. POSITIONING NEURAL NETWORK (P-NN)

A. Features of Minimum Description Length

Many WP algorithms directly use PDP data (i.e., D =
{εm}M−1

m=0 ) to achieve good performance. Processing such

high-dimensional data, however, may increase the operation

requirement (e.g., bandwidth, memory, and power). Here, we

follow the principle of minimum description length (MDL) [14],

which defines that the best model for describing data is one

with the smallest size, and propose to use only a small number

of the largest power measurements and their temporal locations.
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Fig. 3: Zone layouts with Nz = 8 (left) and Nz = 32 (right). Red circles
indicate sensor positions.

Suppose that each sensor m receives the signal rm(t) and

measures the PDP vector εm of size Nb. The elements of εm are

then sorted to yield ε
ord
m = [εord

m,0, ε
ord
m,1, . . . , ε

ord
m,Nb−1]

⊤, where

εord
m,0 ≥ εord

m,1 ≥ . . . ≥ εord
m,Nb−1. Next, we denote the index vec-

tor bord
m = [bord

m,0, b
ord
m,1, . . . , b

ord
m,Nb−1]

⊤, where bord
m,n is the index

of the element εord
m,n in εm (i.e., bord

m,n indicates the temporal

location in εm where the n-th largest power has been measured).

The sensor then takes the first F entries of ε
ord
m and b

ord
m to

generate Dm = {εord
m,0, . . . , ε

ord
m,F−1, b

ord
m,0, . . . , b

ord
m,F−1} of size

2F and transfers it to the DFC, resulting in a set D of size 2FM .

The key motivation for our feature set is an assumption that

information needed for accurate WP is more likely present in the

temporal bins of the largest powers. Effective TOA estimation

algorithms, e.g., [13], [15], are based on this assumption and use

the power threshold to detect signals. Since both RSS and TOA

of the detected signals become useful information for WP [3],

we use both ε
ord
m and b

ord
m to generate our feature set.

Using PDP is informative as the entire NbM measurements

are perceived as an image for NNs to train and learn. However, if

only a small fraction of Nb measurements actually convey useful

information, it is more desirable to process those measurements

only. However, taking the largest powers from Nb measurements

(i.e., the first F entries of εord
m ) can essentially lose information

within the time domain. Hence, we directly include the temporal

information (i.e., the first F entries of bord
m ) into our feature set.

Compared to having a PDP of size Nb, using our feature set

reduces the dimension by a factor of 2F
Nb

(e.g., F = 5 and Nb =

100 yield the size reduction by 1
10 ). Since deep learning

algorithms (e.g., CNN of per-layer complexity that quadratically

increases with feature dimensions [16]) typically involve large

data to be stored, transferred, and/or processed, reduction in

feature dimensions can result in benefits such as less storage,

smaller bandwidth, and lower computational complexity.

B. Network Architecture and Operation

The overall architecture of our P-NN is illustrated in Fig. 4.

From the collected data D, we separate the power and time

measurements, normalize them (using mean and standard

deviation) [17], and generate two M × F matrices E =
[εord

0,0, . . . , ε
ord
0,F−1; . . . ; ε

ord
M−1,0, . . . , ε

ord
M−1,F−1] and B = [bord

0,0,

. . . , bord
0,F−1; . . . ; b

ord
M−1,0, . . . , b

ord
M−1,F−1]. We feed each E and

B into a separate NN first to handle the data obtained

from two different domains. Here we use two convolutional

layers with rectified linear unit (ReLU) activation to capture

spatial correlation across both the measurements and sensors.

The outputs of two separate networks are then flattened and

Convolution Fully connected ReLU Softmax

Co
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16
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Fig. 4: Architecture of our positioning neural network (P-NN).

concatenated to be fed to a set of two fully connected (FC)

layers with ReLU activation. The last layer is designed with Nz

neurons and softmax activation to output a classification vector

that is directly translated to ρ̂. The latter set of FC layers is to

combine the information separately extracted from E and B

and determine the output for our zone-based positioning task.

To train our P-NN, we pre-acquire a training set of size D,

where each data point indexed by i ∈ {0, 1, . . . , D−1} consists

of the set D(i) = {D(i)
m }M−1

m=0 and zone index ρi for its label.

The network is trained offline via Adam optimizer. During the

testing phase, the feature set D is obtained from the sensors

in real-time and forward-fed through the NN to determine the

positioning outcome ρ̂.

IV. ADAPTIVE FEATURE SIZE SELECTION

As discussed in Sec. III-A, the F largest powers and their

temporal locations are collected from each sensor to form

our feature set of size 2FM . Here we develop a strategy to

adaptively select the value of F as the number of measurements

to be taken by each sensor for accurate WP varies by channel

conditions. To determine the value of F , we adopt the principle

of model order selection [18] and develop a unique feature size

selection method. In the following, we define three metrics that

are used to evaluate the effectiveness of our feature set.

1) Information coming from F signal bins: Note that taking

the F largest power measurements for our feature set can be

seen as assuming F out of Nb bins to contain the signal. Since

each sensor measures the power according to (4), these F signal-

contained bins are assumed to follow non-central chi-square

distribution [12], which we approximate using central chi-square

distribution of probability density function (PDF) given as [15]

f(x;ψ2, λ, ν) =

(
1

2η2

) ν
2 x

ν
2−1

Γ( ν2 )
exp

(
− x

2η2

)
, (5)

where η2 =
√

2νψ4+4ψ2λ+(νψ2+λ)2

ν(2+ν) with ψ2, λ, and ν being

the non-central chi-square parameters and Γ(·) is the Gamma

function. The rest Nb−F noise-only bins are assumed to follow

central chi-square distribution [12] of the PDF given as

f(x;ψ2, ν) =

(
1

2ψ2

) ν
2 x

ν
2−1

Γ( ν2 )
exp

(
− x

2ψ2

)
. (6)

Note that, with λ = 0, only ψ2 and ν characterize (6).

Using multiple measurements of ε
ord
m from each sensor as

samples, we can compute ε
ord = [εord

0 , εord
1 , . . . , εord

Nb−1]
⊤, where

εord
n is the power of the n-th largest temporal bin averaged over
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both the sensors and measurements. Using (5) and (6), we define

the joint PDF of F non-central and Nb − F central chi-square

variables and derive the likelihood of having ε
ord as [15]

ln f(ε̄ord;ψ2
0 , . . . , ψ

2
Nb−1, λ0, . . . , λF−1, ν)

=
F−1∑

n=0

−ν

2
ln(2η2n) +

ν − 2

2
ln(ε̄ord

n )− ln Γ
(ν
2

)
− ε̄ord

n

2η2n

+

Nb−1∑

n=F

−ν

2
ln(2ψ2

n) +
ν − 2

2
ln(ε̄ord

n )− ln Γ
(ν
2

)
− ε̄ord

n

2ψ2
n

. (7)

Note that (7) is characterized by Nb values of ψ2
n, F values of

λn, and a single value of ν = 2WTg. Since we do not have

the knowledge of {ψ2
n}Nb−1

n=0 and {λn}F−1
n=0 to evaluate (7), we

estimate each term using

ψ2
F =

1

Nb − F

Nb−1∑

n=F

ε̄ord
n ≈ ψ2

n, ∀n = 0, . . . , Nb − 1, (8)

λ(F )
n = ε̄ord

n − ψ2
F ≈ λn, ∀n = 0, . . . , F − 1. (9)

Using (8) and (9), we now define the estimated likelihood of

having ε
ord when the F largest powers are taken for our feature

set (i.e., F bins are assumed to contain signals) as

LLF = ln f(ε̄ord;ψ2
F , . . . , ψ

2
F , λ

(F )
0 , . . . , λ

(F )
F−1, ν). (10)

For a given ε
ord, the value of (10) varies by F , and we utilize

this metric to evaluate the expected amount of information

when F measurements are taken for our feature set. Note that

the log-likelihood is an effective metric popularly used for the

information theoretic model order selection [14], [15], [18].

2) Information acquisition probability: Another metric we

define is the probability of acquiring the useful information

when we consider the F largest power measurements. Due to

the time-varying nature of wireless channels, the power across

the Nb temporal bins are randomly measured at each positioning

instance. In other words, despite the effort to generate our feature

set using only the signal-contained bins, it is possible for the

set to include measurements from the noise-only bins. Such a

case is not desirable since data with no useful information can

degrade the performance of our P-NN.

Thus, for a given value of F , we quantify the chance of

our feature set to take measurements from the signal-contained

bins. Recall that taking the F largest power measurements is

to assume F signal-contained bins out of Nb. First, we define

P
(F )
th = (εord

F−1 + εord
F )/2 be the power threshold that separates

the first F bins from the rest Nb − F bins. Our logic is that

the feature set will likely include these signal-contained bins

if their power is measured greater than P
(F )
th . Hence, using (8)

and (9), we define the probability of a signal-contained bin

n ∈ {0, . . . , F −1} to have the power greater than P
(F )
th as [13]

p(F )
n = P

{
εord
n

ψ2
F

>
P

(F )
th

ψ2
F

∣∣∣∣
λ
(F )
n

ψ2
F

}

= Q ν
2

(√
2(λ

(F )
n /ψ2

F )
2,

√
2P

(F )
th /ψ2

F

)
, (11)

where Q ν
2
(·, ·) is the ν

2 -th order Marcum Q-function [19]. Based

on (11), we define the acquisition probability of our F largest

powers to include the measurements from f ∈ {0, 1, . . . , F}
signal-contained bins as

P
(F )
f =

∑
q∈Q(F )

f

∏F

i=1(p
(F )
i−1)

q[i](1− p
(F )
i−1)

(1−q[i]), (12)

where Q(F )
f is the set of all F -length binary vectors containing

f ones (i.e., Q(F )
f considers all F !

f !(F−f)! cases where f out of

F bins have their power greater than P
(F )
th ). The product term

in (12) computes the joint probability of each case in Q(F )
f , and

the summation provides the overall probability. Note that (12)

quantifies the chance of taking f useful measurements when

we consider the F largest measurements for our feature set.

3) Inter-zone Kullback-Leibler divergence: Dissimilarity

among the class distributions is one of the key factors that

impact classification performance, and how we form our feature

set directly affects this dissimilarity. Hence, for a given value

of F , we propose to quantify the dissimilarity across the data

samples from each zone via Kullback-Leibler (KL) divergence

and use it for our feature size selection. To evaluate KL

divergence, the PDFs must be known. Since we only have

empirical measurements (i.e., training data), we take the k-

nearest neighbors (KNN) density estimation approach to directly

estimate the KL divergence [20]. If we subgroup the training

data by each zone in terms of our feature set and denote each

group using Dz
z for z ∈ {0, 1, . . . , Nz − 1}, the estimated KL

divergence between the zone z and z′ using the KNN density

estimation with u nearest neighbors is given by

D̂u(Pz||Pz′) =
F

|Dz
z|

∑

x∈Dz
z

log
ru,z′(x)

ru,z(x)
+ log

|Dz
z′ |

|Dz
z| − 1

, (13)

where ru,z(x) is the Euclidean distance between x and its u-

th nearest neighbor in Dz
z . Now we define the average KL

divergence upon taking the F largest power measurements as

KLF = 1
N2

z

√
F

∑Nz

i=0

∑Nz

j=0 D̂u(Pi||Pj), (14)

which we use to quantify how effectively our feature set of

size 2FM can separate the classes. Note that, regardless of

the distributions being compared, (13) yields a steady increase

with F due to the volume expression used in the KNN density

estimation. Hence, a factor of
√
F is applied in (14) to account

for the increase in the expected Euclidean distance across F .

Using the metrics (10), (12), and (14), we now formulate our

feature size selection criterion, which is expressed as

F ⋆= argmax
F∈[Fmin,Fmax]

(
ϵ

F∑

f=0

P
(F )
f

f

F
LLF −LL0

︸ ︷︷ ︸
(a)

+(1−ϵ)KLF︸︷︷︸
(b)

)
(15)

where (·) implies the normalization with respect to maxF (·)
and ϵ ∈ [0, 1] is the weight parameter. Since our criterion is

the weighted sum of (a) and (b), we force the range of both

(a) and (b) to be [0, 1] by normalizing {LLF −LL0}Fmax

F=Fmin
and

{KLF }Fmax

F=Fmin
. Our selection criterion in (15) reflects two factors:

the effective amount of information, i.e., (a), and classification

capability, i.e., (b), from taking the F largest powers and

their temporal locations. Note that we compute LLF −LL0 to

exactly quantify the increase in information upon taking the F
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TABLE I: Numerical values of the key parameters used in our feature size

selection steps. ψ2
F , λ

(F )
n , and P

(F )
th

are in the unit of 10−7.

F 4 5 6

ψ2
F 5.23 4.39 3.89

{λ
(F )
n }F−1

n=2 12.13, 7.27 12.97, 8.11, 5.07 13.46, 8.60, 5.56, 2.45

LLF −LL0 4.651 5.099 5.326

P
(F )
th

10.98 7.91 5.79

{p
(F )
n }F−1

n=2 0.92, 0.57 0.99, 0.83, 0.52 0.99, 0.95, 0.72, 0.35

{P
(F )
f

}F
f=3 0.44, 0.53 0.09, 0.49, 0.42 0.01, 0.20, 0.55, 0.24

(a) in (15) 0.7213 0.7857 0.7912

KLF 16.48 16.64 16.28

largest measurements. To account for the chance that our F
measurements include only f ones that are actually useful, we

multiply f
F

and the acquisition probability P
(F )
f to LLF −LL0.

Example. We provide a numerical example of our feature

size selection using the setting of 15dB SNR and LOS condition.

For brevity, we set Nb = 10, [Fmin, Fmax] = [3, 8], and ν =
2. From the given setting, we obtain ε̄

ord = [53.9, 26.8, 17.4,
12.5, 9.46, 6.35, 5.22, 4.06, 3.76, 2.55]× 10−7, where the first

five entries contain the signal. In Table I, we provide some of the

numerical values computed for the given example with ϵ = 0.5.

Using the last two rows of Table I, we evaluate our criterion

values for F ∈ [3, 8] to be {0.79, 0.76, 0.89, 0.88, 0.87, 0.85}
and determine F ⋆ = 5 based on (15). As shown in Table I, the

given ε̄
ord provides a steady increase in LLF−LL0 from F = 4

to F = 6. However, a larger F also increases the chance of

taking measurements from the noise-only temporal bins, which

contributes to the decrease in p
(F )
n and results in a negligible

increase in the effective amount of information. Hence, our

selection criterion determines F ⋆ = 5 to be the number of

measurements to be taken for our features.

V. NUMERICAL EVALUATION

We conduct a set of numerical experiments to evaluate our

P-NN. We consider a rectangular sensor space of dx = 6 m,

dy = 3 m, and dz = 2 m with M = 12 sensors and a cylindrical

target space of dr = 10 m and dh = 4 m. We consider the

residential model for UWB channel [11], for which we generate

L randomly located channel clusters using Poisson distribution

of mean L = 3 and set Kl = 6 for all l. For Nakagami

distributions, we assume µm,l,k follows log-normal distribution

of mean 0.67 dB and variance 0.28 dB and Ωm,l,k = βm,l,k,

∀m, l, k [11]. We set κ = 1.5 ns, Γ = 25 ns, γ = 5 ns, and

ξ = 2 and consider Pm = −45 dBm and dm = 1 m for all

sensors [11]. We assume both Ss
m and Sc

l follow zero-mean

log-normal distribution with 3 dB variance [11]. We assume

W = 2 GHz, Tf = 200 ns, and Tg = 2 ns to have Nb = 100.

For each sensor m, we define SNR as E[βm,0,0]/σ
2
m, where the

expectation is over the target space. For NLOS channel, we set

αm,0,k = 0 for all m and k to remove the LOS path. For the KL

divergence estimation, we use u = 30.

To compare our P-NN with existing algorithms, we consider

CNN-LE [6] and NN-LCS [9] as the baseline. Note that CNN-

LE and NN-LCS respectively use PDP and TOA/RSS as their

features. For the training phase, D = 30, 000 target locations

were randomly generated, and a pair of D(i) and ρi was
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Fig. 5: An illustration of training (left) and testing (right) sets in a 2D plane.
For the training set, same color implies the same classification zone. For the
testing set, redder color indicates lower classification accuracy.

TABLE II: Zone classification rates (in percent) of P-NN with different values
of F . The rates achieved using F ⋆ in (15) are indicated in bold. We set
ϵ = 0.3(or 0.5) for the LOS(or NLOS) channel scenarios.

Scenario # SNR F = 4 F = 5 F = 6 F = 7 F = 8 F = 9 F=10

LOS #2

20dB

91.31 92.24 91.62 91.52 91.21 91.09 90.69
LOS #4 89.07 89.97 89.28 89.39 88.71 87.76 87.33

NLOS #2 87.09 87.33 87.62 87.91 88.22 87.81 87.71

NLOS #4 75.16 76.76 77.46 79.54 79.82 80.28 80.58

LOS #2

5dB

62.82 62.11 62.14 61.02 60.44 60.10 59.65
LOS #4 61.00 60.20 59.18 58.34 57.90 58.45 57.66

NLOS #2 46.80 45.06 44.25 43.17 43.25 42.80 42.81

NLOS #4 48.52 46.98 46.59 46.32 45.77 44.70 44.95

obtained for each location. We used Adam optimizer of learning

rate 0.001, and the training was performed over 50 epochs

with the random batch size 256. For the testing phase, a set

of D and ρ pairs were generated from 6, 000 random target

locations, and the performance of each WP algorithm was

measured by comparing each predicted output ρ̂ with ρ. An

visual illustration of our training and testing sets is provided in

Fig. 5. For statistical significance, the result was averaged over

20 simulation runs, and five independent scenarios were used.

Feature size selection: We demonstrate the effectiveness of

our feature size selection method given in Sec. IV. In Table II, we

provide the performance (in zone classification rate) of our P-NN

using different values of F over various channel conditions. For

each row, the numerical value in bold indicates the performance

obtained using F ⋆ from our method. We observe that training our

P-NN with F ⋆ can maintain high performance with a relatively

lower feature size. This verifies that taking the largest power and

time measurements constitutes minimum description features

for navigating the performance-complexity tradeoff. Overall, our

feature size selection can adaptively determine the dimensions

of our features and lead to high WP performance.

Classification performance: Next, we compare the perfor-

mance of P-NN with the baselines. In Figs. 6 and 7, we provide

classification rate vs. SNR plots for LOS and NLOS channels,

respectively. For P-NN, we determine F ⋆ from a range [4, 10].
We observe that the performance of NN-LCS in both plots is

significantly lower, demonstrating the difficulty of achieving

good WP performance from a small-sized feature. Compared to

NN-LCS, both CNN-LE and P-NN provide better performance.

Especially in low SNR, P-NN outperforms CNN-LE as it

discards the measurements from noise-only bins, the power

of which become greater with low SNR, and thus prevents

them from being used in the NN training. Given that the

performance is competitive between CNN-LE and P-NN (i.e.,
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Fig. 6: Performance vs. SNR of different WP
algorithms with LOS channels. Feature sizes for
CNN-LE and NN-LCS are 1200 and 24, respectively.
Feature size for the proposed ranges from 72 to 240.
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Fig. 7: Performance vs. SNR of different WP
algorithms with NLOS channels. Feature sizes for
CNN-LE and NN-LCS are 1200 and 24, respectively.
Feature size for the proposed ranges from 72 to 240.
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Fig. 8: Classification rates obtained with 10, 15, and
20 dB SNRs by different WP algorithms (left) and
the number of dimensions (right). For P-NN, we
consider F ∈ [4, 10].

one outperforms the other depending on the SNR level), our

P-NN, which takes only the largest measurements from PDP,

takes an advantage in the performance-complexity tradeoff.

Performance-complexity tradeoff: To demonstrate the ad-

vantage of our P-NN in the performance-complexity tradeoff,

we provide box plots showing the range of classification rates

obtained by different WP algorithms and the number of feature

dimensions in Fig. 8. We observe that NN-LCS has the lowest

dimension, but the performance range is low and has a high

variance. CNN-LE exhibits steady and high classification rate,

but such a performance is achieved at the cost of utilizing

high-dimensional feature. P-NN using our feature set shows the

performance similar to the one of CNN-LE at relatively low

feature dimensions. This result shows that our feature set can

provide WP performance that is much more complexity-efficient.

VI. CONCLUSIONS

We have considered a WP scenario for mobile applications

and proposed P-NN that utilizes a low-dimensional feature.

Our minimum description feature set takes a number of largest

power measurements and their temporal positions. For robust

performance against varying channel conditions, we have

proposed a method of adaptively selecting the feature size by

considering the log-likelihood, acquisition probability, and KL

divergence. Numerical results have shown that using our feature

set achieves positioning performance competitive to the one from

using PDP and has a great performance-complexity tradeoff

as compared to the baseline algorithms. Potential directions of

future works include (i) theoretical optimization on the weight

parameter for the feature size selection and (ii) the extension

of P-NN to consider coordinates estimation.
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